1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234 |
- /*
- * linux/arch/arm/vfp/vfpsingle.c
- *
- * This code is derived in part from John R. Housers softfloat library, which
- * carries the following notice:
- *
- * ===========================================================================
- * This C source file is part of the SoftFloat IEC/IEEE Floating-point
- * Arithmetic Package, Release 2.
- *
- * Written by John R. Hauser. This work was made possible in part by the
- * International Computer Science Institute, located at Suite 600, 1947 Center
- * Street, Berkeley, California 94704. Funding was partially provided by the
- * National Science Foundation under grant MIP-9311980. The original version
- * of this code was written as part of a project to build a fixed-point vector
- * processor in collaboration with the University of California at Berkeley,
- * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
- * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
- * arithmetic/softfloat.html'.
- *
- * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
- * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
- * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
- * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
- * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
- *
- * Derivative works are acceptable, even for commercial purposes, so long as
- * (1) they include prominent notice that the work is derivative, and (2) they
- * include prominent notice akin to these three paragraphs for those parts of
- * this code that are retained.
- * ===========================================================================
- */
- #include <linux/kernel.h>
- #include <linux/bitops.h>
- #include <asm/div64.h>
- #include <asm/ptrace.h>
- #include <asm/vfp.h>
- #include "vfpinstr.h"
- #include "vfp.h"
- static struct vfp_single vfp_single_default_qnan = {
- .exponent = 255,
- .sign = 0,
- .significand = VFP_SINGLE_SIGNIFICAND_QNAN,
- };
- static void vfp_single_dump(const char *str, struct vfp_single *s)
- {
- pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
- str, s->sign != 0, s->exponent, s->significand);
- }
- static void vfp_single_normalise_denormal(struct vfp_single *vs)
- {
- int bits = 31 - fls(vs->significand);
- vfp_single_dump("normalise_denormal: in", vs);
- if (bits) {
- vs->exponent -= bits - 1;
- vs->significand <<= bits;
- }
- vfp_single_dump("normalise_denormal: out", vs);
- }
- #ifndef DEBUG
- #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
- u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
- #else
- u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
- #endif
- {
- u32 significand, incr, rmode;
- int exponent, shift, underflow;
- vfp_single_dump("pack: in", vs);
- /*
- * Infinities and NaNs are a special case.
- */
- if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
- goto pack;
- /*
- * Special-case zero.
- */
- if (vs->significand == 0) {
- vs->exponent = 0;
- goto pack;
- }
- exponent = vs->exponent;
- significand = vs->significand;
- /*
- * Normalise first. Note that we shift the significand up to
- * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
- * significant bit.
- */
- shift = 32 - fls(significand);
- if (shift < 32 && shift) {
- exponent -= shift;
- significand <<= shift;
- }
- #ifdef DEBUG
- vs->exponent = exponent;
- vs->significand = significand;
- vfp_single_dump("pack: normalised", vs);
- #endif
- /*
- * Tiny number?
- */
- underflow = exponent < 0;
- if (underflow) {
- significand = vfp_shiftright32jamming(significand, -exponent);
- exponent = 0;
- #ifdef DEBUG
- vs->exponent = exponent;
- vs->significand = significand;
- vfp_single_dump("pack: tiny number", vs);
- #endif
- if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
- underflow = 0;
- }
- /*
- * Select rounding increment.
- */
- incr = 0;
- rmode = fpscr & FPSCR_RMODE_MASK;
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 1 << VFP_SINGLE_LOW_BITS;
- if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
- incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
- pr_debug("VFP: rounding increment = 0x%08x\n", incr);
- /*
- * Is our rounding going to overflow?
- */
- if ((significand + incr) < significand) {
- exponent += 1;
- significand = (significand >> 1) | (significand & 1);
- incr >>= 1;
- #ifdef DEBUG
- vs->exponent = exponent;
- vs->significand = significand;
- vfp_single_dump("pack: overflow", vs);
- #endif
- }
- /*
- * If any of the low bits (which will be shifted out of the
- * number) are non-zero, the result is inexact.
- */
- if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
- exceptions |= FPSCR_IXC;
- /*
- * Do our rounding.
- */
- significand += incr;
- /*
- * Infinity?
