init.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633
  1. /*
  2. * Initialize MMU support.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. */
  7. #include <linux/config.h>
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/bootmem.h>
  11. #include <linux/efi.h>
  12. #include <linux/elf.h>
  13. #include <linux/mm.h>
  14. #include <linux/mmzone.h>
  15. #include <linux/module.h>
  16. #include <linux/personality.h>
  17. #include <linux/reboot.h>
  18. #include <linux/slab.h>
  19. #include <linux/swap.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/bitops.h>
  22. #include <asm/a.out.h>
  23. #include <asm/dma.h>
  24. #include <asm/ia32.h>
  25. #include <asm/io.h>
  26. #include <asm/machvec.h>
  27. #include <asm/numa.h>
  28. #include <asm/patch.h>
  29. #include <asm/pgalloc.h>
  30. #include <asm/sal.h>
  31. #include <asm/sections.h>
  32. #include <asm/system.h>
  33. #include <asm/tlb.h>
  34. #include <asm/uaccess.h>
  35. #include <asm/unistd.h>
  36. #include <asm/mca.h>
  37. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  38. DEFINE_PER_CPU(unsigned long *, __pgtable_quicklist);
  39. DEFINE_PER_CPU(long, __pgtable_quicklist_size);
  40. extern void ia64_tlb_init (void);
  41. unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
  42. #ifdef CONFIG_VIRTUAL_MEM_MAP
  43. unsigned long vmalloc_end = VMALLOC_END_INIT;
  44. EXPORT_SYMBOL(vmalloc_end);
  45. struct page *vmem_map;
  46. EXPORT_SYMBOL(vmem_map);
  47. #endif
  48. struct page *zero_page_memmap_ptr; /* map entry for zero page */
  49. EXPORT_SYMBOL(zero_page_memmap_ptr);
  50. #define MIN_PGT_PAGES 25UL
  51. #define MAX_PGT_FREES_PER_PASS 16L
  52. #define PGT_FRACTION_OF_NODE_MEM 16
  53. static inline long
  54. max_pgt_pages(void)
  55. {
  56. u64 node_free_pages, max_pgt_pages;
  57. #ifndef CONFIG_NUMA
  58. node_free_pages = nr_free_pages();
  59. #else
  60. node_free_pages = nr_free_pages_pgdat(NODE_DATA(numa_node_id()));
  61. #endif
  62. max_pgt_pages = node_free_pages / PGT_FRACTION_OF_NODE_MEM;
  63. max_pgt_pages = max(max_pgt_pages, MIN_PGT_PAGES);
  64. return max_pgt_pages;
  65. }
  66. static inline long
  67. min_pages_to_free(void)
  68. {
  69. long pages_to_free;
  70. pages_to_free = pgtable_quicklist_size - max_pgt_pages();
  71. pages_to_free = min(pages_to_free, MAX_PGT_FREES_PER_PASS);
  72. return pages_to_free;
  73. }
  74. void
  75. check_pgt_cache(void)
  76. {
  77. long pages_to_free;
  78. if (unlikely(pgtable_quicklist_size <= MIN_PGT_PAGES))
  79. return;
  80. preempt_disable();
  81. while (unlikely((pages_to_free = min_pages_to_free()) > 0)) {
  82. while (pages_to_free--) {
  83. free_page((unsigned long)pgtable_quicklist_alloc());
  84. }
  85. preempt_enable();
  86. preempt_disable();
  87. }
  88. preempt_enable();
  89. }
  90. void
  91. lazy_mmu_prot_update (pte_t pte)
  92. {
  93. unsigned long addr;
  94. struct page *page;
  95. if (!pte_exec(pte))
  96. return; /* not an executable page... */
  97. page = pte_page(pte);
  98. addr = (unsigned long) page_address(page);
  99. if (test_bit(PG_arch_1, &page->flags))
  100. return; /* i-cache is already coherent with d-cache */
  101. flush_icache_range(addr, addr + PAGE_SIZE);
  102. set_bit(PG_arch_1, &page->flags); /* mark page as clean */
  103. }
  104. inline void
  105. ia64_set_rbs_bot (void)
  106. {
  107. unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
  108. if (stack_size > MAX_USER_STACK_SIZE)
  109. stack_size = MAX_USER_STACK_SIZE;
  110. current->thread.rbs_bot = STACK_TOP - stack_size;
  111. }
  112. /*
  113. * This performs some platform-dependent address space initialization.
