time.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752
  1. /*
  2. * Copyright 2001 MontaVista Software Inc.
  3. * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
  4. * Copyright (c) 2003, 2004 Maciej W. Rozycki
  5. *
  6. * Common time service routines for MIPS machines. See
  7. * Documentation/mips/time.README.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the
  11. * Free Software Foundation; either version 2 of the License, or (at your
  12. * option) any later version.
  13. */
  14. #include <linux/types.h>
  15. #include <linux/kernel.h>
  16. #include <linux/init.h>
  17. #include <linux/sched.h>
  18. #include <linux/param.h>
  19. #include <linux/time.h>
  20. #include <linux/timex.h>
  21. #include <linux/smp.h>
  22. #include <linux/kernel_stat.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/module.h>
  26. #include <asm/bootinfo.h>
  27. #include <asm/compiler.h>
  28. #include <asm/cpu.h>
  29. #include <asm/cpu-features.h>
  30. #include <asm/div64.h>
  31. #include <asm/sections.h>
  32. #include <asm/time.h>
  33. /*
  34. * The integer part of the number of usecs per jiffy is taken from tick,
  35. * but the fractional part is not recorded, so we calculate it using the
  36. * initial value of HZ. This aids systems where tick isn't really an
  37. * integer (e.g. for HZ = 128).
  38. */
  39. #define USECS_PER_JIFFY TICK_SIZE
  40. #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
  41. #define TICK_SIZE (tick_nsec / 1000)
  42. u64 jiffies_64 = INITIAL_JIFFIES;
  43. EXPORT_SYMBOL(jiffies_64);
  44. /*
  45. * forward reference
  46. */
  47. extern volatile unsigned long wall_jiffies;
  48. DEFINE_SPINLOCK(rtc_lock);
  49. /*
  50. * By default we provide the null RTC ops
  51. */
  52. static unsigned long null_rtc_get_time(void)
  53. {
  54. return mktime(2000, 1, 1, 0, 0, 0);
  55. }
  56. static int null_rtc_set_time(unsigned long sec)
  57. {
  58. return 0;
  59. }
  60. unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
  61. int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
  62. int (*rtc_set_mmss)(unsigned long);
  63. /* usecs per counter cycle, shifted to left by 32 bits */
  64. static unsigned int sll32_usecs_per_cycle;
  65. /* how many counter cycles in a jiffy */
  66. static unsigned long cycles_per_jiffy;
  67. /* Cycle counter value at the previous timer interrupt.. */
  68. static unsigned int timerhi, timerlo;
  69. /* expirelo is the count value for next CPU timer interrupt */
  70. static unsigned int expirelo;
  71. /*
  72. * Null timer ack for systems not needing one (e.g. i8254).
  73. */
  74. static void null_timer_ack(void) { /* nothing */ }
  75. /*
  76. * Null high precision timer functions for systems lacking one.
  77. */
  78. static unsigned int null_hpt_read(void)
  79. {
  80. return 0;
  81. }
  82. static void null_hpt_init(unsigned int count) { /* nothing */ }
  83. /*
  84. * Timer ack for an R4k-compatible timer of a known frequency.
  85. */
  86. static void c0_timer_ack(void)
  87. {
  88. unsigned int count;
  89. /* Ack this timer interrupt and set the next one. */
  90. expirelo += cycles_per_jiffy;
  91. write_c0_compare(expirelo);
  92. /* Check to see if we have missed any timer interrupts. */
  93. count = read_c0_count();
  94. if ((count - expirelo) < 0x7fffffff) {
  95. /* missed_timer_count++; */
  96. expirelo = count + cycles_per_jiffy;
  97. write_c0_compare(expirelo);
  98. }
  99. }
  100. /*
  101. * High precision timer functions for a R4k-compatible timer.
