core.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/config.h>
  22. #include <linux/init.h>
  23. #include <linux/device.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <asm/system.h>
  28. #include <asm/hardware.h>
  29. #include <asm/io.h>
  30. #include <asm/irq.h>
  31. #include <asm/leds.h>
  32. #include <asm/mach-types.h>
  33. #include <asm/hardware/amba.h>
  34. #include <asm/hardware/amba_clcd.h>
  35. #include <asm/hardware/arm_timer.h>
  36. #include <asm/hardware/icst307.h>
  37. #include <asm/mach/arch.h>
  38. #include <asm/mach/flash.h>
  39. #include <asm/mach/irq.h>
  40. #include <asm/mach/time.h>
  41. #include <asm/mach/map.h>
  42. #include <asm/mach/mmc.h>
  43. #include "core.h"
  44. #include "clock.h"
  45. /*
  46. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  47. * is the (PA >> 12).
  48. *
  49. * Setup a VA for the Versatile Vectored Interrupt Controller.
  50. */
  51. #define VA_VIC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
  52. #define VA_SIC_BASE IO_ADDRESS(VERSATILE_SIC_BASE)
  53. static void vic_mask_irq(unsigned int irq)
  54. {
  55. irq -= IRQ_VIC_START;
  56. writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
  57. }
  58. static void vic_unmask_irq(unsigned int irq)
  59. {
  60. irq -= IRQ_VIC_START;
  61. writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE);
  62. }
  63. static struct irqchip vic_chip = {
  64. .ack = vic_mask_irq,
  65. .mask = vic_mask_irq,
  66. .unmask = vic_unmask_irq,
  67. };
  68. static void sic_mask_irq(unsigned int irq)
  69. {
  70. irq -= IRQ_SIC_START;
  71. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  72. }
  73. static void sic_unmask_irq(unsigned int irq)
  74. {
  75. irq -= IRQ_SIC_START;
  76. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  77. }
  78. static struct irqchip sic_chip = {
  79. .ack = sic_mask_irq,
  80. .mask = sic_mask_irq,
  81. .unmask = sic_unmask_irq,
  82. };
  83. static void
  84. sic_handle_irq(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
  85. {
  86. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  87. if (status == 0) {
  88. do_bad_IRQ(irq, desc, regs);
  89. return;
  90. }
  91. do {
  92. irq = ffs(status) - 1;
  93. status &= ~(1 << irq);
  94. irq += IRQ_SIC_START;
  95. desc = irq_desc + irq;
  96. desc_handle_irq(irq, desc, regs);
  97. } while (status);
  98. }
  99. #if 1
  100. #define IRQ_MMCI0A IRQ_VICSOURCE22
  101. #define IRQ_AACI IRQ_VICSOURCE24
  102. #define IRQ_ETH IRQ_VICSOURCE25
  103. #define PIC_MASK 0xFFD00000
  104. #else
  105. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  106. #define IRQ_AACI IRQ_SIC_AACI
  107. #define IRQ_ETH IRQ_SIC_ETH
  108. #define PIC_MASK 0
  109. #endif
  110. void __init versatile_init_irq(void)
  111. {
  112. unsigned int i, value;
  113. /* Disable all interrupts initially. */
  114. writel(0, VA_VIC_BASE + VIC_INT_SELECT);
  115. writel(0, VA_VIC_BASE + VIC_IRQ_ENABLE);
  116. writel(~0, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
  117. writel(0, VA_VIC_BASE + VIC_IRQ_STATUS);
  118. writel(0, VA_VIC_BASE + VIC_ITCR);
  119. writel(~0, VA_VIC_BASE + VIC_IRQ_SOFT_CLEAR);
  120. /*
  121. * Make sure we clear all existing interrupts
  122. */
  123. writel(0, VA_VIC_BASE + VIC_VECT_ADDR);
  124. for (i = 0; i < 19; i++) {
  125. value = readl(VA_VIC_BASE + VIC_VECT_ADDR);
  126. writel(value, VA_VIC_BASE + VIC_VECT_ADDR);
  127. }
  128. for (i = 0; i < 16; i++) {
  129. value = readl(VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
  130. writel(value | VICVectCntl_Enable | i, VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
  131. }
  132. writel(32, VA_VIC_BASE + VIC_DEF_VECT_ADDR);
  133. for (i = IRQ_VIC_START; i <= IRQ_VIC_END; i++) {
  134. if (i != IRQ_VICSOURCE31) {
  135. set_irq_chip(i, &vic_chip);
  136. set_irq_handler(i, do_level_IRQ);
  137. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  138. }
  139. }
  140. set_irq_handler(IRQ_VICSOURCE31, sic_handle_irq);
  141. vic_unmask_irq(IRQ_VICSOURCE31);
  142. /* Do second interrupt controller */
  143. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  144. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  145. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  146. set_irq_chip(i, &sic_chip);
  147. set_irq_handler(i, do_level_IRQ);
  148. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  149. }
  150. }
  151. /*
  152. * Interrupts on secondary controller from 0 to 8 are routed to
  153. * source 31 on PIC.
