123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934 |
- /*
- * eeh.c
- * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- */
- #include <linux/bootmem.h>
- #include <linux/init.h>
- #include <linux/list.h>
- #include <linux/mm.h>
- #include <linux/notifier.h>
- #include <linux/pci.h>
- #include <linux/proc_fs.h>
- #include <linux/rbtree.h>
- #include <linux/seq_file.h>
- #include <linux/spinlock.h>
- #include <asm/eeh.h>
- #include <asm/io.h>
- #include <asm/machdep.h>
- #include <asm/rtas.h>
- #include <asm/atomic.h>
- #include <asm/systemcfg.h>
- #include "pci.h"
- #undef DEBUG
- /** Overview:
- * EEH, or "Extended Error Handling" is a PCI bridge technology for
- * dealing with PCI bus errors that can't be dealt with within the
- * usual PCI framework, except by check-stopping the CPU. Systems
- * that are designed for high-availability/reliability cannot afford
- * to crash due to a "mere" PCI error, thus the need for EEH.
- * An EEH-capable bridge operates by converting a detected error
- * into a "slot freeze", taking the PCI adapter off-line, making
- * the slot behave, from the OS'es point of view, as if the slot
- * were "empty": all reads return 0xff's and all writes are silently
- * ignored. EEH slot isolation events can be triggered by parity
- * errors on the address or data busses (e.g. during posted writes),
- * which in turn might be caused by dust, vibration, humidity,
- * radioactivity or plain-old failed hardware.
- *
- * Note, however, that one of the leading causes of EEH slot
- * freeze events are buggy device drivers, buggy device microcode,
- * or buggy device hardware. This is because any attempt by the
- * device to bus-master data to a memory address that is not
- * assigned to the device will trigger a slot freeze. (The idea
- * is to prevent devices-gone-wild from corrupting system memory).
- * Buggy hardware/drivers will have a miserable time co-existing
- * with EEH.
- *
- * Ideally, a PCI device driver, when suspecting that an isolation
- * event has occured (e.g. by reading 0xff's), will then ask EEH
- * whether this is the case, and then take appropriate steps to
- * reset the PCI slot, the PCI device, and then resume operations.
- * However, until that day, the checking is done here, with the
- * eeh_check_failure() routine embedded in the MMIO macros. If
- * the slot is found to be isolated, an "EEH Event" is synthesized
- * and sent out for processing.
- */
- /** Bus Unit ID macros; get low and hi 32-bits of the 64-bit BUID */
- #define BUID_HI(buid) ((buid) >> 32)
- #define BUID_LO(buid) ((buid) & 0xffffffff)
- /* EEH event workqueue setup. */
- static DEFINE_SPINLOCK(eeh_eventlist_lock);
- LIST_HEAD(eeh_eventlist);
- static void eeh_event_handler(void *);
- DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL);
- static struct notifier_block *eeh_notifier_chain;
- /*
- * If a device driver keeps reading an MMIO register in an interrupt
- * handler after a slot isolation event has occurred, we assume it
- * is broken and panic. This sets the threshold for how many read
- * attempts we allow before panicking.
- */
- #define EEH_MAX_FAILS 1000
- static atomic_t eeh_fail_count;
- /* RTAS tokens */
- static int ibm_set_eeh_option;
- static int ibm_set_slot_reset;
- static int ibm_read_slot_reset_state;
- static int ibm_read_slot_reset_state2;
- static int ibm_slot_error_detail;
- static int eeh_subsystem_enabled;
- /* Buffer for reporting slot-error-detail rtas calls */
- static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
- static DEFINE_SPINLOCK(slot_errbuf_lock);
- static int eeh_error_buf_size;
- /* System monitoring statistics */
- static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
- static DEFINE_PER_CPU(unsigned long, false_positives);
- static DEFINE_PER_CPU(unsigned long, ignored_failures);
- static DEFINE_PER_CPU(unsigned long, slot_resets);
- /**
- * The pci address cache subsystem. This subsystem places
- * PCI device address resources into a red-black tree, sorted
- * according to the address range, so that given only an i/o
- * address, the corresponding PCI device can be **quickly**
- * found. It is safe to perform an address lookup in an interrupt
- * context; this ability is an important feature.
