numa.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. /*
  2. * linux/arch/alpha/mm/numa.c
  3. *
  4. * DISCONTIGMEM NUMA alpha support.
  5. *
  6. * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
  7. */
  8. #include <linux/config.h>
  9. #include <linux/types.h>
  10. #include <linux/kernel.h>
  11. #include <linux/mm.h>
  12. #include <linux/bootmem.h>
  13. #include <linux/swap.h>
  14. #include <linux/initrd.h>
  15. #include <asm/hwrpb.h>
  16. #include <asm/pgalloc.h>
  17. pg_data_t node_data[MAX_NUMNODES];
  18. bootmem_data_t node_bdata[MAX_NUMNODES];
  19. #undef DEBUG_DISCONTIG
  20. #ifdef DEBUG_DISCONTIG
  21. #define DBGDCONT(args...) printk(args)
  22. #else
  23. #define DBGDCONT(args...)
  24. #endif
  25. #define PFN_UP(x) (((x) + PAGE_SIZE-1) >> PAGE_SHIFT)
  26. #define PFN_DOWN(x) ((x) >> PAGE_SHIFT)
  27. #define PFN_PHYS(x) ((x) << PAGE_SHIFT)
  28. #define for_each_mem_cluster(memdesc, cluster, i) \
  29. for ((cluster) = (memdesc)->cluster, (i) = 0; \
  30. (i) < (memdesc)->numclusters; (i)++, (cluster)++)
  31. static void __init show_mem_layout(void)
  32. {
  33. struct memclust_struct * cluster;
  34. struct memdesc_struct * memdesc;
  35. int i;
  36. /* Find free clusters, and init and free the bootmem accordingly. */
  37. memdesc = (struct memdesc_struct *)
  38. (hwrpb->mddt_offset + (unsigned long) hwrpb);
  39. printk("Raw memory layout:\n");
  40. for_each_mem_cluster(memdesc, cluster, i) {
  41. printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
  42. i, cluster->usage, cluster->start_pfn,
  43. cluster->start_pfn + cluster->numpages);
  44. }
  45. }
  46. static void __init
  47. setup_memory_node(int nid, void *kernel_end)
  48. {
  49. extern unsigned long mem_size_limit;
  50. struct memclust_struct * cluster;
  51. struct memdesc_struct * memdesc;
  52. unsigned long start_kernel_pfn, end_kernel_pfn;
  53. unsigned long bootmap_size, bootmap_pages, bootmap_start;
  54. unsigned long start, end;
  55. unsigned long node_pfn_start, node_pfn_end;
  56. unsigned long node_min_pfn, node_max_pfn;
  57. int i;
  58. unsigned long node_datasz = PFN_UP(sizeof(pg_data_t));
  59. int show_init = 0;
  60. /* Find the bounds of current node */
  61. node_pfn_start = (node_mem_start(nid)) >> PAGE_SHIFT;
  62. node_pfn_end = node_pfn_start + (node_mem_size(nid) >> PAGE_SHIFT);
  63. /* Find free clusters, and init and free the bootmem accordingly. */
  64. memdesc = (struct memdesc_struct *)
  65. (hwrpb->mddt_offset + (unsigned long) hwrpb);
  66. /* find the bounds of this node (node_min_pfn/node_max_pfn) */
  67. node_min_pfn = ~0UL;
  68. node_max_pfn = 0UL;
  69. for_each_mem_cluster(memdesc, cluster, i) {
  70. /* Bit 0 is console/PALcode reserved. Bit 1 is
  71. non-volatile memory -- we might want to mark
  72. this for later. */
  73. if (cluster->usage & 3)
  74. continue;
  75. start = cluster->start_pfn;
  76. end = start + cluster->numpages;
  77. if (start >= node_pfn_end || end <= node_pfn_start)
  78. continue;
  79. if (!show_init) {
  80. show_init = 1;
  81. printk("Initializing bootmem allocator on Node ID %d\n", nid);
  82. }
  83. printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
  84. i, cluster->usage, cluster->start_pfn,
  85. cluster->start_pfn + cluster->numpages);
  86. if (start < node_pfn_start)
  87. start = node_pfn_start;
  88. if (end > node_pfn_end)
  89. end = node_pfn_end;
  90. if (start < node_min_pfn)
  91. node_min_pfn = start;
  92. if (end > node_max_pfn)
  93. node_max_pfn = end;
  94. }
  95. if (mem_size_limit && node_max_pfn > mem_size_limit) {
  96. static int msg_shown = 0;
  97. if (!msg_shown) {
  98. msg_shown = 1;
  99. printk("setup: forcing memory size to %ldK (from %ldK).\n",
  100. mem_size_limit << (PAGE_SHIFT - 10),
  101. node_max_pfn << (PAGE_SHIFT - 10));
  102. }
  103. node_max_pfn = mem_size_limit;
  104. }
  105. if (node_min_pfn >= node_max_pfn)
  106. return;
  107. /* Update global {min,max}_low_pfn from node information. */
  108. if (node_min_pfn < min_low_pfn)
  109. min_low_pfn = node_min_pfn;
  110. if (node_max_pfn > max_low_pfn)
  111. max_pfn = max_low_pfn = node_max_pfn;
  112. num_physpages += node_max_pfn - node_min_pfn;
