time.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. *
  8. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  9. * to make clock more stable (2.4.0-test5). The only thing
  10. * that this code assumes is that the timebases have been synchronized
  11. * by firmware on SMP and are never stopped (never do sleep
  12. * on SMP then, nap and doze are OK).
  13. *
  14. * TODO (not necessarily in this file):
  15. * - improve precision and reproducibility of timebase frequency
  16. * measurement at boot time.
  17. * - get rid of xtime_lock for gettimeofday (generic kernel problem
  18. * to be implemented on all architectures for SMP scalability and
  19. * eventually implementing gettimeofday without entering the kernel).
  20. * - put all time/clock related variables in a single structure
  21. * to minimize number of cache lines touched by gettimeofday()
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. *
  27. * The following comment is partially obsolete (at least the long wait
  28. * is no more a valid reason):
  29. * Since the MPC8xx has a programmable interrupt timer, I decided to
  30. * use that rather than the decrementer. Two reasons: 1.) the clock
  31. * frequency is low, causing 2.) a long wait in the timer interrupt
  32. * while ((d = get_dec()) == dval)
  33. * loop. The MPC8xx can be driven from a variety of input clocks,
  34. * so a number of assumptions have been made here because the kernel
  35. * parameter HZ is a constant. We assume (correctly, today :-) that
  36. * the MPC8xx on the MBX board is driven from a 32.768 kHz crystal.
  37. * This is then divided by 4, providing a 8192 Hz clock into the PIT.
  38. * Since it is not possible to get a nice 100 Hz clock out of this, without
  39. * creating a software PLL, I have set HZ to 128. -- Dan
  40. *
  41. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  42. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  43. */
  44. #include <linux/config.h>
  45. #include <linux/errno.h>
  46. #include <linux/sched.h>
  47. #include <linux/kernel.h>
  48. #include <linux/param.h>
  49. #include <linux/string.h>
  50. #include <linux/mm.h>
  51. #include <linux/module.h>
  52. #include <linux/interrupt.h>
  53. #include <linux/timex.h>
  54. #include <linux/kernel_stat.h>
  55. #include <linux/mc146818rtc.h>
  56. #include <linux/time.h>
  57. #include <linux/init.h>
  58. #include <linux/profile.h>
  59. #include <asm/segment.h>
  60. #include <asm/io.h>
  61. #include <asm/nvram.h>
  62. #include <asm/cache.h>
  63. #include <asm/8xx_immap.h>
  64. #include <asm/machdep.h>
  65. #include <asm/time.h>
  66. /* XXX false sharing with below? */
  67. u64 jiffies_64 = INITIAL_JIFFIES;
  68. EXPORT_SYMBOL(jiffies_64);
  69. unsigned long disarm_decr[NR_CPUS];
  70. extern struct timezone sys_tz;
  71. /* keep track of when we need to update the rtc */
  72. time_t last_rtc_update;
  73. /* The decrementer counts down by 128 every 128ns on a 601. */
  74. #define DECREMENTER_COUNT_601 (1000000000 / HZ)
  75. unsigned tb_ticks_per_jiffy;
  76. unsigned tb_to_us;
  77. unsigned tb_last_stamp;
  78. unsigned long tb_to_ns_scale;
  79. extern unsigned long wall_jiffies;
  80. /* used for timezone offset */
  81. static long timezone_offset;
  82. DEFINE_SPINLOCK(rtc_lock);
  83. EXPORT_SYMBOL(rtc_lock);
  84. /* Timer interrupt helper function */
  85. static inline int tb_delta(unsigned *jiffy_stamp) {
  86. int delta;
  87. if (__USE_RTC()) {
  88. delta = get_rtcl();
  89. if (delta < *jiffy_stamp) *jiffy_stamp -= 1000000000;
  90. delta -= *jiffy_stamp;
  91. } else {
  92. delta = get_tbl() - *jiffy_stamp;
  93. }
  94. return delta;
  95. }
  96. #ifdef CONFIG_SMP
  97. unsigned long profile_pc(struct pt_regs *regs)
  98. {
  99. unsigned long pc = instruction_pointer(regs);
  100. if (in_lock_functions(pc))
  101. return regs->link;
  102. return pc;
  103. }
  104. EXPORT_SYMBOL(profile_pc);
  105. #endif
  106. /*
  107. * timer_interrupt - gets called when the decrementer overflows,
  108. * with interrupts disabled.
