dmabounce.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688
  1. /*
  2. * arch/arm/common/dmabounce.c
  3. *
  4. * Special dma_{map/unmap/dma_sync}_* routines for systems that have
  5. * limited DMA windows. These functions utilize bounce buffers to
  6. * copy data to/from buffers located outside the DMA region. This
  7. * only works for systems in which DMA memory is at the bottom of
  8. * RAM and the remainder of memory is at the top an the DMA memory
  9. * can be marked as ZONE_DMA. Anything beyond that such as discontigous
  10. * DMA windows will require custom implementations that reserve memory
  11. * areas at early bootup.
  12. *
  13. * Original version by Brad Parker (brad@heeltoe.com)
  14. * Re-written by Christopher Hoover <ch@murgatroid.com>
  15. * Made generic by Deepak Saxena <dsaxena@plexity.net>
  16. *
  17. * Copyright (C) 2002 Hewlett Packard Company.
  18. * Copyright (C) 2004 MontaVista Software, Inc.
  19. *
  20. * This program is free software; you can redistribute it and/or
  21. * modify it under the terms of the GNU General Public License
  22. * version 2 as published by the Free Software Foundation.
  23. */
  24. #include <linux/module.h>
  25. #include <linux/init.h>
  26. #include <linux/slab.h>
  27. #include <linux/device.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/dmapool.h>
  30. #include <linux/list.h>
  31. #include <asm/cacheflush.h>
  32. #undef DEBUG
  33. #undef STATS
  34. #ifdef STATS
  35. #define DO_STATS(X) do { X ; } while (0)
  36. #else
  37. #define DO_STATS(X) do { } while (0)
  38. #endif
  39. /* ************************************************** */
  40. struct safe_buffer {
  41. struct list_head node;
  42. /* original request */
  43. void *ptr;
  44. size_t size;
  45. int direction;
  46. /* safe buffer info */
  47. struct dma_pool *pool;
  48. void *safe;
  49. dma_addr_t safe_dma_addr;
  50. };
  51. struct dmabounce_device_info {
  52. struct list_head node;
  53. struct device *dev;
  54. struct dma_pool *small_buffer_pool;
  55. struct dma_pool *large_buffer_pool;
  56. struct list_head safe_buffers;
  57. unsigned long small_buffer_size, large_buffer_size;
  58. #ifdef STATS
  59. unsigned long sbp_allocs;
  60. unsigned long lbp_allocs;
  61. unsigned long total_allocs;
  62. unsigned long map_op_count;
  63. unsigned long bounce_count;
  64. #endif
  65. };
  66. static LIST_HEAD(dmabounce_devs);
  67. #ifdef STATS
  68. static void print_alloc_stats(struct dmabounce_device_info *device_info)
  69. {
  70. printk(KERN_INFO
  71. "%s: dmabounce: sbp: %lu, lbp: %lu, other: %lu, total: %lu\n",
  72. device_info->dev->bus_id,
  73. device_info->sbp_allocs, device_info->lbp_allocs,
  74. device_info->total_allocs - device_info->sbp_allocs -
  75. device_info->lbp_allocs,
  76. device_info->total_allocs);
  77. }
  78. #endif
  79. /* find the given device in the dmabounce device list */
  80. static inline struct dmabounce_device_info *
  81. find_dmabounce_dev(struct device *dev)
  82. {
  83. struct dmabounce_device_info *d;
  84. list_for_each_entry(d, &dmabounce_devs, node)
  85. if (d->dev == dev)
  86. return d;
  87. return NULL;
  88. }
  89. /* allocate a 'safe' buffer and keep track of it */
  90. static inline struct safe_buffer *
  91. alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
  92. size_t size, enum dma_data_direction dir)
  93. {
  94. struct safe_buffer *buf;