- */
- if (exponent >= 254) {
- exceptions |= FPSCR_OFC | FPSCR_IXC;
- if (incr == 0) {
- vs->exponent = 253;
- vs->significand = 0x7fffffff;
- } else {
- vs->exponent = 255; /* infinity */
- vs->significand = 0;
- }
- } else {
- if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
- exponent = 0;
- if (exponent || significand > 0x80000000)
- underflow = 0;
- if (underflow)
- exceptions |= FPSCR_UFC;
- vs->exponent = exponent;
- vs->significand = significand >> 1;
- }
- pack:
- vfp_single_dump("pack: final", vs);
- {
- s32 d = vfp_single_pack(vs);
- pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
- sd, d, exceptions);
- vfp_put_float(sd, d);
- }
- return exceptions & ~VFP_NAN_FLAG;
- }
- /*
- * Propagate the NaN, setting exceptions if it is signalling.
- * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
- */
- static u32
- vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
- struct vfp_single *vsm, u32 fpscr)
- {
- struct vfp_single *nan;
- int tn, tm = 0;
- tn = vfp_single_type(vsn);
- if (vsm)
- tm = vfp_single_type(vsm);
- if (fpscr & FPSCR_DEFAULT_NAN)
- /*
- * Default NaN mode - always returns a quiet NaN
- */
- nan = &vfp_single_default_qnan;
- else {
- /*
- * Contemporary mode - select the first signalling
- * NAN, or if neither are signalling, the first
- * quiet NAN.
- */
- if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
- nan = vsn;
- else
- nan = vsm;
- /*
- * Make the NaN quiet.
- */
- nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
- }
- *vsd = *nan;
- /*
- * If one was a signalling NAN, raise invalid operation.
- */
- return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
- }
- /*
- * Extended operations
- */
- static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
- {
- vfp_put_float(sd, vfp_single_packed_abs(m));
- return 0;
- }
- static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
- {
- vfp_put_float(sd, m);
- return 0;
- }
- static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
- {
- vfp_put_float(sd, vfp_single_packed_negate(m));
- return 0;
- }
- static const u16 sqrt_oddadjust[] = {
- 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
- 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
- };
- static const u16 sqrt_evenadjust[] = {
- 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
- 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
- };
- u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
- {
- int index;
- u32 z, a;
- if ((significand & 0xc0000000) != 0x40000000) {
- printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n");
- }
- a = significand << 1;
- index = (a >> 27) & 15;
- if (exponent & 1) {
- z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
- z = ((a / z) << 14) + (z << 15);
- a >>= 1;
- } else {
- z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
- z = a / z + z;
- z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
- if (z <= a)
- return (s32)a >> 1;
- }
- {
- u64 v = (u64)a << 31;
- do_div(v, z);
- return v + (z >> 1);
- }
- }
- static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
- {
- struct vfp_single vsm, vsd;
- int ret, tm;
- vfp_single_unpack(&vsm, m);
- tm = vfp_single_type(&vsm);
- if (tm & (VFP_NAN|VFP_INFINITY)) {
- struct vfp_single *vsp = &vsd;
- if (tm & VFP_NAN)
- ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
- else if (vsm.sign == 0) {
- sqrt_copy:
- vsp = &vsm;
- ret = 0;
- } else {
- sqrt_invalid:
- vsp = &vfp_single_default_qnan;
- ret = FPSCR_IOC;
- }
- vfp_put_float(sd, vfp_single_pack(vsp));
- return ret;
- }
- /*
- * sqrt(+/- 0) == +/- 0
- */
- if (tm & VFP_ZERO)
- goto sqrt_copy;
- /*
- * Normalise a denormalised number
- */
- if (tm & VFP_DENORMAL)
- vfp_single_normalise_denormal(&vsm);
- /*
- * sqrt(<0) = invalid
- */
- if (vsm.sign)
- goto sqrt_invalid;
- vfp_single_dump("sqrt", &vsm);
- /*
- * Estimate the square root.
- */
- vsd.sign = 0;
- vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
- vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
- vfp_single_dump("sqrt estimate", &vsd);
- /*
- * And now adjust.
