head.S 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220
  1. /*
  2. * Here is where the ball gets rolling as far as the kernel is concerned.
  3. * When control is transferred to _start, the bootload has already
  4. * loaded us to the correct address. All that's left to do here is
  5. * to set up the kernel's global pointer and jump to the kernel
  6. * entry point.
  7. *
  8. * Copyright (C) 1998-2001, 2003, 2005 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. * Stephane Eranian <eranian@hpl.hp.com>
  11. * Copyright (C) 1999 VA Linux Systems
  12. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13. * Copyright (C) 1999 Intel Corp.
  14. * Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com>
  15. * Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com>
  16. * Copyright (C) 2002 Fenghua Yu <fenghua.yu@intel.com>
  17. * -Optimize __ia64_save_fpu() and __ia64_load_fpu() for Itanium 2.
  18. * Copyright (C) 2004 Ashok Raj <ashok.raj@intel.com>
  19. * Support for CPU Hotplug
  20. */
  21. #include <linux/config.h>
  22. #include <asm/asmmacro.h>
  23. #include <asm/fpu.h>
  24. #include <asm/kregs.h>
  25. #include <asm/mmu_context.h>
  26. #include <asm/offsets.h>
  27. #include <asm/pal.h>
  28. #include <asm/pgtable.h>
  29. #include <asm/processor.h>
  30. #include <asm/ptrace.h>
  31. #include <asm/system.h>
  32. #include <asm/mca_asm.h>
  33. #ifdef CONFIG_HOTPLUG_CPU
  34. #define SAL_PSR_BITS_TO_SET \
  35. (IA64_PSR_AC | IA64_PSR_BN | IA64_PSR_MFH | IA64_PSR_MFL)
  36. #define SAVE_FROM_REG(src, ptr, dest) \
  37. mov dest=src;; \
  38. st8 [ptr]=dest,0x08
  39. #define RESTORE_REG(reg, ptr, _tmp) \
  40. ld8 _tmp=[ptr],0x08;; \
  41. mov reg=_tmp
  42. #define SAVE_BREAK_REGS(ptr, _idx, _breg, _dest)\
  43. mov ar.lc=IA64_NUM_DBG_REGS-1;; \
  44. mov _idx=0;; \
  45. 1: \
  46. SAVE_FROM_REG(_breg[_idx], ptr, _dest);; \
  47. add _idx=1,_idx;; \
  48. br.cloop.sptk.many 1b
  49. #define RESTORE_BREAK_REGS(ptr, _idx, _breg, _tmp, _lbl)\
  50. mov ar.lc=IA64_NUM_DBG_REGS-1;; \
  51. mov _idx=0;; \
  52. _lbl: RESTORE_REG(_breg[_idx], ptr, _tmp);; \
  53. add _idx=1, _idx;; \
  54. br.cloop.sptk.many _lbl
  55. #define SAVE_ONE_RR(num, _reg, _tmp) \
  56. movl _tmp=(num<<61);; \
  57. mov _reg=rr[_tmp]
  58. #define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
  59. SAVE_ONE_RR(0,_r0, _tmp);; \
  60. SAVE_ONE_RR(1,_r1, _tmp);; \
  61. SAVE_ONE_RR(2,_r2, _tmp);; \
  62. SAVE_ONE_RR(3,_r3, _tmp);; \
  63. SAVE_ONE_RR(4,_r4, _tmp);; \
  64. SAVE_ONE_RR(5,_r5, _tmp);; \
  65. SAVE_ONE_RR(6,_r6, _tmp);; \
  66. SAVE_ONE_RR(7,_r7, _tmp);;
  67. #define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
  68. st8 [ptr]=_r0, 8;; \
  69. st8 [ptr]=_r1, 8;; \
  70. st8 [ptr]=_r2, 8;; \
  71. st8 [ptr]=_r3, 8;; \
  72. st8 [ptr]=_r4, 8;; \
  73. st8 [ptr]=_r5, 8;; \
  74. st8 [ptr]=_r6, 8;; \
  75. st8 [ptr]=_r7, 8;;
  76. #define RESTORE_REGION_REGS(ptr, _idx1, _idx2, _tmp) \
  77. mov ar.lc=0x08-1;; \
  78. movl _idx1=0x00;; \
  79. RestRR: \
  80. dep.z _idx2=_idx1,61,3;; \
  81. ld8 _tmp=[ptr],8;; \
  82. mov rr[_idx2]=_tmp;; \
  83. srlz.d;; \
  84. add _idx1=1,_idx1;; \
  85. br.cloop.sptk.few RestRR
  86. #define SET_AREA_FOR_BOOTING_CPU(reg1, reg2) \
  87. movl reg1=sal_state_for_booting_cpu;; \
  88. ld8 reg2=[reg1];;
  89. /*
  90. * Adjust region registers saved before starting to save
  91. * break regs and rest of the states that need to be preserved.