  114. * On IA-64, we want to setup the VM area for the register backing
  115. * store (which grows upwards) and install the gateway page which is
  116. * used for signal trampolines, etc.
  117. */
  118. void
  119. ia64_init_addr_space (void)
  120. {
  121. struct vm_area_struct *vma;
  122. ia64_set_rbs_bot();
  123. /*
  124. * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
  125. * the problem. When the process attempts to write to the register backing store
  126. * for the first time, it will get a SEGFAULT in this case.
  127. */
  128. vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
  129. if (vma) {
  130. memset(vma, 0, sizeof(*vma));
  131. vma->vm_mm = current->mm;
  132. vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
  133. vma->vm_end = vma->vm_start + PAGE_SIZE;
  134. vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
  135. vma->vm_flags = VM_DATA_DEFAULT_FLAGS | VM_GROWSUP;
  136. down_write(&current->mm->mmap_sem);
  137. if (insert_vm_struct(current->mm, vma)) {
  138. up_write(&current->mm->mmap_sem);
  139. kmem_cache_free(vm_area_cachep, vma);
  140. return;
  141. }
  142. up_write(&current->mm->mmap_sem);
  143. }
  144. /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
  145. if (!(current->personality & MMAP_PAGE_ZERO)) {
  146. vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
  147. if (vma) {
  148. memset(vma, 0, sizeof(*vma));
  149. vma->vm_mm = current->mm;
  150. vma->vm_end = PAGE_SIZE;
  151. vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
  152. vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
  153. down_write(&current->mm->mmap_sem);
  154. if (insert_vm_struct(current->mm, vma)) {
  155. up_write(&current->mm->mmap_sem);
  156. kmem_cache_free(vm_area_cachep, vma);
  157. return;
  158. }
  159. up_write(&current->mm->mmap_sem);
  160. }
  161. }
  162. }
  163. void
  164. free_initmem (void)
  165. {
  166. unsigned long addr, eaddr;
  167. addr = (unsigned long) ia64_imva(__init_begin);
  168. eaddr = (unsigned long) ia64_imva(__init_end);
  169. while (addr < eaddr) {
  170. ClearPageReserved(virt_to_page(addr));
  171. set_page_count(virt_to_page(addr), 1);
  172. free_page(addr);
  173. ++totalram_pages;
  174. addr += PAGE_SIZE;
  175. }
  176. printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
  177. (__init_end - __init_begin) >> 10);
  178. }
  179. void
  180. free_initrd_mem (unsigned long start, unsigned long end)
  181. {
  182. struct page *page;
  183. /*
  184. * EFI uses 4KB pages while the kernel can use 4KB or bigger.
  185. * Thus EFI and the kernel may have different page sizes. It is
  186. * therefore possible to have the initrd share the same page as
  187. * the end of the kernel (given current setup).
  188. *
  189. * To avoid freeing/using the wrong page (kernel sized) we:
  190. * - align up the beginning of initrd
  191. * - align down the end of initrd
  192. *
  193. * | |
  194. * |=============| a000
  195. * | |
  196. * | |
  197. * | | 9000
  198. * |/////////////|
  199. * |/////////////|
  200. * |=============| 8000
  201. * |///INITRD////|
  202. * |/////////////|
  203. * |/////////////| 7000
  204. * | |
  205. * |KKKKKKKKKKKKK|
  206. * |=============| 6000
  207. * |KKKKKKKKKKKKK|
  208. * |KKKKKKKKKKKKK|
  209. * K=kernel using 8KB pages
  210. *
  211. * In this example, we must free page 8000 ONLY. So we must align up
  212. * initrd_start and keep initrd_end as is.