  95. struct dma_pool *pool;
  96. struct device *dev = device_info->dev;
  97. void *safe;
  98. dma_addr_t safe_dma_addr;
  99. dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
  100. __func__, ptr, size, dir);
  101. DO_STATS ( device_info->total_allocs++ );
  102. buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
  103. if (buf == NULL) {
  104. dev_warn(dev, "%s: kmalloc failed\n", __func__);
  105. return NULL;
  106. }
  107. if (size <= device_info->small_buffer_size) {
  108. pool = device_info->small_buffer_pool;
  109. safe = dma_pool_alloc(pool, GFP_ATOMIC, &safe_dma_addr);
  110. DO_STATS ( device_info->sbp_allocs++ );
  111. } else if (size <= device_info->large_buffer_size) {
  112. pool = device_info->large_buffer_pool;
  113. safe = dma_pool_alloc(pool, GFP_ATOMIC, &safe_dma_addr);
  114. DO_STATS ( device_info->lbp_allocs++ );
  115. } else {
  116. pool = NULL;
  117. safe = dma_alloc_coherent(dev, size, &safe_dma_addr, GFP_ATOMIC);
  118. }
  119. if (safe == NULL) {
  120. dev_warn(device_info->dev,
  121. "%s: could not alloc dma memory (size=%d)\n",
  122. __func__, size);
  123. kfree(buf);
  124. return NULL;
  125. }
  126. #ifdef STATS
  127. if (device_info->total_allocs % 1000 == 0)
  128. print_alloc_stats(device_info);
  129. #endif
  130. buf->ptr = ptr;
  131. buf->size = size;
  132. buf->direction = dir;
  133. buf->pool = pool;
  134. buf->safe = safe;
  135. buf->safe_dma_addr = safe_dma_addr;
  136. list_add(&buf->node, &device_info->safe_buffers);
  137. return buf;
  138. }
  139. /* determine if a buffer is from our "safe" pool */
  140. static inline struct safe_buffer *
  141. find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
  142. {
  143. struct safe_buffer *b;
  144. list_for_each_entry(b, &device_info->safe_buffers, node)
  145. if (b->safe_dma_addr == safe_dma_addr)
  146. return b;
  147. return NULL;
  148. }
  149. static inline void
  150. free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
  151. {
  152. dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
  153. list_del(&buf->node);
  154. if (buf->pool)
  155. dma_pool_free(buf->pool, buf->safe, buf->safe_dma_addr);
  156. else
  157. dma_free_coherent(device_info->dev, buf->size, buf->safe,
  158. buf->safe_dma_addr);
  159. kfree(buf);
  160. }
  161. /* ************************************************** */
  162. #ifdef STATS
  163. static void print_map_stats(struct dmabounce_device_info *device_info)
  164. {
  165. printk(KERN_INFO
  166. "%s: dmabounce: map_op_count=%lu, bounce_count=%lu\n",
  167. device_info->dev->bus_id,
  168. device_info->map_op_count, device_info->bounce_count);
  169. }
  170. #endif
  171. static inline dma_addr_t
  172. map_single(struct device *dev, void *ptr, size_t size,
  173. enum dma_data_direction dir)
  174. {
  175. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  176. dma_addr_t dma_addr;
  177. int needs_bounce = 0;
  178. if (device_info)
  179. DO_STATS ( device_info->map_op_count++ );
  180. dma_addr = virt_to_dma(dev, ptr);
  181. if (dev->dma_mask) {
  182. unsigned long mask = *dev->dma_mask;
  183. unsigned long limit;
  184. limit = (mask + 1) & ~mask;
  185. if (limit && size > limit) {
  186. dev_err(dev, "DMA mapping too big (requested %#x "
  187. "mask %#Lx)\n", size, *dev->dma_mask);
  188. return ~0;
  189. }
  190. /*
  191. * Figure out if we need to bounce from the DMA mask.