  113. #if 0 /* we'll try this one again in a little while */
  114. /* Cute trick to make sure our local node data is on local memory */
  115. node_data[nid] = (pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT));
  116. #endif
  117. /* Quasi-mark the pg_data_t as in-use */
  118. node_min_pfn += node_datasz;
  119. if (node_min_pfn >= node_max_pfn) {
  120. printk(" not enough mem to reserve NODE_DATA");
  121. return;
  122. }
  123. NODE_DATA(nid)->bdata = &node_bdata[nid];
  124. printk(" Detected node memory: start %8lu, end %8lu\n",
  125. node_min_pfn, node_max_pfn);
  126. DBGDCONT(" DISCONTIG: node_data[%d] is at 0x%p\n", nid, NODE_DATA(nid));
  127. DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata);
  128. /* Find the bounds of kernel memory. */
  129. start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);
  130. end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));
  131. bootmap_start = -1;
  132. if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn))
  133. panic("kernel loaded out of ram");
  134. /* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned.
  135. Note that we round this down, not up - node memory
  136. has much larger alignment than 8Mb, so it's safe. */
  137. node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1);
  138. /* We need to know how many physically contiguous pages
  139. we'll need for the bootmap. */
  140. bootmap_pages = bootmem_bootmap_pages(node_max_pfn-node_min_pfn);
  141. /* Now find a good region where to allocate the bootmap. */
  142. for_each_mem_cluster(memdesc, cluster, i) {
  143. if (cluster->usage & 3)
  144. continue;
  145. start = cluster->start_pfn;
  146. end = start + cluster->numpages;
  147. if (start >= node_max_pfn || end <= node_min_pfn)
  148. continue;
  149. if (end > node_max_pfn)
  150. end = node_max_pfn;
  151. if (start < node_min_pfn)
  152. start = node_min_pfn;
  153. if (start < start_kernel_pfn) {
  154. if (end > end_kernel_pfn
  155. && end - end_kernel_pfn >= bootmap_pages) {
  156. bootmap_start = end_kernel_pfn;
  157. break;
  158. } else if (end > start_kernel_pfn)
  159. end = start_kernel_pfn;
  160. } else if (start < end_kernel_pfn)
  161. start = end_kernel_pfn;
  162. if (end - start >= bootmap_pages) {
  163. bootmap_start = start;
  164. break;
  165. }
  166. }
  167. if (bootmap_start == -1)
  168. panic("couldn't find a contigous place for the bootmap");
  169. /* Allocate the bootmap and mark the whole MM as reserved. */
  170. bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start,
  171. node_min_pfn, node_max_pfn);
  172. DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n",
  173. bootmap_start, bootmap_size, bootmap_pages);
  174. /* Mark the free regions. */
  175. for_each_mem_cluster(memdesc, cluster, i) {
  176. if (cluster->usage & 3)
  177. continue;
  178. start = cluster->start_pfn;
  179. end = cluster->start_pfn + cluster->numpages;
  180. if (start >= node_max_pfn || end <= node_min_pfn)
  181. continue;
  182. if (end > node_max_pfn)
  183. end = node_max_pfn;
  184. if (start < node_min_pfn)
  185. start = node_min_pfn;
  186. if (start < start_kernel_pfn) {
  187. if (end > end_kernel_pfn) {
  188. free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start),
  189. (PFN_PHYS(start_kernel_pfn)
  190. - PFN_PHYS(start)));
  191. printk(" freeing pages %ld:%ld\n",
  192. start, start_kernel_pfn);
  193. start = end_kernel_pfn;
  194. } else if (end > start_kernel_pfn)
  195. end = start_kernel_pfn;
  196. } else if (start < end_kernel_pfn)
  197. start = end_kernel_pfn;
  198. if (start >= end)
  199. continue;
  200. free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start));
  201. printk(" freeing pages %ld:%ld\n", start, end);
  202. }
  203. /* Reserve the bootmap memory. */
  204. reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start), bootmap_size);
  205. printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size));
  206. node_set_online(nid);
  207. }
  208. void __init
  209. setup_memory(void *kernel_end)
  210. {
  211. int nid;
  212. show_mem_layout();
  213. nodes_clear(node_online_map);
  214. min_low_pfn = ~0UL;
  215. max_low_pfn = 0UL;
