poly_tan.c 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222
  1. /*---------------------------------------------------------------------------+
  2. | poly_tan.c |
  3. | |
  4. | Compute the tan of a FPU_REG, using a polynomial approximation. |
  5. | |
  6. | Copyright (C) 1992,1993,1994,1997,1999 |
  7. | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, |
  8. | Australia. E-mail billm@melbpc.org.au |
  9. | |
  10. | |
  11. +---------------------------------------------------------------------------*/
  12. #include "exception.h"
  13. #include "reg_constant.h"
  14. #include "fpu_emu.h"
  15. #include "fpu_system.h"
  16. #include "control_w.h"
  17. #include "poly.h"
  18. #define HiPOWERop 3 /* odd poly, positive terms */
  19. static const unsigned long long oddplterm[HiPOWERop] =
  20. {
  21. 0x0000000000000000LL,
  22. 0x0051a1cf08fca228LL,
  23. 0x0000000071284ff7LL
  24. };
  25. #define HiPOWERon 2 /* odd poly, negative terms */
  26. static const unsigned long long oddnegterm[HiPOWERon] =
  27. {
  28. 0x1291a9a184244e80LL,
  29. 0x0000583245819c21LL
  30. };
  31. #define HiPOWERep 2 /* even poly, positive terms */
  32. static const unsigned long long evenplterm[HiPOWERep] =
  33. {
  34. 0x0e848884b539e888LL,
  35. 0x00003c7f18b887daLL
  36. };
  37. #define HiPOWERen 2 /* even poly, negative terms */
  38. static const unsigned long long evennegterm[HiPOWERen] =
  39. {
  40. 0xf1f0200fd51569ccLL,
  41. 0x003afb46105c4432LL
  42. };
  43. static const unsigned long long twothirds = 0xaaaaaaaaaaaaaaabLL;
  44. /*--- poly_tan() ------------------------------------------------------------+
  45. | |
  46. +---------------------------------------------------------------------------*/
  47. void poly_tan(FPU_REG *st0_ptr)
  48. {
  49. long int exponent;
  50. int invert;
  51. Xsig argSq, argSqSq, accumulatoro, accumulatore, accum,
  52. argSignif, fix_up;
  53. unsigned long adj;
  54. exponent = exponent(st0_ptr);
  55. #ifdef PARANOID
  56. if ( signnegative(st0_ptr) ) /* Can't hack a number < 0.0 */
  57. { arith_invalid(0); return; } /* Need a positive number */
  58. #endif /* PARANOID */
  59. /* Split the problem into two domains, smaller and larger than pi/4 */
  60. if ( (exponent == 0) || ((exponent == -1) && (st0_ptr->sigh > 0xc90fdaa2)) )
  61. {
  62. /* The argument is greater than (approx) pi/4 */
  63. invert = 1;
  64. accum.lsw = 0;
  65. XSIG_LL(accum) = significand(st0_ptr);
  66. if ( exponent == 0 )
  67. {
  68. /* The argument is >= 1.0 */
  69. /* Put the binary point at the left. */
  70. XSIG_LL(accum) <<= 1;
  71. }
  72. /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
  73. XSIG_LL(accum) = 0x921fb54442d18469LL - XSIG_LL(accum);
  74. /* This is a special case which arises due to rounding. */
  75. if ( XSIG_LL(accum) == 0xffffffffffffffffLL )
  76. {
  77. FPU_settag0(TAG_Valid);
  78. significand(st0_ptr) = 0x8a51e04daabda360LL;
  79. setexponent16(st0_ptr, (0x41 + EXTENDED_Ebias) | SIGN_Negative);
  80. return;
  81. }
  82. argSignif.lsw = accum.lsw;
  83. XSIG_LL(argSignif) = XSIG_LL(accum);
  84. exponent = -1 + norm_Xsig(&argSignif);
  85. }
  86. else
  87. {
  88. invert = 0;
  89. argSignif.lsw = 0;
  90. XSIG_LL(accum) = XSIG_LL(argSignif) = significand(st0_ptr);
  91. if ( exponent < -1 )
  92. {
  93. /* shift the argument right by the required places */
  94. if ( FPU_shrx(&XSIG_LL(accum), -1-exponent) >= 0x80000000U )
  95. XSIG_LL(accum) ++; /* round up */
  96. }
  97. }
  98. XSIG_LL(argSq) = XSIG_LL(accum); argSq.lsw = accum.lsw;
  99. mul_Xsig_Xsig(&argSq, &argSq);
  100. XSIG_LL(argSqSq) = XSIG_LL(argSq); argSqSq.lsw = argSq.lsw;
