process.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. */
  8. #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
  9. #include <linux/config.h>
  10. #include <linux/cpu.h>
  11. #include <linux/pm.h>
  12. #include <linux/elf.h>
  13. #include <linux/errno.h>
  14. #include <linux/kallsyms.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/module.h>
  18. #include <linux/notifier.h>
  19. #include <linux/personality.h>
  20. #include <linux/sched.h>
  21. #include <linux/slab.h>
  22. #include <linux/smp_lock.h>
  23. #include <linux/stddef.h>
  24. #include <linux/thread_info.h>
  25. #include <linux/unistd.h>
  26. #include <linux/efi.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/delay.h>
  29. #include <linux/kprobes.h>
  30. #include <asm/cpu.h>
  31. #include <asm/delay.h>
  32. #include <asm/elf.h>
  33. #include <asm/ia32.h>
  34. #include <asm/irq.h>
  35. #include <asm/pgalloc.h>
  36. #include <asm/processor.h>
  37. #include <asm/sal.h>
  38. #include <asm/tlbflush.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/unwind.h>
  41. #include <asm/user.h>
  42. #include "entry.h"
  43. #ifdef CONFIG_PERFMON
  44. # include <asm/perfmon.h>
  45. #endif
  46. #include "sigframe.h"
  47. void (*ia64_mark_idle)(int);
  48. static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
  49. unsigned long boot_option_idle_override = 0;
  50. EXPORT_SYMBOL(boot_option_idle_override);
  51. void
  52. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  53. {
  54. unsigned long ip, sp, bsp;
  55. char buf[128]; /* don't make it so big that it overflows the stack! */
  56. printk("\nCall Trace:\n");
  57. do {
  58. unw_get_ip(info, &ip);
  59. if (ip == 0)
  60. break;
  61. unw_get_sp(info, &sp);
  62. unw_get_bsp(info, &bsp);
  63. snprintf(buf, sizeof(buf),
  64. " [<%016lx>] %%s\n"
  65. " sp=%016lx bsp=%016lx\n",
  66. ip, sp, bsp);
  67. print_symbol(buf, ip);
  68. } while (unw_unwind(info) >= 0);
  69. }
  70. void
  71. show_stack (struct task_struct *task, unsigned long *sp)
  72. {
  73. if (!task)
  74. unw_init_running(ia64_do_show_stack, NULL);
  75. else {
  76. struct unw_frame_info info;
  77. unw_init_from_blocked_task(&info, task);
  78. ia64_do_show_stack(&info, NULL);
  79. }
  80. }
  81. void
  82. dump_stack (void)
  83. {
  84. show_stack(NULL, NULL);
  85. }
  86. EXPORT_SYMBOL(dump_stack);
  87. void
  88. show_regs (struct pt_regs *regs)
  89. {
  90. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  91. print_modules();
  92. printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
  93. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
  94. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
  95. print_symbol("ip is at %s\n", ip);
  96. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  97. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  98. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  99. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  100. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  101. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  102. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  103. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  104. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  105. regs->f6.u.bits[1], regs->f6.u.bits[0],
  106. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  107. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  108. regs->f8.u.bits[1], regs->f8.u.bits[0],
  109. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  110. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  111. regs->f10.u.bits[1], regs->f10.u.bits[0],
  112. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  113. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  114. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  115. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  116. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  117. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  118. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  119. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  120. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  121. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  122. if (user_mode(regs)) {
  123. /* print the stacked registers */
  124. unsigned long val, *bsp, ndirty;
  125. int i, sof, is_nat = 0;
  126. sof = regs->cr_ifs & 0x7f; /* size of frame */
  127. ndirty = (regs->loadrs >> 19);
  128. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  129. for (i = 0; i < sof; ++i) {
  130. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  131. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  132. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  133. }
  134. } else
  135. show_stack(NULL, NULL);
  136. }
  137. void
  138. do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
  139. {
  140. if (fsys_mode(current, &scr->pt)) {
  141. /* defer signal-handling etc. until we return to privilege-level 0. */
  142. if (!ia64_psr(&scr->pt)->lp)
  143. ia64_psr(&scr->pt)->lp = 1;
  144. return;
  145. }
  146. #ifdef CONFIG_PERFMON
  147. if (current->thread.pfm_needs_checking)
  148. pfm_handle_work();
  149. #endif
  150. /* deal with pending signal delivery */
  151. if (test_thread_flag(TIF_SIGPENDING))
  152. ia64_do_signal(oldset, scr, in_syscall);
  153. }
  154. static int pal_halt = 1;
  155. static int can_do_pal_halt = 1;
  156. static int __init nohalt_setup(char * str)
  157. {
  158. pal_halt = can_do_pal_halt = 0;
  159. return 1;
  160. }
  161. __setup("nohalt", nohalt_setup);
  162. void
  163. update_pal_halt_status(int status)
  164. {
  165. can_do_pal_halt = pal_halt && status;
  166. }
  167. /*
  168. * We use this if we don't have any better idle routine..
