backref.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798
  1. /*
  2. * Copyright (C) 2011 STRATO. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/vmalloc.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "backref.h"
  22. #include "ulist.h"
  23. #include "transaction.h"
  24. #include "delayed-ref.h"
  25. #include "locking.h"
  26. struct extent_inode_elem {
  27. u64 inum;
  28. u64 offset;
  29. struct extent_inode_elem *next;
  30. };
  31. static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  32. struct btrfs_file_extent_item *fi,
  33. u64 extent_item_pos,
  34. struct extent_inode_elem **eie)
  35. {
  36. u64 data_offset;
  37. u64 data_len;
  38. struct extent_inode_elem *e;
  39. data_offset = btrfs_file_extent_offset(eb, fi);
  40. data_len = btrfs_file_extent_num_bytes(eb, fi);
  41. if (extent_item_pos < data_offset ||
  42. extent_item_pos >= data_offset + data_len)
  43. return 1;
  44. e = kmalloc(sizeof(*e), GFP_NOFS);
  45. if (!e)
  46. return -ENOMEM;
  47. e->next = *eie;
  48. e->inum = key->objectid;
  49. e->offset = key->offset + (extent_item_pos - data_offset);
  50. *eie = e;
  51. return 0;
  52. }
  53. static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  54. u64 extent_item_pos,
  55. struct extent_inode_elem **eie)
  56. {
  57. u64 disk_byte;
  58. struct btrfs_key key;
  59. struct btrfs_file_extent_item *fi;
  60. int slot;
  61. int nritems;
  62. int extent_type;
  63. int ret;
  64. /*
  65. * from the shared data ref, we only have the leaf but we need
  66. * the key. thus, we must look into all items and see that we
  67. * find one (some) with a reference to our extent item.
  68. */
  69. nritems = btrfs_header_nritems(eb);
  70. for (slot = 0; slot < nritems; ++slot) {
  71. btrfs_item_key_to_cpu(eb, &key, slot);
  72. if (key.type != BTRFS_EXTENT_DATA_KEY)
  73. continue;
  74. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  75. extent_type = btrfs_file_extent_type(eb, fi);
  76. if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  77. continue;
  78. /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  79. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  80. if (disk_byte != wanted_disk_byte)
  81. continue;
  82. ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  83. if (ret < 0)
  84. return ret;
  85. }
  86. return 0;
  87. }
  88. /*
  89. * this structure records all encountered refs on the way up to the root
  90. */
  91. struct __prelim_ref {
  92. struct list_head list;
  93. u64 root_id;
  94. struct btrfs_key key_for_search;
  95. int level;
  96. int count;
  97. struct extent_inode_elem *inode_list;
  98. u64 parent;
  99. u64 wanted_disk_byte;
  100. };
  101. /*
  102. * the rules for all callers of this function are:
  103. * - obtaining the parent is the goal
  104. * - if you add a key, you must know that it is a correct key
  105. * - if you cannot add the parent or a correct key, then we will look into the
  106. * block later to set a correct key
  107. *
  108. * delayed refs
  109. * ============
  110. * backref type | shared | indirect | shared | indirect
  111. * information | tree | tree | data | data
  112. * --------------------+--------+----------+--------+----------
  113. * parent logical | y | - | - | -
  114. * key to resolve | - | y | y | y
  115. * tree block logical | - | - | - | -
  116. * root for resolving | y | y | y | y
  117. *
  118. * - column 1: we've the parent -> done
  119. * - column 2, 3, 4: we use the key to find the parent
  120. *
  121. * on disk refs (inline or keyed)
  122. * ==============================
  123. * backref type | shared | indirect | shared | indirect
  124. * information | tree | tree | data | data
  125. * --------------------+--------+----------+--------+----------
  126. * parent logical | y | - | y | -
  127. * key to resolve | - | - | - | y
  128. * tree block logical | y | y | y | y
  129. * root for resolving | - | y | y | y
  130. *
  131. * - column 1, 3: we've the parent -> done
  132. * - column 2: we take the first key from the block to find the parent
  133. * (see __add_missing_keys)
  134. * - column 4: we use the key to find the parent
  135. *
  136. * additional information that's available but not required to find the parent
  137. * block might help in merging entries to gain some speed.
