123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191 |
- /*
- * linux/arch/arm/vfp/vfpdouble.c
- *
- * This code is derived in part from John R. Housers softfloat library, which
- * carries the following notice:
- *
- * ===========================================================================
- * This C source file is part of the SoftFloat IEC/IEEE Floating-point
- * Arithmetic Package, Release 2.
- *
- * Written by John R. Hauser. This work was made possible in part by the
- * International Computer Science Institute, located at Suite 600, 1947 Center
- * Street, Berkeley, California 94704. Funding was partially provided by the
- * National Science Foundation under grant MIP-9311980. The original version
- * of this code was written as part of a project to build a fixed-point vector
- * processor in collaboration with the University of California at Berkeley,
- * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
- * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
- * arithmetic/softfloat.html'.
- *
- * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
- * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
- * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
- * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
- * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
- *
- * Derivative works are acceptable, even for commercial purposes, so long as
- * (1) they include prominent notice that the work is derivative, and (2) they
- * include prominent notice akin to these three paragraphs for those parts of
- * this code that are retained.
- * ===========================================================================
- */
- #include <linux/kernel.h>
- #include <linux/bitops.h>
- #include <asm/div64.h>
- #include <asm/ptrace.h>
- #include <asm/vfp.h>
- #include "vfpinstr.h"
- #include "vfp.h"
- static struct vfp_double vfp_double_default_qnan = {
- .exponent = 2047,
- .sign = 0,
- .significand = VFP_DOUBLE_SIGNIFICAND_QNAN,
- };
- static void vfp_double_dump(const char *str, struct vfp_double *d)
- {
- pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n",
- str, d->sign != 0, d->exponent, d->significand);
- }
- static void vfp_double_normalise_denormal(struct vfp_double *vd)
- {
- int bits = 31 - fls(vd->significand >> 32);
- if (bits == 31)
- bits = 62 - fls(vd->significand);
- vfp_double_dump("normalise_denormal: in", vd);
- if (bits) {
- vd->exponent -= bits - 1;
- vd->significand <<= bits;
- }
- vfp_double_dump("normalise_denormal: out", vd);
- }
- u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func)
- {
- u64 significand, incr;
- int exponent, shift, underflow;
- u32 rmode;
- vfp_double_dump("pack: in", vd);
- /*
- * Infinities and NaNs are a special case.
- */
- if (vd->exponent == 2047 && (vd->significand == 0 || exceptions))
- goto pack;
- /*
- * Special-case zero.
- */
- if (vd->significand == 0) {
- vd->exponent = 0;
- goto pack;
- }
- exponent = vd->exponent;
- significand = vd->significand;
- shift = 32 - fls(significand >> 32);
- if (shift == 32)
- shift = 64 - fls(significand);
- if (shift) {
- exponent -= shift;
- significand <<= shift;
- }
- #ifdef DEBUG
- vd->exponent = exponent;
- vd->significand = significand;
- vfp_double_dump("pack: normalised", vd);
- #endif
- /*
- * Tiny number?
- */
- underflow = exponent < 0;
- if (underflow) {
- significand = vfp_shiftright64jamming(significand, -exponent);
- exponent = 0;
- #ifdef DEBUG
- vd->exponent = exponent;
- vd->significand = significand;
- vfp_double_dump("pack: tiny number", vd);
- #endif
- if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1)))
- underflow = 0;
- }
- /*
- * Select rounding increment.
- */
- incr = 0;
- rmode = fpscr & FPSCR_RMODE_MASK;
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 1ULL << VFP_DOUBLE_LOW_BITS;
- if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0))
- incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1;
- pr_debug("VFP: rounding increment = 0x%08llx\n", incr);
- /*
- * Is our rounding going to overflow?
- */
- if ((significand + incr) < significand) {
- exponent += 1;
- significand = (significand >> 1) | (significand & 1);
- incr >>= 1;
- #ifdef DEBUG
- vd->exponent = exponent;
- vd->significand = significand;
- vfp_double_dump("pack: overflow", vd);
- #endif
- }
- /*
- * If any of the low bits (which will be shifted out of the
- * number) are non-zero, the result is inexact.