- */
- if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
- if (vsd.significand < 2) {
- vsd.significand = 0xffffffff;
- } else {
- u64 term;
- s64 rem;
- vsm.significand <<= !(vsm.exponent & 1);
- term = (u64)vsd.significand * vsd.significand;
- rem = ((u64)vsm.significand << 32) - term;
- pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
- while (rem < 0) {
- vsd.significand -= 1;
- rem += ((u64)vsd.significand << 1) | 1;
- }
- vsd.significand |= rem != 0;
- }
- }
- vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
- return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
- }
- /*
- * Equal := ZC
- * Less than := N
- * Greater than := C
- * Unordered := CV
- */
- static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
- {
- s32 d;
- u32 ret = 0;
- d = vfp_get_float(sd);
- if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
- ret |= FPSCR_C | FPSCR_V;
- if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
- /*
- * Signalling NaN, or signalling on quiet NaN
- */
- ret |= FPSCR_IOC;
- }
- if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
- ret |= FPSCR_C | FPSCR_V;
- if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
- /*
- * Signalling NaN, or signalling on quiet NaN
- */
- ret |= FPSCR_IOC;
- }
- if (ret == 0) {
- if (d == m || vfp_single_packed_abs(d | m) == 0) {
- /*
- * equal
- */
- ret |= FPSCR_Z | FPSCR_C;
- } else if (vfp_single_packed_sign(d ^ m)) {
- /*
- * different signs
- */
- if (vfp_single_packed_sign(d))
- /*
- * d is negative, so d < m
- */
- ret |= FPSCR_N;
- else
- /*
- * d is positive, so d > m
- */
- ret |= FPSCR_C;
- } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
- /*
- * d < m
- */
- ret |= FPSCR_N;
- } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
- /*
- * d > m
- */
- ret |= FPSCR_C;
- }
- }
- return ret;
- }
- static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
- {
- return vfp_compare(sd, 0, m, fpscr);
- }
- static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
- {
- return vfp_compare(sd, 1, m, fpscr);
- }
- static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
- {
- return vfp_compare(sd, 0, 0, fpscr);
- }
- static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
- {
- return vfp_compare(sd, 1, 0, fpscr);
- }
- static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
- {
- struct vfp_single vsm;
- struct vfp_double vdd;
- int tm;
- u32 exceptions = 0;
- vfp_single_unpack(&vsm, m);
- tm = vfp_single_type(&vsm);
- /*
- * If we have a signalling NaN, signal invalid operation.
- */
- if (tm == VFP_SNAN)
- exceptions = FPSCR_IOC;
- if (tm & VFP_DENORMAL)
- vfp_single_normalise_denormal(&vsm);
- vdd.sign = vsm.sign;
- vdd.significand = (u64)vsm.significand << 32;
- /*
- * If we have an infinity or NaN, the exponent must be 2047.
- */
- if (tm & (VFP_INFINITY|VFP_NAN)) {
- vdd.exponent = 2047;
- if (tm & VFP_NAN)
- vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
- goto pack_nan;
- } else if (tm & VFP_ZERO)
- vdd.exponent = 0;
- else
- vdd.exponent = vsm.exponent + (1023 - 127);
- /*
- * Technically, if bit 0 of dd is set, this is an invalid
- * instruction. However, we ignore this for efficiency.
- */
- return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
- pack_nan:
- vfp_put_double(dd, vfp_double_pack(&vdd));
- return exceptions;
- }
- static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
- {
- struct vfp_single vs;
- vs.sign = 0;
- vs.exponent = 127 + 31 - 1;
- vs.significand = (u32)m;
- return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
- }
- static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
- {
- struct vfp_single vs;
- vs.sign = (m & 0x80000000) >> 16;
- vs.exponent = 127 + 31 - 1;
- vs.significand = vs.sign ? -m : m;
- return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
- }
- static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
- {
- struct vfp_single vsm;
- u32 d, exceptions = 0;
- int rmode = fpscr & FPSCR_RMODE_MASK;
- int tm;
- vfp_single_unpack(&vsm, m);
- vfp_single_dump("VSM", &vsm);
- /*
- * Do we have a denormalised number?