  192. */
  193. needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
  194. }
  195. if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
  196. struct safe_buffer *buf;
  197. buf = alloc_safe_buffer(device_info, ptr, size, dir);
  198. if (buf == 0) {
  199. dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
  200. __func__, ptr);
  201. return 0;
  202. }
  203. dev_dbg(dev,
  204. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  205. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  206. buf->safe, (void *) buf->safe_dma_addr);
  207. if ((dir == DMA_TO_DEVICE) ||
  208. (dir == DMA_BIDIRECTIONAL)) {
  209. dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
  210. __func__, ptr, buf->safe, size);
  211. memcpy(buf->safe, ptr, size);
  212. }
  213. consistent_sync(buf->safe, size, dir);
  214. dma_addr = buf->safe_dma_addr;
  215. } else {
  216. consistent_sync(ptr, size, dir);
  217. }
  218. return dma_addr;
  219. }
  220. static inline void
  221. unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  222. enum dma_data_direction dir)
  223. {
  224. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  225. struct safe_buffer *buf = NULL;
  226. /*
  227. * Trying to unmap an invalid mapping
  228. */
  229. if (dma_addr == ~0) {
  230. dev_err(dev, "Trying to unmap invalid mapping\n");
  231. return;
  232. }
  233. if (device_info)
  234. buf = find_safe_buffer(device_info, dma_addr);
  235. if (buf) {
  236. BUG_ON(buf->size != size);
  237. dev_dbg(dev,
  238. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  239. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  240. buf->safe, (void *) buf->safe_dma_addr);
  241. DO_STATS ( device_info->bounce_count++ );
  242. if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
  243. unsigned long ptr;
  244. dev_dbg(dev,
  245. "%s: copy back safe %p to unsafe %p size %d\n",
  246. __func__, buf->safe, buf->ptr, size);
  247. memcpy(buf->ptr, buf->safe, size);
  248. /*
  249. * DMA buffers must have the same cache properties
  250. * as if they were really used for DMA - which means
  251. * data must be written back to RAM. Note that
  252. * we don't use dmac_flush_range() here for the
  253. * bidirectional case because we know the cache
  254. * lines will be coherent with the data written.
  255. */
  256. ptr = (unsigned long)buf->ptr;
  257. dmac_clean_range(ptr, ptr + size);
  258. }
  259. free_safe_buffer(device_info, buf);
  260. }
  261. }
  262. static inline void
  263. sync_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  264. enum dma_data_direction dir)
  265. {
  266. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  267. struct safe_buffer *buf = NULL;
  268. if (device_info)
  269. buf = find_safe_buffer(device_info, dma_addr);
  270. if (buf) {
  271. /*
  272. * Both of these checks from original code need to be
  273. * commented out b/c some drivers rely on the following:
  274. *
  275. * 1) Drivers may map a large chunk of memory into DMA space
  276. * but only sync a small portion of it. Good example is
  277. * allocating a large buffer, mapping it, and then
  278. * breaking it up into small descriptors. No point
  279. * in syncing the whole buffer if you only have to
  280. * touch one descriptor.
  281. *
  282. * 2) Buffers that are mapped as DMA_BIDIRECTIONAL are
  283. * usually only synced in one dir at a time.
  284. *
  285. * See drivers/net/eepro100.c for examples of both cases.
  286. *
  287. * -ds
  288. *
  289. * BUG_ON(buf->size != size);
  290. * BUG_ON(buf->direction != dir);
  291. */
  292. dev_dbg(dev,
  293. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  294. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  295. buf->safe, (void *) buf->safe_dma_addr);
  296. DO_STATS ( device_info->bounce_count++ );
  297. switch (dir) {
  298. case DMA_FROM_DEVICE:
  299. dev_dbg(dev,
  300. "%s: copy back safe %p to unsafe %p size %d\n",
  301. __func__, buf->safe, buf->ptr, size);
  302. memcpy(buf->ptr, buf->safe, size);
  303. break;
  304. case DMA_TO_DEVICE:
  305. dev_dbg(dev,
  306. "%s: copy out unsafe %p to safe %p, size %d\n",
  307. __func__,buf->ptr, buf->safe, size);
  308. memcpy(buf->safe, buf->ptr, size);
  309. break;
  310. case DMA_BIDIRECTIONAL:
  311. BUG(); /* is this allowed? what does it mean? */
  312. default:
  313. BUG();
  314. }
  315. consistent_sync(buf->safe, size, dir);
  316. } else {
  317. consistent_sync(dma_to_virt(dev, dma_addr), size, dir);
  318. }
  319. }
  320. /* ************************************************** */
  321. /*
  322. * see if a buffer address is in an 'unsafe' range. if it is
  323. * allocate a 'safe' buffer and copy the unsafe buffer into it.