  154. * Interrupts from 21 to 31 are routed directly to the VIC on
  155. * the corresponding number on primary controller. This is controlled
  156. * by setting PIC_ENABLEx.
  157. */
  158. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  159. }
  160. static struct map_desc versatile_io_desc[] __initdata = {
  161. { IO_ADDRESS(VERSATILE_SYS_BASE), VERSATILE_SYS_BASE, SZ_4K, MT_DEVICE },
  162. { IO_ADDRESS(VERSATILE_SIC_BASE), VERSATILE_SIC_BASE, SZ_4K, MT_DEVICE },
  163. { IO_ADDRESS(VERSATILE_VIC_BASE), VERSATILE_VIC_BASE, SZ_4K, MT_DEVICE },
  164. { IO_ADDRESS(VERSATILE_SCTL_BASE), VERSATILE_SCTL_BASE, SZ_4K * 9, MT_DEVICE },
  165. #ifdef CONFIG_MACH_VERSATILE_AB
  166. { IO_ADDRESS(VERSATILE_GPIO0_BASE), VERSATILE_GPIO0_BASE, SZ_4K, MT_DEVICE },
  167. { IO_ADDRESS(VERSATILE_IB2_BASE), VERSATILE_IB2_BASE, SZ_64M, MT_DEVICE },
  168. #endif
  169. #ifdef CONFIG_DEBUG_LL
  170. { IO_ADDRESS(VERSATILE_UART0_BASE), VERSATILE_UART0_BASE, SZ_4K, MT_DEVICE },
  171. #endif
  172. #ifdef CONFIG_PCI
  173. { IO_ADDRESS(VERSATILE_PCI_CORE_BASE), VERSATILE_PCI_CORE_BASE, SZ_4K, MT_DEVICE },
  174. { VERSATILE_PCI_VIRT_BASE, VERSATILE_PCI_BASE, VERSATILE_PCI_BASE_SIZE, MT_DEVICE },
  175. { VERSATILE_PCI_CFG_VIRT_BASE, VERSATILE_PCI_CFG_BASE, VERSATILE_PCI_CFG_BASE_SIZE, MT_DEVICE },
  176. #if 0
  177. { VERSATILE_PCI_VIRT_MEM_BASE0, VERSATILE_PCI_MEM_BASE0, SZ_16M, MT_DEVICE },
  178. { VERSATILE_PCI_VIRT_MEM_BASE1, VERSATILE_PCI_MEM_BASE1, SZ_16M, MT_DEVICE },
  179. { VERSATILE_PCI_VIRT_MEM_BASE2, VERSATILE_PCI_MEM_BASE2, SZ_16M, MT_DEVICE },
  180. #endif
  181. #endif
  182. };
  183. void __init versatile_map_io(void)
  184. {
  185. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  186. }
  187. #define VERSATILE_REFCOUNTER (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
  188. /*
  189. * This is the Versatile sched_clock implementation. This has
  190. * a resolution of 41.7ns, and a maximum value of about 179s.