  92. */
  93. #define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(_reg1,_reg2,_pred) \
  94. SAVE_FROM_REG(b0,_reg1,_reg2);; \
  95. SAVE_FROM_REG(b1,_reg1,_reg2);; \
  96. SAVE_FROM_REG(b2,_reg1,_reg2);; \
  97. SAVE_FROM_REG(b3,_reg1,_reg2);; \
  98. SAVE_FROM_REG(b4,_reg1,_reg2);; \
  99. SAVE_FROM_REG(b5,_reg1,_reg2);; \
  100. st8 [_reg1]=r1,0x08;; \
  101. st8 [_reg1]=r12,0x08;; \
  102. st8 [_reg1]=r13,0x08;; \
  103. SAVE_FROM_REG(ar.fpsr,_reg1,_reg2);; \
  104. SAVE_FROM_REG(ar.pfs,_reg1,_reg2);; \
  105. SAVE_FROM_REG(ar.rnat,_reg1,_reg2);; \
  106. SAVE_FROM_REG(ar.unat,_reg1,_reg2);; \
  107. SAVE_FROM_REG(ar.bspstore,_reg1,_reg2);; \
  108. SAVE_FROM_REG(cr.dcr,_reg1,_reg2);; \
  109. SAVE_FROM_REG(cr.iva,_reg1,_reg2);; \
  110. SAVE_FROM_REG(cr.pta,_reg1,_reg2);; \
  111. SAVE_FROM_REG(cr.itv,_reg1,_reg2);; \
  112. SAVE_FROM_REG(cr.pmv,_reg1,_reg2);; \
  113. SAVE_FROM_REG(cr.cmcv,_reg1,_reg2);; \
  114. SAVE_FROM_REG(cr.lrr0,_reg1,_reg2);; \
  115. SAVE_FROM_REG(cr.lrr1,_reg1,_reg2);; \
  116. st8 [_reg1]=r4,0x08;; \
  117. st8 [_reg1]=r5,0x08;; \
  118. st8 [_reg1]=r6,0x08;; \
  119. st8 [_reg1]=r7,0x08;; \
  120. st8 [_reg1]=_pred,0x08;; \
  121. SAVE_FROM_REG(ar.lc, _reg1, _reg2);; \
  122. stf.spill.nta [_reg1]=f2,16;; \
  123. stf.spill.nta [_reg1]=f3,16;; \
  124. stf.spill.nta [_reg1]=f4,16;; \
  125. stf.spill.nta [_reg1]=f5,16;; \
  126. stf.spill.nta [_reg1]=f16,16;; \
  127. stf.spill.nta [_reg1]=f17,16;; \
  128. stf.spill.nta [_reg1]=f18,16;; \
  129. stf.spill.nta [_reg1]=f19,16;; \
  130. stf.spill.nta [_reg1]=f20,16;; \
  131. stf.spill.nta [_reg1]=f21,16;; \
  132. stf.spill.nta [_reg1]=f22,16;; \
  133. stf.spill.nta [_reg1]=f23,16;; \
  134. stf.spill.nta [_reg1]=f24,16;; \
  135. stf.spill.nta [_reg1]=f25,16;; \
  136. stf.spill.nta [_reg1]=f26,16;; \
  137. stf.spill.nta [_reg1]=f27,16;; \
  138. stf.spill.nta [_reg1]=f28,16;; \
  139. stf.spill.nta [_reg1]=f29,16;; \
  140. stf.spill.nta [_reg1]=f30,16;; \
  141. stf.spill.nta [_reg1]=f31,16;;
  142. #else
  143. #define SET_AREA_FOR_BOOTING_CPU(a1, a2)
  144. #define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(a1,a2, a3)
  145. #define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
  146. #define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
  147. #endif
  148. #define SET_ONE_RR(num, pgsize, _tmp1, _tmp2, vhpt) \
  149. movl _tmp1=(num << 61);; \
  150. mov _tmp2=((ia64_rid(IA64_REGION_ID_KERNEL, (num<<61)) << 8) | (pgsize << 2) | vhpt);; \
  151. mov rr[_tmp1]=_tmp2
  152. .section __special_page_section,"ax"
  153. .global empty_zero_page
  154. empty_zero_page:
  155. .skip PAGE_SIZE
  156. .global swapper_pg_dir
  157. swapper_pg_dir:
  158. .skip PAGE_SIZE
  159. .rodata
  160. halt_msg:
  161. stringz "Halting kernel\n"
  162. .text
  163. .global start_ap
  164. /*
  165. * Start the kernel. When the bootloader passes control to _start(), r28
  166. * points to the address of the boot parameter area. Execution reaches
  167. * here in physical mode.
  168. */
  169. GLOBAL_ENTRY(_start)
  170. start_ap:
  171. .prologue
  172. .save rp, r0 // terminate unwind chain with a NULL rp
  173. .body
  174. rsm psr.i | psr.ic
  175. ;;
  176. srlz.i
  177. ;;
  178. /*
  179. * Save the region registers, predicate before they get clobbered
  180. */
  181. SAVE_REGION_REGS(r2, r8,r9,r10,r11,r12,r13,r14,r15);
  182. mov r25=pr;;
  183. /*
  184. * Initialize kernel region registers:
  185. * rr[0]: VHPT enabled, page size = PAGE_SHIFT
  186. * rr[1]: VHPT enabled, page size = PAGE_SHIFT
  187. * rr[2]: VHPT enabled, page size = PAGE_SHIFT
  188. * rr[3]: VHPT enabled, page size = PAGE_SHIFT
  189. * rr[4]: VHPT enabled, page size = PAGE_SHIFT
  190. * rr[5]: VHPT enabled, page size = PAGE_SHIFT
  191. * rr[6]: VHPT disabled, page size = IA64_GRANULE_SHIFT
  192. * rr[7]: VHPT disabled, page size = IA64_GRANULE_SHIFT
  193. * We initialize all of them to prevent inadvertently assuming
  194. * something about the state of address translation early in boot.
  195. */
  196. SET_ONE_RR(0, PAGE_SHIFT, r2, r16, 1);;
  197. SET_ONE_RR(1, PAGE_SHIFT, r2, r16, 1);;
  198. SET_ONE_RR(2, PAGE_SHIFT, r2, r16, 1);;
  199. SET_ONE_RR(3, PAGE_SHIFT, r2, r16, 1);;
  200. SET_ONE_RR(4, PAGE_SHIFT, r2, r16, 1);;
  201. SET_ONE_RR(5, PAGE_SHIFT, r2, r16, 1);;
  202. SET_ONE_RR(6, IA64_GRANULE_SHIFT, r2, r16, 0);;
  203. SET_ONE_RR(7, IA64_GRANULE_SHIFT, r2, r16, 0);;
  204. /*
  205. * Now pin mappings into the TLB for kernel text and data
  206. */
  207. mov r18=KERNEL_TR_PAGE_SHIFT<<2
  208. movl r17=KERNEL_START
  209. ;;
  210. mov cr.itir=r18
  211. mov cr.ifa=r17
  212. mov r16=IA64_TR_KERNEL
  213. mov r3=ip
  214. movl r18=PAGE_KERNEL
  215. ;;
  216. dep r2=0,r3,0,KERNEL_TR_PAGE_SHIFT
  217. ;;
  218. or r18=r2,r18
  219. ;;
  220. srlz.i
  221. ;;
  222. itr.i itr[r16]=r18
  223. ;;
  224. itr.d dtr[r16]=r18
  225. ;;
  226. srlz.i
  227. /*
  228. * Switch into virtual mode:
  229. */
  230. movl r16=(IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN \
  231. |IA64_PSR_DI)
  232. ;;
  233. mov cr.ipsr=r16
  234. movl r17=1f
  235. ;;
  236. mov cr.iip=r17
  237. mov cr.ifs=r0
  238. ;;
  239. rfi
  240. ;;
  241. 1: // now we are in virtual mode
  242. SET_AREA_FOR_BOOTING_CPU(r2, r16);
  243. STORE_REGION_REGS(r16, r8,r9,r10,r11,r12,r13,r14,r15);
  244. SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(r16,r17,r25)
  245. ;;
  246. // set IVT entry point---can't access I/O ports without it
  247. movl r3=ia64_ivt
  248. ;;
  249. mov cr.iva=r3
  250. movl r2=FPSR_DEFAULT
  251. ;;
  252. srlz.i
  253. movl gp=__gp
  254. mov ar.fpsr=r2
  255. ;;
  256. #define isAP p2 // are we an Application Processor?
