vm86.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811
  1. /*
  2. * linux/kernel/vm86.c
  3. *
  4. * Copyright (C) 1994 Linus Torvalds
  5. *
  6. * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
  7. * stack - Manfred Spraul <manfreds@colorfullife.com>
  8. *
  9. * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
  10. * them correctly. Now the emulation will be in a
  11. * consistent state after stackfaults - Kasper Dupont
  12. * <kasperd@daimi.au.dk>
  13. *
  14. * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
  15. * <kasperd@daimi.au.dk>
  16. *
  17. * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
  18. * caused by Kasper Dupont's changes - Stas Sergeev
  19. *
  20. * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
  21. * Kasper Dupont <kasperd@daimi.au.dk>
  22. *
  23. * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
  24. * Kasper Dupont <kasperd@daimi.au.dk>
  25. *
  26. * 9 apr 2002 - Changed stack access macros to jump to a label
  27. * instead of returning to userspace. This simplifies
  28. * do_int, and is needed by handle_vm6_fault. Kasper
  29. * Dupont <kasperd@daimi.au.dk>
  30. *
  31. */
  32. #include <linux/config.h>
  33. #include <linux/errno.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/signal.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/smp.h>
  41. #include <linux/smp_lock.h>
  42. #include <linux/highmem.h>
  43. #include <linux/ptrace.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/io.h>
  46. #include <asm/tlbflush.h>
  47. #include <asm/irq.h>
  48. /*
  49. * Known problems:
  50. *
  51. * Interrupt handling is not guaranteed:
  52. * - a real x86 will disable all interrupts for one instruction
  53. * after a "mov ss,xx" to make stack handling atomic even without
  54. * the 'lss' instruction. We can't guarantee this in v86 mode,
  55. * as the next instruction might result in a page fault or similar.
  56. * - a real x86 will have interrupts disabled for one instruction
  57. * past the 'sti' that enables them. We don't bother with all the
  58. * details yet.
  59. *
  60. * Let's hope these problems do not actually matter for anything.
  61. */
  62. #define KVM86 ((struct kernel_vm86_struct *)regs)
  63. #define VMPI KVM86->vm86plus
  64. /*
  65. * 8- and 16-bit register defines..
  66. */
  67. #define AL(regs) (((unsigned char *)&((regs)->eax))[0])
  68. #define AH(regs) (((unsigned char *)&((regs)->eax))[1])
  69. #define IP(regs) (*(unsigned short *)&((regs)->eip))
  70. #define SP(regs) (*(unsigned short *)&((regs)->esp))
  71. /*
  72. * virtual flags (16 and 32-bit versions)
  73. */
  74. #define VFLAGS (*(unsigned short *)&(current->thread.v86flags))
  75. #define VEFLAGS (current->thread.v86flags)
  76. #define set_flags(X,new,mask) \
  77. ((X) = ((X) & ~(mask)) | ((new) & (mask)))
  78. #define SAFE_MASK (0xDD5)
  79. #define RETURN_MASK (0xDFF)
  80. #define VM86_REGS_PART2 orig_eax
  81. #define VM86_REGS_SIZE1 \
  82. ( (unsigned)( & (((struct kernel_vm86_regs *)0)->VM86_REGS_PART2) ) )
  83. #define VM86_REGS_SIZE2 (sizeof(struct kernel_vm86_regs) - VM86_REGS_SIZE1)
  84. struct pt_regs * FASTCALL(save_v86_state(struct kernel_vm86_regs * regs));
  85. struct pt_regs * fastcall save_v86_state(struct kernel_vm86_regs * regs)
  86. {
  87. struct tss_struct *tss;
  88. struct pt_regs *ret;
  89. unsigned long tmp;
  90. /*
  91. * This gets called from entry.S with interrupts disabled, but
  92. * from process context. Enable interrupts here, before trying
  93. * to access user space.
