setup.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1999,2001-2005 Silicon Graphics, Inc. All rights reserved.
  7. */
  8. #include <linux/config.h>
  9. #include <linux/module.h>
  10. #include <linux/init.h>
  11. #include <linux/delay.h>
  12. #include <linux/kernel.h>
  13. #include <linux/kdev_t.h>
  14. #include <linux/string.h>
  15. #include <linux/tty.h>
  16. #include <linux/console.h>
  17. #include <linux/timex.h>
  18. #include <linux/sched.h>
  19. #include <linux/ioport.h>
  20. #include <linux/mm.h>
  21. #include <linux/serial.h>
  22. #include <linux/irq.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/mmzone.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/acpi.h>
  27. #include <linux/compiler.h>
  28. #include <linux/sched.h>
  29. #include <linux/root_dev.h>
  30. #include <linux/nodemask.h>
  31. #include <linux/pm.h>
  32. #include <asm/io.h>
  33. #include <asm/sal.h>
  34. #include <asm/machvec.h>
  35. #include <asm/system.h>
  36. #include <asm/processor.h>
  37. #include <asm/vga.h>
  38. #include <asm/sn/arch.h>
  39. #include <asm/sn/addrs.h>
  40. #include <asm/sn/pda.h>
  41. #include <asm/sn/nodepda.h>
  42. #include <asm/sn/sn_cpuid.h>
  43. #include <asm/sn/simulator.h>
  44. #include <asm/sn/leds.h>
  45. #include <asm/sn/bte.h>
  46. #include <asm/sn/shub_mmr.h>
  47. #include <asm/sn/clksupport.h>
  48. #include <asm/sn/sn_sal.h>
  49. #include <asm/sn/geo.h>
  50. #include "xtalk/xwidgetdev.h"
  51. #include "xtalk/hubdev.h"
  52. #include <asm/sn/klconfig.h>
  53. DEFINE_PER_CPU(struct pda_s, pda_percpu);
  54. #define MAX_PHYS_MEMORY (1UL << IA64_MAX_PHYS_BITS) /* Max physical address supported */
  55. lboard_t *root_lboard[MAX_COMPACT_NODES];
  56. extern void bte_init_node(nodepda_t *, cnodeid_t);
  57. extern void sn_timer_init(void);
  58. extern unsigned long last_time_offset;
  59. extern void (*ia64_mark_idle) (int);
  60. extern void snidle(int);
  61. extern unsigned char acpi_kbd_controller_present;
  62. unsigned long sn_rtc_cycles_per_second;
  63. EXPORT_SYMBOL(sn_rtc_cycles_per_second);
  64. DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info);
  65. EXPORT_PER_CPU_SYMBOL(__sn_hub_info);
  66. DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_NUMNODES]);
  67. EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid);
  68. DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda);
  69. EXPORT_PER_CPU_SYMBOL(__sn_nodepda);
  70. char sn_system_serial_number_string[128];
  71. EXPORT_SYMBOL(sn_system_serial_number_string);
  72. u64 sn_partition_serial_number;
  73. EXPORT_SYMBOL(sn_partition_serial_number);
  74. u8 sn_partition_id;
  75. EXPORT_SYMBOL(sn_partition_id);
  76. u8 sn_system_size;
  77. EXPORT_SYMBOL(sn_system_size);
  78. u8 sn_sharing_domain_size;
  79. EXPORT_SYMBOL(sn_sharing_domain_size);
  80. u8 sn_coherency_id;
  81. EXPORT_SYMBOL(sn_coherency_id);
  82. u8 sn_region_size;
  83. EXPORT_SYMBOL(sn_region_size);
  84. int sn_prom_type; /* 0=hardware, 1=medusa/realprom, 2=medusa/fakeprom */
  85. short physical_node_map[MAX_PHYSNODE_ID];
  86. EXPORT_SYMBOL(physical_node_map);
  87. int numionodes;
  88. static void sn_init_pdas(char **);
  89. static void scan_for_ionodes(void);
  90. static nodepda_t *nodepdaindr[MAX_COMPACT_NODES];
  91. /*
  92. * The format of "screen_info" is strange, and due to early i386-setup
  93. * code. This is just enough to make the console code think we're on a
  94. * VGA color display.