  169. */
  170. void
  171. default_idle (void)
  172. {
  173. local_irq_enable();
  174. while (!need_resched())
  175. if (can_do_pal_halt)
  176. safe_halt();
  177. else
  178. cpu_relax();
  179. }
  180. #ifdef CONFIG_HOTPLUG_CPU
  181. /* We don't actually take CPU down, just spin without interrupts. */
  182. static inline void play_dead(void)
  183. {
  184. extern void ia64_cpu_local_tick (void);
  185. unsigned int this_cpu = smp_processor_id();
  186. /* Ack it */
  187. __get_cpu_var(cpu_state) = CPU_DEAD;
  188. max_xtp();
  189. local_irq_disable();
  190. idle_task_exit();
  191. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  192. /*
  193. * The above is a point of no-return, the processor is
  194. * expected to be in SAL loop now.
  195. */
  196. BUG();
  197. }
  198. #else
  199. static inline void play_dead(void)
  200. {
  201. BUG();
  202. }
  203. #endif /* CONFIG_HOTPLUG_CPU */
  204. void cpu_idle_wait(void)
  205. {
  206. unsigned int cpu, this_cpu = get_cpu();
  207. cpumask_t map;
  208. set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
  209. put_cpu();
  210. cpus_clear(map);
  211. for_each_online_cpu(cpu) {
  212. per_cpu(cpu_idle_state, cpu) = 1;
  213. cpu_set(cpu, map);
  214. }
  215. __get_cpu_var(cpu_idle_state) = 0;
  216. wmb();
  217. do {
  218. ssleep(1);
  219. for_each_online_cpu(cpu) {
  220. if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
  221. cpu_clear(cpu, map);
  222. }
  223. cpus_and(map, map, cpu_online_map);
  224. } while (!cpus_empty(map));
  225. }
  226. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  227. void __attribute__((noreturn))
  228. cpu_idle (void)
  229. {
  230. void (*mark_idle)(int) = ia64_mark_idle;
  231. /* endless idle loop with no priority at all */
  232. while (1) {
  233. #ifdef CONFIG_SMP
  234. if (!need_resched())
  235. min_xtp();
  236. #endif
  237. while (!need_resched()) {
  238. void (*idle)(void);
  239. if (__get_cpu_var(cpu_idle_state))
  240. __get_cpu_var(cpu_idle_state) = 0;
  241. rmb();
  242. if (mark_idle)
  243. (*mark_idle)(1);
  244. idle = pm_idle;
  245. if (!idle)
  246. idle = default_idle;
  247. (*idle)();
  248. }
  249. if (mark_idle)
  250. (*mark_idle)(0);
  251. #ifdef CONFIG_SMP
  252. normal_xtp();
  253. #endif
  254. schedule();
  255. check_pgt_cache();
  256. if (cpu_is_offline(smp_processor_id()))
  257. play_dead();
  258. }
  259. }
  260. void
  261. ia64_save_extra (struct task_struct *task)
  262. {
  263. #ifdef CONFIG_PERFMON
  264. unsigned long info;
  265. #endif
  266. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  267. ia64_save_debug_regs(&task->thread.dbr[0]);
  268. #ifdef CONFIG_PERFMON
  269. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  270. pfm_save_regs(task);
  271. info = __get_cpu_var(pfm_syst_info);
  272. if (info & PFM_CPUINFO_SYST_WIDE)
  273. pfm_syst_wide_update_task(task, info, 0);
  274. #endif
  275. #ifdef CONFIG_IA32_SUPPORT
  276. if (IS_IA32_PROCESS(ia64_task_regs(task)))
  277. ia32_save_state(task);
  278. #endif
  279. }
  280. void
  281. ia64_load_extra (struct task_struct *task)
  282. {
  283. #ifdef CONFIG_PERFMON
  284. unsigned long info;
  285. #endif
  286. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  287. ia64_load_debug_regs(&task->thread.dbr[0]);
  288. #ifdef CONFIG_PERFMON
  289. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  290. pfm_load_regs(task);
  291. info = __get_cpu_var(pfm_syst_info);
  292. if (info & PFM_CPUINFO_SYST_WIDE)
  293. pfm_syst_wide_update_task(task, info, 1);
  294. #endif
  295. #ifdef CONFIG_IA32_SUPPORT
  296. if (IS_IA32_PROCESS(ia64_task_regs(task)))
  297. ia32_load_state(task);
  298. #endif
  299. }
  300. /*
  301. * Copy the state of an ia-64 thread.