- */
- if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1))
- exceptions |= FPSCR_IXC;
- /*
- * Do our rounding.
- */
- significand += incr;
- /*
- * Infinity?
- */
- if (exponent >= 2046) {
- exceptions |= FPSCR_OFC | FPSCR_IXC;
- if (incr == 0) {
- vd->exponent = 2045;
- vd->significand = 0x7fffffffffffffffULL;
- } else {
- vd->exponent = 2047; /* infinity */
- vd->significand = 0;
- }
- } else {
- if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0)
- exponent = 0;
- if (exponent || significand > 0x8000000000000000ULL)
- underflow = 0;
- if (underflow)
- exceptions |= FPSCR_UFC;
- vd->exponent = exponent;
- vd->significand = significand >> 1;
- }
- pack:
- vfp_double_dump("pack: final", vd);
- {
- s64 d = vfp_double_pack(vd);
- pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func,
- dd, d, exceptions);
- vfp_put_double(dd, d);
- }
- return exceptions & ~VFP_NAN_FLAG;
- }
- /*
- * Propagate the NaN, setting exceptions if it is signalling.
- * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
- */
- static u32
- vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn,
- struct vfp_double *vdm, u32 fpscr)
- {
- struct vfp_double *nan;
- int tn, tm = 0;
- tn = vfp_double_type(vdn);
- if (vdm)
- tm = vfp_double_type(vdm);
- if (fpscr & FPSCR_DEFAULT_NAN)
- /*
- * Default NaN mode - always returns a quiet NaN
- */
- nan = &vfp_double_default_qnan;
- else {
- /*
- * Contemporary mode - select the first signalling
- * NAN, or if neither are signalling, the first
- * quiet NAN.
- */
- if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
- nan = vdn;
- else
- nan = vdm;
- /*
- * Make the NaN quiet.
- */
- nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
- }
- *vdd = *nan;
- /*
- * If one was a signalling NAN, raise invalid operation.
- */
- return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
- }
- /*
- * Extended operations
- */
- static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr)
- {
- vfp_put_double(dd, vfp_double_packed_abs(vfp_get_double(dm)));
- return 0;
- }
- static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr)
- {
- vfp_put_double(dd, vfp_get_double(dm));
- return 0;
- }
- static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr)
- {
- vfp_put_double(dd, vfp_double_packed_negate(vfp_get_double(dm)));
- return 0;
- }
- static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr)
- {
- struct vfp_double vdm, vdd;
- int ret, tm;
- vfp_double_unpack(&vdm, vfp_get_double(dm));
- tm = vfp_double_type(&vdm);
- if (tm & (VFP_NAN|VFP_INFINITY)) {
- struct vfp_double *vdp = &vdd;
- if (tm & VFP_NAN)
- ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr);
- else if (vdm.sign == 0) {
- sqrt_copy:
- vdp = &vdm;
- ret = 0;
- } else {
- sqrt_invalid:
- vdp = &vfp_double_default_qnan;
- ret = FPSCR_IOC;
- }
- vfp_put_double(dd, vfp_double_pack(vdp));
- return ret;
- }
- /*
- * sqrt(+/- 0) == +/- 0
- */
- if (tm & VFP_ZERO)
- goto sqrt_copy;
- /*
- * Normalise a denormalised number
- */
- if (tm & VFP_DENORMAL)
- vfp_double_normalise_denormal(&vdm);
- /*
- * sqrt(<0) = invalid
- */
- if (vdm.sign)
- goto sqrt_invalid;
- vfp_double_dump("sqrt", &vdm);
- /*
- * Estimate the square root.
- */
- vdd.sign = 0;
- vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023;
- vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31;
- vfp_double_dump("sqrt estimate1", &vdd);
- vdm.significand >>= 1 + (vdm.exponent & 1);
- vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand);
- vfp_double_dump("sqrt estimate2", &vdd);
- /*
- * And now adjust.
