contig.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1998-2003 Hewlett-Packard Co
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Stephane Eranian <eranian@hpl.hp.com>
  9. * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
  10. * Copyright (C) 1999 VA Linux Systems
  11. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  12. * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
  13. *
  14. * Routines used by ia64 machines with contiguous (or virtually contiguous)
  15. * memory.
  16. */
  17. #include <linux/config.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/efi.h>
  20. #include <linux/mm.h>
  21. #include <linux/swap.h>
  22. #include <asm/meminit.h>
  23. #include <asm/pgalloc.h>
  24. #include <asm/pgtable.h>
  25. #include <asm/sections.h>
  26. #include <asm/mca.h>
  27. #ifdef CONFIG_VIRTUAL_MEM_MAP
  28. static unsigned long num_dma_physpages;
  29. #endif
  30. /**
  31. * show_mem - display a memory statistics summary
  32. *
  33. * Just walks the pages in the system and describes where they're allocated.
  34. */
  35. void
  36. show_mem (void)
  37. {
  38. int i, total = 0, reserved = 0;
  39. int shared = 0, cached = 0;
  40. printk("Mem-info:\n");
  41. show_free_areas();
  42. printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  43. i = max_mapnr;
  44. while (i-- > 0) {
  45. if (!pfn_valid(i))
  46. continue;
  47. total++;
  48. if (PageReserved(mem_map+i))
  49. reserved++;
  50. else if (PageSwapCache(mem_map+i))
  51. cached++;
  52. else if (page_count(mem_map + i))
  53. shared += page_count(mem_map + i) - 1;
  54. }
  55. printk("%d pages of RAM\n", total);
  56. printk("%d reserved pages\n", reserved);
  57. printk("%d pages shared\n", shared);
  58. printk("%d pages swap cached\n", cached);
  59. printk("%ld pages in page table cache\n",
  60. pgtable_quicklist_total_size());
  61. }
  62. /* physical address where the bootmem map is located */
  63. unsigned long bootmap_start;
  64. /**
  65. * find_max_pfn - adjust the maximum page number callback
  66. * @start: start of range
  67. * @end: end of range
  68. * @arg: address of pointer to global max_pfn variable
  69. *
  70. * Passed as a callback function to efi_memmap_walk() to determine the highest
  71. * available page frame number in the system.
  72. */
  73. int
  74. find_max_pfn (unsigned long start, unsigned long end, void *arg)
  75. {
  76. unsigned long *max_pfnp = arg, pfn;
  77. pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT;
  78. if (pfn > *max_pfnp)
  79. *max_pfnp = pfn;
  80. return 0;
  81. }
  82. /**
  83. * find_bootmap_location - callback to find a memory area for the bootmap
  84. * @start: start of region
  85. * @end: end of region
  86. * @arg: unused callback data
  87. *
  88. * Find a place to put the bootmap and return its starting address in
  89. * bootmap_start. This address must be page-aligned.
  90. */
  91. int
  92. find_bootmap_location (unsigned long start, unsigned long end, void *arg)
  93. {
  94. unsigned long needed = *(unsigned long *)arg;
  95. unsigned long range_start, range_end, free_start;
  96. int i;
  97. #if IGNORE_PFN0
  98. if (start == PAGE_OFFSET) {
  99. start += PAGE_SIZE;
  100. if (start >= end)
  101. return 0;
  102. }
  103. #endif
  104. free_start = PAGE_OFFSET;
  105. for (i = 0; i < num_rsvd_regions; i++) {
  106. range_start = max(start, free_start);
  107. range_end = min(end, rsvd_region[i].start & PAGE_MASK);
  108. free_start = PAGE_ALIGN(rsvd_region[i].end);
  109. if (range_end <= range_start)
  110. continue; /* skip over empty range */
  111. if (range_end - range_start >= needed) {
  112. bootmap_start = __pa(range_start);
  113. return -1; /* done */
  114. }
  115. /* nothing more available in this segment */
  116. if (range_end == end)
  117. return 0;
  118. }
  119. return 0;
  120. }
  121. /**
  122. * find_memory - setup memory map
  123. *
  124. * Walk the EFI memory map and find usable memory for the system, taking
  125. * into account reserved areas.