  95. */
  96. struct screen_info sn_screen_info = {
  97. .orig_x = 0,
  98. .orig_y = 0,
  99. .orig_video_mode = 3,
  100. .orig_video_cols = 80,
  101. .orig_video_ega_bx = 3,
  102. .orig_video_lines = 25,
  103. .orig_video_isVGA = 1,
  104. .orig_video_points = 16
  105. };
  106. /*
  107. * This is here so we can use the CMOS detection in ide-probe.c to
  108. * determine what drives are present. In theory, we don't need this
  109. * as the auto-detection could be done via ide-probe.c:do_probe() but
  110. * in practice that would be much slower, which is painful when
  111. * running in the simulator. Note that passing zeroes in DRIVE_INFO
  112. * is sufficient (the IDE driver will autodetect the drive geometry).
  113. */
  114. #ifdef CONFIG_IA64_GENERIC
  115. extern char drive_info[4 * 16];
  116. #else
  117. char drive_info[4 * 16];
  118. #endif
  119. /*
  120. * Get nasid of current cpu early in boot before nodepda is initialized
  121. */
  122. static int
  123. boot_get_nasid(void)
  124. {
  125. int nasid;
  126. if (ia64_sn_get_sapic_info(get_sapicid(), &nasid, NULL, NULL))
  127. BUG();
  128. return nasid;
  129. }
  130. /*
  131. * This routine can only be used during init, since
  132. * smp_boot_data is an init data structure.
  133. * We have to use smp_boot_data.cpu_phys_id to find
  134. * the physical id of the processor because the normal
  135. * cpu_physical_id() relies on data structures that
  136. * may not be initialized yet.
  137. */
  138. static int __init pxm_to_nasid(int pxm)
  139. {
  140. int i;
  141. int nid;
  142. nid = pxm_to_nid_map[pxm];
  143. for (i = 0; i < num_node_memblks; i++) {
  144. if (node_memblk[i].nid == nid) {
  145. return NASID_GET(node_memblk[i].start_paddr);
  146. }
  147. }
  148. return -1;
  149. }
  150. /**
  151. * early_sn_setup - early setup routine for SN platforms
  152. *
  153. * Sets up an initial console to aid debugging. Intended primarily
  154. * for bringup. See start_kernel() in init/main.c.
  155. */
  156. void __init early_sn_setup(void)
  157. {
  158. efi_system_table_t *efi_systab;
  159. efi_config_table_t *config_tables;
  160. struct ia64_sal_systab *sal_systab;
  161. struct ia64_sal_desc_entry_point *ep;
  162. char *p;
  163. int i, j;
  164. /*
  165. * Parse enough of the SAL tables to locate the SAL entry point. Since, console
  166. * IO on SN2 is done via SAL calls, early_printk won't work without this.
  167. *
  168. * This code duplicates some of the ACPI table parsing that is in efi.c & sal.c.
  169. * Any changes to those file may have to be made hereas well.
  170. */
  171. efi_systab = (efi_system_table_t *) __va(ia64_boot_param->efi_systab);
  172. config_tables = __va(efi_systab->tables);
  173. for (i = 0; i < efi_systab->nr_tables; i++) {
  174. if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) ==
  175. 0) {
  176. sal_systab = __va(config_tables[i].table);
  177. p = (char *)(sal_systab + 1);
  178. for (j = 0; j < sal_systab->entry_count; j++) {
  179. if (*p == SAL_DESC_ENTRY_POINT) {
  180. ep = (struct ia64_sal_desc_entry_point
  181. *)p;
  182. ia64_sal_handler_init(__va
  183. (ep->sal_proc),
  184. __va(ep->gp));
  185. return;
  186. }
  187. p += SAL_DESC_SIZE(*p);
  188. }
  189. }
  190. }
  191. /* Uh-oh, SAL not available?? */
  192. printk(KERN_ERR "failed to find SAL entry point\n");
  193. }
  194. extern int platform_intr_list[];
  195. extern nasid_t master_nasid;
  196. static int __initdata shub_1_1_found = 0;
  197. /*
  198. * sn_check_for_wars
  199. *
  200. * Set flag for enabling shub specific wars
  201. */
  202. static inline int __init is_shub_1_1(int nasid)
  203. {
  204. unsigned long id;
  205. int rev;
  206. if (is_shub2())
  207. return 0;
  208. id = REMOTE_HUB_L(nasid, SH1_SHUB_ID);
  209. rev = (id & SH1_SHUB_ID_REVISION_MASK) >> SH1_SHUB_ID_REVISION_SHFT;
  210. return rev <= 2;
  211. }
  212. static void __init sn_check_for_wars(void)
  213. {
  214. int cnode;
  215. if (is_shub2()) {
  216. /* none yet */
  217. } else {
  218. for_each_online_node(cnode) {
  219. if (is_shub_1_1(cnodeid_to_nasid(cnode)))
  220. shub_1_1_found = 1;
  221. }
  222. }
  223. }
  224. /**
  225. * sn_setup - SN platform setup routine
  226. * @cmdline_p: kernel command line
  227. *
  228. * Handles platform setup for SN machines. This includes determining
  229. * the RTC frequency (via a SAL call), initializing secondary CPUs, and
  230. * setting up per-node data areas. The console is also initialized here.
