perf.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841
  1. /*
  2. * Parisc performance counters
  3. * Copyright (C) 2001 Randolph Chung <tausq@debian.org>
  4. *
  5. * This code is derived, with permission, from HP/UX sources.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2, or (at your option)
  10. * any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. */
  21. /*
  22. * Edited comment from original sources:
  23. *
  24. * This driver programs the PCX-U/PCX-W performance counters
  25. * on the PA-RISC 2.0 chips. The driver keeps all images now
  26. * internally to the kernel to hopefully eliminate the possiblity
  27. * of a bad image halting the CPU. Also, there are different
  28. * images for the PCX-W and later chips vs the PCX-U chips.
  29. *
  30. * Only 1 process is allowed to access the driver at any time,
  31. * so the only protection that is needed is at open and close.
  32. * A variable "perf_enabled" is used to hold the state of the
  33. * driver. The spinlock "perf_lock" is used to protect the
  34. * modification of the state during open/close operations so
  35. * multiple processes don't get into the driver simultaneously.
  36. *
  37. * This driver accesses the processor directly vs going through
  38. * the PDC INTRIGUE calls. This is done to eliminate bugs introduced
  39. * in various PDC revisions. The code is much more maintainable
  40. * and reliable this way vs having to debug on every version of PDC
  41. * on every box.
  42. */
  43. #include <linux/init.h>
  44. #include <linux/proc_fs.h>
  45. #include <linux/miscdevice.h>
  46. #include <linux/spinlock.h>
  47. #include <asm/uaccess.h>
  48. #include <asm/perf.h>
  49. #include <asm/parisc-device.h>
  50. #include <asm/processor.h>
  51. #include <asm/runway.h>
  52. #include <asm/io.h> /* for __raw_read() */
  53. #include "perf_images.h"
  54. #define MAX_RDR_WORDS 24
  55. #define PERF_VERSION 2 /* derived from hpux's PI v2 interface */
  56. /* definition of RDR regs */
  57. struct rdr_tbl_ent {
  58. uint16_t width;
  59. uint8_t num_words;
  60. uint8_t write_control;
  61. };
  62. static int perf_processor_interface = UNKNOWN_INTF;
  63. static int perf_enabled = 0;
  64. static spinlock_t perf_lock;
  65. struct parisc_device *cpu_device = NULL;
  66. /* RDRs to write for PCX-W */
  67. static int perf_rdrs_W[] =
  68. { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
  69. /* RDRs to write for PCX-U */
  70. static int perf_rdrs_U[] =
  71. { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
  72. /* RDR register descriptions for PCX-W */
  73. static struct rdr_tbl_ent perf_rdr_tbl_W[] = {
  74. { 19, 1, 8 }, /* RDR 0 */
  75. { 16, 1, 16 }, /* RDR 1 */
  76. { 72, 2, 0 }, /* RDR 2 */
  77. { 81, 2, 0 }, /* RDR 3 */
  78. { 328, 6, 0 }, /* RDR 4 */
