acpi-cpufreq.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499
  1. /*
  2. * arch/ia64/kernel/cpufreq/acpi-cpufreq.c
  3. * This file provides the ACPI based P-state support. This
  4. * module works with generic cpufreq infrastructure. Most of
  5. * the code is based on i386 version
  6. * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
  7. *
  8. * Copyright (C) 2005 Intel Corp
  9. * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10. */
  11. #include <linux/config.h>
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/cpufreq.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <asm/io.h>
  19. #include <asm/uaccess.h>
  20. #include <asm/pal.h>
  21. #include <linux/acpi.h>
  22. #include <acpi/processor.h>
  23. #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
  24. MODULE_AUTHOR("Venkatesh Pallipadi");
  25. MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  26. MODULE_LICENSE("GPL");
  27. struct cpufreq_acpi_io {
  28. struct acpi_processor_performance acpi_data;
  29. struct cpufreq_frequency_table *freq_table;
  30. unsigned int resume;
  31. };
  32. static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
  33. static struct cpufreq_driver acpi_cpufreq_driver;
  34. static int
  35. processor_set_pstate (
  36. u32 value)
  37. {
  38. s64 retval;
  39. dprintk("processor_set_pstate\n");
  40. retval = ia64_pal_set_pstate((u64)value);
  41. if (retval) {
  42. dprintk("Failed to set freq to 0x%x, with error 0x%x\n",
  43. value, retval);
  44. return -ENODEV;
  45. }
  46. return (int)retval;
  47. }
  48. static int
  49. processor_get_pstate (
  50. u32 *value)
  51. {
  52. u64 pstate_index = 0;
  53. s64 retval;
  54. dprintk("processor_get_pstate\n");
  55. retval = ia64_pal_get_pstate(&pstate_index);
  56. *value = (u32) pstate_index;
  57. if (retval)
  58. dprintk("Failed to get current freq with "
  59. "error 0x%x, idx 0x%x\n", retval, *value);
  60. return (int)retval;
  61. }
  62. /* To be used only after data->acpi_data is initialized */
  63. static unsigned
  64. extract_clock (
  65. struct cpufreq_acpi_io *data,
  66. unsigned value,
  67. unsigned int cpu)
  68. {
  69. unsigned long i;
  70. dprintk("extract_clock\n");
  71. for (i = 0; i < data->acpi_data.state_count; i++) {
  72. if (value >= data->acpi_data.states[i].control)
  73. return data->acpi_data.states[i].core_frequency;
  74. }
  75. return data->acpi_data.states[i-1].core_frequency;
  76. }
  77. static unsigned int
  78. processor_get_freq (
  79. struct cpufreq_acpi_io *data,
  80. unsigned int cpu)
  81. {
  82. int ret = 0;
  83. u32 value = 0;
  84. cpumask_t saved_mask;
  85. unsigned long clock_freq;
  86. dprintk("processor_get_freq\n");
  87. saved_mask = current->cpus_allowed;
  88. set_cpus_allowed(current, cpumask_of_cpu(cpu));
  89. if (smp_processor_id() != cpu) {
  90. ret = -EAGAIN;
  91. goto migrate_end;
  92. }
  93. /*
  94. * processor_get_pstate gets the average frequency since the
  95. * last get. So, do two PAL_get_freq()...
  96. */
  97. ret = processor_get_pstate(&value);
  98. ret = processor_get_pstate(&value);
  99. if (ret) {
  100. set_cpus_allowed(current, saved_mask);
  101. printk(KERN_WARNING "get performance failed with error %d\n",
  102. ret);
  103. ret = -EAGAIN;
  104. goto migrate_end;
  105. }
  106. clock_freq = extract_clock(data, value, cpu);
  107. ret = (clock_freq*1000);
  108. migrate_end:
  109. set_cpus_allowed(current, saved_mask);
  110. return ret;
  111. }
  112. static int
  113. processor_set_freq (
  114. struct cpufreq_acpi_io *data,
  115. unsigned int cpu,
  116. int state)
  117. {
  118. int ret = 0;
  119. u32 value = 0;
  120. struct cpufreq_freqs cpufreq_freqs;
  121. cpumask_t saved_mask;
  122. int retval;
  123. dprintk("processor_set_freq\n");
  124. saved_mask = current->cpus_allowed;
  125. set_cpus_allowed(current, cpumask_of_cpu(cpu));
  126. if (smp_processor_id() != cpu) {
  127. retval = -EAGAIN;
  128. goto migrate_end;
  129. }
  130. if (state == data->acpi_data.state) {
  131. if (unlikely(data->resume)) {
  132. dprintk("Called after resume, resetting to P%d\n", state);
  133. data->resume = 0;
  134. } else {
  135. dprintk("Already at target state (P%d)\n", state);
  136. retval = 0;
  137. goto migrate_end;
  138. }
  139. }
  140. dprintk("Transitioning from P%d to P%d\n",
  141. data->acpi_data.state, state);
  142. /* cpufreq frequency struct */
  143. cpufreq_freqs.cpu = cpu;
  144. cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;
  145. cpufreq_freqs.new = data->freq_table[state].frequency;
  146. /* notify cpufreq */
  147. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
  148. /*
  149. * First we write the target state's 'control' value to the
  150. * control_register.