  231. */
  232. void __init sn_setup(char **cmdline_p)
  233. {
  234. long status, ticks_per_sec, drift;
  235. int pxm;
  236. u32 version = sn_sal_rev();
  237. extern void sn_cpu_init(void);
  238. ia64_sn_plat_set_error_handling_features();
  239. #if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
  240. /*
  241. * If there was a primary vga adapter identified through the
  242. * EFI PCDP table, make it the preferred console. Otherwise
  243. * zero out conswitchp.
  244. */
  245. if (vga_console_membase) {
  246. /* usable vga ... make tty0 the preferred default console */
  247. add_preferred_console("tty", 0, NULL);
  248. } else {
  249. printk(KERN_DEBUG "SGI: Disabling VGA console\n");
  250. #ifdef CONFIG_DUMMY_CONSOLE
  251. conswitchp = &dummy_con;
  252. #else
  253. conswitchp = NULL;
  254. #endif /* CONFIG_DUMMY_CONSOLE */
  255. }
  256. #endif /* def(CONFIG_VT) && def(CONFIG_VGA_CONSOLE) */
  257. MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY;
  258. memset(physical_node_map, -1, sizeof(physical_node_map));
  259. for (pxm = 0; pxm < MAX_PXM_DOMAINS; pxm++)
  260. if (pxm_to_nid_map[pxm] != -1)
  261. physical_node_map[pxm_to_nasid(pxm)] =
  262. pxm_to_nid_map[pxm];
  263. /*
  264. * Old PROMs do not provide an ACPI FADT. Disable legacy keyboard
  265. * support here so we don't have to listen to failed keyboard probe
  266. * messages.
  267. */
  268. if (version <= 0x0209 && acpi_kbd_controller_present) {
  269. printk(KERN_INFO "Disabling legacy keyboard support as prom "
  270. "is too old and doesn't provide FADT\n");
  271. acpi_kbd_controller_present = 0;
  272. }
  273. printk("SGI SAL version %x.%02x\n", version >> 8, version & 0x00FF);
  274. /*
  275. * Confirm the SAL we're running on is recent enough...
  276. */
  277. if (version < SN_SAL_MIN_VERSION) {
  278. printk(KERN_ERR "This kernel needs SGI SAL version >= "
  279. "%x.%02x\n", SN_SAL_MIN_VERSION >> 8,
  280. SN_SAL_MIN_VERSION & 0x00FF);
  281. panic("PROM version too old\n");
  282. }
  283. master_nasid = boot_get_nasid();
  284. status =
  285. ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
  286. &drift);
  287. if (status != 0 || ticks_per_sec < 100000) {
  288. printk(KERN_WARNING
  289. "unable to determine platform RTC clock frequency, guessing.\n");
  290. /* PROM gives wrong value for clock freq. so guess */
  291. sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
  292. } else
  293. sn_rtc_cycles_per_second = ticks_per_sec;
  294. platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR;
  295. /*
  296. * we set the default root device to /dev/hda
  297. * to make simulation easy
  298. */
  299. ROOT_DEV = Root_HDA1;
  300. /*
  301. * Create the PDAs and NODEPDAs for all the cpus.
  302. */
  303. sn_init_pdas(cmdline_p);
  304. ia64_mark_idle = &snidle;
  305. /*
  306. * For the bootcpu, we do this here. All other cpus will make the
  307. * call as part of cpu_init in slave cpu initialization.
  308. */
  309. sn_cpu_init();
  310. #ifdef CONFIG_SMP
  311. init_smp_config();
  312. #endif
  313. screen_info = sn_screen_info;
  314. sn_timer_init();
  315. /*
  316. * set pm_power_off to a SAL call to allow
  317. * sn machines to power off. The SAL call can be replaced
  318. * by an ACPI interface call when ACPI is fully implemented
  319. * for sn.
  320. */
  321. pm_power_off = ia64_sn_power_down;
  322. }
  323. /**
  324. * sn_init_pdas - setup node data areas
  325. *
  326. * One time setup for Node Data Area. Called by sn_setup().