- *
- * Currently, the only customer of this code is the EEH subsystem;
- * thus, this code has been somewhat tailored to suit EEH better.
- * In particular, the cache does *not* hold the addresses of devices
- * for which EEH is not enabled.
- *
- * (Implementation Note: The RB tree seems to be better/faster
- * than any hash algo I could think of for this problem, even
- * with the penalty of slow pointer chases for d-cache misses).
- */
- struct pci_io_addr_range
- {
- struct rb_node rb_node;
- unsigned long addr_lo;
- unsigned long addr_hi;
- struct pci_dev *pcidev;
- unsigned int flags;
- };
- static struct pci_io_addr_cache
- {
- struct rb_root rb_root;
- spinlock_t piar_lock;
- } pci_io_addr_cache_root;
- static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
- {
- struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
- while (n) {
- struct pci_io_addr_range *piar;
- piar = rb_entry(n, struct pci_io_addr_range, rb_node);
- if (addr < piar->addr_lo) {
- n = n->rb_left;
- } else {
- if (addr > piar->addr_hi) {
- n = n->rb_right;
- } else {
- pci_dev_get(piar->pcidev);
- return piar->pcidev;
- }
- }
- }
- return NULL;
- }
- /**
- * pci_get_device_by_addr - Get device, given only address
- * @addr: mmio (PIO) phys address or i/o port number
- *
- * Given an mmio phys address, or a port number, find a pci device
- * that implements this address. Be sure to pci_dev_put the device
- * when finished. I/O port numbers are assumed to be offset
- * from zero (that is, they do *not* have pci_io_addr added in).
- * It is safe to call this function within an interrupt.
- */
- static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
- {
- struct pci_dev *dev;
- unsigned long flags;
- spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
- dev = __pci_get_device_by_addr(addr);
- spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
- return dev;
- }
- #ifdef DEBUG
- /*
- * Handy-dandy debug print routine, does nothing more
- * than print out the contents of our addr cache.
- */
- static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
- {
- struct rb_node *n;
- int cnt = 0;
- n = rb_first(&cache->rb_root);
- while (n) {
- struct pci_io_addr_range *piar;
- piar = rb_entry(n, struct pci_io_addr_range, rb_node);
- printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
- (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
- piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
- cnt++;
- n = rb_next(n);
- }
- }
- #endif
- /* Insert address range into the rb tree. */
- static struct pci_io_addr_range *
- pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
- unsigned long ahi, unsigned int flags)
- {
- struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
- struct rb_node *parent = NULL;
- struct pci_io_addr_range *piar;
- /* Walk tree, find a place to insert into tree */
- while (*p) {
- parent = *p;
- piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
- if (alo < piar->addr_lo) {
- p = &parent->rb_left;
- } else if (ahi > piar->addr_hi) {
- p = &parent->rb_right;
- } else {
- if (dev != piar->pcidev ||
- alo != piar->addr_lo || ahi != piar->addr_hi) {
- printk(KERN_WARNING "PIAR: overlapping address range\n");
- }
- return piar;
- }
- }
- piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
- if (!piar)
- return NULL;
- piar->addr_lo = alo;
- piar->addr_hi = ahi;
- piar->pcidev = dev;
- piar->flags = flags;
- rb_link_node(&piar->rb_node, parent, p);
- rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
- return piar;
- }
- static void __pci_addr_cache_insert_device(struct pci_dev *dev)
- {
- struct device_node *dn;
- int i;
- int inserted = 0;
- dn = pci_device_to_OF_node(dev);
- if (!dn) {
- printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n",
- pci_name(dev));
- return;
- }
- /* Skip any devices for which EEH is not enabled. */
- if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) ||
- dn->eeh_mode & EEH_MODE_NOCHECK) {
- #ifdef DEBUG
- printk(KERN_INFO "PCI: skip building address cache for=%s\n",
- pci_name(dev));
- #endif
- return;
- }
- /* The cache holds a reference to the device... */
- pci_dev_get(dev);
- /* Walk resources on this device, poke them into the tree */
- for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
- unsigned long start = pci_resource_start(dev,i);
- unsigned long end = pci_resource_end(dev,i);
- unsigned int flags = pci_resource_flags(dev,i);
- /* We are interested only bus addresses, not dma or other stuff */
- if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
- continue;
- if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
- continue;
- pci_addr_cache_insert(dev, start, end, flags);
- inserted = 1;
- }
- /* If there was nothing to add, the cache has no reference... */
- if (!inserted)
- pci_dev_put(dev);
- }
- /**
- * pci_addr_cache_insert_device - Add a device to the address cache
- * @dev: PCI device whose I/O addresses we are interested in.