  138. */
  139. static int __add_prelim_ref(struct list_head *head, u64 root_id,
  140. struct btrfs_key *key, int level,
  141. u64 parent, u64 wanted_disk_byte, int count)
  142. {
  143. struct __prelim_ref *ref;
  144. /* in case we're adding delayed refs, we're holding the refs spinlock */
  145. ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
  146. if (!ref)
  147. return -ENOMEM;
  148. ref->root_id = root_id;
  149. if (key)
  150. ref->key_for_search = *key;
  151. else
  152. memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
  153. ref->inode_list = NULL;
  154. ref->level = level;
  155. ref->count = count;
  156. ref->parent = parent;
  157. ref->wanted_disk_byte = wanted_disk_byte;
  158. list_add_tail(&ref->list, head);
  159. return 0;
  160. }
  161. static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
  162. struct ulist *parents, int level,
  163. struct btrfs_key *key_for_search, u64 time_seq,
  164. u64 wanted_disk_byte,
  165. const u64 *extent_item_pos)
  166. {
  167. int ret = 0;
  168. int slot;
  169. struct extent_buffer *eb;
  170. struct btrfs_key key;
  171. struct btrfs_file_extent_item *fi;
  172. struct extent_inode_elem *eie = NULL;
  173. u64 disk_byte;
  174. if (level != 0) {
  175. eb = path->nodes[level];
  176. ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
  177. if (ret < 0)
  178. return ret;
  179. return 0;
  180. }
  181. /*
  182. * We normally enter this function with the path already pointing to
  183. * the first item to check. But sometimes, we may enter it with
  184. * slot==nritems. In that case, go to the next leaf before we continue.
  185. */
  186. if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
  187. ret = btrfs_next_old_leaf(root, path, time_seq);
  188. while (!ret) {
  189. eb = path->nodes[0];
  190. slot = path->slots[0];
  191. btrfs_item_key_to_cpu(eb, &key, slot);
  192. if (key.objectid != key_for_search->objectid ||
  193. key.type != BTRFS_EXTENT_DATA_KEY)
  194. break;
  195. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  196. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  197. if (disk_byte == wanted_disk_byte) {
  198. eie = NULL;
  199. if (extent_item_pos) {
  200. ret = check_extent_in_eb(&key, eb, fi,
  201. *extent_item_pos,
  202. &eie);
  203. if (ret < 0)
  204. break;
  205. }
  206. if (!ret) {
  207. ret = ulist_add(parents, eb->start,
  208. (uintptr_t)eie, GFP_NOFS);
  209. if (ret < 0)
  210. break;
  211. if (!extent_item_pos) {
  212. ret = btrfs_next_old_leaf(root, path,
  213. time_seq);
  214. continue;
  215. }
  216. }
  217. }
  218. ret = btrfs_next_old_item(root, path, time_seq);
  219. }
  220. if (ret > 0)
  221. ret = 0;
  222. return ret;
  223. }
  224. /*
  225. * resolve an indirect backref in the form (root_id, key, level)
  226. * to a logical address
  227. */
  228. static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
  229. struct btrfs_path *path, u64 time_seq,
  230. struct __prelim_ref *ref,
  231. struct ulist *parents,
  232. const u64 *extent_item_pos)
  233. {
  234. struct btrfs_root *root;
  235. struct btrfs_key root_key;
  236. struct extent_buffer *eb;
  237. int ret = 0;
  238. int root_level;
  239. int level = ref->level;
  240. root_key.objectid = ref->root_id;
  241. root_key.type = BTRFS_ROOT_ITEM_KEY;
  242. root_key.offset = (u64)-1;
  243. root = btrfs_read_fs_root_no_name(fs_info, &root_key);
  244. if (IS_ERR(root)) {
  245. ret = PTR_ERR(root);
  246. goto out;
  247. }
  248. root_level = btrfs_old_root_level(root, time_seq);