  191. */
  192. unsigned long long sched_clock(void)
  193. {
  194. unsigned long long v;
  195. v = (unsigned long long)readl(VERSATILE_REFCOUNTER) * 125;
  196. do_div(v, 3);
  197. return v;
  198. }
  199. #define VERSATILE_FLASHCTRL (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  200. static int versatile_flash_init(void)
  201. {
  202. u32 val;
  203. val = __raw_readl(VERSATILE_FLASHCTRL);
  204. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  205. __raw_writel(val, VERSATILE_FLASHCTRL);
  206. return 0;
  207. }
  208. static void versatile_flash_exit(void)
  209. {
  210. u32 val;
  211. val = __raw_readl(VERSATILE_FLASHCTRL);
  212. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  213. __raw_writel(val, VERSATILE_FLASHCTRL);
  214. }
  215. static void versatile_flash_set_vpp(int on)
  216. {
  217. u32 val;
  218. val = __raw_readl(VERSATILE_FLASHCTRL);
  219. if (on)
  220. val |= VERSATILE_FLASHPROG_FLVPPEN;
  221. else
  222. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  223. __raw_writel(val, VERSATILE_FLASHCTRL);
  224. }
  225. static struct flash_platform_data versatile_flash_data = {
  226. .map_name = "cfi_probe",
  227. .width = 4,
  228. .init = versatile_flash_init,
  229. .exit = versatile_flash_exit,
  230. .set_vpp = versatile_flash_set_vpp,
  231. };
  232. static struct resource versatile_flash_resource = {
  233. .start = VERSATILE_FLASH_BASE,
  234. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE,
  235. .flags = IORESOURCE_MEM,
  236. };
  237. static struct platform_device versatile_flash_device = {
  238. .name = "armflash",
  239. .id = 0,
  240. .dev = {
  241. .platform_data = &versatile_flash_data,
  242. },
  243. .num_resources = 1,
  244. .resource = &versatile_flash_resource,
  245. };
  246. static struct resource smc91x_resources[] = {
  247. [0] = {
  248. .start = VERSATILE_ETH_BASE,
  249. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  250. .flags = IORESOURCE_MEM,
  251. },
  252. [1] = {
  253. .start = IRQ_ETH,
  254. .end = IRQ_ETH,
  255. .flags = IORESOURCE_IRQ,
  256. },
  257. };
  258. static struct platform_device smc91x_device = {
  259. .name = "smc91x",
  260. .id = 0,
  261. .num_resources = ARRAY_SIZE(smc91x_resources),
  262. .resource = smc91x_resources,
  263. };
  264. #define VERSATILE_SYSMCI (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  265. unsigned int mmc_status(struct device *dev)
  266. {
  267. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  268. u32 mask;
  269. if (adev->res.start == VERSATILE_MMCI0_BASE)
  270. mask = 1;
  271. else
  272. mask = 2;
  273. return readl(VERSATILE_SYSMCI) & mask;
  274. }
  275. static struct mmc_platform_data mmc0_plat_data = {
  276. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  277. .status = mmc_status,
  278. };
  279. /*
  280. * Clock handling
  281. */
  282. static const struct icst307_params versatile_oscvco_params = {
  283. .ref = 24000,
  284. .vco_max = 200000,
  285. .vd_min = 4 + 8,
  286. .vd_max = 511 + 8,
  287. .rd_min = 1 + 2,
  288. .rd_max = 127 + 2,
  289. };
  290. static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
  291. {
  292. unsigned long sys_lock = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
  293. #if defined(CONFIG_ARCH_VERSATILE_PB)
  294. unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC4_OFFSET;
  295. #elif defined(CONFIG_MACH_VERSATILE_AB)
  296. unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC1_OFFSET;
  297. #endif
  298. u32 val;
  299. val = readl(sys_osc) & ~0x7ffff;
  300. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  301. writel(0xa05f, sys_lock);
  302. writel(val, sys_osc);
  303. writel(0, sys_lock);
  304. }
  305. static struct clk versatile_clcd_clk = {
  306. .name = "CLCDCLK",
  307. .params = &versatile_oscvco_params,
  308. .setvco = versatile_oscvco_set,
  309. };
  310. /*
  311. * CLCD support.