  126. */
  127. void
  128. find_memory (void)
  129. {
  130. unsigned long bootmap_size;
  131. reserve_memory();
  132. /* first find highest page frame number */
  133. max_pfn = 0;
  134. efi_memmap_walk(find_max_pfn, &max_pfn);
  135. /* how many bytes to cover all the pages */
  136. bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
  137. /* look for a location to hold the bootmap */
  138. bootmap_start = ~0UL;
  139. efi_memmap_walk(find_bootmap_location, &bootmap_size);
  140. if (bootmap_start == ~0UL)
  141. panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
  142. bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn);
  143. /* Free all available memory, then mark bootmem-map as being in use. */
  144. efi_memmap_walk(filter_rsvd_memory, free_bootmem);
  145. reserve_bootmem(bootmap_start, bootmap_size);
  146. find_initrd();
  147. }
  148. #ifdef CONFIG_SMP
  149. /**
  150. * per_cpu_init - setup per-cpu variables
  151. *
  152. * Allocate and setup per-cpu data areas.
  153. */
  154. void *
  155. per_cpu_init (void)
  156. {
  157. void *cpu_data;
  158. int cpu;
  159. /*
  160. * get_free_pages() cannot be used before cpu_init() done. BSP
  161. * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
  162. * get_zeroed_page().
  163. */
  164. if (smp_processor_id() == 0) {
  165. cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
  166. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  167. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  168. memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
  169. __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
  170. cpu_data += PERCPU_PAGE_SIZE;
  171. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  172. }
  173. }
  174. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  175. }
  176. #endif /* CONFIG_SMP */
  177. static int
  178. count_pages (u64 start, u64 end, void *arg)
  179. {
  180. unsigned long *count = arg;
  181. *count += (end - start) >> PAGE_SHIFT;
  182. return 0;
  183. }
  184. #ifdef CONFIG_VIRTUAL_MEM_MAP
  185. static int
  186. count_dma_pages (u64 start, u64 end, void *arg)
  187. {
  188. unsigned long *count = arg;
  189. if (start < MAX_DMA_ADDRESS)
  190. *count += (min(end, MAX_DMA_ADDRESS) - start) >> PAGE_SHIFT;
  191. return 0;
  192. }
  193. #endif
  194. /*
  195. * Set up the page tables.
  196. */
  197. void
  198. paging_init (void)
  199. {
  200. unsigned long max_dma;
  201. unsigned long zones_size[MAX_NR_ZONES];
  202. #ifdef CONFIG_VIRTUAL_MEM_MAP
  203. unsigned long zholes_size[MAX_NR_ZONES];
  204. unsigned long max_gap;
  205. #endif
  206. /* initialize mem_map[] */
  207. memset(zones_size, 0, sizeof(zones_size));
  208. num_physpages = 0;
  209. efi_memmap_walk(count_pages, &num_physpages);
  210. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  211. #ifdef CONFIG_VIRTUAL_MEM_MAP
  212. memset(zholes_size, 0, sizeof(zholes_size));
  213. num_dma_physpages = 0;
  214. efi_memmap_walk(count_dma_pages, &num_dma_physpages);
  215. if (max_low_pfn < max_dma) {
  216. zones_size[ZONE_DMA] = max_low_pfn;
  217. zholes_size[ZONE_DMA] = max_low_pfn - num_dma_physpages;
  218. } else {
  219. zones_size[ZONE_DMA] = max_dma;
  220. zholes_size[ZONE_DMA] = max_dma - num_dma_physpages;
  221. if (num_physpages > num_dma_physpages) {
  222. zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
  223. zholes_size[ZONE_NORMAL] =
  224. ((max_low_pfn - max_dma) -
  225. (num_physpages - num_dma_physpages));
  226. }
  227. }
  228. max_gap = 0;
  229. efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
  230. if (max_gap < LARGE_GAP) {
  231. vmem_map = (struct page *) 0;
  232. free_area_init_node(0, &contig_page_data, zones_size, 0,
  233. zholes_size);
  234. } else {
  235. unsigned long map_size;
  236. /* allocate virtual_mem_map */
  237. map_size = PAGE_ALIGN(max_low_pfn * sizeof(struct page));
  238. vmalloc_end -= map_size;
  239. vmem_map = (struct page *) vmalloc_end;
  240. efi_memmap_walk(create_mem_map_page_table, NULL);
  241. NODE_DATA(0)->node_mem_map = vmem_map;
  242. free_area_init_node(0, &contig_page_data, zones_size,
  243. 0, zholes_size);
  244. printk("Virtual mem_map starts at 0x%p\n", mem_map);
  245. }
  246. #else /* !CONFIG_VIRTUAL_MEM_MAP */
  247. if (max_low_pfn < max_dma)
  248. zones_size[ZONE_DMA] = max_low_pfn;
  249. else {
  250. zones_size[ZONE_DMA] = max_dma;
  251. zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
  252. }
  253. free_area_init(zones_size);
  254. #endif /* !CONFIG_VIRTUAL_MEM_MAP */
  255. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  256. }