  302. *
  303. * We get here through the following call chain:
  304. *
  305. * from user-level: from kernel:
  306. *
  307. * <clone syscall> <some kernel call frames>
  308. * sys_clone :
  309. * do_fork do_fork
  310. * copy_thread copy_thread
  311. *
  312. * This means that the stack layout is as follows:
  313. *
  314. * +---------------------+ (highest addr)
  315. * | struct pt_regs |
  316. * +---------------------+
  317. * | struct switch_stack |
  318. * +---------------------+
  319. * | |
  320. * | memory stack |
  321. * | | <-- sp (lowest addr)
  322. * +---------------------+
  323. *
  324. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  325. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  326. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  327. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  328. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  329. * so there is nothing to worry about.
  330. */
  331. int
  332. copy_thread (int nr, unsigned long clone_flags,
  333. unsigned long user_stack_base, unsigned long user_stack_size,
  334. struct task_struct *p, struct pt_regs *regs)
  335. {
  336. extern char ia64_ret_from_clone, ia32_ret_from_clone;
  337. struct switch_stack *child_stack, *stack;
  338. unsigned long rbs, child_rbs, rbs_size;
  339. struct pt_regs *child_ptregs;
  340. int retval = 0;
  341. #ifdef CONFIG_SMP
  342. /*
  343. * For SMP idle threads, fork_by_hand() calls do_fork with
  344. * NULL regs.
  345. */
  346. if (!regs)
  347. return 0;
  348. #endif
  349. stack = ((struct switch_stack *) regs) - 1;
  350. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  351. child_stack = (struct switch_stack *) child_ptregs - 1;
  352. /* copy parent's switch_stack & pt_regs to child: */
  353. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  354. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  355. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  356. rbs_size = stack->ar_bspstore - rbs;
  357. /* copy the parent's register backing store to the child: */
  358. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  359. if (likely(user_mode(child_ptregs))) {
  360. if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
  361. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  362. if (user_stack_base) {
  363. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  364. child_ptregs->ar_bspstore = user_stack_base;
  365. child_ptregs->ar_rnat = 0;
  366. child_ptregs->loadrs = 0;
  367. }
  368. } else {
  369. /*
  370. * Note: we simply preserve the relative position of
  371. * the stack pointer here. There is no need to
  372. * allocate a scratch area here, since that will have
  373. * been taken care of by the caller of sys_clone()
  374. * already.
  375. */
  376. child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
  377. child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
  378. }
  379. child_stack->ar_bspstore = child_rbs + rbs_size;
  380. if (IS_IA32_PROCESS(regs))
  381. child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
  382. else
  383. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  384. /* copy parts of thread_struct: */
  385. p->thread.ksp = (unsigned long) child_stack - 16;
  386. /* stop some PSR bits from being inherited.
  387. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  388. * therefore we must specify them explicitly here and not include them in
  389. * IA64_PSR_BITS_TO_CLEAR.
  390. */
  391. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  392. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  393. /*
  394. * NOTE: The calling convention considers all floating point
  395. * registers in the high partition (fph) to be scratch. Since
  396. * the only way to get to this point is through a system call,
  397. * we know that the values in fph are all dead. Hence, there
  398. * is no need to inherit the fph state from the parent to the
  399. * child and all we have to do is to make sure that
  400. * IA64_THREAD_FPH_VALID is cleared in the child.
  401. *
  402. * XXX We could push this optimization a bit further by
  403. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  404. * However, it's not clear this is worth doing. Also, it
  405. * would be a slight deviation from the normal Linux system
  406. * call behavior where scratch registers are preserved across
  407. * system calls (unless used by the system call itself).