- */
- if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) {
- if (vdd.significand < 2) {
- vdd.significand = ~0ULL;
- } else {
- u64 termh, terml, remh, reml;
- vdm.significand <<= 2;
- mul64to128(&termh, &terml, vdd.significand, vdd.significand);
- sub128(&remh, &reml, vdm.significand, 0, termh, terml);
- while ((s64)remh < 0) {
- vdd.significand -= 1;
- shift64left(&termh, &terml, vdd.significand);
- terml |= 1;
- add128(&remh, &reml, remh, reml, termh, terml);
- }
- vdd.significand |= (remh | reml) != 0;
- }
- }
- vdd.significand = vfp_shiftright64jamming(vdd.significand, 1);
- return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt");
- }
- /*
- * Equal := ZC
- * Less than := N
- * Greater than := C
- * Unordered := CV
- */
- static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr)
- {
- s64 d, m;
- u32 ret = 0;
- m = vfp_get_double(dm);
- if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {
- ret |= FPSCR_C | FPSCR_V;
- if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
- /*
- * Signalling NaN, or signalling on quiet NaN
- */
- ret |= FPSCR_IOC;
- }
- d = vfp_get_double(dd);
- if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {
- ret |= FPSCR_C | FPSCR_V;
- if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
- /*
- * Signalling NaN, or signalling on quiet NaN
- */
- ret |= FPSCR_IOC;
- }
- if (ret == 0) {
- if (d == m || vfp_double_packed_abs(d | m) == 0) {
- /*
- * equal
- */
- ret |= FPSCR_Z | FPSCR_C;
- } else if (vfp_double_packed_sign(d ^ m)) {
- /*
- * different signs
- */
- if (vfp_double_packed_sign(d))
- /*
- * d is negative, so d < m
- */
- ret |= FPSCR_N;
- else
- /*
- * d is positive, so d > m
- */
- ret |= FPSCR_C;
- } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {
- /*
- * d < m
- */
- ret |= FPSCR_N;
- } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {
- /*
- * d > m
- */
- ret |= FPSCR_C;
- }
- }
- return ret;
- }
- static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr)
- {
- return vfp_compare(dd, 0, dm, fpscr);
- }
- static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr)
- {
- return vfp_compare(dd, 1, dm, fpscr);
- }
- static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr)
- {
- return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr);
- }
- static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr)
- {
- return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr);
- }
- static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr)
- {
- struct vfp_double vdm;
- struct vfp_single vsd;
- int tm;
- u32 exceptions = 0;
- vfp_double_unpack(&vdm, vfp_get_double(dm));
- tm = vfp_double_type(&vdm);
- /*
- * If we have a signalling NaN, signal invalid operation.
- */
- if (tm == VFP_SNAN)
- exceptions = FPSCR_IOC;
- if (tm & VFP_DENORMAL)
- vfp_double_normalise_denormal(&vdm);
- vsd.sign = vdm.sign;
- vsd.significand = vfp_hi64to32jamming(vdm.significand);
- /*
- * If we have an infinity or a NaN, the exponent must be 255
- */
- if (tm & (VFP_INFINITY|VFP_NAN)) {
- vsd.exponent = 255;
- if (tm & VFP_NAN)
- vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
- goto pack_nan;
- } else if (tm & VFP_ZERO)
- vsd.exponent = 0;
- else
- vsd.exponent = vdm.exponent - (1023 - 127);
- return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts");
- pack_nan:
- vfp_put_float(sd, vfp_single_pack(&vsd));
- return exceptions;
- }
- static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr)
- {
- struct vfp_double vdm;
- u32 m = vfp_get_float(dm);
- vdm.sign = 0;
- vdm.exponent = 1023 + 63 - 1;
- vdm.significand = (u64)m;
- return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito");
- }
- static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr)
- {
- struct vfp_double vdm;
- u32 m = vfp_get_float(dm);
- vdm.sign = (m & 0x80000000) >> 16;
- vdm.exponent = 1023 + 63 - 1;
- vdm.significand = vdm.sign ? -m : m;
- return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito");
- }
- static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr)
- {
- struct vfp_double vdm;
- u32 d, exceptions = 0;
- int rmode = fpscr & FPSCR_RMODE_MASK;
- int tm;
- vfp_double_unpack(&vdm, vfp_get_double(dm));
- /*
- * Do we have a denormalised number?