- *
- * In order to support the fast lookup of devices based on addresses,
- * we maintain a cache of devices that can be quickly searched.
- * This routine adds a device to that cache.
- */
- void pci_addr_cache_insert_device(struct pci_dev *dev)
- {
- unsigned long flags;
- spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
- __pci_addr_cache_insert_device(dev);
- spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
- }
- static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
- {
- struct rb_node *n;
- int removed = 0;
- restart:
- n = rb_first(&pci_io_addr_cache_root.rb_root);
- while (n) {
- struct pci_io_addr_range *piar;
- piar = rb_entry(n, struct pci_io_addr_range, rb_node);
- if (piar->pcidev == dev) {
- rb_erase(n, &pci_io_addr_cache_root.rb_root);
- removed = 1;
- kfree(piar);
- goto restart;
- }
- n = rb_next(n);
- }
- /* The cache no longer holds its reference to this device... */
- if (removed)
- pci_dev_put(dev);
- }
- /**
- * pci_addr_cache_remove_device - remove pci device from addr cache
- * @dev: device to remove
- *
- * Remove a device from the addr-cache tree.
- * This is potentially expensive, since it will walk
- * the tree multiple times (once per resource).
- * But so what; device removal doesn't need to be that fast.
- */
- void pci_addr_cache_remove_device(struct pci_dev *dev)
- {
- unsigned long flags;
- spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
- __pci_addr_cache_remove_device(dev);
- spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
- }
- /**
- * pci_addr_cache_build - Build a cache of I/O addresses
- *
- * Build a cache of pci i/o addresses. This cache will be used to
- * find the pci device that corresponds to a given address.
- * This routine scans all pci busses to build the cache.
- * Must be run late in boot process, after the pci controllers
- * have been scaned for devices (after all device resources are known).
- */
- void __init pci_addr_cache_build(void)
- {
- struct pci_dev *dev = NULL;
- spin_lock_init(&pci_io_addr_cache_root.piar_lock);
- while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
- /* Ignore PCI bridges ( XXX why ??) */
- if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
- continue;
- }
- pci_addr_cache_insert_device(dev);
- }
- #ifdef DEBUG
- /* Verify tree built up above, echo back the list of addrs. */
- pci_addr_cache_print(&pci_io_addr_cache_root);
- #endif
- }
- /* --------------------------------------------------------------- */
- /* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
- /**
- * eeh_register_notifier - Register to find out about EEH events.
- * @nb: notifier block to callback on events
- */
- int eeh_register_notifier(struct notifier_block *nb)
- {
- return notifier_chain_register(&eeh_notifier_chain, nb);
- }
- /**
- * eeh_unregister_notifier - Unregister to an EEH event notifier.