  408. */
  409. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  410. | IA64_THREAD_PM_VALID)
  411. # define THREAD_FLAGS_TO_SET 0
  412. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  413. | THREAD_FLAGS_TO_SET);
  414. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  415. #ifdef CONFIG_IA32_SUPPORT
  416. /*
  417. * If we're cloning an IA32 task then save the IA32 extra
  418. * state from the current task to the new task
  419. */
  420. if (IS_IA32_PROCESS(ia64_task_regs(current))) {
  421. ia32_save_state(p);
  422. if (clone_flags & CLONE_SETTLS)
  423. retval = ia32_clone_tls(p, child_ptregs);
  424. /* Copy partially mapped page list */
  425. if (!retval)
  426. retval = ia32_copy_partial_page_list(p, clone_flags);
  427. }
  428. #endif
  429. #ifdef CONFIG_PERFMON
  430. if (current->thread.pfm_context)
  431. pfm_inherit(p, child_ptregs);
  432. #endif
  433. return retval;
  434. }
  435. static void
  436. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  437. {
  438. unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
  439. elf_greg_t *dst = arg;
  440. struct pt_regs *pt;
  441. char nat;
  442. int i;
  443. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  444. if (unw_unwind_to_user(info) < 0)
  445. return;
  446. unw_get_sp(info, &sp);
  447. pt = (struct pt_regs *) (sp + 16);
  448. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  449. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  450. return;
  451. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  452. &ar_rnat);
  453. /*
  454. * coredump format:
  455. * r0-r31
  456. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  457. * predicate registers (p0-p63)
  458. * b0-b7
  459. * ip cfm user-mask
  460. * ar.rsc ar.bsp ar.bspstore ar.rnat
  461. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  462. */
  463. /* r0 is zero */
  464. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  465. unw_get_gr(info, i, &dst[i], &nat);
  466. if (nat)
  467. nat_bits |= mask;
  468. mask <<= 1;
  469. }
  470. dst[32] = nat_bits;
  471. unw_get_pr(info, &dst[33]);
  472. for (i = 0; i < 8; ++i)
  473. unw_get_br(info, i, &dst[34 + i]);
  474. unw_get_rp(info, &ip);
  475. dst[42] = ip + ia64_psr(pt)->ri;
  476. dst[43] = cfm;
  477. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  478. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  479. /*
  480. * For bsp and bspstore, unw_get_ar() would return the kernel
  481. * addresses, but we need the user-level addresses instead:
  482. */
  483. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  484. dst[47] = pt->ar_bspstore;
  485. dst[48] = ar_rnat;
  486. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  487. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  488. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  489. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  490. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  491. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  492. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  493. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  494. }
  495. void
  496. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  497. {
  498. elf_fpreg_t *dst = arg;
  499. int i;
  500. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  501. if (unw_unwind_to_user(info) < 0)
  502. return;
  503. /* f0 is 0.0, f1 is 1.0 */
  504. for (i = 2; i < 32; ++i)
  505. unw_get_fr(info, i, dst + i);
  506. ia64_flush_fph(task);
  507. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  508. memcpy(dst + 32, task->thread.fph, 96*16);
  509. }
  510. void
  511. do_copy_regs (struct unw_frame_info *info, void *arg)
  512. {
  513. do_copy_task_regs(current, info, arg);
  514. }
  515. void
  516. do_dump_fpu (struct unw_frame_info *info, void *arg)
  517. {
  518. do_dump_task_fpu(current, info, arg);
  519. }
  520. int
  521. dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
  522. {
  523. struct unw_frame_info tcore_info;
  524. if (current == task) {
  525. unw_init_running(do_copy_regs, regs);
  526. } else {
  527. memset(&tcore_info, 0, sizeof(tcore_info));
  528. unw_init_from_blocked_task(&tcore_info, task);
  529. do_copy_task_regs(task, &tcore_info, regs);
  530. }
  531. return 1;
  532. }
  533. void
  534. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  535. {
  536. unw_init_running(do_copy_regs, dst);
  537. }
  538. int
  539. dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
  540. {
  541. struct unw_frame_info tcore_info;
  542. if (current == task) {
  543. unw_init_running(do_dump_fpu, dst);
  544. } else {
  545. memset(&tcore_info, 0, sizeof(tcore_info));
  546. unw_init_from_blocked_task(&tcore_info, task);
  547. do_dump_task_fpu(task, &tcore_info, dst);
  548. }
  549. return 1;
  550. }
  551. int
  552. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  553. {
  554. unw_init_running(do_dump_fpu, dst);
  555. return 1; /* f0-f31 are always valid so we always return 1 */
  556. }
  557. long
  558. sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
  559. struct pt_regs *regs)
  560. {
  561. char *fname;
  562. int error;
  563. fname = getname(filename);
  564. error = PTR_ERR(fname);
  565. if (IS_ERR(fname))
  566. goto out;
  567. error = do_execve(fname, argv, envp, regs);
  568. putname(fname);
  569. out:
  570. return error;
  571. }
  572. pid_t
  573. kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
  574. {
  575. extern void start_kernel_thread (void);
  576. unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
  577. struct {
  578. struct switch_stack sw;
  579. struct pt_regs pt;
  580. } regs;
  581. memset(&regs, 0, sizeof(regs));
  582. regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
  583. regs.pt.r1 = helper_fptr[1]; /* set GP */
  584. regs.pt.r9 = (unsigned long) fn; /* 1st argument */
  585. regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
  586. /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
  587. regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  588. regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
  589. regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
  590. regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
  591. regs.sw.pr = (1 << PRED_KERNEL_STACK);
  592. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
  593. }
  594. EXPORT_SYMBOL(kernel_thread);
  595. /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
  596. int
  597. kernel_thread_helper (int (*fn)(void *), void *arg)
  598. {
  599. #ifdef CONFIG_IA32_SUPPORT
  600. if (IS_IA32_PROCESS(ia64_task_regs(current))) {
  601. /* A kernel thread is always a 64-bit process. */
  602. current->thread.map_base = DEFAULT_MAP_BASE;
  603. current->thread.task_size = DEFAULT_TASK_SIZE;
  604. ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
  605. ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
  606. }
  607. #endif
  608. return (*fn)(arg);
  609. }
  610. /*
  611. * Flush thread state. This is called when a thread does an execve().
