hugetlbpage.c 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278
  1. /*
  2. * arch/sh64/mm/hugetlbpage.c
  3. *
  4. * SuperH HugeTLB page support.
  5. *
  6. * Cloned from sparc64 by Paul Mundt.
  7. *
  8. * Copyright (C) 2002, 2003 David S. Miller (davem@redhat.com)
  9. */
  10. #include <linux/config.h>
  11. #include <linux/init.h>
  12. #include <linux/fs.h>
  13. #include <linux/mm.h>
  14. #include <linux/hugetlb.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/smp_lock.h>
  17. #include <linux/slab.h>
  18. #include <linux/sysctl.h>
  19. #include <asm/mman.h>
  20. #include <asm/pgalloc.h>
  21. #include <asm/tlb.h>
  22. #include <asm/tlbflush.h>
  23. #include <asm/cacheflush.h>
  24. pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
  25. {
  26. pgd_t *pgd;
  27. pmd_t *pmd;
  28. pte_t *pte = NULL;
  29. pgd = pgd_offset(mm, addr);
  30. if (pgd) {
  31. pmd = pmd_alloc(mm, pgd, addr);
  32. if (pmd)
  33. pte = pte_alloc_map(mm, pmd, addr);
  34. }
  35. return pte;
  36. }
  37. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  38. {
  39. pgd_t *pgd;
  40. pmd_t *pmd;
  41. pte_t *pte = NULL;
  42. pgd = pgd_offset(mm, addr);
  43. if (pgd) {
  44. pmd = pmd_offset(pgd, addr);
  45. if (pmd)
  46. pte = pte_offset_map(pmd, addr);
  47. }
  48. return pte;
  49. }
  50. #define mk_pte_huge(entry) do { pte_val(entry) |= _PAGE_SZHUGE; } while (0)
  51. static void set_huge_pte(struct mm_struct *mm, struct vm_area_struct *vma,
  52. struct page *page, pte_t * page_table, int write_access)
  53. {
  54. unsigned long i;
  55. pte_t entry;
  56. add_mm_counter(mm, rss, HPAGE_SIZE / PAGE_SIZE);
  57. if (write_access)
  58. entry = pte_mkwrite(pte_mkdirty(mk_pte(page,
  59. vma->vm_page_prot)));
  60. else
  61. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  62. entry = pte_mkyoung(entry);
  63. mk_pte_huge(entry);
  64. for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
  65. set_pte(page_table, entry);
  66. page_table++;
  67. pte_val(entry) += PAGE_SIZE;
  68. }
  69. }
  70. pte_t huge_ptep_get_and_clear(pte_t *ptep)
  71. {
  72. pte_t entry;
  73. entry = *ptep;
  74. for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
  75. pte_clear(pte);
  76. pte++;
  77. }
  78. return entry;
  79. }
  80. /*
  81. * This function checks for proper alignment of input addr and len parameters.