  101. mul_Xsig_Xsig(&argSqSq, &argSqSq);
  102. /* Compute the negative terms for the numerator polynomial */
  103. accumulatoro.msw = accumulatoro.midw = accumulatoro.lsw = 0;
  104. polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddnegterm, HiPOWERon-1);
  105. mul_Xsig_Xsig(&accumulatoro, &argSq);
  106. negate_Xsig(&accumulatoro);
  107. /* Add the positive terms */
  108. polynomial_Xsig(&accumulatoro, &XSIG_LL(argSqSq), oddplterm, HiPOWERop-1);
  109. /* Compute the positive terms for the denominator polynomial */
  110. accumulatore.msw = accumulatore.midw = accumulatore.lsw = 0;
  111. polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evenplterm, HiPOWERep-1);
  112. mul_Xsig_Xsig(&accumulatore, &argSq);
  113. negate_Xsig(&accumulatore);
  114. /* Add the negative terms */
  115. polynomial_Xsig(&accumulatore, &XSIG_LL(argSqSq), evennegterm, HiPOWERen-1);
  116. /* Multiply by arg^2 */
  117. mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
  118. mul64_Xsig(&accumulatore, &XSIG_LL(argSignif));
  119. /* de-normalize and divide by 2 */
  120. shr_Xsig(&accumulatore, -2*(1+exponent) + 1);
  121. negate_Xsig(&accumulatore); /* This does 1 - accumulator */
  122. /* Now find the ratio. */
  123. if ( accumulatore.msw == 0 )
  124. {
  125. /* accumulatoro must contain 1.0 here, (actually, 0) but it
  126. really doesn't matter what value we use because it will
  127. have negligible effect in later calculations
  128. */
  129. XSIG_LL(accum) = 0x8000000000000000LL;
  130. accum.lsw = 0;
  131. }
  132. else
  133. {
  134. div_Xsig(&accumulatoro, &accumulatore, &accum);
  135. }
  136. /* Multiply by 1/3 * arg^3 */
  137. mul64_Xsig(&accum, &XSIG_LL(argSignif));
  138. mul64_Xsig(&accum, &XSIG_LL(argSignif));
  139. mul64_Xsig(&accum, &XSIG_LL(argSignif));
  140. mul64_Xsig(&accum, &twothirds);
  141. shr_Xsig(&accum, -2*(exponent+1));
  142. /* tan(arg) = arg + accum */
  143. add_two_Xsig(&accum, &argSignif, &exponent);
  144. if ( invert )
  145. {
  146. /* We now have the value of tan(pi_2 - arg) where pi_2 is an
  147. approximation for pi/2
  148. */
  149. /* The next step is to fix the answer to compensate for the
  150. error due to the approximation used for pi/2
  151. */
  152. /* This is (approx) delta, the error in our approx for pi/2
  153. (see above). It has an exponent of -65
  154. */
  155. XSIG_LL(fix_up) = 0x898cc51701b839a2LL;
  156. fix_up.lsw = 0;
  157. if ( exponent == 0 )
  158. adj = 0xffffffff; /* We want approx 1.0 here, but
  159. this is close enough. */
  160. else if ( exponent > -30 )
  161. {
  162. adj = accum.msw >> -(exponent+1); /* tan */
  163. adj = mul_32_32(adj, adj); /* tan^2 */
  164. }
  165. else
  166. adj = 0;
  167. adj = mul_32_32(0x898cc517, adj); /* delta * tan^2 */
  168. fix_up.msw += adj;
  169. if ( !(fix_up.msw & 0x80000000) ) /* did fix_up overflow ? */
  170. {
  171. /* Yes, we need to add an msb */
  172. shr_Xsig(&fix_up, 1);
  173. fix_up.msw |= 0x80000000;
  174. shr_Xsig(&fix_up, 64 + exponent);
  175. }
  176. else
  177. shr_Xsig(&fix_up, 65 + exponent);
  178. add_two_Xsig(&accum, &fix_up, &exponent);
  179. /* accum now contains tan(pi/2 - arg).
  180. Use tan(arg) = 1.0 / tan(pi/2 - arg)
  181. */
  182. accumulatoro.lsw = accumulatoro.midw = 0;
  183. accumulatoro.msw = 0x80000000;
  184. div_Xsig(&accumulatoro, &accum, &accum);
  185. exponent = - exponent - 1;
  186. }
  187. /* Transfer the result */
  188. round_Xsig(&accum);
  189. FPU_settag0(TAG_Valid);
  190. significand(st0_ptr) = XSIG_LL(accum);
  191. setexponent16(st0_ptr, exponent + EXTENDED_Ebias); /* Result is positive. */
  192. }