- * @nb: notifier block to callback on events
- */
- int eeh_unregister_notifier(struct notifier_block *nb)
- {
- return notifier_chain_unregister(&eeh_notifier_chain, nb);
- }
- /**
- * read_slot_reset_state - Read the reset state of a device node's slot
- * @dn: device node to read
- * @rets: array to return results in
- */
- static int read_slot_reset_state(struct device_node *dn, int rets[])
- {
- int token, outputs;
- if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
- token = ibm_read_slot_reset_state2;
- outputs = 4;
- } else {
- token = ibm_read_slot_reset_state;
- outputs = 3;
- }
- return rtas_call(token, 3, outputs, rets, dn->eeh_config_addr,
- BUID_HI(dn->phb->buid), BUID_LO(dn->phb->buid));
- }
- /**
- * eeh_panic - call panic() for an eeh event that cannot be handled.
- * The philosophy of this routine is that it is better to panic and
- * halt the OS than it is to risk possible data corruption by
- * oblivious device drivers that don't know better.
- *
- * @dev pci device that had an eeh event
- * @reset_state current reset state of the device slot
- */
- static void eeh_panic(struct pci_dev *dev, int reset_state)
- {
- /*
- * XXX We should create a separate sysctl for this.
- *
- * Since the panic_on_oops sysctl is used to halt the system
- * in light of potential corruption, we can use it here.
- */
- if (panic_on_oops)
- panic("EEH: MMIO failure (%d) on device:%s\n", reset_state,
- pci_name(dev));
- else {
- __get_cpu_var(ignored_failures)++;
- printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s\n",
- reset_state, pci_name(dev));
- }
- }
- /**
- * eeh_event_handler - dispatch EEH events. The detection of a frozen
- * slot can occur inside an interrupt, where it can be hard to do
- * anything about it. The goal of this routine is to pull these
- * detection events out of the context of the interrupt handler, and
- * re-dispatch them for processing at a later time in a normal context.
- *
- * @dummy - unused
- */
- static void eeh_event_handler(void *dummy)
- {
- unsigned long flags;
- struct eeh_event *event;
- while (1) {
- spin_lock_irqsave(&eeh_eventlist_lock, flags);
- event = NULL;
- if (!list_empty(&eeh_eventlist)) {
- event = list_entry(eeh_eventlist.next, struct eeh_event, list);
- list_del(&event->list);
- }
- spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
- if (event == NULL)
- break;
- printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device "
- "%s\n", event->reset_state,
- pci_name(event->dev));
- atomic_set(&eeh_fail_count, 0);
- notifier_call_chain (&eeh_notifier_chain,
- EEH_NOTIFY_FREEZE, event);
- __get_cpu_var(slot_resets)++;
- pci_dev_put(event->dev);
- kfree(event);
- }
- }
- /**
- * eeh_token_to_phys - convert EEH address token to phys address
- * @token i/o token, should be address in the form 0xE....
- */
- static inline unsigned long eeh_token_to_phys(unsigned long token)
- {
- pte_t *ptep;
- unsigned long pa;
- ptep = find_linux_pte(init_mm.pgd, token);
- if (!ptep)
- return token;
- pa = pte_pfn(*ptep) << PAGE_SHIFT;
- return pa | (token & (PAGE_SIZE-1));
- }
- /**
- * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
- * @dn device node
- * @dev pci device, if known
- *
- * Check for an EEH failure for the given device node. Call this
- * routine if the result of a read was all 0xff's and you want to
- * find out if this is due to an EEH slot freeze. This routine
- * will query firmware for the EEH status.
- *
- * Returns 0 if there has not been an EEH error; otherwise returns
- * a non-zero value and queues up a solt isolation event notification.
- *
- * It is safe to call this routine in an interrupt context.
- */
- int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
- {
- int ret;
- int rets[3];
- unsigned long flags;
- int rc, reset_state;
- struct eeh_event *event;
- __get_cpu_var(total_mmio_ffs)++;
- if (!eeh_subsystem_enabled)
- return 0;
- if (!dn)
- return 0;
- /* Access to IO BARs might get this far and still not want checking. */
- if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) ||
- dn->eeh_mode & EEH_MODE_NOCHECK) {
- return 0;
- }
- if (!dn->eeh_config_addr) {
- return 0;
- }
- /*
- * If we already have a pending isolation event for this
- * slot, we know it's bad already, we don't need to check...