  94. */
  95. local_irq_enable();
  96. if (!current->thread.vm86_info) {
  97. printk("no vm86_info: BAD\n");
  98. do_exit(SIGSEGV);
  99. }
  100. set_flags(regs->eflags, VEFLAGS, VIF_MASK | current->thread.v86mask);
  101. tmp = copy_to_user(&current->thread.vm86_info->regs,regs, VM86_REGS_SIZE1);
  102. tmp += copy_to_user(&current->thread.vm86_info->regs.VM86_REGS_PART2,
  103. &regs->VM86_REGS_PART2, VM86_REGS_SIZE2);
  104. tmp += put_user(current->thread.screen_bitmap,&current->thread.vm86_info->screen_bitmap);
  105. if (tmp) {
  106. printk("vm86: could not access userspace vm86_info\n");
  107. do_exit(SIGSEGV);
  108. }
  109. tss = &per_cpu(init_tss, get_cpu());
  110. current->thread.esp0 = current->thread.saved_esp0;
  111. current->thread.sysenter_cs = __KERNEL_CS;
  112. load_esp0(tss, &current->thread);
  113. current->thread.saved_esp0 = 0;
  114. put_cpu();
  115. loadsegment(fs, current->thread.saved_fs);
  116. loadsegment(gs, current->thread.saved_gs);
  117. ret = KVM86->regs32;
  118. return ret;
  119. }
  120. static void mark_screen_rdonly(struct task_struct * tsk)
  121. {
  122. pgd_t *pgd;
  123. pud_t *pud;
  124. pmd_t *pmd;
  125. pte_t *pte, *mapped;
  126. int i;
  127. preempt_disable();
  128. spin_lock(&tsk->mm->page_table_lock);
  129. pgd = pgd_offset(tsk->mm, 0xA0000);
  130. if (pgd_none_or_clear_bad(pgd))
  131. goto out;
  132. pud = pud_offset(pgd, 0xA0000);
  133. if (pud_none_or_clear_bad(pud))
  134. goto out;
  135. pmd = pmd_offset(pud, 0xA0000);
  136. if (pmd_none_or_clear_bad(pmd))
  137. goto out;
  138. pte = mapped = pte_offset_map(pmd, 0xA0000);
  139. for (i = 0; i < 32; i++) {
  140. if (pte_present(*pte))
  141. set_pte(pte, pte_wrprotect(*pte));
  142. pte++;
  143. }
  144. pte_unmap(mapped);
  145. out:
  146. spin_unlock(&tsk->mm->page_table_lock);
  147. preempt_enable();
  148. flush_tlb();
  149. }
  150. static int do_vm86_irq_handling(int subfunction, int irqnumber);
  151. static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
  152. asmlinkage int sys_vm86old(struct pt_regs regs)
  153. {
  154. struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs.ebx;
  155. struct kernel_vm86_struct info; /* declare this _on top_,
  156. * this avoids wasting of stack space.
  157. * This remains on the stack until we
  158. * return to 32 bit user space.
  159. */
  160. struct task_struct *tsk;
  161. int tmp, ret = -EPERM;
  162. tsk = current;
  163. if (tsk->thread.saved_esp0)
  164. goto out;
  165. tmp = copy_from_user(&info, v86, VM86_REGS_SIZE1);
  166. tmp += copy_from_user(&info.regs.VM86_REGS_PART2, &v86->regs.VM86_REGS_PART2,
  167. (long)&info.vm86plus - (long)&info.regs.VM86_REGS_PART2);
  168. ret = -EFAULT;
  169. if (tmp)
  170. goto out;
  171. memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
  172. info.regs32 = &regs;
  173. tsk->thread.vm86_info = v86;
  174. do_sys_vm86(&info, tsk);
  175. ret = 0; /* we never return here */
  176. out:
  177. return ret;
  178. }
  179. asmlinkage int sys_vm86(struct pt_regs regs)
  180. {
  181. struct kernel_vm86_struct info; /* declare this _on top_,
  182. * this avoids wasting of stack space.
  183. * This remains on the stack until we
  184. * return to 32 bit user space.
  185. */
  186. struct task_struct *tsk;
  187. int tmp, ret;
  188. struct vm86plus_struct __user *v86;
  189. tsk = current;
  190. switch (regs.ebx) {
  191. case VM86_REQUEST_IRQ:
  192. case VM86_FREE_IRQ:
  193. case VM86_GET_IRQ_BITS:
  194. case VM86_GET_AND_RESET_IRQ:
  195. ret = do_vm86_irq_handling(regs.ebx, (int)regs.ecx);
  196. goto out;
  197. case VM86_PLUS_INSTALL_CHECK:
  198. /* NOTE: on old vm86 stuff this will return the error
  199. from access_ok(), because the subfunction is
  200. interpreted as (invalid) address to vm86_struct.