  249. if (root_level + 1 == level)
  250. goto out;
  251. path->lowest_level = level;
  252. ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
  253. pr_debug("search slot in root %llu (level %d, ref count %d) returned "
  254. "%d for key (%llu %u %llu)\n",
  255. (unsigned long long)ref->root_id, level, ref->count, ret,
  256. (unsigned long long)ref->key_for_search.objectid,
  257. ref->key_for_search.type,
  258. (unsigned long long)ref->key_for_search.offset);
  259. if (ret < 0)
  260. goto out;
  261. eb = path->nodes[level];
  262. while (!eb) {
  263. if (!level) {
  264. WARN_ON(1);
  265. ret = 1;
  266. goto out;
  267. }
  268. level--;
  269. eb = path->nodes[level];
  270. }
  271. ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
  272. time_seq, ref->wanted_disk_byte,
  273. extent_item_pos);
  274. out:
  275. path->lowest_level = 0;
  276. btrfs_release_path(path);
  277. return ret;
  278. }
  279. /*
  280. * resolve all indirect backrefs from the list
  281. */
  282. static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
  283. struct btrfs_path *path, u64 time_seq,
  284. struct list_head *head,
  285. const u64 *extent_item_pos)
  286. {
  287. int err;
  288. int ret = 0;
  289. struct __prelim_ref *ref;
  290. struct __prelim_ref *ref_safe;
  291. struct __prelim_ref *new_ref;
  292. struct ulist *parents;
  293. struct ulist_node *node;
  294. struct ulist_iterator uiter;
  295. parents = ulist_alloc(GFP_NOFS);
  296. if (!parents)
  297. return -ENOMEM;
  298. /*
  299. * _safe allows us to insert directly after the current item without
  300. * iterating over the newly inserted items.
  301. * we're also allowed to re-assign ref during iteration.
  302. */
  303. list_for_each_entry_safe(ref, ref_safe, head, list) {
  304. if (ref->parent) /* already direct */
  305. continue;
  306. if (ref->count == 0)
  307. continue;
  308. err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
  309. parents, extent_item_pos);
  310. if (err == -ENOMEM)
  311. goto out;
  312. if (err)
  313. continue;
  314. /* we put the first parent into the ref at hand */
  315. ULIST_ITER_INIT(&uiter);
  316. node = ulist_next(parents, &uiter);
  317. ref->parent = node ? node->val : 0;
  318. ref->inode_list = node ?
  319. (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
  320. /* additional parents require new refs being added here */
  321. while ((node = ulist_next(parents, &uiter))) {
  322. new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
  323. if (!new_ref) {
  324. ret = -ENOMEM;
  325. goto out;
  326. }
  327. memcpy(new_ref, ref, sizeof(*ref));
  328. new_ref->parent = node->val;
  329. new_ref->inode_list = (struct extent_inode_elem *)
  330. (uintptr_t)node->aux;
  331. list_add(&new_ref->list, &ref->list);
  332. }
  333. ulist_reinit(parents);
  334. }
  335. out:
  336. ulist_free(parents);
  337. return ret;
  338. }
  339. static inline int ref_for_same_block(struct __prelim_ref *ref1,
  340. struct __prelim_ref *ref2)
  341. {
  342. if (ref1->level != ref2->level)
  343. return 0;
  344. if (ref1->root_id != ref2->root_id)
  345. return 0;
  346. if (ref1->key_for_search.type != ref2->key_for_search.type)
  347. return 0;
  348. if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
  349. return 0;
  350. if (ref1->key_for_search.offset != ref2->key_for_search.offset)
  351. return 0;
  352. if (ref1->parent != ref2->parent)
  353. return 0;
  354. return 1;
  355. }
  356. /*
  357. * read tree blocks and add keys where required.