- */
- tm = vfp_single_type(&vsm);
- if (tm & VFP_DENORMAL)
- exceptions |= FPSCR_IDC;
- if (tm & VFP_NAN)
- vsm.sign = 0;
- if (vsm.exponent >= 127 + 32) {
- d = vsm.sign ? 0 : 0xffffffff;
- exceptions = FPSCR_IOC;
- } else if (vsm.exponent >= 127 - 1) {
- int shift = 127 + 31 - vsm.exponent;
- u32 rem, incr = 0;
- /*
- * 2^0 <= m < 2^32-2^8
- */
- d = (vsm.significand << 1) >> shift;
- rem = vsm.significand << (33 - shift);
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 0x80000000;
- if ((d & 1) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
- incr = ~0;
- }
- if ((rem + incr) < rem) {
- if (d < 0xffffffff)
- d += 1;
- else
- exceptions |= FPSCR_IOC;
- }
- if (d && vsm.sign) {
- d = 0;
- exceptions |= FPSCR_IOC;
- } else if (rem)
- exceptions |= FPSCR_IXC;
- } else {
- d = 0;
- if (vsm.exponent | vsm.significand) {
- exceptions |= FPSCR_IXC;
- if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
- d = 1;
- else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
- d = 0;
- exceptions |= FPSCR_IOC;
- }
- }
- }
- pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
- vfp_put_float(sd, d);
- return exceptions;
- }
- static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
- {
- return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
- }
- static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
- {
- struct vfp_single vsm;
- u32 d, exceptions = 0;
- int rmode = fpscr & FPSCR_RMODE_MASK;
- vfp_single_unpack(&vsm, m);
- vfp_single_dump("VSM", &vsm);
- /*
- * Do we have a denormalised number?
- */
- if (vfp_single_type(&vsm) & VFP_DENORMAL)
- exceptions |= FPSCR_IDC;
- if (vsm.exponent >= 127 + 32) {
- /*
- * m >= 2^31-2^7: invalid
- */
- d = 0x7fffffff;
- if (vsm.sign)
- d = ~d;
- exceptions |= FPSCR_IOC;
- } else if (vsm.exponent >= 127 - 1) {
- int shift = 127 + 31 - vsm.exponent;
- u32 rem, incr = 0;
- /* 2^0 <= m <= 2^31-2^7 */
- d = (vsm.significand << 1) >> shift;
- rem = vsm.significand << (33 - shift);
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 0x80000000;
- if ((d & 1) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
- incr = ~0;
- }
- if ((rem + incr) < rem && d < 0xffffffff)
- d += 1;
- if (d > 0x7fffffff + (vsm.sign != 0)) {
- d = 0x7fffffff + (vsm.sign != 0);
- exceptions |= FPSCR_IOC;
- } else if (rem)
- exceptions |= FPSCR_IXC;
- if (vsm.sign)
- d = -d;
- } else {
- d = 0;
- if (vsm.exponent | vsm.significand) {
- exceptions |= FPSCR_IXC;
- if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
- d = 1;
- else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
- d = -1;
- }
- }
- pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
- vfp_put_float(sd, (s32)d);
- return exceptions;
- }
- static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
- {
- return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
- }
- static u32 (* const fop_extfns[32])(int sd, int unused, s32 m, u32 fpscr) = {
- [FEXT_TO_IDX(FEXT_FCPY)] = vfp_single_fcpy,
- [FEXT_TO_IDX(FEXT_FABS)] = vfp_single_fabs,
- [FEXT_TO_IDX(FEXT_FNEG)] = vfp_single_fneg,
- [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_single_fsqrt,
- [FEXT_TO_IDX(FEXT_FCMP)] = vfp_single_fcmp,
- [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_single_fcmpe,
- [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_single_fcmpz,
- [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_single_fcmpez,
- [FEXT_TO_IDX(FEXT_FCVT)] = vfp_single_fcvtd,
- [FEXT_TO_IDX(FEXT_FUITO)] = vfp_single_fuito,
- [FEXT_TO_IDX(FEXT_FSITO)] = vfp_single_fsito,
- [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_single_ftoui,
- [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_single_ftouiz,
- [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_single_ftosi,
- [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_single_ftosiz,
- };
- static u32
- vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
- struct vfp_single *vsm, u32 fpscr)
- {
- struct vfp_single *vsp;
- u32 exceptions = 0;
- int tn, tm;
- tn = vfp_single_type(vsn);
- tm = vfp_single_type(vsm);
- if (tn & tm & VFP_INFINITY) {
- /*
- * Two infinities. Are they different signs?