  201. So the installation check works.
  202. */
  203. ret = 0;
  204. goto out;
  205. }
  206. /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
  207. ret = -EPERM;
  208. if (tsk->thread.saved_esp0)
  209. goto out;
  210. v86 = (struct vm86plus_struct __user *)regs.ecx;
  211. tmp = copy_from_user(&info, v86, VM86_REGS_SIZE1);
  212. tmp += copy_from_user(&info.regs.VM86_REGS_PART2, &v86->regs.VM86_REGS_PART2,
  213. (long)&info.regs32 - (long)&info.regs.VM86_REGS_PART2);
  214. ret = -EFAULT;
  215. if (tmp)
  216. goto out;
  217. info.regs32 = &regs;
  218. info.vm86plus.is_vm86pus = 1;
  219. tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
  220. do_sys_vm86(&info, tsk);
  221. ret = 0; /* we never return here */
  222. out:
  223. return ret;
  224. }
  225. static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
  226. {
  227. struct tss_struct *tss;
  228. /*
  229. * make sure the vm86() system call doesn't try to do anything silly
  230. */
  231. info->regs.__null_ds = 0;
  232. info->regs.__null_es = 0;
  233. /* we are clearing fs,gs later just before "jmp resume_userspace",
  234. * because starting with Linux 2.1.x they aren't no longer saved/restored
  235. */
  236. /*
  237. * The eflags register is also special: we cannot trust that the user
  238. * has set it up safely, so this makes sure interrupt etc flags are
  239. * inherited from protected mode.
  240. */
  241. VEFLAGS = info->regs.eflags;
  242. info->regs.eflags &= SAFE_MASK;
  243. info->regs.eflags |= info->regs32->eflags & ~SAFE_MASK;
  244. info->regs.eflags |= VM_MASK;
  245. switch (info->cpu_type) {
  246. case CPU_286:
  247. tsk->thread.v86mask = 0;
  248. break;
  249. case CPU_386:
  250. tsk->thread.v86mask = NT_MASK | IOPL_MASK;
  251. break;
  252. case CPU_486:
  253. tsk->thread.v86mask = AC_MASK | NT_MASK | IOPL_MASK;
  254. break;
  255. default:
  256. tsk->thread.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
  257. break;
  258. }
  259. /*
  260. * Save old state, set default return value (%eax) to 0
  261. */
  262. info->regs32->eax = 0;
  263. tsk->thread.saved_esp0 = tsk->thread.esp0;
  264. savesegment(fs, tsk->thread.saved_fs);
  265. savesegment(gs, tsk->thread.saved_gs);
  266. tss = &per_cpu(init_tss, get_cpu());
  267. tsk->thread.esp0 = (unsigned long) &info->VM86_TSS_ESP0;
  268. if (cpu_has_sep)
  269. tsk->thread.sysenter_cs = 0;
  270. load_esp0(tss, &tsk->thread);
  271. put_cpu();
  272. tsk->thread.screen_bitmap = info->screen_bitmap;
  273. if (info->flags & VM86_SCREEN_BITMAP)
  274. mark_screen_rdonly(tsk);
  275. __asm__ __volatile__(
  276. "xorl %%eax,%%eax; movl %%eax,%%fs; movl %%eax,%%gs\n\t"
  277. "movl %0,%%esp\n\t"
  278. "movl %1,%%ebp\n\t"
  279. "jmp resume_userspace"
  280. : /* no outputs */
  281. :"r" (&info->regs), "r" (tsk->thread_info) : "ax");
  282. /* we never return here */
  283. }
  284. static inline void return_to_32bit(struct kernel_vm86_regs * regs16, int retval)
  285. {
  286. struct pt_regs * regs32;
  287. regs32 = save_v86_state(regs16);
  288. regs32->eax = retval;
  289. __asm__ __volatile__("movl %0,%%esp\n\t"
  290. "movl %1,%%ebp\n\t"
  291. "jmp resume_userspace"
  292. : : "r" (regs32), "r" (current_thread_info()));
  293. }
  294. static inline void set_IF(struct kernel_vm86_regs * regs)
  295. {
  296. VEFLAGS |= VIF_MASK;
  297. if (VEFLAGS & VIP_MASK)
  298. return_to_32bit(regs, VM86_STI);
  299. }
  300. static inline void clear_IF(struct kernel_vm86_regs * regs)
  301. {
  302. VEFLAGS &= ~VIF_MASK;
  303. }
  304. static inline void clear_TF(struct kernel_vm86_regs * regs)
  305. {
  306. regs->eflags &= ~TF_MASK;
  307. }
  308. static inline void clear_AC(struct kernel_vm86_regs * regs)
  309. {
  310. regs->eflags &= ~AC_MASK;
  311. }
  312. /* It is correct to call set_IF(regs) from the set_vflags_*
  313. * functions. However someone forgot to call clear_IF(regs)
  314. * in the opposite case.