  213. */
  214. start = PAGE_ALIGN(start);
  215. end = end & PAGE_MASK;
  216. if (start < end)
  217. printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
  218. for (; start < end; start += PAGE_SIZE) {
  219. if (!virt_addr_valid(start))
  220. continue;
  221. page = virt_to_page(start);
  222. ClearPageReserved(page);
  223. set_page_count(page, 1);
  224. free_page(start);
  225. ++totalram_pages;
  226. }
  227. }
  228. /*
  229. * This installs a clean page in the kernel's page table.
  230. */
  231. struct page *
  232. put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
  233. {
  234. pgd_t *pgd;
  235. pud_t *pud;
  236. pmd_t *pmd;
  237. pte_t *pte;
  238. if (!PageReserved(page))
  239. printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
  240. page_address(page));
  241. pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
  242. spin_lock(&init_mm.page_table_lock);
  243. {
  244. pud = pud_alloc(&init_mm, pgd, address);
  245. if (!pud)
  246. goto out;
  247. pmd = pmd_alloc(&init_mm, pud, address);
  248. if (!pmd)
  249. goto out;
  250. pte = pte_alloc_map(&init_mm, pmd, address);
  251. if (!pte)
  252. goto out;
  253. if (!pte_none(*pte)) {
  254. pte_unmap(pte);
  255. goto out;
  256. }
  257. set_pte(pte, mk_pte(page, pgprot));
  258. pte_unmap(pte);
  259. }
  260. out: spin_unlock(&init_mm.page_table_lock);
  261. /* no need for flush_tlb */
  262. return page;
  263. }
  264. static void
  265. setup_gate (void)
  266. {
  267. struct page *page;
  268. /*
  269. * Map the gate page twice: once read-only to export the ELF
  270. * headers etc. and once execute-only page to enable
  271. * privilege-promotion via "epc":
  272. */
  273. page = virt_to_page(ia64_imva(__start_gate_section));
  274. put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
  275. #ifdef HAVE_BUGGY_SEGREL
  276. page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
  277. put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
  278. #else
  279. put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
  280. /* Fill in the holes (if any) with read-only zero pages: */
  281. {
  282. unsigned long addr;
  283. for (addr = GATE_ADDR + PAGE_SIZE;
  284. addr < GATE_ADDR + PERCPU_PAGE_SIZE;
  285. addr += PAGE_SIZE)
  286. {
  287. put_kernel_page(ZERO_PAGE(0), addr,
  288. PAGE_READONLY);
  289. put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
  290. PAGE_READONLY);
  291. }
  292. }
  293. #endif
  294. ia64_patch_gate();
  295. }
  296. void __devinit
  297. ia64_mmu_init (void *my_cpu_data)
  298. {
  299. unsigned long psr, pta, impl_va_bits;
  300. extern void __devinit tlb_init (void);
  301. #ifdef CONFIG_DISABLE_VHPT
  302. # define VHPT_ENABLE_BIT 0
  303. #else
  304. # define VHPT_ENABLE_BIT 1
  305. #endif
  306. /* Pin mapping for percpu area into TLB */
  307. psr = ia64_clear_ic();
  308. ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
  309. pte_val(pfn_pte(__pa(my_cpu_data) >> PAGE_SHIFT, PAGE_KERNEL)),
  310. PERCPU_PAGE_SHIFT);
  311. ia64_set_psr(psr);
  312. ia64_srlz_i();
  313. /*
  314. * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
  315. * address space. The IA-64 architecture guarantees that at least 50 bits of
  316. * virtual address space are implemented but if we pick a large enough page size
  317. * (e.g., 64KB), the mapped address space is big enough that it will overlap with
  318. * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
  319. * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
  320. * problem in practice. Alternatively, we could truncate the top of the mapped
  321. * address space to not permit mappings that would overlap with the VMLPT.