  324. * substitute the safe buffer for the unsafe one.
  325. * (basically move the buffer from an unsafe area to a safe one)
  326. */
  327. dma_addr_t
  328. dma_map_single(struct device *dev, void *ptr, size_t size,
  329. enum dma_data_direction dir)
  330. {
  331. unsigned long flags;
  332. dma_addr_t dma_addr;
  333. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  334. __func__, ptr, size, dir);
  335. BUG_ON(dir == DMA_NONE);
  336. local_irq_save(flags);
  337. dma_addr = map_single(dev, ptr, size, dir);
  338. local_irq_restore(flags);
  339. return dma_addr;
  340. }
  341. /*
  342. * see if a mapped address was really a "safe" buffer and if so, copy
  343. * the data from the safe buffer back to the unsafe buffer and free up
  344. * the safe buffer. (basically return things back to the way they
  345. * should be)
  346. */
  347. void
  348. dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  349. enum dma_data_direction dir)
  350. {
  351. unsigned long flags;
  352. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  353. __func__, (void *) dma_addr, size, dir);
  354. BUG_ON(dir == DMA_NONE);
  355. local_irq_save(flags);
  356. unmap_single(dev, dma_addr, size, dir);
  357. local_irq_restore(flags);
  358. }
  359. int
  360. dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  361. enum dma_data_direction dir)
  362. {
  363. unsigned long flags;
  364. int i;
  365. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  366. __func__, sg, nents, dir);
  367. BUG_ON(dir == DMA_NONE);
  368. local_irq_save(flags);
  369. for (i = 0; i < nents; i++, sg++) {
  370. struct page *page = sg->page;
  371. unsigned int offset = sg->offset;
  372. unsigned int length = sg->length;
  373. void *ptr = page_address(page) + offset;
  374. sg->dma_address =
  375. map_single(dev, ptr, length, dir);
  376. }
  377. local_irq_restore(flags);
  378. return nents;
  379. }
  380. void
  381. dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  382. enum dma_data_direction dir)
  383. {
  384. unsigned long flags;
  385. int i;
  386. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  387. __func__, sg, nents, dir);
  388. BUG_ON(dir == DMA_NONE);
  389. local_irq_save(flags);
  390. for (i = 0; i < nents; i++, sg++) {
  391. dma_addr_t dma_addr = sg->dma_address;
  392. unsigned int length = sg->length;
  393. unmap_single(dev, dma_addr, length, dir);
  394. }
  395. local_irq_restore(flags);
  396. }
  397. void
  398. dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size,
  399. enum dma_data_direction dir)
  400. {
  401. unsigned long flags;
  402. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  403. __func__, (void *) dma_addr, size, dir);
  404. local_irq_save(flags);
  405. sync_single(dev, dma_addr, size, dir);
  406. local_irq_restore(flags);
  407. }
  408. void
  409. dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size,
  410. enum dma_data_direction dir)
  411. {
  412. unsigned long flags;
  413. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  414. __func__, (void *) dma_addr, size, dir);
  415. local_irq_save(flags);
  416. sync_single(dev, dma_addr, size, dir);
  417. local_irq_restore(flags);
  418. }
  419. void
  420. dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
  421. enum dma_data_direction dir)
  422. {
  423. unsigned long flags;
  424. int i;
  425. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  426. __func__, sg, nents, dir);
  427. BUG_ON(dir == DMA_NONE);
  428. local_irq_save(flags);
  429. for (i = 0; i < nents; i++, sg++) {
  430. dma_addr_t dma_addr = sg->dma_address;
  431. unsigned int length = sg->length;
  432. sync_single(dev, dma_addr, length, dir);
  433. }
  434. local_irq_restore(flags);
  435. }
  436. void
  437. dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
