efi.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637
  1. /*
  2. * Extensible Firmware Interface
  3. *
  4. * Based on Extensible Firmware Interface Specification version 1.0
  5. *
  6. * Copyright (C) 1999 VA Linux Systems
  7. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  8. * Copyright (C) 1999-2002 Hewlett-Packard Co.
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. * Stephane Eranian <eranian@hpl.hp.com>
  11. *
  12. * All EFI Runtime Services are not implemented yet as EFI only
  13. * supports physical mode addressing on SoftSDV. This is to be fixed
  14. * in a future version. --drummond 1999-07-20
  15. *
  16. * Implemented EFI runtime services and virtual mode calls. --davidm
  17. *
  18. * Goutham Rao: <goutham.rao@intel.com>
  19. * Skip non-WB memory and ignore empty memory ranges.
  20. */
  21. #include <linux/config.h>
  22. #include <linux/kernel.h>
  23. #include <linux/init.h>
  24. #include <linux/mm.h>
  25. #include <linux/types.h>
  26. #include <linux/time.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/ioport.h>
  30. #include <linux/module.h>
  31. #include <linux/efi.h>
  32. #include <linux/kexec.h>
  33. #include <asm/setup.h>
  34. #include <asm/io.h>
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/processor.h>
  38. #include <asm/desc.h>
  39. #include <asm/tlbflush.h>
  40. #define EFI_DEBUG 0
  41. #define PFX "EFI: "
  42. extern efi_status_t asmlinkage efi_call_phys(void *, ...);
  43. struct efi efi;
  44. EXPORT_SYMBOL(efi);
  45. static struct efi efi_phys;
  46. struct efi_memory_map memmap;
  47. /*
  48. * We require an early boot_ioremap mapping mechanism initially
  49. */
  50. extern void * boot_ioremap(unsigned long, unsigned long);
  51. /*
  52. * To make EFI call EFI runtime service in physical addressing mode we need
  53. * prelog/epilog before/after the invocation to disable interrupt, to
  54. * claim EFI runtime service handler exclusively and to duplicate a memory in
  55. * low memory space say 0 - 3G.
  56. */
  57. static unsigned long efi_rt_eflags;
  58. static DEFINE_SPINLOCK(efi_rt_lock);
  59. static pgd_t efi_bak_pg_dir_pointer[2];
  60. static void efi_call_phys_prelog(void)
  61. {
  62. unsigned long cr4;
  63. unsigned long temp;
  64. spin_lock(&efi_rt_lock);
  65. local_irq_save(efi_rt_eflags);
  66. /*
  67. * If I don't have PSE, I should just duplicate two entries in page
  68. * directory. If I have PSE, I just need to duplicate one entry in
  69. * page directory.
  70. */
  71. cr4 = read_cr4();
  72. if (cr4 & X86_CR4_PSE) {
  73. efi_bak_pg_dir_pointer[0].pgd =
  74. swapper_pg_dir[pgd_index(0)].pgd;
  75. swapper_pg_dir[0].pgd =
  76. swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
  77. } else {
  78. efi_bak_pg_dir_pointer[0].pgd =
  79. swapper_pg_dir[pgd_index(0)].pgd;
  80. efi_bak_pg_dir_pointer[1].pgd =
  81. swapper_pg_dir[pgd_index(0x400000)].pgd;
  82. swapper_pg_dir[pgd_index(0)].pgd =
  83. swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
  84. temp = PAGE_OFFSET + 0x400000;
  85. swapper_pg_dir[pgd_index(0x400000)].pgd =
  86. swapper_pg_dir[pgd_index(temp)].pgd;
  87. }
  88. /*
  89. * After the lock is released, the original page table is restored.
  90. */
  91. local_flush_tlb();
  92. cpu_gdt_descr[0].address = __pa(cpu_gdt_descr[0].address);
  93. load_gdt((struct Xgt_desc_struct *) __pa(&cpu_gdt_descr[0]));
  94. }
  95. static void efi_call_phys_epilog(void)
  96. {
  97. unsigned long cr4;
  98. cpu_gdt_descr[0].address =
  99. (unsigned long) __va(cpu_gdt_descr[0].address);
  100. load_gdt(&cpu_gdt_descr[0]);
  101. cr4 = read_cr4();
  102. if (cr4 & X86_CR4_PSE) {
  103. swapper_pg_dir[pgd_index(0)].pgd =
  104. efi_bak_pg_dir_pointer[0].pgd;
  105. } else {
  106. swapper_pg_dir[pgd_index(0)].pgd =
  107. efi_bak_pg_dir_pointer[0].pgd;
  108. swapper_pg_dir[pgd_index(0x400000)].pgd =
  109. efi_bak_pg_dir_pointer[1].pgd;
  110. }
  111. /*
  112. * After the lock is released, the original page table is restored.