  257. #define isBP p3 // are we the Bootstrap Processor?
  258. #ifdef CONFIG_SMP
  259. /*
  260. * Find the init_task for the currently booting CPU. At poweron, and in
  261. * UP mode, task_for_booting_cpu is NULL.
  262. */
  263. movl r3=task_for_booting_cpu
  264. ;;
  265. ld8 r3=[r3]
  266. movl r2=init_task
  267. ;;
  268. cmp.eq isBP,isAP=r3,r0
  269. ;;
  270. (isAP) mov r2=r3
  271. #else
  272. movl r2=init_task
  273. cmp.eq isBP,isAP=r0,r0
  274. #endif
  275. ;;
  276. tpa r3=r2 // r3 == phys addr of task struct
  277. mov r16=-1
  278. (isBP) br.cond.dpnt .load_current // BP stack is on region 5 --- no need to map it
  279. // load mapping for stack (virtaddr in r2, physaddr in r3)
  280. rsm psr.ic
  281. movl r17=PAGE_KERNEL
  282. ;;
  283. srlz.d
  284. dep r18=0,r3,0,12
  285. ;;
  286. or r18=r17,r18
  287. dep r2=-1,r3,61,3 // IMVA of task
  288. ;;
  289. mov r17=rr[r2]
  290. shr.u r16=r3,IA64_GRANULE_SHIFT
  291. ;;
  292. dep r17=0,r17,8,24
  293. ;;
  294. mov cr.itir=r17
  295. mov cr.ifa=r2
  296. mov r19=IA64_TR_CURRENT_STACK
  297. ;;
  298. itr.d dtr[r19]=r18
  299. ;;
  300. ssm psr.ic
  301. srlz.d
  302. ;;
  303. .load_current:
  304. // load the "current" pointer (r13) and ar.k6 with the current task
  305. mov IA64_KR(CURRENT)=r2 // virtual address
  306. mov IA64_KR(CURRENT_STACK)=r16
  307. mov r13=r2
  308. /*
  309. * Reserve space at the top of the stack for "struct pt_regs". Kernel
  310. * threads don't store interesting values in that structure, but the space
  311. * still needs to be there because time-critical stuff such as the context
  312. * switching can be implemented more efficiently (for example, __switch_to()
  313. * always sets the psr.dfh bit of the task it is switching to).
  314. */
  315. addl r12=IA64_STK_OFFSET-IA64_PT_REGS_SIZE-16,r2
  316. addl r2=IA64_RBS_OFFSET,r2 // initialize the RSE
  317. mov ar.rsc=0 // place RSE in enforced lazy mode
  318. ;;
  319. loadrs // clear the dirty partition
  320. ;;
  321. mov ar.bspstore=r2 // establish the new RSE stack
  322. ;;
  323. mov ar.rsc=0x3 // place RSE in eager mode
  324. (isBP) dep r28=-1,r28,61,3 // make address virtual
  325. (isBP) movl r2=ia64_boot_param
  326. ;;
  327. (isBP) st8 [r2]=r28 // save the address of the boot param area passed by the bootloader
  328. #ifdef CONFIG_SMP
  329. (isAP) br.call.sptk.many rp=start_secondary
  330. .ret0:
  331. (isAP) br.cond.sptk self
  332. #endif
  333. // This is executed by the bootstrap processor (bsp) only:
  334. #ifdef CONFIG_IA64_FW_EMU
  335. // initialize PAL & SAL emulator:
  336. br.call.sptk.many rp=sys_fw_init
  337. .ret1:
  338. #endif
  339. br.call.sptk.many rp=start_kernel
  340. .ret2: addl r3=@ltoff(halt_msg),gp
  341. ;;
  342. alloc r2=ar.pfs,8,0,2,0
  343. ;;
  344. ld8 out0=[r3]
  345. br.call.sptk.many b0=console_print
  346. self: hint @pause
  347. br.sptk.many self // endless loop
  348. END(_start)
  349. GLOBAL_ENTRY(ia64_save_debug_regs)
  350. alloc r16=ar.pfs,1,0,0,0
  351. mov r20=ar.lc // preserve ar.lc
  352. mov ar.lc=IA64_NUM_DBG_REGS-1
  353. mov r18=0
  354. add r19=IA64_NUM_DBG_REGS*8,in0
  355. ;;
  356. 1: mov r16=dbr[r18]
  357. #ifdef CONFIG_ITANIUM
  358. ;;
  359. srlz.d
  360. #endif
  361. mov r17=ibr[r18]
  362. add r18=1,r18
  363. ;;
  364. st8.nta [in0]=r16,8
  365. st8.nta [r19]=r17,8
  366. br.cloop.sptk.many 1b
  367. ;;
  368. mov ar.lc=r20 // restore ar.lc
  369. br.ret.sptk.many rp
  370. END(ia64_save_debug_regs)
  371. GLOBAL_ENTRY(ia64_load_debug_regs)
  372. alloc r16=ar.pfs,1,0,0,0
  373. lfetch.nta [in0]
  374. mov r20=ar.lc // preserve ar.lc
  375. add r19=IA64_NUM_DBG_REGS*8,in0
  376. mov ar.lc=IA64_NUM_DBG_REGS-1
  377. mov r18=-1
  378. ;;
  379. 1: ld8.nta r16=[in0],8
  380. ld8.nta r17=[r19],8
  381. add r18=1,r18
  382. ;;
  383. mov dbr[r18]=r16
  384. #ifdef CONFIG_ITANIUM
  385. ;;
  386. srlz.d // Errata 132 (NoFix status)
  387. #endif
  388. mov ibr[r18]=r17
  389. br.cloop.sptk.many 1b
  390. ;;
  391. mov ar.lc=r20 // restore ar.lc
  392. br.ret.sptk.many rp
  393. END(ia64_load_debug_regs)
  394. GLOBAL_ENTRY(__ia64_save_fpu)
  395. alloc r2=ar.pfs,1,4,0,0
  396. adds loc0=96*16-16,in0
  397. adds loc1=96*16-16-128,in0
  398. ;;
  399. stf.spill.nta [loc0]=f127,-256
  400. stf.spill.nta [loc1]=f119,-256
  401. ;;
  402. stf.spill.nta [loc0]=f111,-256
  403. stf.spill.nta [loc1]=f103,-256
  404. ;;
  405. stf.spill.nta [loc0]=f95,-256
  406. stf.spill.nta [loc1]=f87,-256