  315. * After the command sequence CLI PUSHF STI POPF you should
  316. * end up with interrups disabled, but you ended up with
  317. * interrupts enabled.
  318. * ( I was testing my own changes, but the only bug I
  319. * could find was in a function I had not changed. )
  320. * [KD]
  321. */
  322. static inline void set_vflags_long(unsigned long eflags, struct kernel_vm86_regs * regs)
  323. {
  324. set_flags(VEFLAGS, eflags, current->thread.v86mask);
  325. set_flags(regs->eflags, eflags, SAFE_MASK);
  326. if (eflags & IF_MASK)
  327. set_IF(regs);
  328. else
  329. clear_IF(regs);
  330. }
  331. static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs * regs)
  332. {
  333. set_flags(VFLAGS, flags, current->thread.v86mask);
  334. set_flags(regs->eflags, flags, SAFE_MASK);
  335. if (flags & IF_MASK)
  336. set_IF(regs);
  337. else
  338. clear_IF(regs);
  339. }
  340. static inline unsigned long get_vflags(struct kernel_vm86_regs * regs)
  341. {
  342. unsigned long flags = regs->eflags & RETURN_MASK;
  343. if (VEFLAGS & VIF_MASK)
  344. flags |= IF_MASK;
  345. flags |= IOPL_MASK;
  346. return flags | (VEFLAGS & current->thread.v86mask);
  347. }
  348. static inline int is_revectored(int nr, struct revectored_struct * bitmap)
  349. {
  350. __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
  351. :"=r" (nr)
  352. :"m" (*bitmap),"r" (nr));
  353. return nr;
  354. }
  355. #define val_byte(val, n) (((__u8 *)&val)[n])
  356. #define pushb(base, ptr, val, err_label) \
  357. do { \
  358. __u8 __val = val; \
  359. ptr--; \
  360. if (put_user(__val, base + ptr) < 0) \
  361. goto err_label; \
  362. } while(0)
  363. #define pushw(base, ptr, val, err_label) \
  364. do { \
  365. __u16 __val = val; \
  366. ptr--; \
  367. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  368. goto err_label; \
  369. ptr--; \
  370. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  371. goto err_label; \
  372. } while(0)
  373. #define pushl(base, ptr, val, err_label) \
  374. do { \
  375. __u32 __val = val; \
  376. ptr--; \
  377. if (put_user(val_byte(__val, 3), base + ptr) < 0) \
  378. goto err_label; \
  379. ptr--; \
  380. if (put_user(val_byte(__val, 2), base + ptr) < 0) \
  381. goto err_label; \
  382. ptr--; \
  383. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  384. goto err_label; \
  385. ptr--; \
  386. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  387. goto err_label; \
  388. } while(0)
  389. #define popb(base, ptr, err_label) \
  390. ({ \
  391. __u8 __res; \
  392. if (get_user(__res, base + ptr) < 0) \
  393. goto err_label; \
  394. ptr++; \
  395. __res; \
  396. })
  397. #define popw(base, ptr, err_label) \
  398. ({ \
  399. __u16 __res; \
  400. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  401. goto err_label; \
  402. ptr++; \
  403. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  404. goto err_label; \
  405. ptr++; \
  406. __res; \
  407. })
  408. #define popl(base, ptr, err_label) \
  409. ({ \
  410. __u32 __res; \
  411. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  412. goto err_label; \
  413. ptr++; \
  414. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  415. goto err_label; \
  416. ptr++; \