  82. */
  83. int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
  84. {
  85. if (len & ~HPAGE_MASK)
  86. return -EINVAL;
  87. if (addr & ~HPAGE_MASK)
  88. return -EINVAL;
  89. return 0;
  90. }
  91. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  92. struct vm_area_struct *vma)
  93. {
  94. pte_t *src_pte, *dst_pte, entry;
  95. struct page *ptepage;
  96. unsigned long addr = vma->vm_start;
  97. unsigned long end = vma->vm_end;
  98. int i;
  99. while (addr < end) {
  100. dst_pte = huge_pte_alloc(dst, addr);
  101. if (!dst_pte)
  102. goto nomem;
  103. src_pte = huge_pte_offset(src, addr);
  104. BUG_ON(!src_pte || pte_none(*src_pte));
  105. entry = *src_pte;
  106. ptepage = pte_page(entry);
  107. get_page(ptepage);
  108. for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
  109. set_pte(dst_pte, entry);
  110. pte_val(entry) += PAGE_SIZE;
  111. dst_pte++;
  112. }
  113. add_mm_counter(dst, rss, HPAGE_SIZE / PAGE_SIZE);
  114. addr += HPAGE_SIZE;
  115. }
  116. return 0;
  117. nomem:
  118. return -ENOMEM;
  119. }
  120. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  121. struct page **pages, struct vm_area_struct **vmas,
  122. unsigned long *position, int *length, int i)
  123. {
  124. unsigned long vaddr = *position;
  125. int remainder = *length;
  126. WARN_ON(!is_vm_hugetlb_page(vma));
  127. while (vaddr < vma->vm_end && remainder) {
  128. if (pages) {
  129. pte_t *pte;
  130. struct page *page;
  131. pte = huge_pte_offset(mm, vaddr);
  132. /* hugetlb should be locked, and hence, prefaulted */
  133. BUG_ON(!pte || pte_none(*pte));
  134. page = pte_page(*pte);
  135. WARN_ON(!PageCompound(page));
  136. get_page(page);
  137. pages[i] = page;
  138. }
  139. if (vmas)
  140. vmas[i] = vma;
  141. vaddr += PAGE_SIZE;
  142. --remainder;
  143. ++i;
  144. }
  145. *length = remainder;
  146. *position = vaddr;
  147. return i;
  148. }
  149. struct page *follow_huge_addr(struct mm_struct *mm,
  150. unsigned long address, int write)
  151. {
  152. return ERR_PTR(-EINVAL);
  153. }
  154. int pmd_huge(pmd_t pmd)
  155. {
  156. return 0;
  157. }
  158. struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  159. pmd_t *pmd, int write)
  160. {
  161. return NULL;
  162. }
  163. void unmap_hugepage_range(struct vm_area_struct *vma,
  164. unsigned long start, unsigned long end)
  165. {
  166. struct mm_struct *mm = vma->vm_mm;
  167. unsigned long address;
  168. pte_t *pte;
  169. struct page *page;
  170. int i;
  171. BUG_ON(start & (HPAGE_SIZE - 1));
  172. BUG_ON(end & (HPAGE_SIZE - 1));
  173. for (address = start; address < end; address += HPAGE_SIZE) {
  174. pte = huge_pte_offset(mm, address);
  175. BUG_ON(!pte);
  176. if (pte_none(*pte))
  177. continue;
  178. page = pte_page(*pte);
  179. put_page(page);
  180. for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
  181. pte_clear(mm, address+(i*PAGE_SIZE), pte);
  182. pte++;
  183. }
  184. }
  185. add_mm_counter(mm, rss, -((end - start) >> PAGE_SHIFT));
  186. flush_tlb_range(vma, start, end);
  187. }
  188. int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
  189. {
  190. struct mm_struct *mm = current->mm;
  191. unsigned long addr;
  192. int ret = 0;
  193. BUG_ON(vma->vm_start & ~HPAGE_MASK);
  194. BUG_ON(vma->vm_end & ~HPAGE_MASK);
  195. spin_lock(&mm->page_table_lock);
  196. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  197. unsigned long idx;
  198. pte_t *pte = huge_pte_alloc(mm, addr);
  199. struct page *page;
  200. if (!pte) {
  201. ret = -ENOMEM;
  202. goto out;
  203. }
  204. if (!pte_none(*pte))
  205. continue;
  206. idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
  207. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  208. page = find_get_page(mapping, idx);
  209. if (!page) {
  210. /* charge the fs quota first */
  211. if (hugetlb_get_quota(mapping)) {
  212. ret = -ENOMEM;
  213. goto out;
  214. }
  215. page = alloc_huge_page();
  216. if (!page) {
  217. hugetlb_put_quota(mapping);
  218. ret = -ENOMEM;
  219. goto out;
  220. }
  221. ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
  222. if (! ret) {
  223. unlock_page(page);
  224. } else {
  225. hugetlb_put_quota(mapping);
  226. free_huge_page(page);
  227. goto out;
  228. }
  229. }
  230. set_huge_pte(mm, vma, page, pte, vma->vm_flags & VM_WRITE);
  231. }
  232. out:
  233. spin_unlock(&mm->page_table_lock);
  234. return ret;
  235. }