  407. ;;
  408. stf.spill.nta [loc0]=f79,-256
  409. stf.spill.nta [loc1]=f71,-256
  410. ;;
  411. stf.spill.nta [loc0]=f63,-256
  412. stf.spill.nta [loc1]=f55,-256
  413. adds loc2=96*16-32,in0
  414. ;;
  415. stf.spill.nta [loc0]=f47,-256
  416. stf.spill.nta [loc1]=f39,-256
  417. adds loc3=96*16-32-128,in0
  418. ;;
  419. stf.spill.nta [loc2]=f126,-256
  420. stf.spill.nta [loc3]=f118,-256
  421. ;;
  422. stf.spill.nta [loc2]=f110,-256
  423. stf.spill.nta [loc3]=f102,-256
  424. ;;
  425. stf.spill.nta [loc2]=f94,-256
  426. stf.spill.nta [loc3]=f86,-256
  427. ;;
  428. stf.spill.nta [loc2]=f78,-256
  429. stf.spill.nta [loc3]=f70,-256
  430. ;;
  431. stf.spill.nta [loc2]=f62,-256
  432. stf.spill.nta [loc3]=f54,-256
  433. adds loc0=96*16-48,in0
  434. ;;
  435. stf.spill.nta [loc2]=f46,-256
  436. stf.spill.nta [loc3]=f38,-256
  437. adds loc1=96*16-48-128,in0
  438. ;;
  439. stf.spill.nta [loc0]=f125,-256
  440. stf.spill.nta [loc1]=f117,-256
  441. ;;
  442. stf.spill.nta [loc0]=f109,-256
  443. stf.spill.nta [loc1]=f101,-256
  444. ;;
  445. stf.spill.nta [loc0]=f93,-256
  446. stf.spill.nta [loc1]=f85,-256
  447. ;;
  448. stf.spill.nta [loc0]=f77,-256
  449. stf.spill.nta [loc1]=f69,-256
  450. ;;
  451. stf.spill.nta [loc0]=f61,-256
  452. stf.spill.nta [loc1]=f53,-256
  453. adds loc2=96*16-64,in0
  454. ;;
  455. stf.spill.nta [loc0]=f45,-256
  456. stf.spill.nta [loc1]=f37,-256
  457. adds loc3=96*16-64-128,in0
  458. ;;
  459. stf.spill.nta [loc2]=f124,-256
  460. stf.spill.nta [loc3]=f116,-256
  461. ;;
  462. stf.spill.nta [loc2]=f108,-256
  463. stf.spill.nta [loc3]=f100,-256
  464. ;;
  465. stf.spill.nta [loc2]=f92,-256
  466. stf.spill.nta [loc3]=f84,-256
  467. ;;
  468. stf.spill.nta [loc2]=f76,-256
  469. stf.spill.nta [loc3]=f68,-256
  470. ;;
  471. stf.spill.nta [loc2]=f60,-256
  472. stf.spill.nta [loc3]=f52,-256
  473. adds loc0=96*16-80,in0
  474. ;;
  475. stf.spill.nta [loc2]=f44,-256
  476. stf.spill.nta [loc3]=f36,-256
  477. adds loc1=96*16-80-128,in0
  478. ;;
  479. stf.spill.nta [loc0]=f123,-256
  480. stf.spill.nta [loc1]=f115,-256
  481. ;;
  482. stf.spill.nta [loc0]=f107,-256
  483. stf.spill.nta [loc1]=f99,-256
  484. ;;
  485. stf.spill.nta [loc0]=f91,-256
  486. stf.spill.nta [loc1]=f83,-256
  487. ;;
  488. stf.spill.nta [loc0]=f75,-256
  489. stf.spill.nta [loc1]=f67,-256
  490. ;;
  491. stf.spill.nta [loc0]=f59,-256
  492. stf.spill.nta [loc1]=f51,-256
  493. adds loc2=96*16-96,in0
  494. ;;
  495. stf.spill.nta [loc0]=f43,-256
  496. stf.spill.nta [loc1]=f35,-256
  497. adds loc3=96*16-96-128,in0
  498. ;;
  499. stf.spill.nta [loc2]=f122,-256
  500. stf.spill.nta [loc3]=f114,-256
  501. ;;
  502. stf.spill.nta [loc2]=f106,-256
  503. stf.spill.nta [loc3]=f98,-256
  504. ;;
  505. stf.spill.nta [loc2]=f90,-256
  506. stf.spill.nta [loc3]=f82,-256
  507. ;;
  508. stf.spill.nta [loc2]=f74,-256
  509. stf.spill.nta [loc3]=f66,-256
  510. ;;
  511. stf.spill.nta [loc2]=f58,-256
  512. stf.spill.nta [loc3]=f50,-256
  513. adds loc0=96*16-112,in0
  514. ;;
  515. stf.spill.nta [loc2]=f42,-256
  516. stf.spill.nta [loc3]=f34,-256
  517. adds loc1=96*16-112-128,in0
  518. ;;
  519. stf.spill.nta [loc0]=f121,-256
  520. stf.spill.nta [loc1]=f113,-256
  521. ;;
  522. stf.spill.nta [loc0]=f105,-256
  523. stf.spill.nta [loc1]=f97,-256
  524. ;;
  525. stf.spill.nta [loc0]=f89,-256
  526. stf.spill.nta [loc1]=f81,-256
  527. ;;
  528. stf.spill.nta [loc0]=f73,-256
  529. stf.spill.nta [loc1]=f65,-256
  530. ;;
  531. stf.spill.nta [loc0]=f57,-256
  532. stf.spill.nta [loc1]=f49,-256
  533. adds loc2=96*16-128,in0
  534. ;;
  535. stf.spill.nta [loc0]=f41,-256
  536. stf.spill.nta [loc1]=f33,-256
  537. adds loc3=96*16-128-128,in0
  538. ;;
  539. stf.spill.nta [loc2]=f120,-256
  540. stf.spill.nta [loc3]=f112,-256
  541. ;;
  542. stf.spill.nta [loc2]=f104,-256
  543. stf.spill.nta [loc3]=f96,-256
  544. ;;
  545. stf.spill.nta [loc2]=f88,-256
  546. stf.spill.nta [loc3]=f80,-256
  547. ;;
  548. stf.spill.nta [loc2]=f72,-256
  549. stf.spill.nta [loc3]=f64,-256
  550. ;;
  551. stf.spill.nta [loc2]=f56,-256
  552. stf.spill.nta [loc3]=f48,-256
  553. ;;
  554. stf.spill.nta [loc2]=f40
  555. stf.spill.nta [loc3]=f32
  556. br.ret.sptk.many rp
  557. END(__ia64_save_fpu)
  558. GLOBAL_ENTRY(__ia64_load_fpu)
  559. alloc r2=ar.pfs,1,2,0,0
  560. adds r3=128,in0
  561. adds r14=256,in0
  562. adds r15=384,in0
  563. mov loc0=512
  564. mov loc1=-1024+16