- */
- if (vsn->sign ^ vsm->sign) {
- /*
- * different signs -> invalid
- */
- exceptions = FPSCR_IOC;
- vsp = &vfp_single_default_qnan;
- } else {
- /*
- * same signs -> valid
- */
- vsp = vsn;
- }
- } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
- /*
- * One infinity and one number -> infinity
- */
- vsp = vsn;
- } else {
- /*
- * 'n' is a NaN of some type
- */
- return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
- }
- *vsd = *vsp;
- return exceptions;
- }
- static u32
- vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
- struct vfp_single *vsm, u32 fpscr)
- {
- u32 exp_diff, m_sig;
- if (vsn->significand & 0x80000000 ||
- vsm->significand & 0x80000000) {
- pr_info("VFP: bad FP values in %s\n", __func__);
- vfp_single_dump("VSN", vsn);
- vfp_single_dump("VSM", vsm);
- }
- /*
- * Ensure that 'n' is the largest magnitude number. Note that
- * if 'n' and 'm' have equal exponents, we do not swap them.
- * This ensures that NaN propagation works correctly.
- */
- if (vsn->exponent < vsm->exponent) {
- struct vfp_single *t = vsn;
- vsn = vsm;
- vsm = t;
- }
- /*
- * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
- * infinity or a NaN here.
- */
- if (vsn->exponent == 255)
- return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
- /*
- * We have two proper numbers, where 'vsn' is the larger magnitude.
- *
- * Copy 'n' to 'd' before doing the arithmetic.
- */
- *vsd = *vsn;
- /*
- * Align both numbers.
- */
- exp_diff = vsn->exponent - vsm->exponent;
- m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
- /*
- * If the signs are different, we are really subtracting.
- */
- if (vsn->sign ^ vsm->sign) {
- m_sig = vsn->significand - m_sig;
- if ((s32)m_sig < 0) {
- vsd->sign = vfp_sign_negate(vsd->sign);
- m_sig = -m_sig;
- } else if (m_sig == 0) {
- vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
- FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
- }
- } else {
- m_sig = vsn->significand + m_sig;
- }
- vsd->significand = m_sig;
- return 0;
- }
- static u32
- vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
- {
- vfp_single_dump("VSN", vsn);
- vfp_single_dump("VSM", vsm);
- /*
- * Ensure that 'n' is the largest magnitude number. Note that
- * if 'n' and 'm' have equal exponents, we do not swap them.
- * This ensures that NaN propagation works correctly.
- */
- if (vsn->exponent < vsm->exponent) {
- struct vfp_single *t = vsn;
- vsn = vsm;
- vsm = t;
- pr_debug("VFP: swapping M <-> N\n");
- }
- vsd->sign = vsn->sign ^ vsm->sign;
- /*
- * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
- */
- if (vsn->exponent == 255) {
- if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
- return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
- if ((vsm->exponent | vsm->significand) == 0) {
- *vsd = vfp_single_default_qnan;
- return FPSCR_IOC;
- }
- vsd->exponent = vsn->exponent;
- vsd->significand = 0;
- return 0;
- }
- /*
- * If 'm' is zero, the result is always zero. In this case,
- * 'n' may be zero or a number, but it doesn't matter which.
- */
- if ((vsm->exponent | vsm->significand) == 0) {
- vsd->exponent = 0;
- vsd->significand = 0;
- return 0;
- }
- /*
- * We add 2 to the destination exponent for the same reason as
- * the addition case - though this time we have +1 from each
- * input operand.