  113. */
  114. local_flush_tlb();
  115. local_irq_restore(efi_rt_eflags);
  116. spin_unlock(&efi_rt_lock);
  117. }
  118. static efi_status_t
  119. phys_efi_set_virtual_address_map(unsigned long memory_map_size,
  120. unsigned long descriptor_size,
  121. u32 descriptor_version,
  122. efi_memory_desc_t *virtual_map)
  123. {
  124. efi_status_t status;
  125. efi_call_phys_prelog();
  126. status = efi_call_phys(efi_phys.set_virtual_address_map,
  127. memory_map_size, descriptor_size,
  128. descriptor_version, virtual_map);
  129. efi_call_phys_epilog();
  130. return status;
  131. }
  132. static efi_status_t
  133. phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
  134. {
  135. efi_status_t status;
  136. efi_call_phys_prelog();
  137. status = efi_call_phys(efi_phys.get_time, tm, tc);
  138. efi_call_phys_epilog();
  139. return status;
  140. }
  141. inline int efi_set_rtc_mmss(unsigned long nowtime)
  142. {
  143. int real_seconds, real_minutes;
  144. efi_status_t status;
  145. efi_time_t eft;
  146. efi_time_cap_t cap;
  147. spin_lock(&efi_rt_lock);
  148. status = efi.get_time(&eft, &cap);
  149. spin_unlock(&efi_rt_lock);
  150. if (status != EFI_SUCCESS)
  151. panic("Ooops, efitime: can't read time!\n");
  152. real_seconds = nowtime % 60;
  153. real_minutes = nowtime / 60;
  154. if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
  155. real_minutes += 30;
  156. real_minutes %= 60;
  157. eft.minute = real_minutes;
  158. eft.second = real_seconds;
  159. if (status != EFI_SUCCESS) {
  160. printk("Ooops: efitime: can't read time!\n");
  161. return -1;
  162. }
  163. return 0;
  164. }
  165. /*
  166. * This should only be used during kernel init and before runtime
  167. * services have been remapped, therefore, we'll need to call in physical
  168. * mode. Note, this call isn't used later, so mark it __init.
  169. */
  170. inline unsigned long __init efi_get_time(void)
  171. {
  172. efi_status_t status;
  173. efi_time_t eft;
  174. efi_time_cap_t cap;
  175. status = phys_efi_get_time(&eft, &cap);
  176. if (status != EFI_SUCCESS)
  177. printk("Oops: efitime: can't read time status: 0x%lx\n",status);
  178. return mktime(eft.year, eft.month, eft.day, eft.hour,
  179. eft.minute, eft.second);
  180. }
  181. int is_available_memory(efi_memory_desc_t * md)
  182. {
  183. if (!(md->attribute & EFI_MEMORY_WB))
  184. return 0;
  185. switch (md->type) {
  186. case EFI_LOADER_CODE:
  187. case EFI_LOADER_DATA:
  188. case EFI_BOOT_SERVICES_CODE:
  189. case EFI_BOOT_SERVICES_DATA:
  190. case EFI_CONVENTIONAL_MEMORY:
  191. return 1;
  192. }
  193. return 0;
  194. }
  195. /*
  196. * We need to map the EFI memory map again after paging_init().