  565. ;;
  566. ldf.fill.nta f32=[in0],loc0
  567. ldf.fill.nta f40=[ r3],loc0
  568. ldf.fill.nta f48=[r14],loc0
  569. ldf.fill.nta f56=[r15],loc0
  570. ;;
  571. ldf.fill.nta f64=[in0],loc0
  572. ldf.fill.nta f72=[ r3],loc0
  573. ldf.fill.nta f80=[r14],loc0
  574. ldf.fill.nta f88=[r15],loc0
  575. ;;
  576. ldf.fill.nta f96=[in0],loc1
  577. ldf.fill.nta f104=[ r3],loc1
  578. ldf.fill.nta f112=[r14],loc1
  579. ldf.fill.nta f120=[r15],loc1
  580. ;;
  581. ldf.fill.nta f33=[in0],loc0
  582. ldf.fill.nta f41=[ r3],loc0
  583. ldf.fill.nta f49=[r14],loc0
  584. ldf.fill.nta f57=[r15],loc0
  585. ;;
  586. ldf.fill.nta f65=[in0],loc0
  587. ldf.fill.nta f73=[ r3],loc0
  588. ldf.fill.nta f81=[r14],loc0
  589. ldf.fill.nta f89=[r15],loc0
  590. ;;
  591. ldf.fill.nta f97=[in0],loc1
  592. ldf.fill.nta f105=[ r3],loc1
  593. ldf.fill.nta f113=[r14],loc1
  594. ldf.fill.nta f121=[r15],loc1
  595. ;;
  596. ldf.fill.nta f34=[in0],loc0
  597. ldf.fill.nta f42=[ r3],loc0
  598. ldf.fill.nta f50=[r14],loc0
  599. ldf.fill.nta f58=[r15],loc0
  600. ;;
  601. ldf.fill.nta f66=[in0],loc0
  602. ldf.fill.nta f74=[ r3],loc0
  603. ldf.fill.nta f82=[r14],loc0
  604. ldf.fill.nta f90=[r15],loc0
  605. ;;
  606. ldf.fill.nta f98=[in0],loc1
  607. ldf.fill.nta f106=[ r3],loc1
  608. ldf.fill.nta f114=[r14],loc1
  609. ldf.fill.nta f122=[r15],loc1
  610. ;;
  611. ldf.fill.nta f35=[in0],loc0
  612. ldf.fill.nta f43=[ r3],loc0
  613. ldf.fill.nta f51=[r14],loc0
  614. ldf.fill.nta f59=[r15],loc0
  615. ;;
  616. ldf.fill.nta f67=[in0],loc0
  617. ldf.fill.nta f75=[ r3],loc0
  618. ldf.fill.nta f83=[r14],loc0
  619. ldf.fill.nta f91=[r15],loc0
  620. ;;
  621. ldf.fill.nta f99=[in0],loc1
  622. ldf.fill.nta f107=[ r3],loc1
  623. ldf.fill.nta f115=[r14],loc1
  624. ldf.fill.nta f123=[r15],loc1
  625. ;;
  626. ldf.fill.nta f36=[in0],loc0
  627. ldf.fill.nta f44=[ r3],loc0
  628. ldf.fill.nta f52=[r14],loc0
  629. ldf.fill.nta f60=[r15],loc0
  630. ;;
  631. ldf.fill.nta f68=[in0],loc0
  632. ldf.fill.nta f76=[ r3],loc0
  633. ldf.fill.nta f84=[r14],loc0
  634. ldf.fill.nta f92=[r15],loc0
  635. ;;
  636. ldf.fill.nta f100=[in0],loc1
  637. ldf.fill.nta f108=[ r3],loc1
  638. ldf.fill.nta f116=[r14],loc1
  639. ldf.fill.nta f124=[r15],loc1
  640. ;;
  641. ldf.fill.nta f37=[in0],loc0
  642. ldf.fill.nta f45=[ r3],loc0
  643. ldf.fill.nta f53=[r14],loc0
  644. ldf.fill.nta f61=[r15],loc0
  645. ;;
  646. ldf.fill.nta f69=[in0],loc0
  647. ldf.fill.nta f77=[ r3],loc0
  648. ldf.fill.nta f85=[r14],loc0
  649. ldf.fill.nta f93=[r15],loc0
  650. ;;
  651. ldf.fill.nta f101=[in0],loc1
  652. ldf.fill.nta f109=[ r3],loc1
  653. ldf.fill.nta f117=[r14],loc1
  654. ldf.fill.nta f125=[r15],loc1
  655. ;;
  656. ldf.fill.nta f38 =[in0],loc0
  657. ldf.fill.nta f46 =[ r3],loc0
  658. ldf.fill.nta f54 =[r14],loc0
  659. ldf.fill.nta f62 =[r15],loc0
  660. ;;
  661. ldf.fill.nta f70 =[in0],loc0
  662. ldf.fill.nta f78 =[ r3],loc0
  663. ldf.fill.nta f86 =[r14],loc0
  664. ldf.fill.nta f94 =[r15],loc0
  665. ;;
  666. ldf.fill.nta f102=[in0],loc1
  667. ldf.fill.nta f110=[ r3],loc1
  668. ldf.fill.nta f118=[r14],loc1
  669. ldf.fill.nta f126=[r15],loc1
  670. ;;
  671. ldf.fill.nta f39 =[in0],loc0
  672. ldf.fill.nta f47 =[ r3],loc0
  673. ldf.fill.nta f55 =[r14],loc0
  674. ldf.fill.nta f63 =[r15],loc0
  675. ;;
  676. ldf.fill.nta f71 =[in0],loc0
  677. ldf.fill.nta f79 =[ r3],loc0
  678. ldf.fill.nta f87 =[r14],loc0
  679. ldf.fill.nta f95 =[r15],loc0
  680. ;;
  681. ldf.fill.nta f103=[in0]
  682. ldf.fill.nta f111=[ r3]
  683. ldf.fill.nta f119=[r14]
  684. ldf.fill.nta f127=[r15]
  685. br.ret.sptk.many rp
  686. END(__ia64_load_fpu)
  687. GLOBAL_ENTRY(__ia64_init_fpu)
  688. stf.spill [sp]=f0 // M3
  689. mov f32=f0 // F
  690. nop.b 0
  691. ldfps f33,f34=[sp] // M0
  692. ldfps f35,f36=[sp] // M1
  693. mov f37=f0 // F
  694. ;;
  695. setf.s f38=r0 // M2
  696. setf.s f39=r0 // M3
  697. mov f40=f0 // F
  698. ldfps f41,f42=[sp] // M0
  699. ldfps f43,f44=[sp] // M1
  700. mov f45=f0 // F
  701. setf.s f46=r0 // M2
  702. setf.s f47=r0 // M3
  703. mov f48=f0 // F
  704. ldfps f49,f50=[sp] // M0
  705. ldfps f51,f52=[sp] // M1
  706. mov f53=f0 // F
  707. setf.s f54=r0 // M2
  708. setf.s f55=r0 // M3
  709. mov f56=f0 // F
  710. ldfps f57,f58=[sp] // M0
  711. ldfps f59,f60=[sp] // M1
  712. mov f61=f0 // F
  713. setf.s f62=r0 // M2
  714. setf.s f63=r0 // M3
  715. mov f64=f0 // F
  716. ldfps f65,f66=[sp] // M0