  312. */
  313. #define SYS_CLCD_MODE_MASK (3 << 0)
  314. #define SYS_CLCD_MODE_888 (0 << 0)
  315. #define SYS_CLCD_MODE_5551 (1 << 0)
  316. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  317. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  318. #define SYS_CLCD_NLCDIOON (1 << 2)
  319. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  320. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  321. #define SYS_CLCD_ID_MASK (0x1f << 8)
  322. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  323. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  324. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  325. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  326. #define SYS_CLCD_ID_VGA (0x1f << 8)
  327. static struct clcd_panel vga = {
  328. .mode = {
  329. .name = "VGA",
  330. .refresh = 60,
  331. .xres = 640,
  332. .yres = 480,
  333. .pixclock = 39721,
  334. .left_margin = 40,
  335. .right_margin = 24,
  336. .upper_margin = 32,
  337. .lower_margin = 11,
  338. .hsync_len = 96,
  339. .vsync_len = 2,
  340. .sync = 0,
  341. .vmode = FB_VMODE_NONINTERLACED,
  342. },
  343. .width = -1,
  344. .height = -1,
  345. .tim2 = TIM2_BCD | TIM2_IPC,
  346. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  347. .bpp = 16,
  348. };
  349. static struct clcd_panel sanyo_3_8_in = {
  350. .mode = {
  351. .name = "Sanyo QVGA",
  352. .refresh = 116,
  353. .xres = 320,
  354. .yres = 240,
  355. .pixclock = 100000,
  356. .left_margin = 6,
  357. .right_margin = 6,
  358. .upper_margin = 5,
  359. .lower_margin = 5,
  360. .hsync_len = 6,
  361. .vsync_len = 6,
  362. .sync = 0,
  363. .vmode = FB_VMODE_NONINTERLACED,
  364. },
  365. .width = -1,
  366. .height = -1,
  367. .tim2 = TIM2_BCD,
  368. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  369. .bpp = 16,
  370. };
  371. static struct clcd_panel sanyo_2_5_in = {
  372. .mode = {
  373. .name = "Sanyo QVGA Portrait",
  374. .refresh = 116,
  375. .xres = 240,
  376. .yres = 320,
  377. .pixclock = 100000,
  378. .left_margin = 20,
  379. .right_margin = 10,
  380. .upper_margin = 2,
  381. .lower_margin = 2,
  382. .hsync_len = 10,
  383. .vsync_len = 2,
  384. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  385. .vmode = FB_VMODE_NONINTERLACED,
  386. },
  387. .width = -1,
  388. .height = -1,
  389. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  390. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  391. .bpp = 16,
  392. };
  393. static struct clcd_panel epson_2_2_in = {
  394. .mode = {
  395. .name = "Epson QCIF",
  396. .refresh = 390,
  397. .xres = 176,
  398. .yres = 220,
  399. .pixclock = 62500,
  400. .left_margin = 3,
  401. .right_margin = 2,
  402. .upper_margin = 1,
  403. .lower_margin = 0,
  404. .hsync_len = 3,
  405. .vsync_len = 2,
  406. .sync = 0,
  407. .vmode = FB_VMODE_NONINTERLACED,
  408. },
  409. .width = -1,
  410. .height = -1,
  411. .tim2 = TIM2_BCD | TIM2_IPC,
  412. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  413. .bpp = 16,
  414. };
  415. /*
  416. * Detect which LCD panel is connected, and return the appropriate
  417. * clcd_panel structure. Note: we do not have any information on
  418. * the required timings for the 8.4in panel, so we presently assume
  419. * VGA timings.
