dma.c 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. /*
  2. *
  3. * BRIEF MODULE DESCRIPTION
  4. * A DMA channel allocator for Au1000. API is modeled loosely off of
  5. * linux/kernel/dma.c.
  6. *
  7. * Copyright 2000 MontaVista Software Inc.
  8. * Author: MontaVista Software, Inc.
  9. * stevel@mvista.com or source@mvista.com
  10. * Copyright (C) 2005 Ralf Baechle (ralf@linux-mips.org)
  11. *
  12. * This program is free software; you can redistribute it and/or modify it
  13. * under the terms of the GNU General Public License as published by the
  14. * Free Software Foundation; either version 2 of the License, or (at your
  15. * option) any later version.
  16. *
  17. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  18. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  19. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  20. * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  23. * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  24. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27. *
  28. * You should have received a copy of the GNU General Public License along
  29. * with this program; if not, write to the Free Software Foundation, Inc.,
  30. * 675 Mass Ave, Cambridge, MA 02139, USA.
  31. *
  32. */
  33. #include <linux/config.h>
  34. #include <linux/module.h>
  35. #include <linux/kernel.h>
  36. #include <linux/errno.h>
  37. #include <linux/sched.h>
  38. #include <linux/spinlock.h>
  39. #include <linux/string.h>
  40. #include <linux/delay.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/module.h>
  43. #include <asm/system.h>
  44. #include <asm/mach-au1x00/au1000.h>
  45. #include <asm/mach-au1x00/au1000_dma.h>
  46. #if defined(CONFIG_SOC_AU1000) || defined(CONFIG_SOC_AU1500) || defined(CONFIG_SOC_AU1100)
  47. /*
  48. * A note on resource allocation:
  49. *
  50. * All drivers needing DMA channels, should allocate and release them
  51. * through the public routines `request_dma()' and `free_dma()'.
  52. *
  53. * In order to avoid problems, all processes should allocate resources in
  54. * the same sequence and release them in the reverse order.
  55. *
  56. * So, when allocating DMAs and IRQs, first allocate the DMA, then the IRQ.
  57. * When releasing them, first release the IRQ, then release the DMA. The
  58. * main reason for this order is that, if you are requesting the DMA buffer
  59. * done interrupt, you won't know the irq number until the DMA channel is
  60. * returned from request_dma.
  61. */
  62. DEFINE_SPINLOCK(au1000_dma_spin_lock);
  63. struct dma_chan au1000_dma_table[NUM_AU1000_DMA_CHANNELS] = {
  64. {.dev_id = -1,},
  65. {.dev_id = -1,},
  66. {.dev_id = -1,},
  67. {.dev_id = -1,},
  68. {.dev_id = -1,},
  69. {.dev_id = -1,},
  70. {.dev_id = -1,},
  71. {.dev_id = -1,}
  72. };
  73. EXPORT_SYMBOL(au1000_dma_table);
  74. // Device FIFO addresses and default DMA modes
  75. static const struct dma_dev {
  76. unsigned int fifo_addr;
  77. unsigned int dma_mode;
  78. } dma_dev_table[DMA_NUM_DEV] = {
  79. {UART0_ADDR + UART_TX, 0},
  80. {UART0_ADDR + UART_RX, 0},
  81. {0, 0},
  82. {0, 0},
  83. {AC97C_DATA, DMA_DW16 }, // coherent
  84. {AC97C_DATA, DMA_DR | DMA_DW16 }, // coherent
  85. {UART3_ADDR + UART_TX, DMA_DW8 | DMA_NC},
  86. {UART3_ADDR + UART_RX, DMA_DR | DMA_DW8 | DMA_NC},
  87. {USBD_EP0RD, DMA_DR | DMA_DW8 | DMA_NC},
  88. {USBD_EP0WR, DMA_DW8 | DMA_NC},
  89. {USBD_EP2WR, DMA_DW8 | DMA_NC},
  90. {USBD_EP3WR, DMA_DW8 | DMA_NC},
  91. {USBD_EP4RD, DMA_DR | DMA_DW8 | DMA_NC},
  92. {USBD_EP5RD, DMA_DR | DMA_DW8 | DMA_NC},
  93. {I2S_DATA, DMA_DW32 | DMA_NC},
  94. {I2S_DATA, DMA_DR | DMA_DW32 | DMA_NC}
  95. };
  96. int au1000_dma_read_proc(char *buf, char **start, off_t fpos,
  97. int length, int *eof, void *data)
  98. {
  99. int i, len = 0;
  100. struct dma_chan *chan;