  417. if (get_user(val_byte(__res, 2), base + ptr) < 0) \
  418. goto err_label; \
  419. ptr++; \
  420. if (get_user(val_byte(__res, 3), base + ptr) < 0) \
  421. goto err_label; \
  422. ptr++; \
  423. __res; \
  424. })
  425. /* There are so many possible reasons for this function to return
  426. * VM86_INTx, so adding another doesn't bother me. We can expect
  427. * userspace programs to be able to handle it. (Getting a problem
  428. * in userspace is always better than an Oops anyway.) [KD]
  429. */
  430. static void do_int(struct kernel_vm86_regs *regs, int i,
  431. unsigned char __user * ssp, unsigned short sp)
  432. {
  433. unsigned long __user *intr_ptr;
  434. unsigned long segoffs;
  435. if (regs->cs == BIOSSEG)
  436. goto cannot_handle;
  437. if (is_revectored(i, &KVM86->int_revectored))
  438. goto cannot_handle;
  439. if (i==0x21 && is_revectored(AH(regs),&KVM86->int21_revectored))
  440. goto cannot_handle;
  441. intr_ptr = (unsigned long __user *) (i << 2);
  442. if (get_user(segoffs, intr_ptr))
  443. goto cannot_handle;
  444. if ((segoffs >> 16) == BIOSSEG)
  445. goto cannot_handle;
  446. pushw(ssp, sp, get_vflags(regs), cannot_handle);
  447. pushw(ssp, sp, regs->cs, cannot_handle);
  448. pushw(ssp, sp, IP(regs), cannot_handle);
  449. regs->cs = segoffs >> 16;
  450. SP(regs) -= 6;
  451. IP(regs) = segoffs & 0xffff;
  452. clear_TF(regs);
  453. clear_IF(regs);
  454. clear_AC(regs);
  455. return;
  456. cannot_handle:
  457. return_to_32bit(regs, VM86_INTx + (i << 8));
  458. }
  459. int handle_vm86_trap(struct kernel_vm86_regs * regs, long error_code, int trapno)
  460. {
  461. if (VMPI.is_vm86pus) {
  462. if ( (trapno==3) || (trapno==1) )
  463. return_to_32bit(regs, VM86_TRAP + (trapno << 8));
  464. do_int(regs, trapno, (unsigned char __user *) (regs->ss << 4), SP(regs));
  465. return 0;
  466. }
  467. if (trapno !=1)
  468. return 1; /* we let this handle by the calling routine */
  469. if (current->ptrace & PT_PTRACED) {
  470. unsigned long flags;
  471. spin_lock_irqsave(&current->sighand->siglock, flags);
  472. sigdelset(&current->blocked, SIGTRAP);
  473. recalc_sigpending();
  474. spin_unlock_irqrestore(&current->sighand->siglock, flags);
  475. }
  476. send_sig(SIGTRAP, current, 1);
  477. current->thread.trap_no = trapno;
  478. current->thread.error_code = error_code;
  479. return 0;
  480. }
  481. void handle_vm86_fault(struct kernel_vm86_regs * regs, long error_code)
  482. {
  483. unsigned char opcode;
  484. unsigned char __user *csp;
  485. unsigned char __user *ssp;
  486. unsigned short ip, sp, orig_flags;
  487. int data32, pref_done;
  488. #define CHECK_IF_IN_TRAP \
  489. if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
  490. newflags |= TF_MASK
  491. #define VM86_FAULT_RETURN do { \
  492. if (VMPI.force_return_for_pic && (VEFLAGS & (IF_MASK | VIF_MASK))) \
  493. return_to_32bit(regs, VM86_PICRETURN); \
  494. if (orig_flags & TF_MASK) \
  495. handle_vm86_trap(regs, 0, 1); \
  496. return; } while (0)
  497. orig_flags = *(unsigned short *)&regs->eflags;
  498. csp = (unsigned char __user *) (regs->cs << 4);
  499. ssp = (unsigned char __user *) (regs->ss << 4);
  500. sp = SP(regs);
  501. ip = IP(regs);
  502. data32 = 0;
  503. pref_done = 0;
  504. do {