  322. * --davidm 00/12/06
  323. */
  324. # define pte_bits 3
  325. # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
  326. /*
  327. * The virtual page table has to cover the entire implemented address space within
  328. * a region even though not all of this space may be mappable. The reason for
  329. * this is that the Access bit and Dirty bit fault handlers perform
  330. * non-speculative accesses to the virtual page table, so the address range of the
  331. * virtual page table itself needs to be covered by virtual page table.
  332. */
  333. # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
  334. # define POW2(n) (1ULL << (n))
  335. impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
  336. if (impl_va_bits < 51 || impl_va_bits > 61)
  337. panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
  338. /* place the VMLPT at the end of each page-table mapped region: */
  339. pta = POW2(61) - POW2(vmlpt_bits);
  340. if (POW2(mapped_space_bits) >= pta)
  341. panic("mm/init: overlap between virtually mapped linear page table and "
  342. "mapped kernel space!");
  343. /*
  344. * Set the (virtually mapped linear) page table address. Bit
  345. * 8 selects between the short and long format, bits 2-7 the
  346. * size of the table, and bit 0 whether the VHPT walker is
  347. * enabled.
  348. */
  349. ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
  350. ia64_tlb_init();
  351. #ifdef CONFIG_HUGETLB_PAGE
  352. ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
  353. ia64_srlz_d();
  354. #endif
  355. }
  356. #ifdef CONFIG_VIRTUAL_MEM_MAP
  357. int
  358. create_mem_map_page_table (u64 start, u64 end, void *arg)
  359. {
  360. unsigned long address, start_page, end_page;
  361. struct page *map_start, *map_end;
  362. int node;
  363. pgd_t *pgd;
  364. pud_t *pud;
  365. pmd_t *pmd;
  366. pte_t *pte;
  367. map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
  368. map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
  369. start_page = (unsigned long) map_start & PAGE_MASK;
  370. end_page = PAGE_ALIGN((unsigned long) map_end);
  371. node = paddr_to_nid(__pa(start));
  372. for (address = start_page; address < end_page; address += PAGE_SIZE) {
  373. pgd = pgd_offset_k(address);
  374. if (pgd_none(*pgd))
  375. pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
  376. pud = pud_offset(pgd, address);
  377. if (pud_none(*pud))
  378. pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
  379. pmd = pmd_offset(pud, address);
  380. if (pmd_none(*pmd))
  381. pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
  382. pte = pte_offset_kernel(pmd, address);
  383. if (pte_none(*pte))
  384. set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
  385. PAGE_KERNEL));
  386. }
  387. return 0;
  388. }
  389. struct memmap_init_callback_data {
  390. struct page *start;
  391. struct page *end;
  392. int nid;
  393. unsigned long zone;
  394. };
  395. static int
  396. virtual_memmap_init (u64 start, u64 end, void *arg)
  397. {
  398. struct memmap_init_callback_data *args;
  399. struct page *map_start, *map_end;
  400. args = (struct memmap_init_callback_data *) arg;
  401. map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
  402. map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
  403. if (map_start < args->start)
  404. map_start = args->start;
  405. if (map_end > args->end)
  406. map_end = args->end;
  407. /*
  408. * We have to initialize "out of bounds" struct page elements that fit completely
  409. * on the same pages that were allocated for the "in bounds" elements because they
  410. * may be referenced later (and found to be "reserved").