  109. * We set it up to overflow again in 1/HZ seconds.
  110. */
  111. void timer_interrupt(struct pt_regs * regs)
  112. {
  113. int next_dec;
  114. unsigned long cpu = smp_processor_id();
  115. unsigned jiffy_stamp = last_jiffy_stamp(cpu);
  116. extern void do_IRQ(struct pt_regs *);
  117. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  118. do_IRQ(regs);
  119. irq_enter();
  120. while ((next_dec = tb_ticks_per_jiffy - tb_delta(&jiffy_stamp)) <= 0) {
  121. jiffy_stamp += tb_ticks_per_jiffy;
  122. profile_tick(CPU_PROFILING, regs);
  123. update_process_times(user_mode(regs));
  124. if (smp_processor_id())
  125. continue;
  126. /* We are in an interrupt, no need to save/restore flags */
  127. write_seqlock(&xtime_lock);
  128. tb_last_stamp = jiffy_stamp;
  129. do_timer(regs);
  130. /*
  131. * update the rtc when needed, this should be performed on the
  132. * right fraction of a second. Half or full second ?
  133. * Full second works on mk48t59 clocks, others need testing.
  134. * Note that this update is basically only used through
  135. * the adjtimex system calls. Setting the HW clock in
  136. * any other way is a /dev/rtc and userland business.
  137. * This is still wrong by -0.5/+1.5 jiffies because of the
  138. * timer interrupt resolution and possible delay, but here we
  139. * hit a quantization limit which can only be solved by higher
  140. * resolution timers and decoupling time management from timer
  141. * interrupts. This is also wrong on the clocks
  142. * which require being written at the half second boundary.
  143. * We should have an rtc call that only sets the minutes and
  144. * seconds like on Intel to avoid problems with non UTC clocks.
  145. */
  146. if ( ppc_md.set_rtc_time && ntp_synced() &&
  147. xtime.tv_sec - last_rtc_update >= 659 &&
  148. abs((xtime.tv_nsec / 1000) - (1000000-1000000/HZ)) < 500000/HZ &&
  149. jiffies - wall_jiffies == 1) {
  150. if (ppc_md.set_rtc_time(xtime.tv_sec+1 + timezone_offset) == 0)
  151. last_rtc_update = xtime.tv_sec+1;
  152. else
  153. /* Try again one minute later */
  154. last_rtc_update += 60;
  155. }
  156. write_sequnlock(&xtime_lock);
  157. }
  158. if ( !disarm_decr[smp_processor_id()] )
  159. set_dec(next_dec);
  160. last_jiffy_stamp(cpu) = jiffy_stamp;
  161. if (ppc_md.heartbeat && !ppc_md.heartbeat_count--)
  162. ppc_md.heartbeat();
  163. irq_exit();
  164. }
  165. /*
  166. * This version of gettimeofday has microsecond resolution.
  167. */
  168. void do_gettimeofday(struct timeval *tv)
  169. {
  170. unsigned long flags;
  171. unsigned long seq;
  172. unsigned delta, lost_ticks, usec, sec;
  173. do {
  174. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  175. sec = xtime.tv_sec;
  176. usec = (xtime.tv_nsec / 1000);
  177. delta = tb_ticks_since(tb_last_stamp);
  178. #ifdef CONFIG_SMP
  179. /* As long as timebases are not in sync, gettimeofday can only
  180. * have jiffy resolution on SMP.