  420. */
  421. static struct clcd_panel *versatile_clcd_panel(void)
  422. {
  423. unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  424. struct clcd_panel *panel = &vga;
  425. u32 val;
  426. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  427. if (val == SYS_CLCD_ID_SANYO_3_8)
  428. panel = &sanyo_3_8_in;
  429. else if (val == SYS_CLCD_ID_SANYO_2_5)
  430. panel = &sanyo_2_5_in;
  431. else if (val == SYS_CLCD_ID_EPSON_2_2)
  432. panel = &epson_2_2_in;
  433. else if (val == SYS_CLCD_ID_VGA)
  434. panel = &vga;
  435. else {
  436. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  437. val);
  438. panel = &vga;
  439. }
  440. return panel;
  441. }
  442. /*
  443. * Disable all display connectors on the interface module.
  444. */
  445. static void versatile_clcd_disable(struct clcd_fb *fb)
  446. {
  447. unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  448. u32 val;
  449. val = readl(sys_clcd);
  450. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  451. writel(val, sys_clcd);
  452. #ifdef CONFIG_MACH_VERSATILE_AB
  453. /*
  454. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  455. */
  456. if (fb->panel == &sanyo_2_5_in) {
  457. unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
  458. unsigned long ctrl;
  459. ctrl = readl(versatile_ib2_ctrl);
  460. ctrl &= ~0x01;
  461. writel(ctrl, versatile_ib2_ctrl);
  462. }
  463. #endif
  464. }
  465. /*
  466. * Enable the relevant connector on the interface module.
  467. */
  468. static void versatile_clcd_enable(struct clcd_fb *fb)
  469. {
  470. unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  471. u32 val;
  472. val = readl(sys_clcd);
  473. val &= ~SYS_CLCD_MODE_MASK;
  474. switch (fb->fb.var.green.length) {
  475. case 5:
  476. val |= SYS_CLCD_MODE_5551;
  477. break;
  478. case 6:
  479. val |= SYS_CLCD_MODE_565_RLSB;
  480. break;
  481. case 8:
  482. val |= SYS_CLCD_MODE_888;
  483. break;
  484. }
  485. /*
  486. * Set the MUX
  487. */
  488. writel(val, sys_clcd);
  489. /*
  490. * And now enable the PSUs
  491. */
  492. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  493. writel(val, sys_clcd);
  494. #ifdef CONFIG_MACH_VERSATILE_AB
  495. /*
  496. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  497. */
  498. if (fb->panel == &sanyo_2_5_in) {
  499. unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
  500. unsigned long ctrl;
  501. ctrl = readl(versatile_ib2_ctrl);
  502. ctrl |= 0x01;
  503. writel(ctrl, versatile_ib2_ctrl);
  504. }
  505. #endif
  506. }
  507. static unsigned long framesize = SZ_1M;
  508. static int versatile_clcd_setup(struct clcd_fb *fb)
  509. {
  510. dma_addr_t dma;
  511. fb->panel = versatile_clcd_panel();
  512. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  513. &dma, GFP_KERNEL);
  514. if (!fb->fb.screen_base) {
  515. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  516. return -ENOMEM;
  517. }
  518. fb->fb.fix.smem_start = dma;
  519. fb->fb.fix.smem_len = framesize;
  520. return 0;
  521. }
  522. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  523. {
  524. return dma_mmap_writecombine(&fb->dev->dev, vma,
  525. fb->fb.screen_base,
  526. fb->fb.fix.smem_start,
  527. fb->fb.fix.smem_len);
  528. }
  529. static void versatile_clcd_remove(struct clcd_fb *fb)
  530. {
  531. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  532. fb->fb.screen_base, fb->fb.fix.smem_start);
  533. }
  534. static struct clcd_board clcd_plat_data = {
  535. .name = "Versatile",
  536. .check = clcdfb_check,
  537. .decode = clcdfb_decode,
  538. .disable = versatile_clcd_disable,
  539. .enable = versatile_clcd_enable,
  540. .setup = versatile_clcd_setup,
  541. .mmap = versatile_clcd_mmap,
  542. .remove = versatile_clcd_remove,
  543. };
  544. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  545. #define AACI_DMA { 0x80, 0x81 }
  546. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  547. #define MMCI0_DMA { 0x84, 0 }
  548. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  549. #define KMI0_DMA { 0, 0 }
  550. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  551. #define KMI1_DMA { 0, 0 }
  552. /*
  553. * These devices are connected directly to the multi-layer AHB switch
  554. */