- */
- vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
- vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
- vfp_single_dump("VSD", vsd);
- return 0;
- }
- #define NEG_MULTIPLY (1 << 0)
- #define NEG_SUBTRACT (1 << 1)
- static u32
- vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
- {
- struct vfp_single vsd, vsp, vsn, vsm;
- u32 exceptions;
- s32 v;
- v = vfp_get_float(sn);
- pr_debug("VFP: s%u = %08x\n", sn, v);
- vfp_single_unpack(&vsn, v);
- if (vsn.exponent == 0 && vsn.significand)
- vfp_single_normalise_denormal(&vsn);
- vfp_single_unpack(&vsm, m);
- if (vsm.exponent == 0 && vsm.significand)
- vfp_single_normalise_denormal(&vsm);
- exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
- if (negate & NEG_MULTIPLY)
- vsp.sign = vfp_sign_negate(vsp.sign);
- v = vfp_get_float(sd);
- pr_debug("VFP: s%u = %08x\n", sd, v);
- vfp_single_unpack(&vsn, v);
- if (negate & NEG_SUBTRACT)
- vsn.sign = vfp_sign_negate(vsn.sign);
- exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
- return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
- }
- /*
- * Standard operations
- */
- /*
- * sd = sd + (sn * sm)
- */
- static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
- {
- return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
- }
- /*
- * sd = sd - (sn * sm)
- */
- static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
- {
- return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
- }
- /*
- * sd = -sd + (sn * sm)
- */
- static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
- {
- return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
- }
- /*
- * sd = -sd - (sn * sm)
- */
- static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
- {
- return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
- }
- /*
- * sd = sn * sm
- */
- static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
- {
- struct vfp_single vsd, vsn, vsm;
- u32 exceptions;
- s32 n = vfp_get_float(sn);
- pr_debug("VFP: s%u = %08x\n", sn, n);
- vfp_single_unpack(&vsn, n);
- if (vsn.exponent == 0 && vsn.significand)
- vfp_single_normalise_denormal(&vsn);
- vfp_single_unpack(&vsm, m);
- if (vsm.exponent == 0 && vsm.significand)
- vfp_single_normalise_denormal(&vsm);
- exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
- return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
- }
- /*
- * sd = -(sn * sm)
- */
- static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
- {
- struct vfp_single vsd, vsn, vsm;
- u32 exceptions;
- s32 n = vfp_get_float(sn);
- pr_debug("VFP: s%u = %08x\n", sn, n);
- vfp_single_unpack(&vsn, n);
- if (vsn.exponent == 0 && vsn.significand)
- vfp_single_normalise_denormal(&vsn);
- vfp_single_unpack(&vsm, m);
- if (vsm.exponent == 0 && vsm.significand)
- vfp_single_normalise_denormal(&vsm);
- exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
- vsd.sign = vfp_sign_negate(vsd.sign);
- return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
- }
- /*
- * sd = sn + sm
- */
- static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
- {
- struct vfp_single vsd, vsn, vsm;
- u32 exceptions;
- s32 n = vfp_get_float(sn);
- pr_debug("VFP: s%u = %08x\n", sn, n);
- /*
- * Unpack and normalise denormals.
- */
- vfp_single_unpack(&vsn, n);
- if (vsn.exponent == 0 && vsn.significand)
- vfp_single_normalise_denormal(&vsn);
- vfp_single_unpack(&vsm, m);
- if (vsm.exponent == 0 && vsm.significand)
- vfp_single_normalise_denormal(&vsm);
- exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);
- return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
- }
- /*
- * sd = sn - sm
- */
- static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
- {
- /*
- * Subtraction is addition with one sign inverted.
- */
- return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
- }
- /*
- * sd = sn / sm
- */
- static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
- {
- struct vfp_single vsd, vsn, vsm;
- u32 exceptions = 0;
- s32 n = vfp_get_float(sn);
- int tm, tn;
- pr_debug("VFP: s%u = %08x\n", sn, n);
- vfp_single_unpack(&vsn, n);
- vfp_single_unpack(&vsm, m);
- vsd.sign = vsn.sign ^ vsm.sign;
- tn = vfp_single_type(&vsn);
- tm = vfp_single_type(&vsm);
- /*
- * Is n a NAN?
- */
- if (tn & VFP_NAN)
- goto vsn_nan;
- /*
- * Is m a NAN?
- */
- if (tm & VFP_NAN)
- goto vsm_nan;
- /*
- * If n and m are infinity, the result is invalid
- * If n and m are zero, the result is invalid
- */
- if (tm & tn & (VFP_INFINITY|VFP_ZERO))
- goto invalid;
- /*
- * If n is infinity, the result is infinity
- */
- if (tn & VFP_INFINITY)
- goto infinity;
- /*
- * If m is zero, raise div0 exception
- */
- if (tm & VFP_ZERO)
- goto divzero;
- /*
- * If m is infinity, or n is zero, the result is zero
- */
- if (tm & VFP_INFINITY || tn & VFP_ZERO)
- goto zero;
- if (tn & VFP_DENORMAL)
- vfp_single_normalise_denormal(&vsn);
- if (tm & VFP_DENORMAL)
- vfp_single_normalise_denormal(&vsm);
- /*
- * Ok, we have two numbers, we can perform division.