  151. */
  152. value = (u32) data->acpi_data.states[state].control;
  153. dprintk("Transitioning to state: 0x%08x\n", value);
  154. ret = processor_set_pstate(value);
  155. if (ret) {
  156. unsigned int tmp = cpufreq_freqs.new;
  157. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
  158. cpufreq_freqs.new = cpufreq_freqs.old;
  159. cpufreq_freqs.old = tmp;
  160. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
  161. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
  162. printk(KERN_WARNING "Transition failed with error %d\n", ret);
  163. retval = -ENODEV;
  164. goto migrate_end;
  165. }
  166. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
  167. data->acpi_data.state = state;
  168. retval = 0;
  169. migrate_end:
  170. set_cpus_allowed(current, saved_mask);
  171. return (retval);
  172. }
  173. static unsigned int
  174. acpi_cpufreq_get (
  175. unsigned int cpu)
  176. {
  177. struct cpufreq_acpi_io *data = acpi_io_data[cpu];
  178. dprintk("acpi_cpufreq_get\n");
  179. return processor_get_freq(data, cpu);
  180. }
  181. static int
  182. acpi_cpufreq_target (
  183. struct cpufreq_policy *policy,
  184. unsigned int target_freq,
  185. unsigned int relation)
  186. {
  187. struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
  188. unsigned int next_state = 0;
  189. unsigned int result = 0;
  190. dprintk("acpi_cpufreq_setpolicy\n");
  191. result = cpufreq_frequency_table_target(policy,
  192. data->freq_table, target_freq, relation, &next_state);
  193. if (result)
  194. return (result);
  195. result = processor_set_freq(data, policy->cpu, next_state);
  196. return (result);
  197. }
  198. static int
  199. acpi_cpufreq_verify (
  200. struct cpufreq_policy *policy)
  201. {
  202. unsigned int result = 0;
  203. struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
  204. dprintk("acpi_cpufreq_verify\n");
  205. result = cpufreq_frequency_table_verify(policy,
  206. data->freq_table);
  207. return (result);
  208. }
  209. /*
  210. * processor_init_pdc - let BIOS know about the SMP capabilities
  211. * of this driver
  212. * @perf: processor-specific acpi_io_data struct
  213. * @cpu: CPU being initialized
  214. *
  215. * To avoid issues with legacy OSes, some BIOSes require to be informed of
  216. * the SMP capabilities of OS P-state driver. Here we set the bits in _PDC
  217. * accordingly. Actual call to _PDC is done in driver/acpi/processor.c
  218. */
  219. static void
  220. processor_init_pdc (
  221. struct acpi_processor_performance *perf,
  222. unsigned int cpu,
  223. struct acpi_object_list *obj_list
  224. )
  225. {
  226. union acpi_object *obj;
  227. u32 *buf;
  228. dprintk("processor_init_pdc\n");
  229. perf->pdc = NULL;
  230. /* Initialize pdc. It will be used later. */
  231. if (!obj_list)
  232. return;
  233. if (!(obj_list->count && obj_list->pointer))
  234. return;
  235. obj = obj_list->pointer;
  236. if ((obj->buffer.length == 12) && obj->buffer.pointer) {
  237. buf = (u32 *)obj->buffer.pointer;
  238. buf[0] = ACPI_PDC_REVISION_ID;
  239. buf[1] = 1;
  240. buf[2] = ACPI_PDC_EST_CAPABILITY_SMP;
  241. perf->pdc = obj_list;
  242. }
  243. return;
  244. }
  245. static int
  246. acpi_cpufreq_cpu_init (
  247. struct cpufreq_policy *policy)
  248. {
  249. unsigned int i;
  250. unsigned int cpu = policy->cpu;
  251. struct cpufreq_acpi_io *data;
  252. unsigned int result = 0;
  253. union acpi_object arg0 = {ACPI_TYPE_BUFFER};
  254. u32 arg0_buf[3];
  255. struct acpi_object_list arg_list = {1, &arg0};
  256. dprintk("acpi_cpufreq_cpu_init\n");
  257. /* setup arg_list for _PDC settings */
  258. arg0.buffer.length = 12;
  259. arg0.buffer.pointer = (u8 *) arg0_buf;
  260. data = kmalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
  261. if (!data)
  262. return (-ENOMEM);
  263. memset(data, 0, sizeof(struct cpufreq_acpi_io));
  264. acpi_io_data[cpu] = data;
  265. processor_init_pdc(&data->acpi_data, cpu, &arg_list);
  266. result = acpi_processor_register_performance(&data->acpi_data, cpu);
  267. data->acpi_data.pdc = NULL;
  268. if (result)
  269. goto err_free;
  270. /* capability check */
  271. if (data->acpi_data.state_count <= 1) {
  272. dprintk("No P-States\n");