  358. */
  359. static int __add_missing_keys(struct btrfs_fs_info *fs_info,
  360. struct list_head *head)
  361. {
  362. struct list_head *pos;
  363. struct extent_buffer *eb;
  364. list_for_each(pos, head) {
  365. struct __prelim_ref *ref;
  366. ref = list_entry(pos, struct __prelim_ref, list);
  367. if (ref->parent)
  368. continue;
  369. if (ref->key_for_search.type)
  370. continue;
  371. BUG_ON(!ref->wanted_disk_byte);
  372. eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
  373. fs_info->tree_root->leafsize, 0);
  374. if (!eb || !extent_buffer_uptodate(eb)) {
  375. free_extent_buffer(eb);
  376. return -EIO;
  377. }
  378. btrfs_tree_read_lock(eb);
  379. if (btrfs_header_level(eb) == 0)
  380. btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
  381. else
  382. btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
  383. btrfs_tree_read_unlock(eb);
  384. free_extent_buffer(eb);
  385. }
  386. return 0;
  387. }
  388. /*
  389. * merge two lists of backrefs and adjust counts accordingly
  390. *
  391. * mode = 1: merge identical keys, if key is set
  392. * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
  393. * additionally, we could even add a key range for the blocks we
  394. * looked into to merge even more (-> replace unresolved refs by those
  395. * having a parent).
  396. * mode = 2: merge identical parents
  397. */
  398. static void __merge_refs(struct list_head *head, int mode)
  399. {
  400. struct list_head *pos1;
  401. list_for_each(pos1, head) {
  402. struct list_head *n2;
  403. struct list_head *pos2;
  404. struct __prelim_ref *ref1;
  405. ref1 = list_entry(pos1, struct __prelim_ref, list);
  406. for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
  407. pos2 = n2, n2 = pos2->next) {
  408. struct __prelim_ref *ref2;
  409. struct __prelim_ref *xchg;
  410. struct extent_inode_elem *eie;
  411. ref2 = list_entry(pos2, struct __prelim_ref, list);
  412. if (mode == 1) {
  413. if (!ref_for_same_block(ref1, ref2))
  414. continue;
  415. if (!ref1->parent && ref2->parent) {
  416. xchg = ref1;
  417. ref1 = ref2;
  418. ref2 = xchg;
  419. }
  420. } else {
  421. if (ref1->parent != ref2->parent)
  422. continue;
  423. }
  424. eie = ref1->inode_list;
  425. while (eie && eie->next)
  426. eie = eie->next;
  427. if (eie)
  428. eie->next = ref2->inode_list;
  429. else
  430. ref1->inode_list = ref2->inode_list;
  431. ref1->count += ref2->count;
  432. list_del(&ref2->list);
  433. kfree(ref2);
  434. }
  435. }
  436. }
  437. /*
  438. * add all currently queued delayed refs from this head whose seq nr is
  439. * smaller or equal that seq to the list
  440. */
  441. static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
  442. struct list_head *prefs)
  443. {
  444. struct btrfs_delayed_extent_op *extent_op = head->extent_op;
  445. struct rb_node *n = &head->node.rb_node;
  446. struct btrfs_key key;
  447. struct btrfs_key op_key = {0};
  448. int sgn;
  449. int ret = 0;
  450. if (extent_op && extent_op->update_key)
  451. btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
  452. while ((n = rb_prev(n))) {
  453. struct btrfs_delayed_ref_node *node;
  454. node = rb_entry(n, struct btrfs_delayed_ref_node,
  455. rb_node);
  456. if (node->bytenr != head->node.bytenr)
  457. break;
  458. WARN_ON(node->is_head);
  459. if (node->seq > seq)
  460. continue;
  461. switch (node->action) {
  462. case BTRFS_ADD_DELAYED_EXTENT:
  463. case BTRFS_UPDATE_DELAYED_HEAD:
  464. WARN_ON(1);
  465. continue;
  466. case BTRFS_ADD_DELAYED_REF:
  467. sgn = 1;
  468. break;
  469. case BTRFS_DROP_DELAYED_REF:
  470. sgn = -1;
  471. break;
  472. default:
  473. BUG_ON(1);
  474. }
  475. switch (node->type) {
  476. case BTRFS_TREE_BLOCK_REF_KEY: {