  717. ldfps f67,f68=[sp] // M1
  718. mov f69=f0 // F
  719. setf.s f70=r0 // M2
  720. setf.s f71=r0 // M3
  721. mov f72=f0 // F
  722. ldfps f73,f74=[sp] // M0
  723. ldfps f75,f76=[sp] // M1
  724. mov f77=f0 // F
  725. setf.s f78=r0 // M2
  726. setf.s f79=r0 // M3
  727. mov f80=f0 // F
  728. ldfps f81,f82=[sp] // M0
  729. ldfps f83,f84=[sp] // M1
  730. mov f85=f0 // F
  731. setf.s f86=r0 // M2
  732. setf.s f87=r0 // M3
  733. mov f88=f0 // F
  734. /*
  735. * When the instructions are cached, it would be faster to initialize
  736. * the remaining registers with simply mov instructions (F-unit).
  737. * This gets the time down to ~29 cycles. However, this would use up
  738. * 33 bundles, whereas continuing with the above pattern yields
  739. * 10 bundles and ~30 cycles.
  740. */
  741. ldfps f89,f90=[sp] // M0
  742. ldfps f91,f92=[sp] // M1
  743. mov f93=f0 // F
  744. setf.s f94=r0 // M2
  745. setf.s f95=r0 // M3
  746. mov f96=f0 // F
  747. ldfps f97,f98=[sp] // M0
  748. ldfps f99,f100=[sp] // M1
  749. mov f101=f0 // F
  750. setf.s f102=r0 // M2
  751. setf.s f103=r0 // M3
  752. mov f104=f0 // F
  753. ldfps f105,f106=[sp] // M0
  754. ldfps f107,f108=[sp] // M1
  755. mov f109=f0 // F
  756. setf.s f110=r0 // M2
  757. setf.s f111=r0 // M3
  758. mov f112=f0 // F
  759. ldfps f113,f114=[sp] // M0
  760. ldfps f115,f116=[sp] // M1
  761. mov f117=f0 // F
  762. setf.s f118=r0 // M2
  763. setf.s f119=r0 // M3
  764. mov f120=f0 // F
  765. ldfps f121,f122=[sp] // M0
  766. ldfps f123,f124=[sp] // M1
  767. mov f125=f0 // F
  768. setf.s f126=r0 // M2
  769. setf.s f127=r0 // M3
  770. br.ret.sptk.many rp // F
  771. END(__ia64_init_fpu)
  772. /*
  773. * Switch execution mode from virtual to physical
  774. *
  775. * Inputs:
  776. * r16 = new psr to establish
  777. * Output:
  778. * r19 = old virtual address of ar.bsp
  779. * r20 = old virtual address of sp
  780. *
  781. * Note: RSE must already be in enforced lazy mode
  782. */
  783. GLOBAL_ENTRY(ia64_switch_mode_phys)
  784. {
  785. alloc r2=ar.pfs,0,0,0,0
  786. rsm psr.i | psr.ic // disable interrupts and interrupt collection
  787. mov r15=ip
  788. }
  789. ;;
  790. {
  791. flushrs // must be first insn in group
  792. srlz.i
  793. }
  794. ;;
  795. mov cr.ipsr=r16 // set new PSR
  796. add r3=1f-ia64_switch_mode_phys,r15
  797. mov r19=ar.bsp
  798. mov r20=sp
  799. mov r14=rp // get return address into a general register
  800. ;;
  801. // going to physical mode, use tpa to translate virt->phys
  802. tpa r17=r19
  803. tpa r3=r3
  804. tpa sp=sp
  805. tpa r14=r14
  806. ;;
  807. mov r18=ar.rnat // save ar.rnat
  808. mov ar.bspstore=r17 // this steps on ar.rnat
  809. mov cr.iip=r3
  810. mov cr.ifs=r0
  811. ;;
  812. mov ar.rnat=r18 // restore ar.rnat
  813. rfi // must be last insn in group
  814. ;;
  815. 1: mov rp=r14
  816. br.ret.sptk.many rp
  817. END(ia64_switch_mode_phys)
  818. /*
  819. * Switch execution mode from physical to virtual
  820. *
  821. * Inputs:
  822. * r16 = new psr to establish
  823. * r19 = new bspstore to establish
  824. * r20 = new sp to establish
  825. *
  826. * Note: RSE must already be in enforced lazy mode
  827. */
  828. GLOBAL_ENTRY(ia64_switch_mode_virt)
  829. {
  830. alloc r2=ar.pfs,0,0,0,0
  831. rsm psr.i | psr.ic // disable interrupts and interrupt collection
  832. mov r15=ip
  833. }
  834. ;;
  835. {
  836. flushrs // must be first insn in group
  837. srlz.i
  838. }
  839. ;;
  840. mov cr.ipsr=r16 // set new PSR
  841. add r3=1f-ia64_switch_mode_virt,r15
  842. mov r14=rp // get return address into a general register
  843. ;;
  844. // going to virtual
  845. // - for code addresses, set upper bits of addr to KERNEL_START
  846. // - for stack addresses, copy from input argument
  847. movl r18=KERNEL_START
  848. dep r3=0,r3,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
  849. dep r14=0,r14,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
  850. mov sp=r20
  851. ;;
  852. or r3=r3,r18
  853. or r14=r14,r18
  854. ;;
  855. mov r18=ar.rnat // save ar.rnat
  856. mov ar.bspstore=r19 // this steps on ar.rnat
  857. mov cr.iip=r3
  858. mov cr.ifs=r0
  859. ;;
  860. mov ar.rnat=r18 // restore ar.rnat
  861. rfi // must be last insn in group
  862. ;;
  863. 1: mov rp=r14
  864. br.ret.sptk.many rp
  865. END(ia64_switch_mode_virt)
  866. GLOBAL_ENTRY(ia64_delay_loop)
  867. .prologue
  868. { nop 0 // work around GAS unwind info generation bug...