  79. { 160, 3, 0 }, /* RDR 5 */
  80. { 336, 6, 0 }, /* RDR 6 */
  81. { 164, 3, 0 }, /* RDR 7 */
  82. { 0, 0, 0 }, /* RDR 8 */
  83. { 35, 1, 0 }, /* RDR 9 */
  84. { 6, 1, 0 }, /* RDR 10 */
  85. { 18, 1, 0 }, /* RDR 11 */
  86. { 13, 1, 0 }, /* RDR 12 */
  87. { 8, 1, 0 }, /* RDR 13 */
  88. { 8, 1, 0 }, /* RDR 14 */
  89. { 8, 1, 0 }, /* RDR 15 */
  90. { 1530, 24, 0 }, /* RDR 16 */
  91. { 16, 1, 0 }, /* RDR 17 */
  92. { 4, 1, 0 }, /* RDR 18 */
  93. { 0, 0, 0 }, /* RDR 19 */
  94. { 152, 3, 24 }, /* RDR 20 */
  95. { 152, 3, 24 }, /* RDR 21 */
  96. { 233, 4, 48 }, /* RDR 22 */
  97. { 233, 4, 48 }, /* RDR 23 */
  98. { 71, 2, 0 }, /* RDR 24 */
  99. { 71, 2, 0 }, /* RDR 25 */
  100. { 11, 1, 0 }, /* RDR 26 */
  101. { 18, 1, 0 }, /* RDR 27 */
  102. { 128, 2, 0 }, /* RDR 28 */
  103. { 0, 0, 0 }, /* RDR 29 */
  104. { 16, 1, 0 }, /* RDR 30 */
  105. { 16, 1, 0 }, /* RDR 31 */
  106. };
  107. /* RDR register descriptions for PCX-U */
  108. static struct rdr_tbl_ent perf_rdr_tbl_U[] = {
  109. { 19, 1, 8 }, /* RDR 0 */
  110. { 32, 1, 16 }, /* RDR 1 */
  111. { 20, 1, 0 }, /* RDR 2 */
  112. { 0, 0, 0 }, /* RDR 3 */
  113. { 344, 6, 0 }, /* RDR 4 */
  114. { 176, 3, 0 }, /* RDR 5 */
  115. { 336, 6, 0 }, /* RDR 6 */
  116. { 0, 0, 0 }, /* RDR 7 */
  117. { 0, 0, 0 }, /* RDR 8 */
  118. { 0, 0, 0 }, /* RDR 9 */
  119. { 28, 1, 0 }, /* RDR 10 */
  120. { 33, 1, 0 }, /* RDR 11 */
  121. { 0, 0, 0 }, /* RDR 12 */
  122. { 230, 4, 0 }, /* RDR 13 */
  123. { 32, 1, 0 }, /* RDR 14 */
  124. { 128, 2, 0 }, /* RDR 15 */
  125. { 1494, 24, 0 }, /* RDR 16 */
  126. { 18, 1, 0 }, /* RDR 17 */
  127. { 4, 1, 0 }, /* RDR 18 */
  128. { 0, 0, 0 }, /* RDR 19 */
  129. { 158, 3, 24 }, /* RDR 20 */
  130. { 158, 3, 24 }, /* RDR 21 */
  131. { 194, 4, 48 }, /* RDR 22 */
  132. { 194, 4, 48 }, /* RDR 23 */
  133. { 71, 2, 0 }, /* RDR 24 */
  134. { 71, 2, 0 }, /* RDR 25 */
  135. { 28, 1, 0 }, /* RDR 26 */
  136. { 33, 1, 0 }, /* RDR 27 */
  137. { 88, 2, 0 }, /* RDR 28 */
  138. { 32, 1, 0 }, /* RDR 29 */
  139. { 24, 1, 0 }, /* RDR 30 */
  140. { 16, 1, 0 }, /* RDR 31 */
  141. };
  142. /*
  143. * A non-zero write_control in the above tables is a byte offset into
  144. * this array.
  145. */
  146. static uint64_t perf_bitmasks[] = {
  147. 0x0000000000000000ul, /* first dbl word must be zero */
  148. 0xfdffe00000000000ul, /* RDR0 bitmask */
  149. 0x003f000000000000ul, /* RDR1 bitmask */
  150. 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (152 bits) */
  151. 0xfffffffffffffffful,
  152. 0xfffffffc00000000ul,
  153. 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (233 bits) */
  154. 0xfffffffffffffffful,
  155. 0xfffffffffffffffcul,
  156. 0xff00000000000000ul
  157. };
  158. /*
  159. * Write control bitmasks for Pa-8700 processor given
  160. * somethings have changed slightly.