  181. */
  182. if (!smp_tb_synchronized)
  183. delta = 0;
  184. #endif /* CONFIG_SMP */
  185. lost_ticks = jiffies - wall_jiffies;
  186. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  187. usec += mulhwu(tb_to_us, tb_ticks_per_jiffy * lost_ticks + delta);
  188. while (usec >= 1000000) {
  189. sec++;
  190. usec -= 1000000;
  191. }
  192. tv->tv_sec = sec;
  193. tv->tv_usec = usec;
  194. }
  195. EXPORT_SYMBOL(do_gettimeofday);
  196. int do_settimeofday(struct timespec *tv)
  197. {
  198. time_t wtm_sec, new_sec = tv->tv_sec;
  199. long wtm_nsec, new_nsec = tv->tv_nsec;
  200. unsigned long flags;
  201. int tb_delta;
  202. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  203. return -EINVAL;
  204. write_seqlock_irqsave(&xtime_lock, flags);
  205. /* Updating the RTC is not the job of this code. If the time is
  206. * stepped under NTP, the RTC will be update after STA_UNSYNC
  207. * is cleared. Tool like clock/hwclock either copy the RTC
  208. * to the system time, in which case there is no point in writing
  209. * to the RTC again, or write to the RTC but then they don't call
  210. * settimeofday to perform this operation. Note also that
  211. * we don't touch the decrementer since:
  212. * a) it would lose timer interrupt synchronization on SMP
  213. * (if it is working one day)
  214. * b) it could make one jiffy spuriously shorter or longer
  215. * which would introduce another source of uncertainty potentially
  216. * harmful to relatively short timers.
  217. */
  218. /* This works perfectly on SMP only if the tb are in sync but
  219. * guarantees an error < 1 jiffy even if they are off by eons,
  220. * still reasonable when gettimeofday resolution is 1 jiffy.
  221. */
  222. tb_delta = tb_ticks_since(last_jiffy_stamp(smp_processor_id()));
  223. tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
  224. new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta);
  225. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
  226. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
  227. set_normalized_timespec(&xtime, new_sec, new_nsec);
  228. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  229. /* In case of a large backwards jump in time with NTP, we want the
  230. * clock to be updated as soon as the PLL is again in lock.
  231. */
  232. last_rtc_update = new_sec - 658;
  233. ntp_clear();
  234. write_sequnlock_irqrestore(&xtime_lock, flags);
  235. clock_was_set();
  236. return 0;
  237. }
  238. EXPORT_SYMBOL(do_settimeofday);
  239. /* This function is only called on the boot processor */
  240. void __init time_init(void)
  241. {
  242. time_t sec, old_sec;
  243. unsigned old_stamp, stamp, elapsed;
  244. if (ppc_md.time_init != NULL)
  245. timezone_offset = ppc_md.time_init();
  246. if (__USE_RTC()) {
  247. /* 601 processor: dec counts down by 128 every 128ns */
  248. tb_ticks_per_jiffy = DECREMENTER_COUNT_601;
  249. /* mulhwu_scale_factor(1000000000, 1000000) is 0x418937 */
  250. tb_to_us = 0x418937;
  251. } else {
  252. ppc_md.calibrate_decr();
  253. tb_to_ns_scale = mulhwu(tb_to_us, 1000 << 10);
  254. }
  255. /* Now that the decrementer is calibrated, it can be used in case the
  256. * clock is stuck, but the fact that we have to handle the 601
  257. * makes things more complex. Repeatedly read the RTC until the
  258. * next second boundary to try to achieve some precision. If there
  259. * is no RTC, we still need to set tb_last_stamp and
  260. * last_jiffy_stamp(cpu 0) to the current stamp.