  273. result = -ENODEV;
  274. goto err_unreg;
  275. }
  276. if ((data->acpi_data.control_register.space_id !=
  277. ACPI_ADR_SPACE_FIXED_HARDWARE) ||
  278. (data->acpi_data.status_register.space_id !=
  279. ACPI_ADR_SPACE_FIXED_HARDWARE)) {
  280. dprintk("Unsupported address space [%d, %d]\n",
  281. (u32) (data->acpi_data.control_register.space_id),
  282. (u32) (data->acpi_data.status_register.space_id));
  283. result = -ENODEV;
  284. goto err_unreg;
  285. }
  286. /* alloc freq_table */
  287. data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
  288. (data->acpi_data.state_count + 1),
  289. GFP_KERNEL);
  290. if (!data->freq_table) {
  291. result = -ENOMEM;
  292. goto err_unreg;
  293. }
  294. /* detect transition latency */
  295. policy->cpuinfo.transition_latency = 0;
  296. for (i=0; i<data->acpi_data.state_count; i++) {
  297. if ((data->acpi_data.states[i].transition_latency * 1000) >
  298. policy->cpuinfo.transition_latency) {
  299. policy->cpuinfo.transition_latency =
  300. data->acpi_data.states[i].transition_latency * 1000;
  301. }
  302. }
  303. policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
  304. policy->cur = processor_get_freq(data, policy->cpu);
  305. /* table init */
  306. for (i = 0; i <= data->acpi_data.state_count; i++)
  307. {
  308. data->freq_table[i].index = i;
  309. if (i < data->acpi_data.state_count) {
  310. data->freq_table[i].frequency =
  311. data->acpi_data.states[i].core_frequency * 1000;
  312. } else {
  313. data->freq_table[i].frequency = CPUFREQ_TABLE_END;
  314. }
  315. }
  316. result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
  317. if (result) {
  318. goto err_freqfree;
  319. }
  320. /* notify BIOS that we exist */
  321. acpi_processor_notify_smm(THIS_MODULE);
  322. printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management "
  323. "activated.\n", cpu);
  324. for (i = 0; i < data->acpi_data.state_count; i++)
  325. dprintk(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
  326. (i == data->acpi_data.state?'*':' '), i,
  327. (u32) data->acpi_data.states[i].core_frequency,
  328. (u32) data->acpi_data.states[i].power,
  329. (u32) data->acpi_data.states[i].transition_latency,
  330. (u32) data->acpi_data.states[i].bus_master_latency,
  331. (u32) data->acpi_data.states[i].status,
  332. (u32) data->acpi_data.states[i].control);
  333. cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
  334. /* the first call to ->target() should result in us actually
  335. * writing something to the appropriate registers. */
  336. data->resume = 1;
  337. return (result);
  338. err_freqfree:
  339. kfree(data->freq_table);
  340. err_unreg:
  341. acpi_processor_unregister_performance(&data->acpi_data, cpu);
  342. err_free:
  343. kfree(data);
  344. acpi_io_data[cpu] = NULL;
  345. return (result);
  346. }
  347. static int
  348. acpi_cpufreq_cpu_exit (
  349. struct cpufreq_policy *policy)
  350. {
  351. struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
  352. dprintk("acpi_cpufreq_cpu_exit\n");
  353. if (data) {
  354. cpufreq_frequency_table_put_attr(policy->cpu);
  355. acpi_io_data[policy->cpu] = NULL;
  356. acpi_processor_unregister_performance(&data->acpi_data,
  357. policy->cpu);
  358. kfree(data);
  359. }
  360. return (0);
  361. }
  362. static struct freq_attr* acpi_cpufreq_attr[] = {
  363. &cpufreq_freq_attr_scaling_available_freqs,
  364. NULL,
  365. };
  366. static struct cpufreq_driver acpi_cpufreq_driver = {
  367. .verify = acpi_cpufreq_verify,
  368. .target = acpi_cpufreq_target,
  369. .get = acpi_cpufreq_get,
  370. .init = acpi_cpufreq_cpu_init,
  371. .exit = acpi_cpufreq_cpu_exit,
  372. .name = "acpi-cpufreq",
  373. .owner = THIS_MODULE,
  374. .attr = acpi_cpufreq_attr,
  375. };
  376. static int __init
  377. acpi_cpufreq_init (void)
  378. {
  379. dprintk("acpi_cpufreq_init\n");
  380. return cpufreq_register_driver(&acpi_cpufreq_driver);
  381. }
  382. static void __exit
  383. acpi_cpufreq_exit (void)
  384. {
  385. dprintk("acpi_cpufreq_exit\n");
  386. cpufreq_unregister_driver(&acpi_cpufreq_driver);
  387. return;
  388. }
  389. late_initcall(acpi_cpufreq_init);
  390. module_exit(acpi_cpufreq_exit);