  161. */
  162. static uint64_t perf_bitmasks_piranha[] = {
  163. 0x0000000000000000ul, /* first dbl word must be zero */
  164. 0xfdffe00000000000ul, /* RDR0 bitmask */
  165. 0x003f000000000000ul, /* RDR1 bitmask */
  166. 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (158 bits) */
  167. 0xfffffffffffffffful,
  168. 0xfffffffc00000000ul,
  169. 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (210 bits) */
  170. 0xfffffffffffffffful,
  171. 0xfffffffffffffffful,
  172. 0xfffc000000000000ul
  173. };
  174. static uint64_t *bitmask_array; /* array of bitmasks to use */
  175. /******************************************************************************
  176. * Function Prototypes
  177. *****************************************************************************/
  178. static int perf_config(uint32_t *image_ptr);
  179. static int perf_release(struct inode *inode, struct file *file);
  180. static int perf_open(struct inode *inode, struct file *file);
  181. static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
  182. static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
  183. loff_t *ppos);
  184. static int perf_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
  185. unsigned long arg);
  186. static void perf_start_counters(void);
  187. static int perf_stop_counters(uint32_t *raddr);
  188. static struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
  189. static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer);
  190. static int perf_rdr_clear(uint32_t rdr_num);
  191. static int perf_write_image(uint64_t *memaddr);
  192. static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
  193. /* External Assembly Routines */
  194. extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
  195. extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
  196. extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
  197. extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
  198. extern void perf_intrigue_enable_perf_counters (void);
  199. extern void perf_intrigue_disable_perf_counters (void);
  200. /******************************************************************************
  201. * Function Definitions
  202. *****************************************************************************/
  203. /*
  204. * configure:
  205. *
  206. * Configure the cpu with a given data image. First turn off the counters,
  207. * then download the image, then turn the counters back on.
  208. */
  209. static int perf_config(uint32_t *image_ptr)
  210. {
  211. long error;
  212. uint32_t raddr[4];
  213. /* Stop the counters*/
  214. error = perf_stop_counters(raddr);
  215. if (error != 0) {
  216. printk("perf_config: perf_stop_counters = %ld\n", error);
  217. return -EINVAL;
  218. }
  219. printk("Preparing to write image\n");
  220. /* Write the image to the chip */
  221. error = perf_write_image((uint64_t *)image_ptr);
  222. if (error != 0) {
  223. printk("perf_config: DOWNLOAD = %ld\n", error);
  224. return -EINVAL;
  225. }
  226. printk("Preparing to start counters\n");
  227. /* Start the counters */
  228. perf_start_counters();
  229. return sizeof(uint32_t);
  230. }
  231. /*
  232. * Open the device and initialize all of its memory. The device is only
  233. * opened once, but can be "queried" by multiple processes that know its
  234. * file descriptor.
  235. */
  236. static int perf_open(struct inode *inode, struct file *file)
  237. {
  238. spin_lock(&perf_lock);
  239. if (perf_enabled) {
  240. spin_unlock(&perf_lock);
  241. return -EBUSY;
  242. }
  243. perf_enabled = 1;
  244. spin_unlock(&perf_lock);
  245. return 0;
  246. }
  247. /*
  248. * Close the device.
  249. */
  250. static int perf_release(struct inode *inode, struct file *file)
  251. {
  252. spin_lock(&perf_lock);
  253. perf_enabled = 0;
  254. spin_unlock(&perf_lock);
  255. return 0;
  256. }
  257. /*
  258. * Read does nothing for this driver
  259. */
  260. static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
  261. {
  262. return 0;
  263. }
  264. /*
  265. * write:
  266. *
  267. * This routine downloads the image to the chip. It must be
  268. * called on the processor that the download should happen
  269. * on.