  869. .save ar.lc,r2
  870. mov r2=ar.lc
  871. .body
  872. ;;
  873. mov ar.lc=r32
  874. }
  875. ;;
  876. // force loop to be 32-byte aligned (GAS bug means we cannot use .align
  877. // inside function body without corrupting unwind info).
  878. { nop 0 }
  879. 1: br.cloop.sptk.few 1b
  880. ;;
  881. mov ar.lc=r2
  882. br.ret.sptk.many rp
  883. END(ia64_delay_loop)
  884. /*
  885. * Return a CPU-local timestamp in nano-seconds. This timestamp is
  886. * NOT synchronized across CPUs its return value must never be
  887. * compared against the values returned on another CPU. The usage in
  888. * kernel/sched.c ensures that.
  889. *
  890. * The return-value of sched_clock() is NOT supposed to wrap-around.
  891. * If it did, it would cause some scheduling hiccups (at the worst).
  892. * Fortunately, with a 64-bit cycle-counter ticking at 100GHz, even
  893. * that would happen only once every 5+ years.
  894. *
  895. * The code below basically calculates:
  896. *
  897. * (ia64_get_itc() * local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT
  898. *
  899. * except that the multiplication and the shift are done with 128-bit
  900. * intermediate precision so that we can produce a full 64-bit result.
  901. */
  902. GLOBAL_ENTRY(sched_clock)
  903. addl r8=THIS_CPU(cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
  904. mov.m r9=ar.itc // fetch cycle-counter (35 cyc)
  905. ;;
  906. ldf8 f8=[r8]
  907. ;;
  908. setf.sig f9=r9 // certain to stall, so issue it _after_ ldf8...
  909. ;;
  910. xmpy.lu f10=f9,f8 // calculate low 64 bits of 128-bit product (4 cyc)
  911. xmpy.hu f11=f9,f8 // calculate high 64 bits of 128-bit product
  912. ;;
  913. getf.sig r8=f10 // (5 cyc)
  914. getf.sig r9=f11
  915. ;;
  916. shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
  917. br.ret.sptk.many rp
  918. END(sched_clock)
  919. GLOBAL_ENTRY(start_kernel_thread)
  920. .prologue
  921. .save rp, r0 // this is the end of the call-chain
  922. .body
  923. alloc r2 = ar.pfs, 0, 0, 2, 0
  924. mov out0 = r9
  925. mov out1 = r11;;
  926. br.call.sptk.many rp = kernel_thread_helper;;
  927. mov out0 = r8
  928. br.call.sptk.many rp = sys_exit;;
  929. 1: br.sptk.few 1b // not reached
  930. END(start_kernel_thread)
  931. #ifdef CONFIG_IA64_BRL_EMU
  932. /*
  933. * Assembly routines used by brl_emu.c to set preserved register state.
  934. */
  935. #define SET_REG(reg) \
  936. GLOBAL_ENTRY(ia64_set_##reg); \
  937. alloc r16=ar.pfs,1,0,0,0; \
  938. mov reg=r32; \
  939. ;; \
  940. br.ret.sptk.many rp; \
  941. END(ia64_set_##reg)
  942. SET_REG(b1);
  943. SET_REG(b2);
  944. SET_REG(b3);
  945. SET_REG(b4);
  946. SET_REG(b5);
  947. #endif /* CONFIG_IA64_BRL_EMU */
  948. #ifdef CONFIG_SMP
  949. /*
  950. * This routine handles spinlock contention. It uses a non-standard calling
  951. * convention to avoid converting leaf routines into interior routines. Because
  952. * of this special convention, there are several restrictions:
  953. *
  954. * - do not use gp relative variables, this code is called from the kernel
  955. * and from modules, r1 is undefined.
  956. * - do not use stacked registers, the caller owns them.
  957. * - do not use the scratch stack space, the caller owns it.
  958. * - do not use any registers other than the ones listed below
  959. *
  960. * Inputs:
  961. * ar.pfs - saved CFM of caller
  962. * ar.ccv - 0 (and available for use)
  963. * r27 - flags from spin_lock_irqsave or 0. Must be preserved.
  964. * r28 - available for use.
  965. * r29 - available for use.
  966. * r30 - available for use.
  967. * r31 - address of lock, available for use.
  968. * b6 - return address
  969. * p14 - available for use.
  970. * p15 - used to track flag status.
  971. *
  972. * If you patch this code to use more registers, do not forget to update
  973. * the clobber lists for spin_lock() in include/asm-ia64/spinlock.h.