  555. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  556. #define SMC_DMA { 0, 0 }
  557. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  558. #define MPMC_DMA { 0, 0 }
  559. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  560. #define CLCD_DMA { 0, 0 }
  561. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  562. #define DMAC_DMA { 0, 0 }
  563. /*
  564. * These devices are connected via the core APB bridge
  565. */
  566. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  567. #define SCTL_DMA { 0, 0 }
  568. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  569. #define WATCHDOG_DMA { 0, 0 }
  570. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  571. #define GPIO0_DMA { 0, 0 }
  572. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  573. #define GPIO1_DMA { 0, 0 }
  574. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  575. #define RTC_DMA { 0, 0 }
  576. /*
  577. * These devices are connected via the DMA APB bridge
  578. */
  579. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  580. #define SCI_DMA { 7, 6 }
  581. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  582. #define UART0_DMA { 15, 14 }
  583. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  584. #define UART1_DMA { 13, 12 }
  585. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  586. #define UART2_DMA { 11, 10 }
  587. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  588. #define SSP_DMA { 9, 8 }
  589. /* FPGA Primecells */
  590. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  591. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  592. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  593. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  594. /* DevChip Primecells */
  595. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  596. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  597. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  598. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  599. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  600. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  601. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
  602. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
  603. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  604. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  605. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  606. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  607. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  608. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  609. static struct amba_device *amba_devs[] __initdata = {
  610. &dmac_device,
  611. &uart0_device,
  612. &uart1_device,
  613. &uart2_device,
  614. &smc_device,
  615. &mpmc_device,
  616. &clcd_device,
  617. &sctl_device,
  618. &wdog_device,
  619. &gpio0_device,
  620. &gpio1_device,
  621. &rtc_device,
  622. &sci0_device,
  623. &ssp0_device,
  624. &aaci_device,
  625. &mmc0_device,
  626. &kmi0_device,
  627. &kmi1_device,
  628. };
  629. #ifdef CONFIG_LEDS
  630. #define VA_LEDS_BASE (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  631. static void versatile_leds_event(led_event_t ledevt)
  632. {
  633. unsigned long flags;
  634. u32 val;
  635. local_irq_save(flags);
  636. val = readl(VA_LEDS_BASE);
  637. switch (ledevt) {
  638. case led_idle_start:
  639. val = val & ~VERSATILE_SYS_LED0;
  640. break;
  641. case led_idle_end:
  642. val = val | VERSATILE_SYS_LED0;
  643. break;
  644. case led_timer:
  645. val = val ^ VERSATILE_SYS_LED1;
  646. break;
  647. case led_halted:
  648. val = 0;
  649. break;
  650. default:
  651. break;
  652. }
  653. writel(val, VA_LEDS_BASE);
  654. local_irq_restore(flags);
  655. }
  656. #endif /* CONFIG_LEDS */
  657. void __init versatile_init(void)
  658. {
  659. int i;
  660. clk_register(&versatile_clcd_clk);
  661. platform_device_register(&versatile_flash_device);
  662. platform_device_register(&smc91x_device);
  663. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  664. struct amba_device *d = amba_devs[i];
  665. amba_device_register(d, &iomem_resource);
  666. }
  667. #ifdef CONFIG_LEDS
  668. leds_event = versatile_leds_event;
  669. #endif
  670. }
  671. /*
  672. * Where is the timer (VA)?