  612. */
  613. void
  614. flush_thread (void)
  615. {
  616. /*
  617. * Remove function-return probe instances associated with this task
  618. * and put them back on the free list. Do not insert an exit probe for
  619. * this function, it will be disabled by kprobe_flush_task if you do.
  620. */
  621. kprobe_flush_task(current);
  622. /* drop floating-point and debug-register state if it exists: */
  623. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  624. ia64_drop_fpu(current);
  625. if (IS_IA32_PROCESS(ia64_task_regs(current)))
  626. ia32_drop_partial_page_list(current);
  627. }
  628. /*
  629. * Clean up state associated with current thread. This is called when
  630. * the thread calls exit().
  631. */
  632. void
  633. exit_thread (void)
  634. {
  635. /*
  636. * Remove function-return probe instances associated with this task
  637. * and put them back on the free list. Do not insert an exit probe for
  638. * this function, it will be disabled by kprobe_flush_task if you do.
  639. */
  640. kprobe_flush_task(current);
  641. ia64_drop_fpu(current);
  642. #ifdef CONFIG_PERFMON
  643. /* if needed, stop monitoring and flush state to perfmon context */
  644. if (current->thread.pfm_context)
  645. pfm_exit_thread(current);
  646. /* free debug register resources */
  647. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  648. pfm_release_debug_registers(current);
  649. #endif
  650. if (IS_IA32_PROCESS(ia64_task_regs(current)))
  651. ia32_drop_partial_page_list(current);
  652. }
  653. unsigned long
  654. get_wchan (struct task_struct *p)
  655. {
  656. struct unw_frame_info info;
  657. unsigned long ip;
  658. int count = 0;
  659. /*
  660. * Note: p may not be a blocked task (it could be current or
  661. * another process running on some other CPU. Rather than
  662. * trying to determine if p is really blocked, we just assume
  663. * it's blocked and rely on the unwind routines to fail
  664. * gracefully if the process wasn't really blocked after all.
  665. * --davidm 99/12/15
  666. */
  667. unw_init_from_blocked_task(&info, p);
  668. do {
  669. if (unw_unwind(&info) < 0)
  670. return 0;
  671. unw_get_ip(&info, &ip);
  672. if (!in_sched_functions(ip))
  673. return ip;
  674. } while (count++ < 16);
  675. return 0;
  676. }
  677. void
  678. cpu_halt (void)
  679. {
  680. pal_power_mgmt_info_u_t power_info[8];
  681. unsigned long min_power;
  682. int i, min_power_state;
  683. if (ia64_pal_halt_info(power_info) != 0)
  684. return;
  685. min_power_state = 0;
  686. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  687. for (i = 1; i < 8; ++i)
  688. if (power_info[i].pal_power_mgmt_info_s.im
  689. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  690. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  691. min_power_state = i;
  692. }
  693. while (1)
  694. ia64_pal_halt(min_power_state);
  695. }
  696. void
  697. machine_restart (char *restart_cmd)
  698. {
  699. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  700. }
  701. void
  702. machine_halt (void)
  703. {
  704. cpu_halt();
  705. }
  706. void
  707. machine_power_off (void)
  708. {
  709. if (pm_power_off)
  710. pm_power_off();
  711. machine_halt();
  712. }