  974. */
  975. #if __GNUC__ < 3 || (__GNUC__ == 3 && __GNUC_MINOR__ < 3)
  976. GLOBAL_ENTRY(ia64_spinlock_contention_pre3_4)
  977. .prologue
  978. .save ar.pfs, r0 // this code effectively has a zero frame size
  979. .save rp, r28
  980. .body
  981. nop 0
  982. tbit.nz p15,p0=r27,IA64_PSR_I_BIT
  983. .restore sp // pop existing prologue after next insn
  984. mov b6 = r28
  985. .prologue
  986. .save ar.pfs, r0
  987. .altrp b6
  988. .body
  989. ;;
  990. (p15) ssm psr.i // reenable interrupts if they were on
  991. // DavidM says that srlz.d is slow and is not required in this case
  992. .wait:
  993. // exponential backoff, kdb, lockmeter etc. go in here
  994. hint @pause
  995. ld4 r30=[r31] // don't use ld4.bias; if it's contended, we won't write the word
  996. nop 0
  997. ;;
  998. cmp4.ne p14,p0=r30,r0
  999. (p14) br.cond.sptk.few .wait
  1000. (p15) rsm psr.i // disable interrupts if we reenabled them
  1001. br.cond.sptk.few b6 // lock is now free, try to acquire
  1002. .global ia64_spinlock_contention_pre3_4_end // for kernprof
  1003. ia64_spinlock_contention_pre3_4_end:
  1004. END(ia64_spinlock_contention_pre3_4)
  1005. #else
  1006. GLOBAL_ENTRY(ia64_spinlock_contention)
  1007. .prologue
  1008. .altrp b6
  1009. .body
  1010. tbit.nz p15,p0=r27,IA64_PSR_I_BIT
  1011. ;;
  1012. .wait:
  1013. (p15) ssm psr.i // reenable interrupts if they were on
  1014. // DavidM says that srlz.d is slow and is not required in this case
  1015. .wait2:
  1016. // exponential backoff, kdb, lockmeter etc. go in here
  1017. hint @pause
  1018. ld4 r30=[r31] // don't use ld4.bias; if it's contended, we won't write the word
  1019. ;;
  1020. cmp4.ne p14,p0=r30,r0
  1021. mov r30 = 1
  1022. (p14) br.cond.sptk.few .wait2
  1023. (p15) rsm psr.i // disable interrupts if we reenabled them
  1024. ;;
  1025. cmpxchg4.acq r30=[r31], r30, ar.ccv
  1026. ;;
  1027. cmp4.ne p14,p0=r0,r30
  1028. (p14) br.cond.sptk.few .wait
  1029. br.ret.sptk.many b6 // lock is now taken
  1030. END(ia64_spinlock_contention)
  1031. #endif
  1032. #ifdef CONFIG_HOTPLUG_CPU
  1033. GLOBAL_ENTRY(ia64_jump_to_sal)
  1034. alloc r16=ar.pfs,1,0,0,0;;
  1035. rsm psr.i | psr.ic
  1036. {
  1037. flushrs
  1038. srlz.i
  1039. }
  1040. tpa r25=in0
  1041. movl r18=tlb_purge_done;;
  1042. DATA_VA_TO_PA(r18);;
  1043. mov b1=r18 // Return location
  1044. movl r18=ia64_do_tlb_purge;;
  1045. DATA_VA_TO_PA(r18);;
  1046. mov b2=r18 // doing tlb_flush work
  1047. mov ar.rsc=0 // Put RSE in enforced lazy, LE mode
  1048. movl r17=1f;;
  1049. DATA_VA_TO_PA(r17);;
  1050. mov cr.iip=r17
  1051. movl r16=SAL_PSR_BITS_TO_SET;;
  1052. mov cr.ipsr=r16
  1053. mov cr.ifs=r0;;
  1054. rfi;;
  1055. 1:
  1056. /*
  1057. * Invalidate all TLB data/inst
  1058. */
  1059. br.sptk.many b2;; // jump to tlb purge code
  1060. tlb_purge_done:
  1061. RESTORE_REGION_REGS(r25, r17,r18,r19);;
  1062. RESTORE_REG(b0, r25, r17);;
  1063. RESTORE_REG(b1, r25, r17);;
  1064. RESTORE_REG(b2, r25, r17);;
  1065. RESTORE_REG(b3, r25, r17);;
  1066. RESTORE_REG(b4, r25, r17);;
  1067. RESTORE_REG(b5, r25, r17);;
  1068. ld8 r1=[r25],0x08;;
  1069. ld8 r12=[r25],0x08;;
  1070. ld8 r13=[r25],0x08;;
  1071. RESTORE_REG(ar.fpsr, r25, r17);;
  1072. RESTORE_REG(ar.pfs, r25, r17);;
  1073. RESTORE_REG(ar.rnat, r25, r17);;
  1074. RESTORE_REG(ar.unat, r25, r17);;
  1075. RESTORE_REG(ar.bspstore, r25, r17);;
  1076. RESTORE_REG(cr.dcr, r25, r17);;
  1077. RESTORE_REG(cr.iva, r25, r17);;
  1078. RESTORE_REG(cr.pta, r25, r17);;
  1079. RESTORE_REG(cr.itv, r25, r17);;
  1080. RESTORE_REG(cr.pmv, r25, r17);;
  1081. RESTORE_REG(cr.cmcv, r25, r17);;
  1082. RESTORE_REG(cr.lrr0, r25, r17);;
  1083. RESTORE_REG(cr.lrr1, r25, r17);;
  1084. ld8 r4=[r25],0x08;;
  1085. ld8 r5=[r25],0x08;;
  1086. ld8 r6=[r25],0x08;;
  1087. ld8 r7=[r25],0x08;;
  1088. ld8 r17=[r25],0x08;;
  1089. mov pr=r17,-1;;
  1090. RESTORE_REG(ar.lc, r25, r17);;
  1091. /*
  1092. * Now Restore floating point regs
  1093. */
  1094. ldf.fill.nta f2=[r25],16;;
  1095. ldf.fill.nta f3=[r25],16;;
  1096. ldf.fill.nta f4=[r25],16;;
  1097. ldf.fill.nta f5=[r25],16;;
  1098. ldf.fill.nta f16=[r25],16;;
  1099. ldf.fill.nta f17=[r25],16;;
  1100. ldf.fill.nta f18=[r25],16;;
  1101. ldf.fill.nta f19=[r25],16;;
  1102. ldf.fill.nta f20=[r25],16;;
  1103. ldf.fill.nta f21=[r25],16;;
  1104. ldf.fill.nta f22=[r25],16;;
  1105. ldf.fill.nta f23=[r25],16;;
  1106. ldf.fill.nta f24=[r25],16;;
  1107. ldf.fill.nta f25=[r25],16;;
  1108. ldf.fill.nta f26=[r25],16;;
  1109. ldf.fill.nta f27=[r25],16;;
  1110. ldf.fill.nta f28=[r25],16;;
  1111. ldf.fill.nta f29=[r25],16;;
  1112. ldf.fill.nta f30=[r25],16;;
  1113. ldf.fill.nta f31=[r25],16;;
  1114. /*
  1115. * Now that we have done all the register restores
  1116. * we are now ready for the big DIVE to SAL Land
  1117. */
  1118. ssm psr.ic;;
  1119. srlz.d;;
  1120. br.ret.sptk.many b0;;
  1121. END(ia64_jump_to_sal)
  1122. #endif /* CONFIG_HOTPLUG_CPU */
  1123. #endif /* CONFIG_SMP */