- */
- tm = vfp_double_type(&vdm);
- if (tm & VFP_DENORMAL)
- exceptions |= FPSCR_IDC;
- if (tm & VFP_NAN)
- vdm.sign = 0;
- if (vdm.exponent >= 1023 + 32) {
- d = vdm.sign ? 0 : 0xffffffff;
- exceptions = FPSCR_IOC;
- } else if (vdm.exponent >= 1023 - 1) {
- int shift = 1023 + 63 - vdm.exponent;
- u64 rem, incr = 0;
- /*
- * 2^0 <= m < 2^32-2^8
- */
- d = (vdm.significand << 1) >> shift;
- rem = vdm.significand << (65 - shift);
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 0x8000000000000000ULL;
- if ((d & 1) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
- incr = ~0ULL;
- }
- if ((rem + incr) < rem) {
- if (d < 0xffffffff)
- d += 1;
- else
- exceptions |= FPSCR_IOC;
- }
- if (d && vdm.sign) {
- d = 0;
- exceptions |= FPSCR_IOC;
- } else if (rem)
- exceptions |= FPSCR_IXC;
- } else {
- d = 0;
- if (vdm.exponent | vdm.significand) {
- exceptions |= FPSCR_IXC;
- if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
- d = 1;
- else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) {
- d = 0;
- exceptions |= FPSCR_IOC;
- }
- }
- }
- pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
- vfp_put_float(sd, d);
- return exceptions;
- }
- static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr)
- {
- return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO);
- }
- static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr)
- {
- struct vfp_double vdm;
- u32 d, exceptions = 0;
- int rmode = fpscr & FPSCR_RMODE_MASK;
- vfp_double_unpack(&vdm, vfp_get_double(dm));
- vfp_double_dump("VDM", &vdm);
- /*
- * Do we have denormalised number?
- */
- if (vfp_double_type(&vdm) & VFP_DENORMAL)
- exceptions |= FPSCR_IDC;
- if (vdm.exponent >= 1023 + 32) {
- d = 0x7fffffff;
- if (vdm.sign)
- d = ~d;
- exceptions |= FPSCR_IOC;
- } else if (vdm.exponent >= 1023 - 1) {
- int shift = 1023 + 63 - vdm.exponent; /* 58 */
- u64 rem, incr = 0;
- d = (vdm.significand << 1) >> shift;
- rem = vdm.significand << (65 - shift);
- if (rmode == FPSCR_ROUND_NEAREST) {
- incr = 0x8000000000000000ULL;
- if ((d & 1) == 0)
- incr -= 1;
- } else if (rmode == FPSCR_ROUND_TOZERO) {
- incr = 0;
- } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
- incr = ~0ULL;
- }
- if ((rem + incr) < rem && d < 0xffffffff)
- d += 1;
- if (d > 0x7fffffff + (vdm.sign != 0)) {
- d = 0x7fffffff + (vdm.sign != 0);
- exceptions |= FPSCR_IOC;
- } else if (rem)
- exceptions |= FPSCR_IXC;
- if (vdm.sign)
- d = -d;
- } else {
- d = 0;
- if (vdm.exponent | vdm.significand) {
- exceptions |= FPSCR_IXC;
- if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
- d = 1;
- else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign)
- d = -1;
- }
- }
- pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
- vfp_put_float(sd, (s32)d);
- return exceptions;
- }
- static u32 vfp_double_ftosiz(int dd, int unused, int dm, u32 fpscr)
- {
- return vfp_double_ftosi(dd, unused, dm, FPSCR_ROUND_TOZERO);
- }
- static u32 (* const fop_extfns[32])(int dd, int unused, int dm, u32 fpscr) = {
- [FEXT_TO_IDX(FEXT_FCPY)] = vfp_double_fcpy,
- [FEXT_TO_IDX(FEXT_FABS)] = vfp_double_fabs,
- [FEXT_TO_IDX(FEXT_FNEG)] = vfp_double_fneg,
- [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_double_fsqrt,
- [FEXT_TO_IDX(FEXT_FCMP)] = vfp_double_fcmp,
- [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_double_fcmpe,