  197. */
  198. void __init efi_map_memmap(void)
  199. {
  200. memmap.map = NULL;
  201. memmap.map = bt_ioremap((unsigned long) memmap.phys_map,
  202. (memmap.nr_map * memmap.desc_size));
  203. if (memmap.map == NULL)
  204. printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");
  205. memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
  206. }
  207. #if EFI_DEBUG
  208. static void __init print_efi_memmap(void)
  209. {
  210. efi_memory_desc_t *md;
  211. void *p;
  212. int i;
  213. for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
  214. md = p;
  215. printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
  216. "range=[0x%016llx-0x%016llx) (%lluMB)\n",
  217. i, md->type, md->attribute, md->phys_addr,
  218. md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
  219. (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
  220. }
  221. }
  222. #endif /* EFI_DEBUG */
  223. /*
  224. * Walks the EFI memory map and calls CALLBACK once for each EFI
  225. * memory descriptor that has memory that is available for kernel use.
  226. */
  227. void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
  228. {
  229. int prev_valid = 0;
  230. struct range {
  231. unsigned long start;
  232. unsigned long end;
  233. } prev, curr;
  234. efi_memory_desc_t *md;
  235. unsigned long start, end;
  236. void *p;
  237. for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
  238. md = p;
  239. if ((md->num_pages == 0) || (!is_available_memory(md)))
  240. continue;
  241. curr.start = md->phys_addr;
  242. curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
  243. if (!prev_valid) {
  244. prev = curr;
  245. prev_valid = 1;
  246. } else {
  247. if (curr.start < prev.start)
  248. printk(KERN_INFO PFX "Unordered memory map\n");
  249. if (prev.end == curr.start)
  250. prev.end = curr.end;
  251. else {
  252. start =
  253. (unsigned long) (PAGE_ALIGN(prev.start));
  254. end = (unsigned long) (prev.end & PAGE_MASK);
  255. if ((end > start)
  256. && (*callback) (start, end, arg) < 0)
  257. return;
  258. prev = curr;
  259. }
  260. }
  261. }
  262. if (prev_valid) {
  263. start = (unsigned long) PAGE_ALIGN(prev.start);
  264. end = (unsigned long) (prev.end & PAGE_MASK);
  265. if (end > start)
  266. (*callback) (start, end, arg);
  267. }
  268. }
  269. void __init efi_init(void)
  270. {
  271. efi_config_table_t *config_tables;
  272. efi_runtime_services_t *runtime;
  273. efi_char16_t *c16;
  274. char vendor[100] = "unknown";
  275. unsigned long num_config_tables;
  276. int i = 0;
  277. memset(&efi, 0, sizeof(efi) );
  278. memset(&efi_phys, 0, sizeof(efi_phys));
  279. efi_phys.systab = EFI_SYSTAB;
  280. memmap.phys_map = EFI_MEMMAP;
  281. memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE;
  282. memmap.desc_version = EFI_MEMDESC_VERSION;
  283. memmap.desc_size = EFI_MEMDESC_SIZE;
  284. efi.systab = (efi_system_table_t *)
  285. boot_ioremap((unsigned long) efi_phys.systab,
  286. sizeof(efi_system_table_t));
  287. /*
  288. * Verify the EFI Table
  289. */
  290. if (efi.systab == NULL)
  291. printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
  292. if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
  293. printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
  294. if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
  295. printk(KERN_ERR PFX
  296. "Warning: EFI system table major version mismatch: "
  297. "got %d.%02d, expected %d.%02d\n",
  298. efi.systab->hdr.revision >> 16,
  299. efi.systab->hdr.revision & 0xffff,
  300. EFI_SYSTEM_TABLE_REVISION >> 16,
  301. EFI_SYSTEM_TABLE_REVISION & 0xffff);
  302. /*
  303. * Grab some details from the system table
  304. */
  305. num_config_tables = efi.systab->nr_tables;
  306. config_tables = (efi_config_table_t *)efi.systab->tables;
  307. runtime = efi.systab->runtime;
  308. /*
  309. * Show what we know for posterity
  310. */
  311. c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
  312. if (c16) {
  313. for (i = 0; i < sizeof(vendor) && *c16; ++i)
  314. vendor[i] = *c16++;
  315. vendor[i] = '\0';
  316. } else
  317. printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
  318. printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
  319. efi.systab->hdr.revision >> 16,
  320. efi.systab->hdr.revision & 0xffff, vendor);
  321. /*
  322. * Let's see what config tables the firmware passed to us.