  438. enum dma_data_direction dir)
  439. {
  440. unsigned long flags;
  441. int i;
  442. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  443. __func__, sg, nents, dir);
  444. BUG_ON(dir == DMA_NONE);
  445. local_irq_save(flags);
  446. for (i = 0; i < nents; i++, sg++) {
  447. dma_addr_t dma_addr = sg->dma_address;
  448. unsigned int length = sg->length;
  449. sync_single(dev, dma_addr, length, dir);
  450. }
  451. local_irq_restore(flags);
  452. }
  453. int
  454. dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
  455. unsigned long large_buffer_size)
  456. {
  457. struct dmabounce_device_info *device_info;
  458. device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
  459. if (!device_info) {
  460. printk(KERN_ERR
  461. "Could not allocated dmabounce_device_info for %s",
  462. dev->bus_id);
  463. return -ENOMEM;
  464. }
  465. device_info->small_buffer_pool =
  466. dma_pool_create("small_dmabounce_pool",
  467. dev,
  468. small_buffer_size,
  469. 0 /* byte alignment */,
  470. 0 /* no page-crossing issues */);
  471. if (!device_info->small_buffer_pool) {
  472. printk(KERN_ERR
  473. "dmabounce: could not allocate small DMA pool for %s\n",
  474. dev->bus_id);
  475. kfree(device_info);
  476. return -ENOMEM;
  477. }
  478. if (large_buffer_size) {
  479. device_info->large_buffer_pool =
  480. dma_pool_create("large_dmabounce_pool",
  481. dev,
  482. large_buffer_size,
  483. 0 /* byte alignment */,
  484. 0 /* no page-crossing issues */);
  485. if (!device_info->large_buffer_pool) {
  486. printk(KERN_ERR
  487. "dmabounce: could not allocate large DMA pool for %s\n",
  488. dev->bus_id);
  489. dma_pool_destroy(device_info->small_buffer_pool);
  490. return -ENOMEM;
  491. }
  492. }
  493. device_info->dev = dev;
  494. device_info->small_buffer_size = small_buffer_size;
  495. device_info->large_buffer_size = large_buffer_size;
  496. INIT_LIST_HEAD(&device_info->safe_buffers);
  497. #ifdef STATS
  498. device_info->sbp_allocs = 0;
  499. device_info->lbp_allocs = 0;
  500. device_info->total_allocs = 0;
  501. device_info->map_op_count = 0;
  502. device_info->bounce_count = 0;
  503. #endif
  504. list_add(&device_info->node, &dmabounce_devs);
  505. printk(KERN_INFO "dmabounce: registered device %s on %s bus\n",
  506. dev->bus_id, dev->bus->name);
  507. return 0;
  508. }
  509. void
  510. dmabounce_unregister_dev(struct device *dev)
  511. {
  512. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  513. if (!device_info) {
  514. printk(KERN_WARNING
  515. "%s: Never registered with dmabounce but attempting" \
  516. "to unregister!\n", dev->bus_id);
  517. return;
  518. }
  519. if (!list_empty(&device_info->safe_buffers)) {
  520. printk(KERN_ERR
  521. "%s: Removing from dmabounce with pending buffers!\n",
  522. dev->bus_id);
  523. BUG();
  524. }
  525. if (device_info->small_buffer_pool)
  526. dma_pool_destroy(device_info->small_buffer_pool);
  527. if (device_info->large_buffer_pool)
  528. dma_pool_destroy(device_info->large_buffer_pool);
  529. #ifdef STATS
  530. print_alloc_stats(device_info);
  531. print_map_stats(device_info);
  532. #endif
  533. list_del(&device_info->node);
  534. kfree(device_info);
  535. printk(KERN_INFO "dmabounce: device %s on %s bus unregistered\n",
  536. dev->bus_id, dev->bus->name);
  537. }
  538. EXPORT_SYMBOL(dma_map_single);
  539. EXPORT_SYMBOL(dma_unmap_single);
  540. EXPORT_SYMBOL(dma_map_sg);
  541. EXPORT_SYMBOL(dma_unmap_sg);
  542. EXPORT_SYMBOL(dma_sync_single);
  543. EXPORT_SYMBOL(dma_sync_sg);
  544. EXPORT_SYMBOL(dmabounce_register_dev);
  545. EXPORT_SYMBOL(dmabounce_unregister_dev);
  546. MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
  547. MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
  548. MODULE_LICENSE("GPL");