  270. */
  271. static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
  272. loff_t *ppos)
  273. {
  274. int err;
  275. size_t image_size;
  276. uint32_t image_type;
  277. uint32_t interface_type;
  278. uint32_t test;
  279. if (perf_processor_interface == ONYX_INTF)
  280. image_size = PCXU_IMAGE_SIZE;
  281. else if (perf_processor_interface == CUDA_INTF)
  282. image_size = PCXW_IMAGE_SIZE;
  283. else
  284. return -EFAULT;
  285. if (!capable(CAP_SYS_ADMIN))
  286. return -EACCES;
  287. if (count != sizeof(uint32_t))
  288. return -EIO;
  289. if ((err = copy_from_user(&image_type, buf, sizeof(uint32_t))) != 0)
  290. return err;
  291. /* Get the interface type and test type */
  292. interface_type = (image_type >> 16) & 0xffff;
  293. test = (image_type & 0xffff);
  294. /* Make sure everything makes sense */
  295. /* First check the machine type is correct for
  296. the requested image */
  297. if (((perf_processor_interface == CUDA_INTF) &&
  298. (interface_type != CUDA_INTF)) ||
  299. ((perf_processor_interface == ONYX_INTF) &&
  300. (interface_type != ONYX_INTF)))
  301. return -EINVAL;
  302. /* Next check to make sure the requested image
  303. is valid */
  304. if (((interface_type == CUDA_INTF) &&
  305. (test >= MAX_CUDA_IMAGES)) ||
  306. ((interface_type == ONYX_INTF) &&
  307. (test >= MAX_ONYX_IMAGES)))
  308. return -EINVAL;
  309. /* Copy the image into the processor */
  310. if (interface_type == CUDA_INTF)
  311. return perf_config(cuda_images[test]);
  312. else
  313. return perf_config(onyx_images[test]);
  314. return count;
  315. }
  316. /*
  317. * Patch the images that need to know the IVA addresses.
  318. */
  319. static void perf_patch_images(void)
  320. {
  321. #if 0 /* FIXME!! */
  322. /*
  323. * NOTE: this routine is VERY specific to the current TLB image.
  324. * If the image is changed, this routine might also need to be changed.
  325. */
  326. extern void $i_itlb_miss_2_0();
  327. extern void $i_dtlb_miss_2_0();
  328. extern void PA2_0_iva();
  329. /*
  330. * We can only use the lower 32-bits, the upper 32-bits should be 0
  331. * anyway given this is in the kernel
  332. */
  333. uint32_t itlb_addr = (uint32_t)&($i_itlb_miss_2_0);
  334. uint32_t dtlb_addr = (uint32_t)&($i_dtlb_miss_2_0);
  335. uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
  336. if (perf_processor_interface == ONYX_INTF) {
  337. /* clear last 2 bytes */
  338. onyx_images[TLBMISS][15] &= 0xffffff00;
  339. /* set 2 bytes */
  340. onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
  341. onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
  342. onyx_images[TLBMISS][17] = itlb_addr;
  343. /* clear last 2 bytes */
  344. onyx_images[TLBHANDMISS][15] &= 0xffffff00;
  345. /* set 2 bytes */
  346. onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
  347. onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
  348. onyx_images[TLBHANDMISS][17] = itlb_addr;
  349. /* clear last 2 bytes */
  350. onyx_images[BIG_CPI][15] &= 0xffffff00;
  351. /* set 2 bytes */
  352. onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
  353. onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
  354. onyx_images[BIG_CPI][17] = itlb_addr;
  355. onyx_images[PANIC][15] &= 0xffffff00; /* clear last 2 bytes */
  356. onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
  357. onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
  358. } else if (perf_processor_interface == CUDA_INTF) {
  359. /* Cuda interface */
  360. cuda_images[TLBMISS][16] =
  361. (cuda_images[TLBMISS][16]&0xffff0000) |
  362. ((dtlb_addr >> 8)&0x0000ffff);
  363. cuda_images[TLBMISS][17] =
  364. ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
  365. cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
  366. cuda_images[TLBHANDMISS][16] =
  367. (cuda_images[TLBHANDMISS][16]&0xffff0000) |
  368. ((dtlb_addr >> 8)&0x0000ffff);
  369. cuda_images[TLBHANDMISS][17] =
  370. ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
  371. cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
  372. cuda_images[BIG_CPI][16] =
  373. (cuda_images[BIG_CPI][16]&0xffff0000) |
  374. ((dtlb_addr >> 8)&0x0000ffff);
  375. cuda_images[BIG_CPI][17] =
  376. ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
  377. cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
  378. } else {
  379. /* Unknown type */
  380. }
  381. #endif
  382. }
  383. /*
  384. * ioctl routine
  385. * All routines effect the processor that they are executed on. Thus you
  386. * must be running on the processor that you wish to change.
