consistent.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
  1. /*
  2. * linux/arch/arm/mm/consistent.c
  3. *
  4. * Copyright (C) 2000-2004 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * DMA uncached mapping support.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/slab.h>
  15. #include <linux/errno.h>
  16. #include <linux/list.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <asm/cacheflush.h>
  21. #include <asm/io.h>
  22. #include <asm/tlbflush.h>
  23. #define CONSISTENT_BASE (0xffc00000)
  24. #define CONSISTENT_END (0xffe00000)
  25. #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
  26. /*
  27. * This is the page table (2MB) covering uncached, DMA consistent allocations
  28. */
  29. static pte_t *consistent_pte;
  30. static DEFINE_SPINLOCK(consistent_lock);
  31. /*
  32. * VM region handling support.
  33. *
  34. * This should become something generic, handling VM region allocations for
  35. * vmalloc and similar (ioremap, module space, etc).
  36. *
  37. * I envisage vmalloc()'s supporting vm_struct becoming:
  38. *
  39. * struct vm_struct {
  40. * struct vm_region region;
  41. * unsigned long flags;
  42. * struct page **pages;
  43. * unsigned int nr_pages;
  44. * unsigned long phys_addr;
  45. * };
  46. *
  47. * get_vm_area() would then call vm_region_alloc with an appropriate
  48. * struct vm_region head (eg):
  49. *
  50. * struct vm_region vmalloc_head = {
  51. * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list),
  52. * .vm_start = VMALLOC_START,
  53. * .vm_end = VMALLOC_END,
  54. * };
  55. *
  56. * However, vmalloc_head.vm_start is variable (typically, it is dependent on
  57. * the amount of RAM found at boot time.) I would imagine that get_vm_area()
  58. * would have to initialise this each time prior to calling vm_region_alloc().
  59. */
  60. struct vm_region {
  61. struct list_head vm_list;
  62. unsigned long vm_start;
  63. unsigned long vm_end;
  64. struct page *vm_pages;
  65. };
  66. static struct vm_region consistent_head = {
  67. .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
  68. .vm_start = CONSISTENT_BASE,
  69. .vm_end = CONSISTENT_END,
  70. };
  71. static struct vm_region *
  72. vm_region_alloc(struct vm_region *head, size_t size, int gfp)
  73. {
  74. unsigned long addr = head->vm_start, end = head->vm_end - size;
  75. unsigned long flags;
  76. struct vm_region *c, *new;
  77. new = kmalloc(sizeof(struct vm_region), gfp);
  78. if (!new)
  79. goto out;
  80. spin_lock_irqsave(&consistent_lock, flags);
  81. list_for_each_entry(c, &head->vm_list, vm_list) {
  82. if ((addr + size) < addr)
  83. goto nospc;
  84. if ((addr + size) <= c->vm_start)
  85. goto found;
  86. addr = c->vm_end;
  87. if (addr > end)
  88. goto nospc;
  89. }
  90. found:
  91. /*
  92. * Insert this entry _before_ the one we found.
  93. */
  94. list_add_tail(&new->vm_list, &c->vm_list);
  95. new->vm_start = addr;
  96. new->vm_end = addr + size;
  97. spin_unlock_irqrestore(&consistent_lock, flags);
  98. return new;
  99. nospc:
  100. spin_unlock_irqrestore(&consistent_lock, flags);
  101. kfree(new);
  102. out:
  103. return NULL;
  104. }
  105. static struct vm_region *vm_region_find(struct vm_region *head, unsigned long addr)
  106. {
  107. struct vm_region *c;
  108. list_for_each_entry(c, &head->vm_list, vm_list) {
  109. if (c->vm_start == addr)
  110. goto out;
  111. }
  112. c = NULL;
  113. out:
  114. return c;
  115. }
  116. #ifdef CONFIG_HUGETLB_PAGE
  117. #error ARM Coherent DMA allocator does not (yet) support huge TLB
  118. #endif
  119. static void *
  120. __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, int gfp,
  121. pgprot_t prot)
  122. {
  123. struct page *page;
  124. struct vm_region *c;
  125. unsigned long order;
  126. u64 mask = ISA_DMA_THRESHOLD, limit;
  127. if (!consistent_pte) {
  128. printk(KERN_ERR "%s: not initialised\n", __func__);
  129. dump_stack();
  130. return NULL;
  131. }
  132. if (dev) {
  133. mask = dev->coherent_dma_mask;
  134. /*
  135. * Sanity check the DMA mask - it must be non-zero, and
  136. * must be able to be satisfied by a DMA allocation.