  261. */
  262. stamp = get_native_tbl();
  263. if (ppc_md.get_rtc_time) {
  264. sec = ppc_md.get_rtc_time();
  265. elapsed = 0;
  266. do {
  267. old_stamp = stamp;
  268. old_sec = sec;
  269. stamp = get_native_tbl();
  270. if (__USE_RTC() && stamp < old_stamp)
  271. old_stamp -= 1000000000;
  272. elapsed += stamp - old_stamp;
  273. sec = ppc_md.get_rtc_time();
  274. } while ( sec == old_sec && elapsed < 2*HZ*tb_ticks_per_jiffy);
  275. if (sec==old_sec)
  276. printk("Warning: real time clock seems stuck!\n");
  277. xtime.tv_sec = sec;
  278. xtime.tv_nsec = 0;
  279. /* No update now, we just read the time from the RTC ! */
  280. last_rtc_update = xtime.tv_sec;
  281. }
  282. last_jiffy_stamp(0) = tb_last_stamp = stamp;
  283. /* Not exact, but the timer interrupt takes care of this */
  284. set_dec(tb_ticks_per_jiffy);
  285. /* If platform provided a timezone (pmac), we correct the time */
  286. if (timezone_offset) {
  287. sys_tz.tz_minuteswest = -timezone_offset / 60;
  288. sys_tz.tz_dsttime = 0;
  289. xtime.tv_sec -= timezone_offset;
  290. }
  291. set_normalized_timespec(&wall_to_monotonic,
  292. -xtime.tv_sec, -xtime.tv_nsec);
  293. }
  294. #define FEBRUARY 2
  295. #define STARTOFTIME 1970
  296. #define SECDAY 86400L
  297. #define SECYR (SECDAY * 365)
  298. /*
  299. * Note: this is wrong for 2100, but our signed 32-bit time_t will
  300. * have overflowed long before that, so who cares. -- paulus
  301. */
  302. #define leapyear(year) ((year) % 4 == 0)
  303. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  304. #define days_in_month(a) (month_days[(a) - 1])
  305. static int month_days[12] = {
  306. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  307. };
  308. void to_tm(int tim, struct rtc_time * tm)
  309. {
  310. register int i;
  311. register long hms, day, gday;
  312. gday = day = tim / SECDAY;
  313. hms = tim % SECDAY;
  314. /* Hours, minutes, seconds are easy */
  315. tm->tm_hour = hms / 3600;
  316. tm->tm_min = (hms % 3600) / 60;
  317. tm->tm_sec = (hms % 3600) % 60;
  318. /* Number of years in days */
  319. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  320. day -= days_in_year(i);
  321. tm->tm_year = i;
  322. /* Number of months in days left */
  323. if (leapyear(tm->tm_year))
  324. days_in_month(FEBRUARY) = 29;
  325. for (i = 1; day >= days_in_month(i); i++)
  326. day -= days_in_month(i);
  327. days_in_month(FEBRUARY) = 28;
  328. tm->tm_mon = i;
  329. /* Days are what is left over (+1) from all that. */
  330. tm->tm_mday = day + 1;
  331. /*
  332. * Determine the day of week. Jan. 1, 1970 was a Thursday.
  333. */
  334. tm->tm_wday = (gday + 4) % 7;
  335. }
  336. /* Auxiliary function to compute scaling factors */
  337. /* Actually the choice of a timebase running at 1/4 the of the bus
  338. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  339. * It makes this computation very precise (27-28 bits typically) which
  340. * is optimistic considering the stability of most processor clock
  341. * oscillators and the precision with which the timebase frequency
  342. * is measured but does not harm.
  343. */
  344. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) {
  345. unsigned mlt=0, tmp, err;
  346. /* No concern for performance, it's done once: use a stupid
  347. * but safe and compact method to find the multiplier.
  348. */
  349. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  350. if (mulhwu(inscale, mlt|tmp) < outscale) mlt|=tmp;
  351. }
  352. /* We might still be off by 1 for the best approximation.
  353. * A side effect of this is that if outscale is too large
  354. * the returned value will be zero.
  355. * Many corner cases have been checked and seem to work,
  356. * some might have been forgotten in the test however.
  357. */
  358. err = inscale*(mlt+1);
  359. if (err <= inscale/2) mlt++;
  360. return mlt;
  361. }
  362. unsigned long long sched_clock(void)
  363. {
  364. unsigned long lo, hi, hi2;
  365. unsigned long long tb;
  366. if (!__USE_RTC()) {
  367. do {
  368. hi = get_tbu();
  369. lo = get_tbl();
  370. hi2 = get_tbu();
  371. } while (hi2 != hi);
  372. tb = ((unsigned long long) hi << 32) | lo;
  373. tb = (tb * tb_to_ns_scale) >> 10;
  374. } else {
  375. do {
  376. hi = get_rtcu();
  377. lo = get_rtcl();
  378. hi2 = get_rtcu();
  379. } while (hi2 != hi);
  380. tb = ((unsigned long long) hi) * 1000000000 + lo;
  381. }
  382. return tb;
  383. }