  387. */
  388. static int perf_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
  389. unsigned long arg)
  390. {
  391. long error_start;
  392. uint32_t raddr[4];
  393. switch (cmd) {
  394. case PA_PERF_ON:
  395. /* Start the counters */
  396. perf_start_counters();
  397. return 0;
  398. case PA_PERF_OFF:
  399. error_start = perf_stop_counters(raddr);
  400. if (error_start != 0) {
  401. printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
  402. return -EFAULT;
  403. }
  404. /* copy out the Counters */
  405. if (copy_to_user((void __user *)arg, raddr,
  406. sizeof (raddr)) != 0) {
  407. return -EFAULT;
  408. }
  409. return 0;
  410. case PA_PERF_VERSION:
  411. /* Return the version # */
  412. return put_user(PERF_VERSION, (int *)arg);
  413. default:
  414. break;
  415. }
  416. return -ENOTTY;
  417. }
  418. static struct file_operations perf_fops = {
  419. .llseek = no_llseek,
  420. .read = perf_read,
  421. .write = perf_write,
  422. .ioctl = perf_ioctl,
  423. .open = perf_open,
  424. .release = perf_release
  425. };
  426. static struct miscdevice perf_dev = {
  427. MISC_DYNAMIC_MINOR,
  428. PA_PERF_DEV,
  429. &perf_fops
  430. };
  431. /*
  432. * Initialize the module
  433. */
  434. static int __init perf_init(void)
  435. {
  436. int ret;
  437. /* Determine correct processor interface to use */
  438. bitmask_array = perf_bitmasks;
  439. if (boot_cpu_data.cpu_type == pcxu ||
  440. boot_cpu_data.cpu_type == pcxu_) {
  441. perf_processor_interface = ONYX_INTF;
  442. } else if (boot_cpu_data.cpu_type == pcxw ||
  443. boot_cpu_data.cpu_type == pcxw_ ||
  444. boot_cpu_data.cpu_type == pcxw2 ||
  445. boot_cpu_data.cpu_type == mako) {
  446. perf_processor_interface = CUDA_INTF;
  447. if (boot_cpu_data.cpu_type == pcxw2 ||
  448. boot_cpu_data.cpu_type == mako)
  449. bitmask_array = perf_bitmasks_piranha;
  450. } else {
  451. perf_processor_interface = UNKNOWN_INTF;
  452. printk("Performance monitoring counters not supported on this processor\n");
  453. return -ENODEV;
  454. }
  455. ret = misc_register(&perf_dev);
  456. if (ret) {
  457. printk(KERN_ERR "Performance monitoring counters: "
  458. "cannot register misc device.\n");
  459. return ret;
  460. }
  461. /* Patch the images to match the system */
  462. perf_patch_images();
  463. spin_lock_init(&perf_lock);
  464. /* TODO: this only lets us access the first cpu.. what to do for SMP? */
  465. cpu_device = cpu_data[0].dev;
  466. printk("Performance monitoring counters enabled for %s\n",
  467. cpu_data[0].dev->name);
  468. return 0;
  469. }
  470. /*
  471. * perf_start_counters(void)
  472. *
  473. * Start the counters.
  474. */
  475. static void perf_start_counters(void)
  476. {
  477. /* Enable performance monitor counters */
  478. perf_intrigue_enable_perf_counters();
  479. }
  480. /*
  481. * perf_stop_counters
  482. *
  483. * Stop the performance counters and save counts
  484. * in a per_processor array.