  673. */
  674. #define TIMER0_VA_BASE IO_ADDRESS(VERSATILE_TIMER0_1_BASE)
  675. #define TIMER1_VA_BASE (IO_ADDRESS(VERSATILE_TIMER0_1_BASE) + 0x20)
  676. #define TIMER2_VA_BASE IO_ADDRESS(VERSATILE_TIMER2_3_BASE)
  677. #define TIMER3_VA_BASE (IO_ADDRESS(VERSATILE_TIMER2_3_BASE) + 0x20)
  678. #define VA_IC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
  679. /*
  680. * How long is the timer interval?
  681. */
  682. #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
  683. #if TIMER_INTERVAL >= 0x100000
  684. #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
  685. #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
  686. #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
  687. #elif TIMER_INTERVAL >= 0x10000
  688. #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
  689. #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
  690. #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
  691. #else
  692. #define TIMER_RELOAD (TIMER_INTERVAL)
  693. #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
  694. #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
  695. #endif
  696. /*
  697. * Returns number of ms since last clock interrupt. Note that interrupts
  698. * will have been disabled by do_gettimeoffset()
  699. */
  700. static unsigned long versatile_gettimeoffset(void)
  701. {
  702. unsigned long ticks1, ticks2, status;
  703. /*
  704. * Get the current number of ticks. Note that there is a race
  705. * condition between us reading the timer and checking for
  706. * an interrupt. We get around this by ensuring that the
  707. * counter has not reloaded between our two reads.
  708. */
  709. ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
  710. do {
  711. ticks1 = ticks2;
  712. status = __raw_readl(VA_IC_BASE + VIC_IRQ_RAW_STATUS);
  713. ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
  714. } while (ticks2 > ticks1);
  715. /*
  716. * Number of ticks since last interrupt.
  717. */
  718. ticks1 = TIMER_RELOAD - ticks2;
  719. /*
  720. * Interrupt pending? If so, we've reloaded once already.
  721. *
  722. * FIXME: Need to check this is effectively timer 0 that expires
  723. */
  724. if (status & IRQMASK_TIMERINT0_1)
  725. ticks1 += TIMER_RELOAD;
  726. /*
  727. * Convert the ticks to usecs
  728. */
  729. return TICKS2USECS(ticks1);
  730. }
  731. /*
  732. * IRQ handler for the timer
  733. */
  734. static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  735. {
  736. write_seqlock(&xtime_lock);
  737. // ...clear the interrupt
  738. writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
  739. timer_tick(regs);
  740. write_sequnlock(&xtime_lock);
  741. return IRQ_HANDLED;
  742. }
  743. static struct irqaction versatile_timer_irq = {
  744. .name = "Versatile Timer Tick",
  745. .flags = SA_INTERRUPT | SA_TIMER,
  746. .handler = versatile_timer_interrupt,
  747. };
  748. /*
  749. * Set up timer interrupt, and return the current time in seconds.
  750. */
  751. static void __init versatile_timer_init(void)
  752. {
  753. u32 val;
  754. /*
  755. * set clock frequency:
  756. * VERSATILE_REFCLK is 32KHz
  757. * VERSATILE_TIMCLK is 1MHz
  758. */
  759. val = readl(IO_ADDRESS(VERSATILE_SCTL_BASE));
  760. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  761. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  762. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  763. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  764. IO_ADDRESS(VERSATILE_SCTL_BASE));
  765. /*
  766. * Initialise to a known state (all timers off)
  767. */
  768. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  769. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  770. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  771. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  772. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
  773. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_VALUE);
  774. writel(TIMER_DIVISOR | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC |
  775. TIMER_CTRL_IE, TIMER0_VA_BASE + TIMER_CTRL);
  776. /*
  777. * Make irqs happen for the system timer
  778. */
  779. setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
  780. }
  781. struct sys_timer versatile_timer = {
  782. .init = versatile_timer_init,
  783. .offset = versatile_gettimeoffset,
  784. };