  216. for (nid = 0; nid < MAX_NUMNODES; nid++)
  217. setup_memory_node(nid, kernel_end);
  218. #ifdef CONFIG_BLK_DEV_INITRD
  219. initrd_start = INITRD_START;
  220. if (initrd_start) {
  221. extern void *move_initrd(unsigned long);
  222. initrd_end = initrd_start+INITRD_SIZE;
  223. printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
  224. (void *) initrd_start, INITRD_SIZE);
  225. if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {
  226. if (!move_initrd(PFN_PHYS(max_low_pfn)))
  227. printk("initrd extends beyond end of memory "
  228. "(0x%08lx > 0x%p)\ndisabling initrd\n",
  229. initrd_end,
  230. phys_to_virt(PFN_PHYS(max_low_pfn)));
  231. } else {
  232. nid = kvaddr_to_nid(initrd_start);
  233. reserve_bootmem_node(NODE_DATA(nid),
  234. virt_to_phys((void *)initrd_start),
  235. INITRD_SIZE);
  236. }
  237. }
  238. #endif /* CONFIG_BLK_DEV_INITRD */
  239. }
  240. void __init paging_init(void)
  241. {
  242. unsigned int nid;
  243. unsigned long zones_size[MAX_NR_ZONES] = {0, };
  244. unsigned long dma_local_pfn;
  245. /*
  246. * The old global MAX_DMA_ADDRESS per-arch API doesn't fit
  247. * in the NUMA model, for now we convert it to a pfn and
  248. * we interpret this pfn as a local per-node information.
  249. * This issue isn't very important since none of these machines
  250. * have legacy ISA slots anyways.
  251. */
  252. dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  253. for_each_online_node(nid) {
  254. unsigned long start_pfn = node_bdata[nid].node_boot_start >> PAGE_SHIFT;
  255. unsigned long end_pfn = node_bdata[nid].node_low_pfn;
  256. if (dma_local_pfn >= end_pfn - start_pfn)
  257. zones_size[ZONE_DMA] = end_pfn - start_pfn;
  258. else {
  259. zones_size[ZONE_DMA] = dma_local_pfn;
  260. zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn;
  261. }
  262. free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn, NULL);
  263. }
  264. /* Initialize the kernel's ZERO_PGE. */
  265. memset((void *)ZERO_PGE, 0, PAGE_SIZE);
  266. }
  267. void __init mem_init(void)
  268. {
  269. unsigned long codesize, reservedpages, datasize, initsize, pfn;
  270. extern int page_is_ram(unsigned long) __init;
  271. extern char _text, _etext, _data, _edata;
  272. extern char __init_begin, __init_end;
  273. unsigned long nid, i;
  274. high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);
  275. reservedpages = 0;
  276. for_each_online_node(nid) {
  277. /*
  278. * This will free up the bootmem, ie, slot 0 memory
  279. */
  280. totalram_pages += free_all_bootmem_node(NODE_DATA(nid));
  281. pfn = NODE_DATA(nid)->node_start_pfn;
  282. for (i = 0; i < node_spanned_pages(nid); i++, pfn++)
  283. if (page_is_ram(pfn) &&
  284. PageReserved(nid_page_nr(nid, i)))
  285. reservedpages++;
  286. }
  287. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  288. datasize = (unsigned long) &_edata - (unsigned long) &_data;
  289. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  290. printk("Memory: %luk/%luk available (%luk kernel code, %luk reserved, "
  291. "%luk data, %luk init)\n",
  292. (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
  293. num_physpages << (PAGE_SHIFT-10),
  294. codesize >> 10,
  295. reservedpages << (PAGE_SHIFT-10),
  296. datasize >> 10,
  297. initsize >> 10);
  298. #if 0
  299. mem_stress();
  300. #endif
  301. }
  302. void
  303. show_mem(void)
  304. {
  305. long i,free = 0,total = 0,reserved = 0;
  306. long shared = 0, cached = 0;
  307. int nid;
  308. printk("\nMem-info:\n");
  309. show_free_areas();
  310. printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  311. for_each_online_node(nid) {
  312. i = node_spanned_pages(nid);
  313. while (i-- > 0) {
  314. struct page *page = nid_page_nr(nid, i);
  315. total++;
  316. if (PageReserved(page))
  317. reserved++;
  318. else if (PageSwapCache(page))
  319. cached++;
  320. else if (!page_count(page))
  321. free++;
  322. else
  323. shared += page_count(page) - 1;
  324. }
  325. }
  326. printk("%ld pages of RAM\n",total);
  327. printk("%ld free pages\n",free);
  328. printk("%ld reserved pages\n",reserved);
  329. printk("%ld pages shared\n",shared);
  330. printk("%ld pages swap cached\n",cached);
  331. }