  485. */
  486. static int perf_stop_counters(uint32_t *raddr)
  487. {
  488. uint64_t userbuf[MAX_RDR_WORDS];
  489. /* Disable performance counters */
  490. perf_intrigue_disable_perf_counters();
  491. if (perf_processor_interface == ONYX_INTF) {
  492. uint64_t tmp64;
  493. /*
  494. * Read the counters
  495. */
  496. if (!perf_rdr_read_ubuf(16, userbuf))
  497. return -13;
  498. /* Counter0 is bits 1398 thru 1429 */
  499. tmp64 = (userbuf[21] << 22) & 0x00000000ffc00000;
  500. tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
  501. /* OR sticky0 (bit 1430) to counter0 bit 32 */
  502. tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
  503. raddr[0] = (uint32_t)tmp64;
  504. /* Counter1 is bits 1431 thru 1462 */
  505. tmp64 = (userbuf[22] >> 9) & 0x00000000ffffffff;
  506. /* OR sticky1 (bit 1463) to counter1 bit 32 */
  507. tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
  508. raddr[1] = (uint32_t)tmp64;
  509. /* Counter2 is bits 1464 thru 1495 */
  510. tmp64 = (userbuf[22] << 24) & 0x00000000ff000000;
  511. tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
  512. /* OR sticky2 (bit 1496) to counter2 bit 32 */
  513. tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
  514. raddr[2] = (uint32_t)tmp64;
  515. /* Counter3 is bits 1497 thru 1528 */
  516. tmp64 = (userbuf[23] >> 7) & 0x00000000ffffffff;
  517. /* OR sticky3 (bit 1529) to counter3 bit 32 */
  518. tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
  519. raddr[3] = (uint32_t)tmp64;
  520. /*
  521. * Zero out the counters
  522. */
  523. /*
  524. * The counters and sticky-bits comprise the last 132 bits
  525. * (1398 - 1529) of RDR16 on a U chip. We'll zero these
  526. * out the easy way: zero out last 10 bits of dword 21,
  527. * all of dword 22 and 58 bits (plus 6 don't care bits) of
  528. * dword 23.
  529. */
  530. userbuf[21] &= 0xfffffffffffffc00ul; /* 0 to last 10 bits */
  531. userbuf[22] = 0;
  532. userbuf[23] = 0;
  533. /*
  534. * Write back the zero'ed bytes + the image given
  535. * the read was destructive.
  536. */
  537. perf_rdr_write(16, userbuf);
  538. } else {
  539. /*
  540. * Read RDR-15 which contains the counters and sticky bits
  541. */
  542. if (!perf_rdr_read_ubuf(15, userbuf)) {
  543. return -13;
  544. }
  545. /*
  546. * Clear out the counters
  547. */
  548. perf_rdr_clear(15);
  549. /*
  550. * Copy the counters
  551. */
  552. raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
  553. raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
  554. raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
  555. raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
  556. }
  557. return 0;
  558. }
  559. /*
  560. * perf_rdr_get_entry
  561. *
  562. * Retrieve a pointer to the description of what this
  563. * RDR contains.
  564. */
  565. static struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
  566. {
  567. if (perf_processor_interface == ONYX_INTF) {
  568. return &perf_rdr_tbl_U[rdr_num];
  569. } else {
  570. return &perf_rdr_tbl_W[rdr_num];
  571. }
  572. }
  573. /*
  574. * perf_rdr_read_ubuf
  575. *
  576. * Read the RDR value into the buffer specified.
  577. */
  578. static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer)
  579. {
  580. uint64_t data, data_mask = 0;
  581. uint32_t width, xbits, i;
  582. struct rdr_tbl_ent *tentry;
  583. tentry = perf_rdr_get_entry(rdr_num);
  584. if ((width = tentry->width) == 0)
  585. return 0;
  586. /* Clear out buffer */
  587. i = tentry->num_words;
  588. while (i--) {
  589. buffer[i] = 0;
  590. }
  591. /* Check for bits an even number of 64 */
  592. if ((xbits = width & 0x03f) != 0) {
  593. data_mask = 1;
  594. data_mask <<= (64 - xbits);
  595. data_mask--;
  596. }