- */
- if (dn->eeh_mode & EEH_MODE_ISOLATED) {
- atomic_inc(&eeh_fail_count);
- if (atomic_read(&eeh_fail_count) >= EEH_MAX_FAILS) {
- /* re-read the slot reset state */
- if (read_slot_reset_state(dn, rets) != 0)
- rets[0] = -1; /* reset state unknown */
- eeh_panic(dev, rets[0]);
- }
- return 0;
- }
- /*
- * Now test for an EEH failure. This is VERY expensive.
- * Note that the eeh_config_addr may be a parent device
- * in the case of a device behind a bridge, or it may be
- * function zero of a multi-function device.
- * In any case they must share a common PHB.
- */
- ret = read_slot_reset_state(dn, rets);
- if (!(ret == 0 && rets[1] == 1 && (rets[0] == 2 || rets[0] == 4))) {
- __get_cpu_var(false_positives)++;
- return 0;
- }
- /* prevent repeated reports of this failure */
- dn->eeh_mode |= EEH_MODE_ISOLATED;
- reset_state = rets[0];
- spin_lock_irqsave(&slot_errbuf_lock, flags);
- memset(slot_errbuf, 0, eeh_error_buf_size);
- rc = rtas_call(ibm_slot_error_detail,
- 8, 1, NULL, dn->eeh_config_addr,
- BUID_HI(dn->phb->buid),
- BUID_LO(dn->phb->buid), NULL, 0,
- virt_to_phys(slot_errbuf),
- eeh_error_buf_size,
- 1 /* Temporary Error */);
- if (rc == 0)
- log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
- spin_unlock_irqrestore(&slot_errbuf_lock, flags);
- printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n",
- rets[0], dn->name, dn->full_name);
- event = kmalloc(sizeof(*event), GFP_ATOMIC);
- if (event == NULL) {
- eeh_panic(dev, reset_state);
- return 1;
- }
- event->dev = dev;
- event->dn = dn;
- event->reset_state = reset_state;
- /* We may or may not be called in an interrupt context */
- spin_lock_irqsave(&eeh_eventlist_lock, flags);
- list_add(&event->list, &eeh_eventlist);
- spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
- /* Most EEH events are due to device driver bugs. Having
- * a stack trace will help the device-driver authors figure
- * out what happened. So print that out. */
- dump_stack();
- schedule_work(&eeh_event_wq);
- return 0;
- }
- EXPORT_SYMBOL(eeh_dn_check_failure);
- /**
- * eeh_check_failure - check if all 1's data is due to EEH slot freeze
- * @token i/o token, should be address in the form 0xA....
- * @val value, should be all 1's (XXX why do we need this arg??)
- *
- * Check for an eeh failure at the given token address.
- * Check for an EEH failure at the given token address. Call this
- * routine if the result of a read was all 0xff's and you want to
- * find out if this is due to an EEH slot freeze event. This routine
- * will query firmware for the EEH status.
- *
- * Note this routine is safe to call in an interrupt context.