  137. */
  138. if (mask == 0) {
  139. dev_warn(dev, "coherent DMA mask is unset\n");
  140. goto no_page;
  141. }
  142. if ((~mask) & ISA_DMA_THRESHOLD) {
  143. dev_warn(dev, "coherent DMA mask %#llx is smaller "
  144. "than system GFP_DMA mask %#llx\n",
  145. mask, (unsigned long long)ISA_DMA_THRESHOLD);
  146. goto no_page;
  147. }
  148. }
  149. /*
  150. * Sanity check the allocation size.
  151. */
  152. size = PAGE_ALIGN(size);
  153. limit = (mask + 1) & ~mask;
  154. if ((limit && size >= limit) ||
  155. size >= (CONSISTENT_END - CONSISTENT_BASE)) {
  156. printk(KERN_WARNING "coherent allocation too big "
  157. "(requested %#x mask %#llx)\n", size, mask);
  158. goto no_page;
  159. }
  160. order = get_order(size);
  161. if (mask != 0xffffffff)
  162. gfp |= GFP_DMA;
  163. page = alloc_pages(gfp, order);
  164. if (!page)
  165. goto no_page;
  166. /*
  167. * Invalidate any data that might be lurking in the
  168. * kernel direct-mapped region for device DMA.
  169. */
  170. {
  171. unsigned long kaddr = (unsigned long)page_address(page);
  172. memset(page_address(page), 0, size);
  173. dmac_flush_range(kaddr, kaddr + size);
  174. }
  175. /*
  176. * Allocate a virtual address in the consistent mapping region.
  177. */
  178. c = vm_region_alloc(&consistent_head, size,
  179. gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
  180. if (c) {
  181. pte_t *pte = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
  182. struct page *end = page + (1 << order);
  183. c->vm_pages = page;
  184. /*
  185. * Set the "dma handle"
  186. */
  187. *handle = page_to_dma(dev, page);
  188. do {
  189. BUG_ON(!pte_none(*pte));
  190. set_page_count(page, 1);
  191. /*
  192. * x86 does not mark the pages reserved...
  193. */
  194. SetPageReserved(page);
  195. set_pte(pte, mk_pte(page, prot));
  196. page++;
  197. pte++;
  198. } while (size -= PAGE_SIZE);
  199. /*
  200. * Free the otherwise unused pages.
  201. */
  202. while (page < end) {
  203. set_page_count(page, 1);
  204. __free_page(page);
  205. page++;
  206. }
  207. return (void *)c->vm_start;
  208. }
  209. if (page)
  210. __free_pages(page, order);
  211. no_page:
  212. *handle = ~0;
  213. return NULL;
  214. }
  215. /*
  216. * Allocate DMA-coherent memory space and return both the kernel remapped
  217. * virtual and bus address for that space.
  218. */
  219. void *
  220. dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, int gfp)
  221. {
  222. return __dma_alloc(dev, size, handle, gfp,
  223. pgprot_noncached(pgprot_kernel));
  224. }
  225. EXPORT_SYMBOL(dma_alloc_coherent);
  226. /*
  227. * Allocate a writecombining region, in much the same way as
  228. * dma_alloc_coherent above.
  229. */
  230. void *
  231. dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, int gfp)
  232. {
  233. return __dma_alloc(dev, size, handle, gfp,
  234. pgprot_writecombine(pgprot_kernel));
  235. }
  236. EXPORT_SYMBOL(dma_alloc_writecombine);
  237. static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
  238. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  239. {
  240. unsigned long flags, user_size, kern_size;
  241. struct vm_region *c;
  242. int ret = -ENXIO;
  243. user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  244. spin_lock_irqsave(&consistent_lock, flags);
  245. c = vm_region_find(&consistent_head, (unsigned long)cpu_addr);
  246. spin_unlock_irqrestore(&consistent_lock, flags);
  247. if (c) {
  248. unsigned long off = vma->vm_pgoff;
  249. kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
  250. if (off < kern_size &&
  251. user_size <= (kern_size - off)) {
  252. vma->vm_flags |= VM_RESERVED;
  253. ret = remap_pfn_range(vma, vma->vm_start,
  254. page_to_pfn(c->vm_pages) + off,
  255. user_size << PAGE_SHIFT,
  256. vma->vm_page_prot);
  257. }
  258. }
  259. return ret;
  260. }
  261. int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
  262. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  263. {
  264. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  265. return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
  266. }
  267. EXPORT_SYMBOL(dma_mmap_coherent);
  268. int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
  269. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  270. {
  271. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  272. return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
  273. }
  274. EXPORT_SYMBOL(dma_mmap_writecombine);
  275. /*
  276. * free a page as defined by the above mapping.