  323. */
  324. config_tables = (efi_config_table_t *)
  325. boot_ioremap((unsigned long) config_tables,
  326. num_config_tables * sizeof(efi_config_table_t));
  327. if (config_tables == NULL)
  328. printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
  329. for (i = 0; i < num_config_tables; i++) {
  330. if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
  331. efi.mps = (void *)config_tables[i].table;
  332. printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
  333. } else
  334. if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
  335. efi.acpi20 = __va(config_tables[i].table);
  336. printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
  337. } else
  338. if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
  339. efi.acpi = __va(config_tables[i].table);
  340. printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
  341. } else
  342. if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
  343. efi.smbios = (void *) config_tables[i].table;
  344. printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
  345. } else
  346. if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
  347. efi.hcdp = (void *)config_tables[i].table;
  348. printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
  349. } else
  350. if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
  351. efi.uga = (void *)config_tables[i].table;
  352. printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
  353. }
  354. }
  355. printk("\n");
  356. /*
  357. * Check out the runtime services table. We need to map
  358. * the runtime services table so that we can grab the physical
  359. * address of several of the EFI runtime functions, needed to
  360. * set the firmware into virtual mode.
  361. */
  362. runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
  363. runtime,
  364. sizeof(efi_runtime_services_t));
  365. if (runtime != NULL) {
  366. /*
  367. * We will only need *early* access to the following
  368. * two EFI runtime services before set_virtual_address_map
  369. * is invoked.
  370. */
  371. efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
  372. efi_phys.set_virtual_address_map =
  373. (efi_set_virtual_address_map_t *)
  374. runtime->set_virtual_address_map;
  375. } else
  376. printk(KERN_ERR PFX "Could not map the runtime service table!\n");
  377. /* Map the EFI memory map for use until paging_init() */
  378. memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE);
  379. if (memmap.map == NULL)
  380. printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
  381. memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
  382. #if EFI_DEBUG
  383. print_efi_memmap();
  384. #endif
  385. }
  386. static inline void __init check_range_for_systab(efi_memory_desc_t *md)
  387. {
  388. if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
  389. ((unsigned long)efi_phys.systab < md->phys_addr +
  390. ((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
  391. unsigned long addr;
  392. addr = md->virt_addr - md->phys_addr +
  393. (unsigned long)efi_phys.systab;
  394. efi.systab = (efi_system_table_t *)addr;
  395. }
  396. }
  397. /*
  398. * This function will switch the EFI runtime services to virtual mode.
  399. * Essentially, look through the EFI memmap and map every region that
  400. * has the runtime attribute bit set in its memory descriptor and update
  401. * that memory descriptor with the virtual address obtained from ioremap().
  402. * This enables the runtime services to be called without having to
  403. * thunk back into physical mode for every invocation.
  404. */
  405. void __init efi_enter_virtual_mode(void)
  406. {
  407. efi_memory_desc_t *md;
  408. efi_status_t status;
  409. void *p;
  410. efi.systab = NULL;
  411. for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
  412. md = p;
  413. if (!(md->attribute & EFI_MEMORY_RUNTIME))
  414. continue;
  415. md->virt_addr = (unsigned long)ioremap(md->phys_addr,
  416. md->num_pages << EFI_PAGE_SHIFT);
  417. if (!(unsigned long)md->virt_addr) {
  418. printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
  419. (unsigned long)md->phys_addr);
  420. }
  421. /* update the virtual address of the EFI system table */
  422. check_range_for_systab(md);
  423. }
  424. if (!efi.systab)
  425. BUG();
  426. status = phys_efi_set_virtual_address_map(
  427. memmap.desc_size * memmap.nr_map,
  428. memmap.desc_size,
  429. memmap.desc_version,
  430. memmap.phys_map);
  431. if (status != EFI_SUCCESS) {
  432. printk (KERN_ALERT "You are screwed! "
  433. "Unable to switch EFI into virtual mode "
  434. "(status=%lx)\n", status);
  435. panic("EFI call to SetVirtualAddressMap() failed!");
  436. }
  437. /*
  438. * Now that EFI is in virtual mode, update the function
  439. * pointers in the runtime service table to the new virtual addresses.