- [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_double_fcmpz,
- [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_double_fcmpez,
- [FEXT_TO_IDX(FEXT_FCVT)] = vfp_double_fcvts,
- [FEXT_TO_IDX(FEXT_FUITO)] = vfp_double_fuito,
- [FEXT_TO_IDX(FEXT_FSITO)] = vfp_double_fsito,
- [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_double_ftoui,
- [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_double_ftouiz,
- [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_double_ftosi,
- [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_double_ftosiz,
- };
- static u32
- vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn,
- struct vfp_double *vdm, u32 fpscr)
- {
- struct vfp_double *vdp;
- u32 exceptions = 0;
- int tn, tm;
- tn = vfp_double_type(vdn);
- tm = vfp_double_type(vdm);
- if (tn & tm & VFP_INFINITY) {
- /*
- * Two infinities. Are they different signs?
- */
- if (vdn->sign ^ vdm->sign) {
- /*
- * different signs -> invalid
- */
- exceptions = FPSCR_IOC;
- vdp = &vfp_double_default_qnan;
- } else {
- /*
- * same signs -> valid
- */
- vdp = vdn;
- }
- } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
- /*
- * One infinity and one number -> infinity
- */
- vdp = vdn;
- } else {
- /*
- * 'n' is a NaN of some type
- */
- return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
- }
- *vdd = *vdp;
- return exceptions;
- }
- static u32
- vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn,
- struct vfp_double *vdm, u32 fpscr)
- {
- u32 exp_diff;
- u64 m_sig;
- if (vdn->significand & (1ULL << 63) ||
- vdm->significand & (1ULL << 63)) {
- pr_info("VFP: bad FP values in %s\n", __func__);
- vfp_double_dump("VDN", vdn);
- vfp_double_dump("VDM", vdm);
- }
- /*
- * Ensure that 'n' is the largest magnitude number. Note that
- * if 'n' and 'm' have equal exponents, we do not swap them.
- * This ensures that NaN propagation works correctly.
- */
- if (vdn->exponent < vdm->exponent) {
- struct vfp_double *t = vdn;
- vdn = vdm;
- vdm = t;
- }
- /*
- * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
- * infinity or a NaN here.
- */
- if (vdn->exponent == 2047)
- return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr);
- /*
- * We have two proper numbers, where 'vdn' is the larger magnitude.
- *
- * Copy 'n' to 'd' before doing the arithmetic.
- */
- *vdd = *vdn;
- /*
- * Align 'm' with the result.
- */
- exp_diff = vdn->exponent - vdm->exponent;
- m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff);
- /*
- * If the signs are different, we are really subtracting.
- */
- if (vdn->sign ^ vdm->sign) {
- m_sig = vdn->significand - m_sig;
- if ((s64)m_sig < 0) {
- vdd->sign = vfp_sign_negate(vdd->sign);
- m_sig = -m_sig;
- } else if (m_sig == 0) {
- vdd->sign = (fpscr & FPSCR_RMODE_MASK) ==
- FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
- }
- } else {
- m_sig += vdn->significand;
- }
- vdd->significand = m_sig;
- return 0;
- }
- static u32
- vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn,
- struct vfp_double *vdm, u32 fpscr)
- {
- vfp_double_dump("VDN", vdn);
- vfp_double_dump("VDM", vdm);
- /*
- * Ensure that 'n' is the largest magnitude number. Note that
- * if 'n' and 'm' have equal exponents, we do not swap them.
- * This ensures that NaN propagation works correctly.