- */
- unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
- {
- unsigned long addr;
- struct pci_dev *dev;
- struct device_node *dn;
- /* Finding the phys addr + pci device; this is pretty quick. */
- addr = eeh_token_to_phys((unsigned long __force) token);
- dev = pci_get_device_by_addr(addr);
- if (!dev)
- return val;
- dn = pci_device_to_OF_node(dev);
- eeh_dn_check_failure (dn, dev);
- pci_dev_put(dev);
- return val;
- }
- EXPORT_SYMBOL(eeh_check_failure);
- struct eeh_early_enable_info {
- unsigned int buid_hi;
- unsigned int buid_lo;
- };
- /* Enable eeh for the given device node. */
- static void *early_enable_eeh(struct device_node *dn, void *data)
- {
- struct eeh_early_enable_info *info = data;
- int ret;
- char *status = get_property(dn, "status", NULL);
- u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
- u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
- u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
- u32 *regs;
- int enable;
- dn->eeh_mode = 0;
- if (status && strcmp(status, "ok") != 0)
- return NULL; /* ignore devices with bad status */
- /* Ignore bad nodes. */
- if (!class_code || !vendor_id || !device_id)
- return NULL;
- /* There is nothing to check on PCI to ISA bridges */
- if (dn->type && !strcmp(dn->type, "isa")) {
- dn->eeh_mode |= EEH_MODE_NOCHECK;
- return NULL;
- }
- /*
- * Now decide if we are going to "Disable" EEH checking
- * for this device. We still run with the EEH hardware active,
- * but we won't be checking for ff's. This means a driver
- * could return bad data (very bad!), an interrupt handler could
- * hang waiting on status bits that won't change, etc.
- * But there are a few cases like display devices that make sense.
- */
- enable = 1; /* i.e. we will do checking */
- if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
- enable = 0;
- if (!enable)
- dn->eeh_mode |= EEH_MODE_NOCHECK;
- /* Ok... see if this device supports EEH. Some do, some don't,
- * and the only way to find out is to check each and every one. */
- regs = (u32 *)get_property(dn, "reg", NULL);
- if (regs) {
- /* First register entry is addr (00BBSS00) */
- /* Try to enable eeh */
- ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
- regs[0], info->buid_hi, info->buid_lo,
- EEH_ENABLE);
- if (ret == 0) {
- eeh_subsystem_enabled = 1;
- dn->eeh_mode |= EEH_MODE_SUPPORTED;
- dn->eeh_config_addr = regs[0];
- #ifdef DEBUG
- printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
- #endif
- } else {
- /* This device doesn't support EEH, but it may have an
- * EEH parent, in which case we mark it as supported. */
- if (dn->parent && (dn->parent->eeh_mode & EEH_MODE_SUPPORTED)) {
- /* Parent supports EEH. */
- dn->eeh_mode |= EEH_MODE_SUPPORTED;
- dn->eeh_config_addr = dn->parent->eeh_config_addr;
- return NULL;
- }
- }
- } else {
- printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
- dn->full_name);
- }
- return NULL;
- }
- /*
- * Initialize EEH by trying to enable it for all of the adapters in the system.
- * As a side effect we can determine here if eeh is supported at all.
- * Note that we leave EEH on so failed config cycles won't cause a machine
- * check. If a user turns off EEH for a particular adapter they are really
- * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
- * grant access to a slot if EEH isn't enabled, and so we always enable
- * EEH for all slots/all devices.
- *
- * The eeh-force-off option disables EEH checking globally, for all slots.
- * Even if force-off is set, the EEH hardware is still enabled, so that
- * newer systems can boot.
- */
- void __init eeh_init(void)
- {
- struct device_node *phb, *np;
- struct eeh_early_enable_info info;
- np = of_find_node_by_path("/rtas");
- if (np == NULL)
- return;
- ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
- ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
- ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
- ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
- ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
- if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
- return;
- eeh_error_buf_size = rtas_token("rtas-error-log-max");
- if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
- eeh_error_buf_size = 1024;
- }
- if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
- printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
- "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
- eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
- }
- /* Enable EEH for all adapters. Note that eeh requires buid's */
- for (phb = of_find_node_by_name(NULL, "pci"); phb;
- phb = of_find_node_by_name(phb, "pci")) {
- unsigned long buid;
- buid = get_phb_buid(phb);
- if (buid == 0)
- continue;
- info.buid_lo = BUID_LO(buid);
- info.buid_hi = BUID_HI(buid);
- traverse_pci_devices(phb, early_enable_eeh, &info);
- }
- if (eeh_subsystem_enabled)
- printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
- else
- printk(KERN_WARNING "EEH: No capable adapters found\n");
- }
- /**
- * eeh_add_device_early - enable EEH for the indicated device_node
- * @dn: device node for which to set up EEH
- *
- * This routine must be used to perform EEH initialization for PCI
- * devices that were added after system boot (e.g. hotplug, dlpar).