  440. */
  441. efi.get_time = (efi_get_time_t *) efi.systab->runtime->get_time;
  442. efi.set_time = (efi_set_time_t *) efi.systab->runtime->set_time;
  443. efi.get_wakeup_time = (efi_get_wakeup_time_t *)
  444. efi.systab->runtime->get_wakeup_time;
  445. efi.set_wakeup_time = (efi_set_wakeup_time_t *)
  446. efi.systab->runtime->set_wakeup_time;
  447. efi.get_variable = (efi_get_variable_t *)
  448. efi.systab->runtime->get_variable;
  449. efi.get_next_variable = (efi_get_next_variable_t *)
  450. efi.systab->runtime->get_next_variable;
  451. efi.set_variable = (efi_set_variable_t *)
  452. efi.systab->runtime->set_variable;
  453. efi.get_next_high_mono_count = (efi_get_next_high_mono_count_t *)
  454. efi.systab->runtime->get_next_high_mono_count;
  455. efi.reset_system = (efi_reset_system_t *)
  456. efi.systab->runtime->reset_system;
  457. }
  458. void __init
  459. efi_initialize_iomem_resources(struct resource *code_resource,
  460. struct resource *data_resource)
  461. {
  462. struct resource *res;
  463. efi_memory_desc_t *md;
  464. void *p;
  465. for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
  466. md = p;
  467. if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
  468. 0x100000000ULL)
  469. continue;
  470. res = alloc_bootmem_low(sizeof(struct resource));
  471. switch (md->type) {
  472. case EFI_RESERVED_TYPE:
  473. res->name = "Reserved Memory";
  474. break;
  475. case EFI_LOADER_CODE:
  476. res->name = "Loader Code";
  477. break;
  478. case EFI_LOADER_DATA:
  479. res->name = "Loader Data";
  480. break;
  481. case EFI_BOOT_SERVICES_DATA:
  482. res->name = "BootServices Data";
  483. break;
  484. case EFI_BOOT_SERVICES_CODE:
  485. res->name = "BootServices Code";
  486. break;
  487. case EFI_RUNTIME_SERVICES_CODE:
  488. res->name = "Runtime Service Code";
  489. break;
  490. case EFI_RUNTIME_SERVICES_DATA:
  491. res->name = "Runtime Service Data";
  492. break;
  493. case EFI_CONVENTIONAL_MEMORY:
  494. res->name = "Conventional Memory";
  495. break;
  496. case EFI_UNUSABLE_MEMORY:
  497. res->name = "Unusable Memory";
  498. break;
  499. case EFI_ACPI_RECLAIM_MEMORY:
  500. res->name = "ACPI Reclaim";
  501. break;
  502. case EFI_ACPI_MEMORY_NVS:
  503. res->name = "ACPI NVS";
  504. break;
  505. case EFI_MEMORY_MAPPED_IO:
  506. res->name = "Memory Mapped IO";
  507. break;
  508. case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
  509. res->name = "Memory Mapped IO Port Space";
  510. break;
  511. default:
  512. res->name = "Reserved";
  513. break;
  514. }
  515. res->start = md->phys_addr;
  516. res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
  517. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  518. if (request_resource(&iomem_resource, res) < 0)
  519. printk(KERN_ERR PFX "Failed to allocate res %s : 0x%lx-0x%lx\n",
  520. res->name, res->start, res->end);
  521. /*
  522. * We don't know which region contains kernel data so we try
  523. * it repeatedly and let the resource manager test it.
  524. */
  525. if (md->type == EFI_CONVENTIONAL_MEMORY) {
  526. request_resource(res, code_resource);
  527. request_resource(res, data_resource);
  528. #ifdef CONFIG_KEXEC
  529. request_resource(res, &crashk_res);
  530. #endif
  531. }
  532. }
  533. }
  534. /*
  535. * Convenience functions to obtain memory types and attributes
  536. */
  537. u32 efi_mem_type(unsigned long phys_addr)
  538. {
  539. efi_memory_desc_t *md;
  540. void *p;
  541. for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
  542. md = p;
  543. if ((md->phys_addr <= phys_addr) && (phys_addr <
  544. (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
  545. return md->type;
  546. }
  547. return 0;
  548. }
  549. u64 efi_mem_attributes(unsigned long phys_addr)
  550. {
  551. efi_memory_desc_t *md;
  552. void *p;
  553. for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
  554. md = p;
  555. if ((md->phys_addr <= phys_addr) && (phys_addr <
  556. (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
  557. return md->attribute;
  558. }
  559. return 0;
  560. }