  102. */
  103. static unsigned int c0_hpt_read(void)
  104. {
  105. return read_c0_count();
  106. }
  107. /* For use solely as a high precision timer. */
  108. static void c0_hpt_init(unsigned int count)
  109. {
  110. write_c0_count(read_c0_count() - count);
  111. }
  112. /* For use both as a high precision timer and an interrupt source. */
  113. static void c0_hpt_timer_init(unsigned int count)
  114. {
  115. count = read_c0_count() - count;
  116. expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
  117. write_c0_count(expirelo - cycles_per_jiffy);
  118. write_c0_compare(expirelo);
  119. write_c0_count(count);
  120. }
  121. int (*mips_timer_state)(void);
  122. void (*mips_timer_ack)(void);
  123. unsigned int (*mips_hpt_read)(void);
  124. void (*mips_hpt_init)(unsigned int);
  125. /*
  126. * This version of gettimeofday has microsecond resolution and better than
  127. * microsecond precision on fast machines with cycle counter.
  128. */
  129. void do_gettimeofday(struct timeval *tv)
  130. {
  131. unsigned long seq;
  132. unsigned long lost;
  133. unsigned long usec, sec;
  134. unsigned long max_ntp_tick = tick_usec - tickadj;
  135. do {
  136. seq = read_seqbegin(&xtime_lock);
  137. usec = do_gettimeoffset();
  138. lost = jiffies - wall_jiffies;
  139. /*
  140. * If time_adjust is negative then NTP is slowing the clock
  141. * so make sure not to go into next possible interval.
  142. * Better to lose some accuracy than have time go backwards..
  143. */
  144. if (unlikely(time_adjust < 0)) {
  145. usec = min(usec, max_ntp_tick);
  146. if (lost)
  147. usec += lost * max_ntp_tick;
  148. } else if (unlikely(lost))
  149. usec += lost * tick_usec;
  150. sec = xtime.tv_sec;
  151. usec += (xtime.tv_nsec / 1000);
  152. } while (read_seqretry(&xtime_lock, seq));
  153. while (usec >= 1000000) {
  154. usec -= 1000000;
  155. sec++;
  156. }
  157. tv->tv_sec = sec;
  158. tv->tv_usec = usec;
  159. }
  160. EXPORT_SYMBOL(do_gettimeofday);
  161. int do_settimeofday(struct timespec *tv)
  162. {
  163. time_t wtm_sec, sec = tv->tv_sec;
  164. long wtm_nsec, nsec = tv->tv_nsec;
  165. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  166. return -EINVAL;
  167. write_seqlock_irq(&xtime_lock);
  168. /*
  169. * This is revolting. We need to set "xtime" correctly. However,
  170. * the value in this location is the value at the most recent update
  171. * of wall time. Discover what correction gettimeofday() would have
  172. * made, and then undo it!
  173. */
  174. nsec -= do_gettimeoffset() * NSEC_PER_USEC;
  175. nsec -= (jiffies - wall_jiffies) * tick_nsec;
  176. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  177. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  178. set_normalized_timespec(&xtime, sec, nsec);
  179. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  180. ntp_clear();
  181. write_sequnlock_irq(&xtime_lock);
  182. clock_was_set();
  183. return 0;
  184. }
  185. EXPORT_SYMBOL(do_settimeofday);
  186. /*
  187. * Gettimeoffset routines. These routines returns the time duration
  188. * since last timer interrupt in usecs.
  189. *
  190. * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
  191. * Otherwise use calibrate_gettimeoffset()
  192. *
  193. * If the CPU does not have the counter register, you can either supply
  194. * your own gettimeoffset() routine, or use null_gettimeoffset(), which
  195. * gives the same resolution as HZ.
  196. */
  197. static unsigned long null_gettimeoffset(void)
  198. {
  199. return 0;
  200. }
  201. /* The function pointer to one of the gettimeoffset funcs. */
  202. unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
  203. static unsigned long fixed_rate_gettimeoffset(void)
  204. {
  205. u32 count;
  206. unsigned long res;
  207. /* Get last timer tick in absolute kernel time */
  208. count = mips_hpt_read();
  209. /* .. relative to previous jiffy (32 bits is enough) */
  210. count -= timerlo;
  211. __asm__("multu %1,%2"
  212. : "=h" (res)
  213. : "r" (count), "r" (sll32_usecs_per_cycle)
  214. : "lo", GCC_REG_ACCUM);
  215. /*
  216. * Due to possible jiffies inconsistencies, we need to check
  217. * the result so that we'll get a timer that is monotonic.