  327. */
  328. static void __init sn_init_pdas(char **cmdline_p)
  329. {
  330. cnodeid_t cnode;
  331. memset(sn_cnodeid_to_nasid, -1,
  332. sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
  333. for_each_online_node(cnode)
  334. sn_cnodeid_to_nasid[cnode] =
  335. pxm_to_nasid(nid_to_pxm_map[cnode]);
  336. numionodes = num_online_nodes();
  337. scan_for_ionodes();
  338. /*
  339. * Allocate & initalize the nodepda for each node.
  340. */
  341. for_each_online_node(cnode) {
  342. nodepdaindr[cnode] =
  343. alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t));
  344. memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
  345. memset(nodepdaindr[cnode]->phys_cpuid, -1,
  346. sizeof(nodepdaindr[cnode]->phys_cpuid));
  347. spin_lock_init(&nodepdaindr[cnode]->ptc_lock);
  348. }
  349. /*
  350. * Allocate & initialize nodepda for TIOs. For now, put them on node 0.
  351. */
  352. for (cnode = num_online_nodes(); cnode < numionodes; cnode++) {
  353. nodepdaindr[cnode] =
  354. alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t));
  355. memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
  356. }
  357. /*
  358. * Now copy the array of nodepda pointers to each nodepda.
  359. */
  360. for (cnode = 0; cnode < numionodes; cnode++)
  361. memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr,
  362. sizeof(nodepdaindr));
  363. /*
  364. * Set up IO related platform-dependent nodepda fields.
  365. * The following routine actually sets up the hubinfo struct
  366. * in nodepda.
  367. */
  368. for_each_online_node(cnode) {
  369. bte_init_node(nodepdaindr[cnode], cnode);
  370. }
  371. /*
  372. * Initialize the per node hubdev. This includes IO Nodes and
  373. * headless/memless nodes.
  374. */
  375. for (cnode = 0; cnode < numionodes; cnode++) {
  376. hubdev_init_node(nodepdaindr[cnode], cnode);
  377. }
  378. }
  379. /**
  380. * sn_cpu_init - initialize per-cpu data areas
  381. * @cpuid: cpuid of the caller
  382. *
  383. * Called during cpu initialization on each cpu as it starts.
  384. * Currently, initializes the per-cpu data area for SNIA.
  385. * Also sets up a few fields in the nodepda. Also known as
  386. * platform_cpu_init() by the ia64 machvec code.
  387. */
  388. void __init sn_cpu_init(void)
  389. {
  390. int cpuid;
  391. int cpuphyid;
  392. int nasid;
  393. int subnode;
  394. int slice;
  395. int cnode;
  396. int i;
  397. static int wars_have_been_checked;
  398. if (smp_processor_id() == 0 && IS_MEDUSA()) {
  399. if (ia64_sn_is_fake_prom())
  400. sn_prom_type = 2;
  401. else
  402. sn_prom_type = 1;
  403. printk("Running on medusa with %s PROM\n", (sn_prom_type == 1) ? "real" : "fake");
  404. }
  405. memset(pda, 0, sizeof(pda));
  406. if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2, &sn_hub_info->nasid_bitmask, &sn_hub_info->nasid_shift,
  407. &sn_system_size, &sn_sharing_domain_size, &sn_partition_id,
  408. &sn_coherency_id, &sn_region_size))
  409. BUG();
  410. sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2;
  411. /*
  412. * The boot cpu makes this call again after platform initialization is
  413. * complete.
  414. */
  415. if (nodepdaindr[0] == NULL)
  416. return;
  417. cpuid = smp_processor_id();
  418. cpuphyid = get_sapicid();
  419. if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice))
  420. BUG();
  421. for (i=0; i < MAX_NUMNODES; i++) {
  422. if (nodepdaindr[i]) {
  423. nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid;
  424. nodepdaindr[i]->phys_cpuid[cpuid].slice = slice;
  425. nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode;
  426. }
  427. }
  428. cnode = nasid_to_cnodeid(nasid);
  429. sn_nodepda = nodepdaindr[cnode];
  430. pda->led_address =
  431. (typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT));
  432. pda->led_state = LED_ALWAYS_SET;
  433. pda->hb_count = HZ / 2;
  434. pda->hb_state = 0;
  435. pda->idle_flag = 0;
  436. if (cpuid != 0) {
  437. /* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */
  438. memcpy(sn_cnodeid_to_nasid,
  439. (&per_cpu(__sn_cnodeid_to_nasid, 0)),
  440. sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
  441. }
  442. /*
  443. * Check for WARs.
  444. * Only needs to be done once, on BSP.
  445. * Has to be done after loop above, because it uses this cpu's
  446. * sn_cnodeid_to_nasid table which was just initialized if this
  447. * isn't cpu 0.
  448. * Has to be done before assignment below.