- */
- if (vdn->exponent < vdm->exponent) {
- struct vfp_double *t = vdn;
- vdn = vdm;
- vdm = t;
- pr_debug("VFP: swapping M <-> N\n");
- }
- vdd->sign = vdn->sign ^ vdm->sign;
- /*
- * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
- */
- if (vdn->exponent == 2047) {
- if (vdn->significand || (vdm->exponent == 2047 && vdm->significand))
- return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
- if ((vdm->exponent | vdm->significand) == 0) {
- *vdd = vfp_double_default_qnan;
- return FPSCR_IOC;
- }
- vdd->exponent = vdn->exponent;
- vdd->significand = 0;
- return 0;
- }
- /*
- * If 'm' is zero, the result is always zero. In this case,
- * 'n' may be zero or a number, but it doesn't matter which.
- */
- if ((vdm->exponent | vdm->significand) == 0) {
- vdd->exponent = 0;
- vdd->significand = 0;
- return 0;
- }
- /*
- * We add 2 to the destination exponent for the same reason
- * as the addition case - though this time we have +1 from
- * each input operand.
- */
- vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2;
- vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand);
- vfp_double_dump("VDD", vdd);
- return 0;
- }
- #define NEG_MULTIPLY (1 << 0)
- #define NEG_SUBTRACT (1 << 1)
- static u32
- vfp_double_multiply_accumulate(int dd, int dn, int dm, u32 fpscr, u32 negate, char *func)
- {
- struct vfp_double vdd, vdp, vdn, vdm;
- u32 exceptions;
- vfp_double_unpack(&vdn, vfp_get_double(dn));
- if (vdn.exponent == 0 && vdn.significand)
- vfp_double_normalise_denormal(&vdn);
- vfp_double_unpack(&vdm, vfp_get_double(dm));
- if (vdm.exponent == 0 && vdm.significand)
- vfp_double_normalise_denormal(&vdm);
- exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr);
- if (negate & NEG_MULTIPLY)
- vdp.sign = vfp_sign_negate(vdp.sign);
- vfp_double_unpack(&vdn, vfp_get_double(dd));
- if (negate & NEG_SUBTRACT)
- vdn.sign = vfp_sign_negate(vdn.sign);
- exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr);
- return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, func);
- }
- /*
- * Standard operations
- */
- /*
- * sd = sd + (sn * sm)
- */
- static u32 vfp_double_fmac(int dd, int dn, int dm, u32 fpscr)
- {
- return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, 0, "fmac");
- }
- /*
- * sd = sd - (sn * sm)
- */
- static u32 vfp_double_fnmac(int dd, int dn, int dm, u32 fpscr)
- {
- return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac");
- }
- /*
- * sd = -sd + (sn * sm)
- */
- static u32 vfp_double_fmsc(int dd, int dn, int dm, u32 fpscr)
- {
- return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc");
- }
- /*
- * sd = -sd - (sn * sm)
- */
- static u32 vfp_double_fnmsc(int dd, int dn, int dm, u32 fpscr)
- {
- return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
- }
- /*
- * sd = sn * sm
- */
- static u32 vfp_double_fmul(int dd, int dn, int dm, u32 fpscr)
- {
- struct vfp_double vdd, vdn, vdm;
- u32 exceptions;
- vfp_double_unpack(&vdn, vfp_get_double(dn));
- if (vdn.exponent == 0 && vdn.significand)
- vfp_double_normalise_denormal(&vdn);
- vfp_double_unpack(&vdm, vfp_get_double(dm));