  505. switch (opcode = popb(csp, ip, simulate_sigsegv)) {
  506. case 0x66: /* 32-bit data */ data32=1; break;
  507. case 0x67: /* 32-bit address */ break;
  508. case 0x2e: /* CS */ break;
  509. case 0x3e: /* DS */ break;
  510. case 0x26: /* ES */ break;
  511. case 0x36: /* SS */ break;
  512. case 0x65: /* GS */ break;
  513. case 0x64: /* FS */ break;
  514. case 0xf2: /* repnz */ break;
  515. case 0xf3: /* rep */ break;
  516. default: pref_done = 1;
  517. }
  518. } while (!pref_done);
  519. switch (opcode) {
  520. /* pushf */
  521. case 0x9c:
  522. if (data32) {
  523. pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
  524. SP(regs) -= 4;
  525. } else {
  526. pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
  527. SP(regs) -= 2;
  528. }
  529. IP(regs) = ip;
  530. VM86_FAULT_RETURN;
  531. /* popf */
  532. case 0x9d:
  533. {
  534. unsigned long newflags;
  535. if (data32) {
  536. newflags=popl(ssp, sp, simulate_sigsegv);
  537. SP(regs) += 4;
  538. } else {
  539. newflags = popw(ssp, sp, simulate_sigsegv);
  540. SP(regs) += 2;
  541. }
  542. IP(regs) = ip;
  543. CHECK_IF_IN_TRAP;
  544. if (data32) {
  545. set_vflags_long(newflags, regs);
  546. } else {
  547. set_vflags_short(newflags, regs);
  548. }
  549. VM86_FAULT_RETURN;
  550. }
  551. /* int xx */
  552. case 0xcd: {
  553. int intno=popb(csp, ip, simulate_sigsegv);
  554. IP(regs) = ip;
  555. if (VMPI.vm86dbg_active) {
  556. if ( (1 << (intno &7)) & VMPI.vm86dbg_intxxtab[intno >> 3] )
  557. return_to_32bit(regs, VM86_INTx + (intno << 8));
  558. }
  559. do_int(regs, intno, ssp, sp);
  560. return;
  561. }
  562. /* iret */
  563. case 0xcf:
  564. {
  565. unsigned long newip;
  566. unsigned long newcs;
  567. unsigned long newflags;
  568. if (data32) {
  569. newip=popl(ssp, sp, simulate_sigsegv);
  570. newcs=popl(ssp, sp, simulate_sigsegv);
  571. newflags=popl(ssp, sp, simulate_sigsegv);
  572. SP(regs) += 12;
  573. } else {
  574. newip = popw(ssp, sp, simulate_sigsegv);
  575. newcs = popw(ssp, sp, simulate_sigsegv);
  576. newflags = popw(ssp, sp, simulate_sigsegv);
  577. SP(regs) += 6;
  578. }
  579. IP(regs) = newip;
  580. regs->cs = newcs;
  581. CHECK_IF_IN_TRAP;
  582. if (data32) {
  583. set_vflags_long(newflags, regs);
  584. } else {
  585. set_vflags_short(newflags, regs);
  586. }
  587. VM86_FAULT_RETURN;
  588. }
  589. /* cli */
  590. case 0xfa:
  591. IP(regs) = ip;
  592. clear_IF(regs);
  593. VM86_FAULT_RETURN;
  594. /* sti */
  595. /*
  596. * Damn. This is incorrect: the 'sti' instruction should actually
  597. * enable interrupts after the /next/ instruction. Not good.
  598. *
  599. * Probably needs some horsing around with the TF flag. Aiee..
  600. */
  601. case 0xfb:
  602. IP(regs) = ip;
  603. set_IF(regs);
  604. VM86_FAULT_RETURN;
  605. default:
  606. return_to_32bit(regs, VM86_UNKNOWN);
  607. }
  608. return;
  609. simulate_sigsegv:
  610. /* FIXME: After a long discussion with Stas we finally
  611. * agreed, that this is wrong. Here we should
  612. * really send a SIGSEGV to the user program.
  613. * But how do we create the correct context? We
  614. * are inside a general protection fault handler
  615. * and has just returned from a page fault handler.