- */
- vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
- vsm.significand <<= 1;
- if (vsm.significand <= (2 * vsn.significand)) {
- vsn.significand >>= 1;
- vsd.exponent++;
- }
- {
- u64 significand = (u64)vsn.significand << 32;
- do_div(significand, vsm.significand);
- vsd.significand = significand;
- }
- if ((vsd.significand & 0x3f) == 0)
- vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
- return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");
- vsn_nan:
- exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
- pack:
- vfp_put_float(sd, vfp_single_pack(&vsd));
- return exceptions;
- vsm_nan:
- exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
- goto pack;
- zero:
- vsd.exponent = 0;
- vsd.significand = 0;
- goto pack;
- divzero:
- exceptions = FPSCR_DZC;
- infinity:
- vsd.exponent = 255;
- vsd.significand = 0;
- goto pack;
- invalid:
- vfp_put_float(sd, vfp_single_pack(&vfp_single_default_qnan));
- return FPSCR_IOC;
- }
- static u32 (* const fop_fns[16])(int sd, int sn, s32 m, u32 fpscr) = {
- [FOP_TO_IDX(FOP_FMAC)] = vfp_single_fmac,
- [FOP_TO_IDX(FOP_FNMAC)] = vfp_single_fnmac,
- [FOP_TO_IDX(FOP_FMSC)] = vfp_single_fmsc,
- [FOP_TO_IDX(FOP_FNMSC)] = vfp_single_fnmsc,
- [FOP_TO_IDX(FOP_FMUL)] = vfp_single_fmul,
- [FOP_TO_IDX(FOP_FNMUL)] = vfp_single_fnmul,
- [FOP_TO_IDX(FOP_FADD)] = vfp_single_fadd,
- [FOP_TO_IDX(FOP_FSUB)] = vfp_single_fsub,
- [FOP_TO_IDX(FOP_FDIV)] = vfp_single_fdiv,
- };
- #define FREG_BANK(x) ((x) & 0x18)
- #define FREG_IDX(x) ((x) & 7)
- u32 vfp_single_cpdo(u32 inst, u32 fpscr)
- {
- u32 op = inst & FOP_MASK;
- u32 exceptions = 0;
- unsigned int sd = vfp_get_sd(inst);
- unsigned int sn = vfp_get_sn(inst);
- unsigned int sm = vfp_get_sm(inst);
- unsigned int vecitr, veclen, vecstride;
- u32 (*fop)(int, int, s32, u32);
- veclen = fpscr & FPSCR_LENGTH_MASK;
- vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
- /*
- * If destination bank is zero, vector length is always '1'.
- * ARM DDI0100F C5.1.3, C5.3.2.
- */
- if (FREG_BANK(sd) == 0)
- veclen = 0;
- pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
- (veclen >> FPSCR_LENGTH_BIT) + 1);
- fop = (op == FOP_EXT) ? fop_extfns[sn] : fop_fns[FOP_TO_IDX(op)];
- if (!fop)
- goto invalid;
- for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
- s32 m = vfp_get_float(sm);
- u32 except;
- if (op == FOP_EXT)
- pr_debug("VFP: itr%d (s%u) = op[%u] (s%u=%08x)\n",
- vecitr >> FPSCR_LENGTH_BIT, sd, sn, sm, m);
- else
- pr_debug("VFP: itr%d (s%u) = (s%u) op[%u] (s%u=%08x)\n",
- vecitr >> FPSCR_LENGTH_BIT, sd, sn,
- FOP_TO_IDX(op), sm, m);
- except = fop(sd, sn, m, fpscr);
- pr_debug("VFP: itr%d: exceptions=%08x\n",
- vecitr >> FPSCR_LENGTH_BIT, except);
- exceptions |= except;
- /*
- * This ensures that comparisons only operate on scalars;
- * comparisons always return with one FPSCR status bit set.
- */
- if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
- break;
- /*
- * CHECK: It appears to be undefined whether we stop when
- * we encounter an exception. We continue.
- */
- sd = FREG_BANK(sd) + ((FREG_IDX(sd) + vecstride) & 7);
- sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
- if (FREG_BANK(sm) != 0)
- sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
- }
- return exceptions;
- invalid:
- return (u32)-1;
- }
|