- * This routine must be called before any i/o is performed to the
- * adapter (inluding any config-space i/o).
- * Whether this actually enables EEH or not for this device depends
- * on the CEC architecture, type of the device, on earlier boot
- * command-line arguments & etc.
- */
- void eeh_add_device_early(struct device_node *dn)
- {
- struct pci_controller *phb;
- struct eeh_early_enable_info info;
- if (!dn)
- return;
- phb = dn->phb;
- if (NULL == phb || 0 == phb->buid) {
- printk(KERN_WARNING "EEH: Expected buid but found none\n");
- return;
- }
- info.buid_hi = BUID_HI(phb->buid);
- info.buid_lo = BUID_LO(phb->buid);
- early_enable_eeh(dn, &info);
- }
- EXPORT_SYMBOL(eeh_add_device_early);
- /**
- * eeh_add_device_late - perform EEH initialization for the indicated pci device
- * @dev: pci device for which to set up EEH
- *
- * This routine must be used to complete EEH initialization for PCI
- * devices that were added after system boot (e.g. hotplug, dlpar).
- */
- void eeh_add_device_late(struct pci_dev *dev)
- {
- if (!dev || !eeh_subsystem_enabled)
- return;
- #ifdef DEBUG
- printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
- #endif
- pci_addr_cache_insert_device (dev);
- }
- EXPORT_SYMBOL(eeh_add_device_late);
- /**
- * eeh_remove_device - undo EEH setup for the indicated pci device
- * @dev: pci device to be removed
- *
- * This routine should be when a device is removed from a running
- * system (e.g. by hotplug or dlpar).
- */
- void eeh_remove_device(struct pci_dev *dev)
- {
- if (!dev || !eeh_subsystem_enabled)
- return;
- /* Unregister the device with the EEH/PCI address search system */
- #ifdef DEBUG
- printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
- #endif
- pci_addr_cache_remove_device(dev);
- }
- EXPORT_SYMBOL(eeh_remove_device);
- static int proc_eeh_show(struct seq_file *m, void *v)
- {
- unsigned int cpu;
- unsigned long ffs = 0, positives = 0, failures = 0;
- unsigned long resets = 0;
- for_each_cpu(cpu) {
- ffs += per_cpu(total_mmio_ffs, cpu);
- positives += per_cpu(false_positives, cpu);
- failures += per_cpu(ignored_failures, cpu);
- resets += per_cpu(slot_resets, cpu);
- }
- if (0 == eeh_subsystem_enabled) {
- seq_printf(m, "EEH Subsystem is globally disabled\n");
- seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
- } else {
- seq_printf(m, "EEH Subsystem is enabled\n");
- seq_printf(m, "eeh_total_mmio_ffs=%ld\n"
- "eeh_false_positives=%ld\n"
- "eeh_ignored_failures=%ld\n"
- "eeh_slot_resets=%ld\n"
- "eeh_fail_count=%d\n",
- ffs, positives, failures, resets,
- eeh_fail_count.counter);
- }
- return 0;
- }
- static int proc_eeh_open(struct inode *inode, struct file *file)
- {
- return single_open(file, proc_eeh_show, NULL);
- }
- static struct file_operations proc_eeh_operations = {
- .open = proc_eeh_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = single_release,
- };
- static int __init eeh_init_proc(void)
- {
- struct proc_dir_entry *e;
- if (systemcfg->platform & PLATFORM_PSERIES) {
- e = create_proc_entry("ppc64/eeh", 0, NULL);
- if (e)
- e->proc_fops = &proc_eeh_operations;
- }
- return 0;
- }
- __initcall(eeh_init_proc);
|