  449. */
  450. if (!wars_have_been_checked) {
  451. sn_check_for_wars();
  452. wars_have_been_checked = 1;
  453. }
  454. sn_hub_info->shub_1_1_found = shub_1_1_found;
  455. /*
  456. * Set up addresses of PIO/MEM write status registers.
  457. */
  458. {
  459. u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0};
  460. u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2,
  461. SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3};
  462. u64 *pio;
  463. pio = is_shub1() ? pio1 : pio2;
  464. pda->pio_write_status_addr = (volatile unsigned long *) LOCAL_MMR_ADDR(pio[slice]);
  465. pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0;
  466. }
  467. /*
  468. * WAR addresses for SHUB 1.x.
  469. */
  470. if (local_node_data->active_cpu_count++ == 0 && is_shub1()) {
  471. int buddy_nasid;
  472. buddy_nasid =
  473. cnodeid_to_nasid(numa_node_id() ==
  474. num_online_nodes() - 1 ? 0 : numa_node_id() + 1);
  475. pda->pio_shub_war_cam_addr =
  476. (volatile unsigned long *)GLOBAL_MMR_ADDR(nasid,
  477. SH1_PI_CAM_CONTROL);
  478. }
  479. }
  480. /*
  481. * Scan klconfig for ionodes. Add the nasids to the
  482. * physical_node_map and the pda and increment numionodes.
  483. */
  484. static void __init scan_for_ionodes(void)
  485. {
  486. int nasid = 0;
  487. lboard_t *brd;
  488. /* fakeprom does not support klgraph */
  489. if (IS_RUNNING_ON_FAKE_PROM())
  490. return;
  491. /* Setup ionodes with memory */
  492. for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
  493. char *klgraph_header;
  494. cnodeid_t cnodeid;
  495. if (physical_node_map[nasid] == -1)
  496. continue;
  497. cnodeid = -1;
  498. klgraph_header = __va(ia64_sn_get_klconfig_addr(nasid));
  499. if (!klgraph_header) {
  500. BUG(); /* All nodes must have klconfig tables! */
  501. }
  502. cnodeid = nasid_to_cnodeid(nasid);
  503. root_lboard[cnodeid] = (lboard_t *)
  504. NODE_OFFSET_TO_LBOARD((nasid),
  505. ((kl_config_hdr_t
  506. *) (klgraph_header))->
  507. ch_board_info);
  508. }
  509. /* Scan headless/memless IO Nodes. */
  510. for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
  511. /* if there's no nasid, don't try to read the klconfig on the node */
  512. if (physical_node_map[nasid] == -1)
  513. continue;
  514. brd = find_lboard_any((lboard_t *)
  515. root_lboard[nasid_to_cnodeid(nasid)],
  516. KLTYPE_SNIA);
  517. if (brd) {
  518. brd = KLCF_NEXT_ANY(brd); /* Skip this node's lboard */
  519. if (!brd)
  520. continue;
  521. }
  522. brd = find_lboard_any(brd, KLTYPE_SNIA);
  523. while (brd) {
  524. sn_cnodeid_to_nasid[numionodes] = brd->brd_nasid;
  525. physical_node_map[brd->brd_nasid] = numionodes;
  526. root_lboard[numionodes] = brd;
  527. numionodes++;
  528. brd = KLCF_NEXT_ANY(brd);
  529. if (!brd)
  530. break;
  531. brd = find_lboard_any(brd, KLTYPE_SNIA);
  532. }
  533. }
  534. /* Scan for TIO nodes. */
  535. for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
  536. /* if there's no nasid, don't try to read the klconfig on the node */
  537. if (physical_node_map[nasid] == -1)
  538. continue;
  539. brd = find_lboard_any((lboard_t *)
  540. root_lboard[nasid_to_cnodeid(nasid)],
  541. KLTYPE_TIO);
  542. while (brd) {
  543. sn_cnodeid_to_nasid[numionodes] = brd->brd_nasid;
  544. physical_node_map[brd->brd_nasid] = numionodes;
  545. root_lboard[numionodes] = brd;
  546. numionodes++;
  547. brd = KLCF_NEXT_ANY(brd);
  548. if (!brd)
  549. break;
  550. brd = find_lboard_any(brd, KLTYPE_TIO);
  551. }
  552. }
  553. }
  554. int
  555. nasid_slice_to_cpuid(int nasid, int slice)
  556. {
  557. long cpu;
  558. for (cpu=0; cpu < NR_CPUS; cpu++)
  559. if (cpuid_to_nasid(cpu) == nasid &&
  560. cpuid_to_slice(cpu) == slice)
  561. return cpu;
  562. return -1;
  563. }