  218. */
  219. if (res >= USECS_PER_JIFFY)
  220. res = USECS_PER_JIFFY - 1;
  221. return res;
  222. }
  223. /*
  224. * Cached "1/(clocks per usec) * 2^32" value.
  225. * It has to be recalculated once each jiffy.
  226. */
  227. static unsigned long cached_quotient;
  228. /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
  229. static unsigned long last_jiffies;
  230. /*
  231. * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
  232. */
  233. static unsigned long calibrate_div32_gettimeoffset(void)
  234. {
  235. u32 count;
  236. unsigned long res, tmp;
  237. unsigned long quotient;
  238. tmp = jiffies;
  239. quotient = cached_quotient;
  240. if (last_jiffies != tmp) {
  241. last_jiffies = tmp;
  242. if (last_jiffies != 0) {
  243. unsigned long r0;
  244. do_div64_32(r0, timerhi, timerlo, tmp);
  245. do_div64_32(quotient, USECS_PER_JIFFY,
  246. USECS_PER_JIFFY_FRAC, r0);
  247. cached_quotient = quotient;
  248. }
  249. }
  250. /* Get last timer tick in absolute kernel time */
  251. count = mips_hpt_read();
  252. /* .. relative to previous jiffy (32 bits is enough) */
  253. count -= timerlo;
  254. __asm__("multu %1,%2"
  255. : "=h" (res)
  256. : "r" (count), "r" (quotient)
  257. : "lo", GCC_REG_ACCUM);
  258. /*
  259. * Due to possible jiffies inconsistencies, we need to check
  260. * the result so that we'll get a timer that is monotonic.
  261. */
  262. if (res >= USECS_PER_JIFFY)
  263. res = USECS_PER_JIFFY - 1;
  264. return res;
  265. }
  266. static unsigned long calibrate_div64_gettimeoffset(void)
  267. {
  268. u32 count;
  269. unsigned long res, tmp;
  270. unsigned long quotient;
  271. tmp = jiffies;
  272. quotient = cached_quotient;
  273. if (last_jiffies != tmp) {
  274. last_jiffies = tmp;
  275. if (last_jiffies) {
  276. unsigned long r0;
  277. __asm__(".set push\n\t"
  278. ".set mips3\n\t"
  279. "lwu %0,%3\n\t"
  280. "dsll32 %1,%2,0\n\t"
  281. "or %1,%1,%0\n\t"
  282. "ddivu $0,%1,%4\n\t"
  283. "mflo %1\n\t"
  284. "dsll32 %0,%5,0\n\t"
  285. "or %0,%0,%6\n\t"
  286. "ddivu $0,%0,%1\n\t"
  287. "mflo %0\n\t"
  288. ".set pop"
  289. : "=&r" (quotient), "=&r" (r0)
  290. : "r" (timerhi), "m" (timerlo),
  291. "r" (tmp), "r" (USECS_PER_JIFFY),
  292. "r" (USECS_PER_JIFFY_FRAC)
  293. : "hi", "lo", GCC_REG_ACCUM);
  294. cached_quotient = quotient;
  295. }
  296. }
  297. /* Get last timer tick in absolute kernel time */
  298. count = mips_hpt_read();
  299. /* .. relative to previous jiffy (32 bits is enough) */
  300. count -= timerlo;
  301. __asm__("multu %1,%2"
  302. : "=h" (res)
  303. : "r" (count), "r" (quotient)
  304. : "lo", GCC_REG_ACCUM);
  305. /*
  306. * Due to possible jiffies inconsistencies, we need to check
  307. * the result so that we'll get a timer that is monotonic.
