copypage-v4mc.c 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111
  1. /*
  2. * linux/arch/arm/lib/copypage-armv4mc.S
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This handles the mini data cache, as found on SA11x0 and XScale
  11. * processors. When we copy a user page page, we map it in such a way
  12. * that accesses to this page will not touch the main data cache, but
  13. * will be cached in the mini data cache. This prevents us thrashing
  14. * the main data cache on page faults.
  15. */
  16. #include <linux/init.h>
  17. #include <linux/mm.h>
  18. #include <asm/page.h>
  19. #include <asm/pgtable.h>
  20. #include <asm/tlbflush.h>
  21. /*
  22. * 0xffff8000 to 0xffffffff is reserved for any ARM architecture
  23. * specific hacks for copying pages efficiently.
  24. */
  25. #define minicache_pgprot __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | \
  26. L_PTE_CACHEABLE)
  27. #define TOP_PTE(x) pte_offset_kernel(top_pmd, x)
  28. static DEFINE_SPINLOCK(minicache_lock);
  29. /*
  30. * ARMv4 mini-dcache optimised copy_user_page
  31. *
  32. * We flush the destination cache lines just before we write the data into the
  33. * corresponding address. Since the Dcache is read-allocate, this removes the
  34. * Dcache aliasing issue. The writes will be forwarded to the write buffer,
  35. * and merged as appropriate.
  36. *
  37. * Note: We rely on all ARMv4 processors implementing the "invalidate D line"
  38. * instruction. If your processor does not supply this, you have to write your
  39. * own copy_user_page that does the right thing.
  40. */
  41. static void __attribute__((naked))
  42. mc_copy_user_page(void *from, void *to)
  43. {
  44. asm volatile(
  45. "stmfd sp!, {r4, lr} @ 2\n\
  46. mov r4, %2 @ 1\n\
  47. ldmia %0!, {r2, r3, ip, lr} @ 4\n\
  48. 1: mcr p15, 0, %1, c7, c6, 1 @ 1 invalidate D line\n\
  49. stmia %1!, {r2, r3, ip, lr} @ 4\n\
  50. ldmia %0!, {r2, r3, ip, lr} @ 4+1\n\
  51. stmia %1!, {r2, r3, ip, lr} @ 4\n\
  52. ldmia %0!, {r2, r3, ip, lr} @ 4\n\
  53. mcr p15, 0, %1, c7, c6, 1 @ 1 invalidate D line\n\
  54. stmia %1!, {r2, r3, ip, lr} @ 4\n\
  55. ldmia %0!, {r2, r3, ip, lr} @ 4\n\
  56. subs r4, r4, #1 @ 1\n\
  57. stmia %1!, {r2, r3, ip, lr} @ 4\n\
  58. ldmneia %0!, {r2, r3, ip, lr} @ 4\n\
  59. bne 1b @ 1\n\
  60. ldmfd sp!, {r4, pc} @ 3"
  61. :
  62. : "r" (from), "r" (to), "I" (PAGE_SIZE / 64));
  63. }
  64. void v4_mc_copy_user_page(void *kto, const void *kfrom, unsigned long vaddr)
  65. {
  66. spin_lock(&minicache_lock);
  67. set_pte(TOP_PTE(0xffff8000), pfn_pte(__pa(kfrom) >> PAGE_SHIFT, minicache_pgprot));
  68. flush_tlb_kernel_page(0xffff8000);
  69. mc_copy_user_page((void *)0xffff8000, kto);
  70. spin_unlock(&minicache_lock);
  71. }
  72. /*
  73. * ARMv4 optimised clear_user_page
  74. */
  75. void __attribute__((naked))
  76. v4_mc_clear_user_page(void *kaddr, unsigned long vaddr)
  77. {
  78. asm volatile(
  79. "str lr, [sp, #-4]!\n\
  80. mov r1, %0 @ 1\n\
  81. mov r2, #0 @ 1\n\
  82. mov r3, #0 @ 1\n\
  83. mov ip, #0 @ 1\n\
  84. mov lr, #0 @ 1\n\
  85. 1: mcr p15, 0, r0, c7, c6, 1 @ 1 invalidate D line\n\
  86. stmia r0!, {r2, r3, ip, lr} @ 4\n\
  87. stmia r0!, {r2, r3, ip, lr} @ 4\n\
  88. mcr p15, 0, r0, c7, c6, 1 @ 1 invalidate D line\n\
  89. stmia r0!, {r2, r3, ip, lr} @ 4\n\
  90. stmia r0!, {r2, r3, ip, lr} @ 4\n\
  91. subs r1, r1, #1 @ 1\n\
  92. bne 1b @ 1\n\
  93. ldr pc, [sp], #4"
  94. :
  95. : "I" (PAGE_SIZE / 64));
  96. }
  97. struct cpu_user_fns v4_mc_user_fns __initdata = {
  98. .cpu_clear_user_page = v4_mc_clear_user_page,
  99. .cpu_copy_user_page = v4_mc_copy_user_page,
  100. };