time.c 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240
  1. /*
  2. * linux/arch/parisc/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  6. * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  7. *
  8. * 1994-07-02 Alan Modra
  9. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. */
  13. #include <linux/config.h>
  14. #include <linux/errno.h>
  15. #include <linux/module.h>
  16. #include <linux/sched.h>
  17. #include <linux/kernel.h>
  18. #include <linux/param.h>
  19. #include <linux/string.h>
  20. #include <linux/mm.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/time.h>
  23. #include <linux/init.h>
  24. #include <linux/smp.h>
  25. #include <linux/profile.h>
  26. #include <asm/uaccess.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <asm/param.h>
  30. #include <asm/pdc.h>
  31. #include <asm/led.h>
  32. #include <linux/timex.h>
  33. u64 jiffies_64 = INITIAL_JIFFIES;
  34. EXPORT_SYMBOL(jiffies_64);
  35. /* xtime and wall_jiffies keep wall-clock time */
  36. extern unsigned long wall_jiffies;
  37. static long clocktick; /* timer cycles per tick */
  38. static long halftick;
  39. #ifdef CONFIG_SMP
  40. extern void smp_do_timer(struct pt_regs *regs);
  41. #endif
  42. irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  43. {
  44. long now;
  45. long next_tick;
  46. int nticks;
  47. int cpu = smp_processor_id();
  48. profile_tick(CPU_PROFILING, regs);
  49. now = mfctl(16);
  50. /* initialize next_tick to time at last clocktick */
  51. next_tick = cpu_data[cpu].it_value;
  52. /* since time passes between the interrupt and the mfctl()
  53. * above, it is never true that last_tick + clocktick == now. If we
  54. * never miss a clocktick, we could set next_tick = last_tick + clocktick
  55. * but maybe we'll miss ticks, hence the loop.
  56. *
  57. * Variables are *signed*.
  58. */
  59. nticks = 0;
  60. while((next_tick - now) < halftick) {
  61. next_tick += clocktick;
  62. nticks++;
  63. }
  64. mtctl(next_tick, 16);
  65. cpu_data[cpu].it_value = next_tick;
  66. while (nticks--) {
  67. #ifdef CONFIG_SMP
  68. smp_do_timer(regs);
  69. #else
  70. update_process_times(user_mode(regs));
  71. #endif
  72. if (cpu == 0) {
  73. write_seqlock(&xtime_lock);
  74. do_timer(regs);
  75. write_sequnlock(&xtime_lock);
  76. }
  77. }
  78. #ifdef CONFIG_CHASSIS_LCD_LED
  79. /* Only schedule the led tasklet on cpu 0, and only if it
  80. * is enabled.
  81. */
  82. if (cpu == 0 && !atomic_read(&led_tasklet.count))
  83. tasklet_schedule(&led_tasklet);
  84. #endif
  85. /* check soft power switch status */
  86. if (cpu == 0 && !atomic_read(&power_tasklet.count))
  87. tasklet_schedule(&power_tasklet);
  88. return IRQ_HANDLED;
  89. }
  90. /*** converted from ia64 ***/
  91. /*
  92. * Return the number of micro-seconds that elapsed since the last
  93. * update to wall time (aka xtime aka wall_jiffies). The xtime_lock
  94. * must be at least read-locked when calling this routine.
  95. */
  96. static inline unsigned long
  97. gettimeoffset (void)
  98. {
  99. #ifndef CONFIG_SMP
  100. /*
  101. * FIXME: This won't work on smp because jiffies are updated by cpu 0.
  102. * Once parisc-linux learns the cr16 difference between processors,
  103. * this could be made to work.
  104. */
  105. long last_tick;
  106. long elapsed_cycles;
  107. /* it_value is the intended time of the next tick */
  108. last_tick = cpu_data[smp_processor_id()].it_value;
  109. /* Subtract one tick and account for possible difference between
  110. * when we expected the tick and when it actually arrived.
  111. * (aka wall vs real)
  112. */
  113. last_tick -= clocktick * (jiffies - wall_jiffies + 1);
  114. elapsed_cycles = mfctl(16) - last_tick;
  115. /* the precision of this math could be improved */
  116. return elapsed_cycles / (PAGE0->mem_10msec / 10000);
  117. #else
  118. return 0;
  119. #endif
  120. }
  121. void
  122. do_gettimeofday (struct timeval *tv)
  123. {
  124. unsigned long flags, seq, usec, sec;
  125. do {
  126. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  127. usec = gettimeoffset();
  128. sec = xtime.tv_sec;
  129. usec += (xtime.tv_nsec / 1000);
  130. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  131. while (usec >= 1000000) {
  132. usec -= 1000000;
  133. ++sec;
  134. }
  135. tv->tv_sec = sec;
  136. tv->tv_usec = usec;
  137. }
  138. EXPORT_SYMBOL(do_gettimeofday);
  139. int
  140. do_settimeofday (struct timespec *tv)
  141. {
  142. time_t wtm_sec, sec = tv->tv_sec;
  143. long wtm_nsec, nsec = tv->tv_nsec;
  144. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  145. return -EINVAL;
  146. write_seqlock_irq(&xtime_lock);
  147. {
  148. /*
  149. * This is revolting. We need to set "xtime"
  150. * correctly. However, the value in this location is
  151. * the value at the most recent update of wall time.
  152. * Discover what correction gettimeofday would have
  153. * done, and then undo it!
  154. */
  155. nsec -= gettimeoffset() * 1000;
  156. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  157. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  158. set_normalized_timespec(&xtime, sec, nsec);
  159. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  160. ntp_clear();
  161. }
  162. write_sequnlock_irq(&xtime_lock);
  163. clock_was_set();
  164. return 0;
  165. }
  166. EXPORT_SYMBOL(do_settimeofday);
  167. /*
  168. * XXX: We can do better than this.
  169. * Returns nanoseconds
  170. */
  171. unsigned long long sched_clock(void)
  172. {
  173. return (unsigned long long)jiffies * (1000000000 / HZ);
  174. }
  175. void __init time_init(void)
  176. {
  177. unsigned long next_tick;
  178. static struct pdc_tod tod_data;
  179. clocktick = (100 * PAGE0->mem_10msec) / HZ;
  180. halftick = clocktick / 2;
  181. /* Setup clock interrupt timing */
  182. next_tick = mfctl(16);
  183. next_tick += clocktick;
  184. cpu_data[smp_processor_id()].it_value = next_tick;
  185. /* kick off Itimer (CR16) */
  186. mtctl(next_tick, 16);
  187. if(pdc_tod_read(&tod_data) == 0) {
  188. write_seqlock_irq(&xtime_lock);
  189. xtime.tv_sec = tod_data.tod_sec;
  190. xtime.tv_nsec = tod_data.tod_usec * 1000;
  191. set_normalized_timespec(&wall_to_monotonic,
  192. -xtime.tv_sec, -xtime.tv_nsec);
  193. write_sequnlock_irq(&xtime_lock);
  194. } else {
  195. printk(KERN_ERR "Error reading tod clock\n");
  196. xtime.tv_sec = 0;
  197. xtime.tv_nsec = 0;
  198. }
  199. }