- if (vdm.exponent == 0 && vdm.significand)
- vfp_double_normalise_denormal(&vdm);
- exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
- return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fmul");
- }
- /*
- * sd = -(sn * sm)
- */
- static u32 vfp_double_fnmul(int dd, int dn, int dm, u32 fpscr)
- {
- struct vfp_double vdd, vdn, vdm;
- u32 exceptions;
- vfp_double_unpack(&vdn, vfp_get_double(dn));
- if (vdn.exponent == 0 && vdn.significand)
- vfp_double_normalise_denormal(&vdn);
- vfp_double_unpack(&vdm, vfp_get_double(dm));
- if (vdm.exponent == 0 && vdm.significand)
- vfp_double_normalise_denormal(&vdm);
- exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
- vdd.sign = vfp_sign_negate(vdd.sign);
- return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fnmul");
- }
- /*
- * sd = sn + sm
- */
- static u32 vfp_double_fadd(int dd, int dn, int dm, u32 fpscr)
- {
- struct vfp_double vdd, vdn, vdm;
- u32 exceptions;
- vfp_double_unpack(&vdn, vfp_get_double(dn));
- if (vdn.exponent == 0 && vdn.significand)
- vfp_double_normalise_denormal(&vdn);
- vfp_double_unpack(&vdm, vfp_get_double(dm));
- if (vdm.exponent == 0 && vdm.significand)
- vfp_double_normalise_denormal(&vdm);
- exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
- return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fadd");
- }
- /*
- * sd = sn - sm
- */
- static u32 vfp_double_fsub(int dd, int dn, int dm, u32 fpscr)
- {
- struct vfp_double vdd, vdn, vdm;
- u32 exceptions;
- vfp_double_unpack(&vdn, vfp_get_double(dn));
- if (vdn.exponent == 0 && vdn.significand)
- vfp_double_normalise_denormal(&vdn);
- vfp_double_unpack(&vdm, vfp_get_double(dm));
- if (vdm.exponent == 0 && vdm.significand)
- vfp_double_normalise_denormal(&vdm);
- /*
- * Subtraction is like addition, but with a negated operand.
- */
- vdm.sign = vfp_sign_negate(vdm.sign);
- exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
- return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fsub");
- }
- /*
- * sd = sn / sm
- */
- static u32 vfp_double_fdiv(int dd, int dn, int dm, u32 fpscr)
- {
- struct vfp_double vdd, vdn, vdm;
- u32 exceptions = 0;
- int tm, tn;
- vfp_double_unpack(&vdn, vfp_get_double(dn));
- vfp_double_unpack(&vdm, vfp_get_double(dm));
- vdd.sign = vdn.sign ^ vdm.sign;
- tn = vfp_double_type(&vdn);
- tm = vfp_double_type(&vdm);
- /*
- * Is n a NAN?
- */
- if (tn & VFP_NAN)
- goto vdn_nan;
- /*
- * Is m a NAN?
- */
- if (tm & VFP_NAN)
- goto vdm_nan;
- /*
- * If n and m are infinity, the result is invalid
- * If n and m are zero, the result is invalid
- */
- if (tm & tn & (VFP_INFINITY|VFP_ZERO))
- goto invalid;
- /*
- * If n is infinity, the result is infinity
- */
- if (tn & VFP_INFINITY)
- goto infinity;
- /*
- * If m is zero, raise div0 exceptions
- */
- if (tm & VFP_ZERO)
- goto divzero;
- /*
- * If m is infinity, or n is zero, the result is zero
- */
- if (tm & VFP_INFINITY || tn & VFP_ZERO)
- goto zero;
- if (tn & VFP_DENORMAL)
- vfp_double_normalise_denormal(&vdn);
- if (tm & VFP_DENORMAL)
- vfp_double_normalise_denormal(&vdm);
- /*
- * Ok, we have two numbers, we can perform division.