  597. /* Grab all of the data */
  598. i = tentry->num_words;
  599. while (i--) {
  600. if (perf_processor_interface == ONYX_INTF) {
  601. data = perf_rdr_shift_in_U(rdr_num, width);
  602. } else {
  603. data = perf_rdr_shift_in_W(rdr_num, width);
  604. }
  605. if (xbits) {
  606. buffer[i] |= (data << (64 - xbits));
  607. if (i) {
  608. buffer[i-1] |= ((data >> xbits) & data_mask);
  609. }
  610. } else {
  611. buffer[i] = data;
  612. }
  613. }
  614. return 1;
  615. }
  616. /*
  617. * perf_rdr_clear
  618. *
  619. * Zero out the given RDR register
  620. */
  621. static int perf_rdr_clear(uint32_t rdr_num)
  622. {
  623. struct rdr_tbl_ent *tentry;
  624. int32_t i;
  625. tentry = perf_rdr_get_entry(rdr_num);
  626. if (tentry->width == 0) {
  627. return -1;
  628. }
  629. i = tentry->num_words;
  630. while (i--) {
  631. if (perf_processor_interface == ONYX_INTF) {
  632. perf_rdr_shift_out_U(rdr_num, 0UL);
  633. } else {
  634. perf_rdr_shift_out_W(rdr_num, 0UL);
  635. }
  636. }
  637. return 0;
  638. }
  639. /*
  640. * perf_write_image
  641. *
  642. * Write the given image out to the processor
  643. */
  644. static int perf_write_image(uint64_t *memaddr)
  645. {
  646. uint64_t buffer[MAX_RDR_WORDS];
  647. uint64_t *bptr;
  648. uint32_t dwords;
  649. uint32_t *intrigue_rdr;
  650. uint64_t *intrigue_bitmask, tmp64, proc_hpa;
  651. struct rdr_tbl_ent *tentry;
  652. int i;
  653. /* Clear out counters */
  654. if (perf_processor_interface == ONYX_INTF) {
  655. perf_rdr_clear(16);
  656. /* Toggle performance monitor */
  657. perf_intrigue_enable_perf_counters();
  658. perf_intrigue_disable_perf_counters();
  659. intrigue_rdr = perf_rdrs_U;
  660. } else {
  661. perf_rdr_clear(15);
  662. intrigue_rdr = perf_rdrs_W;
  663. }
  664. /* Write all RDRs */
  665. while (*intrigue_rdr != -1) {
  666. tentry = perf_rdr_get_entry(*intrigue_rdr);
  667. perf_rdr_read_ubuf(*intrigue_rdr, buffer);
  668. bptr = &buffer[0];
  669. dwords = tentry->num_words;
  670. if (tentry->write_control) {
  671. intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
  672. while (dwords--) {
  673. tmp64 = *intrigue_bitmask & *memaddr++;
  674. tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
  675. *bptr++ = tmp64;
  676. }
  677. } else {
  678. while (dwords--) {
  679. *bptr++ = *memaddr++;
  680. }
  681. }
  682. perf_rdr_write(*intrigue_rdr, buffer);
  683. intrigue_rdr++;
  684. }
  685. /*
  686. * Now copy out the Runway stuff which is not in RDRs
  687. */
  688. if (cpu_device == NULL)
  689. {
  690. printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
  691. return -1;
  692. }
  693. proc_hpa = cpu_device->hpa;
  694. /* Merge intrigue bits into Runway STATUS 0 */
  695. tmp64 = __raw_readq(proc_hpa + RUNWAY_STATUS) & 0xffecfffffffffffful;
  696. __raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul), proc_hpa + RUNWAY_STATUS);
  697. /* Write RUNWAY DEBUG registers */
  698. for (i = 0; i < 8; i++) {
  699. __raw_writeq(*memaddr++, proc_hpa + RUNWAY_DEBUG + i);
  700. }
  701. return 0;
  702. }
  703. /*
  704. * perf_rdr_write
  705. *
  706. * Write the given RDR register with the contents
  707. * of the given buffer.
  708. */
  709. static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
  710. {
  711. struct rdr_tbl_ent *tentry;
  712. int32_t i;
  713. printk("perf_rdr_write\n");
  714. tentry = perf_rdr_get_entry(rdr_num);
  715. if (tentry->width == 0) { return; }
  716. i = tentry->num_words;
  717. while (i--) {
  718. if (perf_processor_interface == ONYX_INTF) {
  719. perf_rdr_shift_out_U(rdr_num, buffer[i]);
  720. } else {
  721. perf_rdr_shift_out_W(rdr_num, buffer[i]);
  722. }
  723. }
  724. printk("perf_rdr_write done\n");
  725. }
  726. module_init(perf_init);