  616. * The correct context for the signal handler
  617. * should be a mixture of the two, but how do we
  618. * get the information? [KD]
  619. */
  620. return_to_32bit(regs, VM86_UNKNOWN);
  621. }
  622. /* ---------------- vm86 special IRQ passing stuff ----------------- */
  623. #define VM86_IRQNAME "vm86irq"
  624. static struct vm86_irqs {
  625. struct task_struct *tsk;
  626. int sig;
  627. } vm86_irqs[16];
  628. static DEFINE_SPINLOCK(irqbits_lock);
  629. static int irqbits;
  630. #define ALLOWED_SIGS ( 1 /* 0 = don't send a signal */ \
  631. | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
  632. | (1 << SIGUNUSED) )
  633. static irqreturn_t irq_handler(int intno, void *dev_id, struct pt_regs * regs)
  634. {
  635. int irq_bit;
  636. unsigned long flags;
  637. spin_lock_irqsave(&irqbits_lock, flags);
  638. irq_bit = 1 << intno;
  639. if ((irqbits & irq_bit) || ! vm86_irqs[intno].tsk)
  640. goto out;
  641. irqbits |= irq_bit;
  642. if (vm86_irqs[intno].sig)
  643. send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
  644. /*
  645. * IRQ will be re-enabled when user asks for the irq (whether
  646. * polling or as a result of the signal)
  647. */
  648. disable_irq_nosync(intno);
  649. spin_unlock_irqrestore(&irqbits_lock, flags);
  650. return IRQ_HANDLED;
  651. out:
  652. spin_unlock_irqrestore(&irqbits_lock, flags);
  653. return IRQ_NONE;
  654. }
  655. static inline void free_vm86_irq(int irqnumber)
  656. {
  657. unsigned long flags;
  658. free_irq(irqnumber, NULL);
  659. vm86_irqs[irqnumber].tsk = NULL;
  660. spin_lock_irqsave(&irqbits_lock, flags);
  661. irqbits &= ~(1 << irqnumber);
  662. spin_unlock_irqrestore(&irqbits_lock, flags);
  663. }
  664. void release_vm86_irqs(struct task_struct *task)
  665. {
  666. int i;
  667. for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
  668. if (vm86_irqs[i].tsk == task)
  669. free_vm86_irq(i);
  670. }
  671. static inline int get_and_reset_irq(int irqnumber)
  672. {
  673. int bit;
  674. unsigned long flags;
  675. int ret = 0;
  676. if (invalid_vm86_irq(irqnumber)) return 0;
  677. if (vm86_irqs[irqnumber].tsk != current) return 0;
  678. spin_lock_irqsave(&irqbits_lock, flags);
  679. bit = irqbits & (1 << irqnumber);
  680. irqbits &= ~bit;
  681. if (bit) {
  682. enable_irq(irqnumber);
  683. ret = 1;
  684. }
  685. spin_unlock_irqrestore(&irqbits_lock, flags);
  686. return ret;
  687. }
  688. static int do_vm86_irq_handling(int subfunction, int irqnumber)
  689. {
  690. int ret;
  691. switch (subfunction) {
  692. case VM86_GET_AND_RESET_IRQ: {
  693. return get_and_reset_irq(irqnumber);
  694. }
  695. case VM86_GET_IRQ_BITS: {
  696. return irqbits;
  697. }
  698. case VM86_REQUEST_IRQ: {
  699. int sig = irqnumber >> 8;
  700. int irq = irqnumber & 255;
  701. if (!capable(CAP_SYS_ADMIN)) return -EPERM;
  702. if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
  703. if (invalid_vm86_irq(irq)) return -EPERM;
  704. if (vm86_irqs[irq].tsk) return -EPERM;
  705. ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
  706. if (ret) return ret;
  707. vm86_irqs[irq].sig = sig;
  708. vm86_irqs[irq].tsk = current;
  709. return irq;
  710. }
  711. case VM86_FREE_IRQ: {
  712. if (invalid_vm86_irq(irqnumber)) return -EPERM;
  713. if (!vm86_irqs[irqnumber].tsk) return 0;
  714. if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
  715. free_vm86_irq(irqnumber);
  716. return 0;
  717. }
  718. }
  719. return -EINVAL;
  720. }