  411. */
  412. map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
  413. map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
  414. / sizeof(struct page));
  415. if (map_start < map_end)
  416. memmap_init_zone((unsigned long)(map_end - map_start),
  417. args->nid, args->zone, page_to_pfn(map_start));
  418. return 0;
  419. }
  420. void
  421. memmap_init (unsigned long size, int nid, unsigned long zone,
  422. unsigned long start_pfn)
  423. {
  424. if (!vmem_map)
  425. memmap_init_zone(size, nid, zone, start_pfn);
  426. else {
  427. struct page *start;
  428. struct memmap_init_callback_data args;
  429. start = pfn_to_page(start_pfn);
  430. args.start = start;
  431. args.end = start + size;
  432. args.nid = nid;
  433. args.zone = zone;
  434. efi_memmap_walk(virtual_memmap_init, &args);
  435. }
  436. }
  437. int
  438. ia64_pfn_valid (unsigned long pfn)
  439. {
  440. char byte;
  441. struct page *pg = pfn_to_page(pfn);
  442. return (__get_user(byte, (char __user *) pg) == 0)
  443. && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
  444. || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
  445. }
  446. EXPORT_SYMBOL(ia64_pfn_valid);
  447. int
  448. find_largest_hole (u64 start, u64 end, void *arg)
  449. {
  450. u64 *max_gap = arg;
  451. static u64 last_end = PAGE_OFFSET;
  452. /* NOTE: this algorithm assumes efi memmap table is ordered */
  453. if (*max_gap < (start - last_end))
  454. *max_gap = start - last_end;
  455. last_end = end;
  456. return 0;
  457. }
  458. #endif /* CONFIG_VIRTUAL_MEM_MAP */
  459. static int
  460. count_reserved_pages (u64 start, u64 end, void *arg)
  461. {
  462. unsigned long num_reserved = 0;
  463. unsigned long *count = arg;
  464. for (; start < end; start += PAGE_SIZE)
  465. if (PageReserved(virt_to_page(start)))
  466. ++num_reserved;
  467. *count += num_reserved;
  468. return 0;
  469. }
  470. /*
  471. * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
  472. * system call handler. When this option is in effect, all fsyscalls will end up bubbling
  473. * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
  474. * useful for performance testing, but conceivably could also come in handy for debugging
  475. * purposes.
  476. */
  477. static int nolwsys;
  478. static int __init
  479. nolwsys_setup (char *s)
  480. {
  481. nolwsys = 1;
  482. return 1;
  483. }
  484. __setup("nolwsys", nolwsys_setup);
  485. void
  486. mem_init (void)
  487. {
  488. long reserved_pages, codesize, datasize, initsize;
  489. pg_data_t *pgdat;
  490. int i;
  491. static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
  492. BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
  493. BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
  494. BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
  495. #ifdef CONFIG_PCI
  496. /*
  497. * This needs to be called _after_ the command line has been parsed but _before_
  498. * any drivers that may need the PCI DMA interface are initialized or bootmem has
  499. * been freed.
  500. */
  501. platform_dma_init();
  502. #endif
  503. #ifndef CONFIG_DISCONTIGMEM
  504. if (!mem_map)
  505. BUG();
  506. max_mapnr = max_low_pfn;
  507. #endif
  508. high_memory = __va(max_low_pfn * PAGE_SIZE);
  509. kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
  510. kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
  511. kclist_add(&kcore_kernel, _stext, _end - _stext);
  512. for_each_pgdat(pgdat)
  513. if (pgdat->bdata->node_bootmem_map)
  514. totalram_pages += free_all_bootmem_node(pgdat);
  515. reserved_pages = 0;
  516. efi_memmap_walk(count_reserved_pages, &reserved_pages);
  517. codesize = (unsigned long) _etext - (unsigned long) _stext;
  518. datasize = (unsigned long) _edata - (unsigned long) _etext;
  519. initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
  520. printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
  521. "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
  522. num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
  523. reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
  524. /*
  525. * For fsyscall entrpoints with no light-weight handler, use the ordinary
  526. * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
  527. * code can tell them apart.
  528. */
  529. for (i = 0; i < NR_syscalls; ++i) {
  530. extern unsigned long fsyscall_table[NR_syscalls];
  531. extern unsigned long sys_call_table[NR_syscalls];
  532. if (!fsyscall_table[i] || nolwsys)
  533. fsyscall_table[i] = sys_call_table[i] | 1;
  534. }
  535. setup_gate();
  536. #ifdef CONFIG_IA32_SUPPORT
  537. ia32_mem_init();
  538. #endif
  539. }