  308. */
  309. if (res >= USECS_PER_JIFFY)
  310. res = USECS_PER_JIFFY - 1;
  311. return res;
  312. }
  313. /* last time when xtime and rtc are sync'ed up */
  314. static long last_rtc_update;
  315. /*
  316. * local_timer_interrupt() does profiling and process accounting
  317. * on a per-CPU basis.
  318. *
  319. * In UP mode, it is invoked from the (global) timer_interrupt.
  320. *
  321. * In SMP mode, it might invoked by per-CPU timer interrupt, or
  322. * a broadcasted inter-processor interrupt which itself is triggered
  323. * by the global timer interrupt.
  324. */
  325. void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  326. {
  327. if (current->pid)
  328. profile_tick(CPU_PROFILING, regs);
  329. update_process_times(user_mode(regs));
  330. }
  331. /*
  332. * High-level timer interrupt service routines. This function
  333. * is set as irqaction->handler and is invoked through do_IRQ.
  334. */
  335. irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  336. {
  337. unsigned long j;
  338. unsigned int count;
  339. count = mips_hpt_read();
  340. mips_timer_ack();
  341. /* Update timerhi/timerlo for intra-jiffy calibration. */
  342. timerhi += count < timerlo; /* Wrap around */
  343. timerlo = count;
  344. /*
  345. * call the generic timer interrupt handling
  346. */
  347. do_timer(regs);
  348. /*
  349. * If we have an externally synchronized Linux clock, then update
  350. * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
  351. * called as close as possible to 500 ms before the new second starts.
  352. */
  353. write_seqlock(&xtime_lock);
  354. if (ntp_synced() &&
  355. xtime.tv_sec > last_rtc_update + 660 &&
  356. (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
  357. (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
  358. if (rtc_set_mmss(xtime.tv_sec) == 0) {
  359. last_rtc_update = xtime.tv_sec;
  360. } else {
  361. /* do it again in 60 s */
  362. last_rtc_update = xtime.tv_sec - 600;
  363. }
  364. }
  365. write_sequnlock(&xtime_lock);
  366. /*
  367. * If jiffies has overflown in this timer_interrupt, we must
  368. * update the timer[hi]/[lo] to make fast gettimeoffset funcs
  369. * quotient calc still valid. -arca
  370. *
  371. * The first timer interrupt comes late as interrupts are
  372. * enabled long after timers are initialized. Therefore the
  373. * high precision timer is fast, leading to wrong gettimeoffset()
  374. * calculations. We deal with it by setting it based on the
  375. * number of its ticks between the second and the third interrupt.
  376. * That is still somewhat imprecise, but it's a good estimate.
  377. * --macro
  378. */
  379. j = jiffies;
  380. if (j < 4) {
  381. static unsigned int prev_count;
  382. static int hpt_initialized;
  383. switch (j) {
  384. case 0:
  385. timerhi = timerlo = 0;
  386. mips_hpt_init(count);
  387. break;
  388. case 2:
  389. prev_count = count;
  390. break;
  391. case 3:
  392. if (!hpt_initialized) {
  393. unsigned int c3 = 3 * (count - prev_count);
  394. timerhi = 0;
  395. timerlo = c3;
  396. mips_hpt_init(count - c3);
  397. hpt_initialized = 1;
  398. }
  399. break;
  400. default:
  401. break;
  402. }
  403. }
  404. /*
  405. * In UP mode, we call local_timer_interrupt() to do profiling
  406. * and process accouting.
  407. *
  408. * In SMP mode, local_timer_interrupt() is invoked by appropriate
  409. * low-level local timer interrupt handler.
  410. */
  411. local_timer_interrupt(irq, dev_id, regs);
  412. return IRQ_HANDLED;
  413. }
  414. asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
  415. {
  416. irq_enter();
  417. kstat_this_cpu.irqs[irq]++;
  418. /* we keep interrupt disabled all the time */
  419. timer_interrupt(irq, NULL, regs);
  420. irq_exit();
  421. }
  422. asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
  423. {
  424. irq_enter();
  425. if (smp_processor_id() != 0)
  426. kstat_this_cpu.irqs[irq]++;
  427. /* we keep interrupt disabled all the time */
  428. local_timer_interrupt(irq, NULL, regs);
  429. irq_exit();
  430. }
  431. /*
  432. * time_init() - it does the following things.