  277. */
  278. void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
  279. {
  280. struct vm_region *c;
  281. unsigned long flags, addr;
  282. pte_t *ptep;
  283. size = PAGE_ALIGN(size);
  284. spin_lock_irqsave(&consistent_lock, flags);
  285. c = vm_region_find(&consistent_head, (unsigned long)cpu_addr);
  286. if (!c)
  287. goto no_area;
  288. if ((c->vm_end - c->vm_start) != size) {
  289. printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
  290. __func__, c->vm_end - c->vm_start, size);
  291. dump_stack();
  292. size = c->vm_end - c->vm_start;
  293. }
  294. ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
  295. addr = c->vm_start;
  296. do {
  297. pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
  298. unsigned long pfn;
  299. ptep++;
  300. addr += PAGE_SIZE;
  301. if (!pte_none(pte) && pte_present(pte)) {
  302. pfn = pte_pfn(pte);
  303. if (pfn_valid(pfn)) {
  304. struct page *page = pfn_to_page(pfn);
  305. /*
  306. * x86 does not mark the pages reserved...
  307. */
  308. ClearPageReserved(page);
  309. __free_page(page);
  310. continue;
  311. }
  312. }
  313. printk(KERN_CRIT "%s: bad page in kernel page table\n",
  314. __func__);
  315. } while (size -= PAGE_SIZE);
  316. flush_tlb_kernel_range(c->vm_start, c->vm_end);
  317. list_del(&c->vm_list);
  318. spin_unlock_irqrestore(&consistent_lock, flags);
  319. kfree(c);
  320. return;
  321. no_area:
  322. spin_unlock_irqrestore(&consistent_lock, flags);
  323. printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
  324. __func__, cpu_addr);
  325. dump_stack();
  326. }
  327. EXPORT_SYMBOL(dma_free_coherent);
  328. /*
  329. * Initialise the consistent memory allocation.
  330. */
  331. static int __init consistent_init(void)
  332. {
  333. pgd_t *pgd;
  334. pmd_t *pmd;
  335. pte_t *pte;
  336. int ret = 0;
  337. spin_lock(&init_mm.page_table_lock);
  338. do {
  339. pgd = pgd_offset(&init_mm, CONSISTENT_BASE);
  340. pmd = pmd_alloc(&init_mm, pgd, CONSISTENT_BASE);
  341. if (!pmd) {
  342. printk(KERN_ERR "%s: no pmd tables\n", __func__);
  343. ret = -ENOMEM;
  344. break;
  345. }
  346. WARN_ON(!pmd_none(*pmd));
  347. pte = pte_alloc_kernel(&init_mm, pmd, CONSISTENT_BASE);
  348. if (!pte) {
  349. printk(KERN_ERR "%s: no pte tables\n", __func__);
  350. ret = -ENOMEM;
  351. break;
  352. }
  353. consistent_pte = pte;
  354. } while (0);
  355. spin_unlock(&init_mm.page_table_lock);
  356. return ret;
  357. }
  358. core_initcall(consistent_init);
  359. /*
  360. * Make an area consistent for devices.
  361. */
  362. void consistent_sync(void *vaddr, size_t size, int direction)
  363. {
  364. unsigned long start = (unsigned long)vaddr;
  365. unsigned long end = start + size;
  366. switch (direction) {
  367. case DMA_FROM_DEVICE: /* invalidate only */
  368. dmac_inv_range(start, end);
  369. break;
  370. case DMA_TO_DEVICE: /* writeback only */
  371. dmac_clean_range(start, end);
  372. break;
  373. case DMA_BIDIRECTIONAL: /* writeback and invalidate */
  374. dmac_flush_range(start, end);
  375. break;
  376. default:
  377. BUG();
  378. }
  379. }
  380. EXPORT_SYMBOL(consistent_sync);