- */
- vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1;
- vdm.significand <<= 1;
- if (vdm.significand <= (2 * vdn.significand)) {
- vdn.significand >>= 1;
- vdd.exponent++;
- }
- vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand);
- if ((vdd.significand & 0x1ff) <= 2) {
- u64 termh, terml, remh, reml;
- mul64to128(&termh, &terml, vdm.significand, vdd.significand);
- sub128(&remh, &reml, vdn.significand, 0, termh, terml);
- while ((s64)remh < 0) {
- vdd.significand -= 1;
- add128(&remh, &reml, remh, reml, 0, vdm.significand);
- }
- vdd.significand |= (reml != 0);
- }
- return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fdiv");
- vdn_nan:
- exceptions = vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr);
- pack:
- vfp_put_double(dd, vfp_double_pack(&vdd));
- return exceptions;
- vdm_nan:
- exceptions = vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr);
- goto pack;
- zero:
- vdd.exponent = 0;
- vdd.significand = 0;
- goto pack;
- divzero:
- exceptions = FPSCR_DZC;
- infinity:
- vdd.exponent = 2047;
- vdd.significand = 0;
- goto pack;
- invalid:
- vfp_put_double(dd, vfp_double_pack(&vfp_double_default_qnan));
- return FPSCR_IOC;
- }
- static u32 (* const fop_fns[16])(int dd, int dn, int dm, u32 fpscr) = {
- [FOP_TO_IDX(FOP_FMAC)] = vfp_double_fmac,
- [FOP_TO_IDX(FOP_FNMAC)] = vfp_double_fnmac,
- [FOP_TO_IDX(FOP_FMSC)] = vfp_double_fmsc,
- [FOP_TO_IDX(FOP_FNMSC)] = vfp_double_fnmsc,
- [FOP_TO_IDX(FOP_FMUL)] = vfp_double_fmul,
- [FOP_TO_IDX(FOP_FNMUL)] = vfp_double_fnmul,
- [FOP_TO_IDX(FOP_FADD)] = vfp_double_fadd,
- [FOP_TO_IDX(FOP_FSUB)] = vfp_double_fsub,
- [FOP_TO_IDX(FOP_FDIV)] = vfp_double_fdiv,
- };
- #define FREG_BANK(x) ((x) & 0x0c)
- #define FREG_IDX(x) ((x) & 3)
- u32 vfp_double_cpdo(u32 inst, u32 fpscr)
- {
- u32 op = inst & FOP_MASK;
- u32 exceptions = 0;
- unsigned int dd = vfp_get_sd(inst);
- unsigned int dn = vfp_get_sn(inst);
- unsigned int dm = vfp_get_sm(inst);
- unsigned int vecitr, veclen, vecstride;
- u32 (*fop)(int, int, s32, u32);
- veclen = fpscr & FPSCR_LENGTH_MASK;
- vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK)) * 2;
- /*
- * If destination bank is zero, vector length is always '1'.
- * ARM DDI0100F C5.1.3, C5.3.2.
- */
- if (FREG_BANK(dd) == 0)
- veclen = 0;
- pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
- (veclen >> FPSCR_LENGTH_BIT) + 1);
- fop = (op == FOP_EXT) ? fop_extfns[dn] : fop_fns[FOP_TO_IDX(op)];
- if (!fop)
- goto invalid;
- for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
- u32 except;
- if (op == FOP_EXT)
- pr_debug("VFP: itr%d (d%u.%u) = op[%u] (d%u.%u)\n",
- vecitr >> FPSCR_LENGTH_BIT,
- dd >> 1, dd & 1, dn,
- dm >> 1, dm & 1);
- else
- pr_debug("VFP: itr%d (d%u.%u) = (d%u.%u) op[%u] (d%u.%u)\n",
- vecitr >> FPSCR_LENGTH_BIT,
- dd >> 1, dd & 1,
- dn >> 1, dn & 1,
- FOP_TO_IDX(op),
- dm >> 1, dm & 1);
- except = fop(dd, dn, dm, fpscr);
- pr_debug("VFP: itr%d: exceptions=%08x\n",
- vecitr >> FPSCR_LENGTH_BIT, except);
- exceptions |= except;
- /*
- * This ensures that comparisons only operate on scalars;
- * comparisons always return with one FPSCR status bit set.
- */
- if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
- break;
- /*
- * CHECK: It appears to be undefined whether we stop when
- * we encounter an exception. We continue.
- */
- dd = FREG_BANK(dd) + ((FREG_IDX(dd) + vecstride) & 6);
- dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 6);
- if (FREG_BANK(dm) != 0)
- dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 6);
- }
- return exceptions;
- invalid:
- return ~0;
- }
|