  433. *
  434. * 1) board_time_init() -
  435. * a) (optional) set up RTC routines,
  436. * b) (optional) calibrate and set the mips_hpt_frequency
  437. * (only needed if you intended to use fixed_rate_gettimeoffset
  438. * or use cpu counter as timer interrupt source)
  439. * 2) setup xtime based on rtc_get_time().
  440. * 3) choose a appropriate gettimeoffset routine.
  441. * 4) calculate a couple of cached variables for later usage
  442. * 5) board_timer_setup() -
  443. * a) (optional) over-write any choices made above by time_init().
  444. * b) machine specific code should setup the timer irqaction.
  445. * c) enable the timer interrupt
  446. */
  447. void (*board_time_init)(void);
  448. void (*board_timer_setup)(struct irqaction *irq);
  449. unsigned int mips_hpt_frequency;
  450. static struct irqaction timer_irqaction = {
  451. .handler = timer_interrupt,
  452. .flags = SA_INTERRUPT,
  453. .name = "timer",
  454. };
  455. static unsigned int __init calibrate_hpt(void)
  456. {
  457. u64 frequency;
  458. u32 hpt_start, hpt_end, hpt_count, hz;
  459. const int loops = HZ / 10;
  460. int log_2_loops = 0;
  461. int i;
  462. /*
  463. * We want to calibrate for 0.1s, but to avoid a 64-bit
  464. * division we round the number of loops up to the nearest
  465. * power of 2.
  466. */
  467. while (loops > 1 << log_2_loops)
  468. log_2_loops++;
  469. i = 1 << log_2_loops;
  470. /*
  471. * Wait for a rising edge of the timer interrupt.
  472. */
  473. while (mips_timer_state());
  474. while (!mips_timer_state());
  475. /*
  476. * Now see how many high precision timer ticks happen
  477. * during the calculated number of periods between timer
  478. * interrupts.
  479. */
  480. hpt_start = mips_hpt_read();
  481. do {
  482. while (mips_timer_state());
  483. while (!mips_timer_state());
  484. } while (--i);
  485. hpt_end = mips_hpt_read();
  486. hpt_count = hpt_end - hpt_start;
  487. hz = HZ;
  488. frequency = (u64)hpt_count * (u64)hz;
  489. return frequency >> log_2_loops;
  490. }
  491. void __init time_init(void)
  492. {
  493. if (board_time_init)
  494. board_time_init();
  495. if (!rtc_set_mmss)
  496. rtc_set_mmss = rtc_set_time;
  497. xtime.tv_sec = rtc_get_time();
  498. xtime.tv_nsec = 0;
  499. set_normalized_timespec(&wall_to_monotonic,
  500. -xtime.tv_sec, -xtime.tv_nsec);
  501. /* Choose appropriate high precision timer routines. */
  502. if (!cpu_has_counter && !mips_hpt_read) {
  503. /* No high precision timer -- sorry. */
  504. mips_hpt_read = null_hpt_read;
  505. mips_hpt_init = null_hpt_init;
  506. } else if (!mips_hpt_frequency && !mips_timer_state) {
  507. /* A high precision timer of unknown frequency. */
  508. if (!mips_hpt_read) {
  509. /* No external high precision timer -- use R4k. */
  510. mips_hpt_read = c0_hpt_read;
  511. mips_hpt_init = c0_hpt_init;
  512. }
  513. if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) ||
  514. (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
  515. (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
  516. /*
  517. * We need to calibrate the counter but we don't have
  518. * 64-bit division.
  519. */
  520. do_gettimeoffset = calibrate_div32_gettimeoffset;
  521. else
  522. /*
  523. * We need to calibrate the counter but we *do* have
  524. * 64-bit division.