  101. for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++) {
  102. if ((chan = get_dma_chan(i)) != NULL) {
  103. len += sprintf(buf + len, "%2d: %s\n",
  104. i, chan->dev_str);
  105. }
  106. }
  107. if (fpos >= len) {
  108. *start = buf;
  109. *eof = 1;
  110. return 0;
  111. }
  112. *start = buf + fpos;
  113. if ((len -= fpos) > length)
  114. return length;
  115. *eof = 1;
  116. return len;
  117. }
  118. // Device FIFO addresses and default DMA modes - 2nd bank
  119. static const struct dma_dev dma_dev_table_bank2[DMA_NUM_DEV_BANK2] = {
  120. {SD0_XMIT_FIFO, DMA_DS | DMA_DW8}, // coherent
  121. {SD0_RECV_FIFO, DMA_DS | DMA_DR | DMA_DW8}, // coherent
  122. {SD1_XMIT_FIFO, DMA_DS | DMA_DW8}, // coherent
  123. {SD1_RECV_FIFO, DMA_DS | DMA_DR | DMA_DW8} // coherent
  124. };
  125. void dump_au1000_dma_channel(unsigned int dmanr)
  126. {
  127. struct dma_chan *chan;
  128. if (dmanr >= NUM_AU1000_DMA_CHANNELS)
  129. return;
  130. chan = &au1000_dma_table[dmanr];
  131. printk(KERN_INFO "Au1000 DMA%d Register Dump:\n", dmanr);
  132. printk(KERN_INFO " mode = 0x%08x\n",
  133. au_readl(chan->io + DMA_MODE_SET));
  134. printk(KERN_INFO " addr = 0x%08x\n",
  135. au_readl(chan->io + DMA_PERIPHERAL_ADDR));
  136. printk(KERN_INFO " start0 = 0x%08x\n",
  137. au_readl(chan->io + DMA_BUFFER0_START));
  138. printk(KERN_INFO " start1 = 0x%08x\n",
  139. au_readl(chan->io + DMA_BUFFER1_START));
  140. printk(KERN_INFO " count0 = 0x%08x\n",
  141. au_readl(chan->io + DMA_BUFFER0_COUNT));
  142. printk(KERN_INFO " count1 = 0x%08x\n",
  143. au_readl(chan->io + DMA_BUFFER1_COUNT));
  144. }
  145. /*
  146. * Finds a free channel, and binds the requested device to it.
  147. * Returns the allocated channel number, or negative on error.
  148. * Requests the DMA done IRQ if irqhandler != NULL.
  149. */
  150. int request_au1000_dma(int dev_id, const char *dev_str,
  151. irqreturn_t (*irqhandler)(int, void *, struct pt_regs *),
  152. unsigned long irqflags,
  153. void *irq_dev_id)
  154. {
  155. struct dma_chan *chan;
  156. const struct dma_dev *dev;
  157. int i, ret;
  158. #if defined(CONFIG_SOC_AU1100)
  159. if (dev_id < 0 || dev_id >= (DMA_NUM_DEV + DMA_NUM_DEV_BANK2))
  160. return -EINVAL;
  161. #else
  162. if (dev_id < 0 || dev_id >= DMA_NUM_DEV)
  163. return -EINVAL;
  164. #endif
  165. for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++) {
  166. if (au1000_dma_table[i].dev_id < 0)
  167. break;
  168. }
  169. if (i == NUM_AU1000_DMA_CHANNELS)
  170. return -ENODEV;
  171. chan = &au1000_dma_table[i];
  172. if (dev_id >= DMA_NUM_DEV) {
  173. dev_id -= DMA_NUM_DEV;
  174. dev = &dma_dev_table_bank2[dev_id];
  175. } else {
  176. dev = &dma_dev_table[dev_id];
  177. }
  178. if (irqhandler) {
  179. chan->irq = AU1000_DMA_INT_BASE + i;
  180. chan->irq_dev = irq_dev_id;
  181. if ((ret = request_irq(chan->irq, irqhandler, irqflags,
  182. dev_str, chan->irq_dev))) {
  183. chan->irq = 0;
  184. chan->irq_dev = NULL;
  185. return ret;
  186. }
  187. } else {
  188. chan->irq = 0;
  189. chan->irq_dev = NULL;
  190. }
  191. // fill it in
  192. chan->io = DMA_CHANNEL_BASE + i * DMA_CHANNEL_LEN;
  193. chan->dev_id = dev_id;
  194. chan->dev_str = dev_str;
  195. chan->fifo_addr = dev->fifo_addr;
  196. chan->mode = dev->dma_mode;
  197. /* initialize the channel before returning */
  198. init_dma(i);
  199. return i;
  200. }
  201. EXPORT_SYMBOL(request_au1000_dma);
  202. void free_au1000_dma(unsigned int dmanr)
  203. {
  204. struct dma_chan *chan = get_dma_chan(dmanr);
  205. if (!chan) {
  206. printk("Trying to free DMA%d\n", dmanr);
  207. return;
  208. }
  209. disable_dma(dmanr);
  210. if (chan->irq)
  211. free_irq(chan->irq, chan->irq_dev);
  212. chan->irq = 0;
  213. chan->irq_dev = NULL;
  214. chan->dev_id = -1;
  215. }
  216. EXPORT_SYMBOL(free_au1000_dma);
  217. #endif // AU1000 AU1500 AU1100