  525. */
  526. do_gettimeoffset = calibrate_div64_gettimeoffset;
  527. } else {
  528. /* We know counter frequency. Or we can get it. */
  529. if (!mips_hpt_read) {
  530. /* No external high precision timer -- use R4k. */
  531. mips_hpt_read = c0_hpt_read;
  532. if (mips_timer_state)
  533. mips_hpt_init = c0_hpt_init;
  534. else {
  535. /* No external timer interrupt -- use R4k. */
  536. mips_hpt_init = c0_hpt_timer_init;
  537. mips_timer_ack = c0_timer_ack;
  538. }
  539. }
  540. if (!mips_hpt_frequency)
  541. mips_hpt_frequency = calibrate_hpt();
  542. do_gettimeoffset = fixed_rate_gettimeoffset;
  543. /* Calculate cache parameters. */
  544. cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
  545. /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
  546. do_div64_32(sll32_usecs_per_cycle,
  547. 1000000, mips_hpt_frequency / 2,
  548. mips_hpt_frequency);
  549. /* Report the high precision timer rate for a reference. */
  550. printk("Using %u.%03u MHz high precision timer.\n",
  551. ((mips_hpt_frequency + 500) / 1000) / 1000,
  552. ((mips_hpt_frequency + 500) / 1000) % 1000);
  553. }
  554. if (!mips_timer_ack)
  555. /* No timer interrupt ack (e.g. i8254). */
  556. mips_timer_ack = null_timer_ack;
  557. /* This sets up the high precision timer for the first interrupt. */
  558. mips_hpt_init(mips_hpt_read());
  559. /*
  560. * Call board specific timer interrupt setup.
  561. *
  562. * this pointer must be setup in machine setup routine.
  563. *
  564. * Even if a machine chooses to use a low-level timer interrupt,
  565. * it still needs to setup the timer_irqaction.
  566. * In that case, it might be better to set timer_irqaction.handler
  567. * to be NULL function so that we are sure the high-level code
  568. * is not invoked accidentally.
  569. */
  570. board_timer_setup(&timer_irqaction);
  571. }
  572. #define FEBRUARY 2
  573. #define STARTOFTIME 1970
  574. #define SECDAY 86400L
  575. #define SECYR (SECDAY * 365)
  576. #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
  577. #define days_in_year(y) (leapyear(y) ? 366 : 365)
  578. #define days_in_month(m) (month_days[(m) - 1])
  579. static int month_days[12] = {
  580. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  581. };
  582. void to_tm(unsigned long tim, struct rtc_time *tm)
  583. {
  584. long hms, day, gday;
  585. int i;
  586. gday = day = tim / SECDAY;
  587. hms = tim % SECDAY;
  588. /* Hours, minutes, seconds are easy */
  589. tm->tm_hour = hms / 3600;
  590. tm->tm_min = (hms % 3600) / 60;
  591. tm->tm_sec = (hms % 3600) % 60;
  592. /* Number of years in days */
  593. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  594. day -= days_in_year(i);
  595. tm->tm_year = i;
  596. /* Number of months in days left */
  597. if (leapyear(tm->tm_year))
  598. days_in_month(FEBRUARY) = 29;
  599. for (i = 1; day >= days_in_month(i); i++)
  600. day -= days_in_month(i);
  601. days_in_month(FEBRUARY) = 28;
  602. tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
  603. /* Days are what is left over (+1) from all that. */
  604. tm->tm_mday = day + 1;
  605. /*
  606. * Determine the day of week
  607. */
  608. tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
  609. }
  610. EXPORT_SYMBOL(rtc_lock);
  611. EXPORT_SYMBOL(to_tm);
  612. EXPORT_SYMBOL(rtc_set_time);
  613. EXPORT_SYMBOL(rtc_get_time);
  614. unsigned long long sched_clock(void)
  615. {
  616. return (unsigned long long)jiffies*(1000000000/HZ);
  617. }