  477. struct btrfs_delayed_tree_ref *ref;
  478. ref = btrfs_delayed_node_to_tree_ref(node);
  479. ret = __add_prelim_ref(prefs, ref->root, &op_key,
  480. ref->level + 1, 0, node->bytenr,
  481. node->ref_mod * sgn);
  482. break;
  483. }
  484. case BTRFS_SHARED_BLOCK_REF_KEY: {
  485. struct btrfs_delayed_tree_ref *ref;
  486. ref = btrfs_delayed_node_to_tree_ref(node);
  487. ret = __add_prelim_ref(prefs, ref->root, NULL,
  488. ref->level + 1, ref->parent,
  489. node->bytenr,
  490. node->ref_mod * sgn);
  491. break;
  492. }
  493. case BTRFS_EXTENT_DATA_REF_KEY: {
  494. struct btrfs_delayed_data_ref *ref;
  495. ref = btrfs_delayed_node_to_data_ref(node);
  496. key.objectid = ref->objectid;
  497. key.type = BTRFS_EXTENT_DATA_KEY;
  498. key.offset = ref->offset;
  499. ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
  500. node->bytenr,
  501. node->ref_mod * sgn);
  502. break;
  503. }
  504. case BTRFS_SHARED_DATA_REF_KEY: {
  505. struct btrfs_delayed_data_ref *ref;
  506. ref = btrfs_delayed_node_to_data_ref(node);
  507. key.objectid = ref->objectid;
  508. key.type = BTRFS_EXTENT_DATA_KEY;
  509. key.offset = ref->offset;
  510. ret = __add_prelim_ref(prefs, ref->root, &key, 0,
  511. ref->parent, node->bytenr,
  512. node->ref_mod * sgn);
  513. break;
  514. }
  515. default:
  516. WARN_ON(1);
  517. }
  518. if (ret)
  519. return ret;
  520. }
  521. return 0;
  522. }
  523. /*
  524. * add all inline backrefs for bytenr to the list
  525. */
  526. static int __add_inline_refs(struct btrfs_fs_info *fs_info,
  527. struct btrfs_path *path, u64 bytenr,
  528. int *info_level, struct list_head *prefs)
  529. {
  530. int ret = 0;
  531. int slot;
  532. struct extent_buffer *leaf;
  533. struct btrfs_key key;
  534. unsigned long ptr;
  535. unsigned long end;
  536. struct btrfs_extent_item *ei;
  537. u64 flags;
  538. u64 item_size;
  539. /*
  540. * enumerate all inline refs
  541. */
  542. leaf = path->nodes[0];
  543. slot = path->slots[0];
  544. item_size = btrfs_item_size_nr(leaf, slot);
  545. BUG_ON(item_size < sizeof(*ei));
  546. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  547. flags = btrfs_extent_flags(leaf, ei);
  548. ptr = (unsigned long)(ei + 1);
  549. end = (unsigned long)ei + item_size;
  550. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  551. struct btrfs_tree_block_info *info;
  552. info = (struct btrfs_tree_block_info *)ptr;
  553. *info_level = btrfs_tree_block_level(leaf, info);
  554. ptr += sizeof(struct btrfs_tree_block_info);
  555. BUG_ON(ptr > end);
  556. } else {
  557. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  558. }
  559. while (ptr < end) {
  560. struct btrfs_extent_inline_ref *iref;
  561. u64 offset;
  562. int type;
  563. iref = (struct btrfs_extent_inline_ref *)ptr;
  564. type = btrfs_extent_inline_ref_type(leaf, iref);
  565. offset = btrfs_extent_inline_ref_offset(leaf, iref);
  566. switch (type) {
  567. case BTRFS_SHARED_BLOCK_REF_KEY:
  568. ret = __add_prelim_ref(prefs, 0, NULL,
  569. *info_level + 1, offset,
  570. bytenr, 1);
  571. break;
  572. case BTRFS_SHARED_DATA_REF_KEY: {
  573. struct btrfs_shared_data_ref *sdref;
  574. int count;
  575. sdref = (struct btrfs_shared_data_ref *)(iref + 1);
  576. count = btrfs_shared_data_ref_count(leaf, sdref);
  577. ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
  578. bytenr, count);
  579. break;
  580. }
  581. case BTRFS_TREE_BLOCK_REF_KEY:
  582. ret = __add_prelim_ref(prefs, offset, NULL,
  583. *info_level + 1, 0,
  584. bytenr, 1);
  585. break;
  586. case BTRFS_EXTENT_DATA_REF_KEY: {
  587. struct btrfs_extent_data_ref *dref;
  588. int count;
  589. u64 root;
  590. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  591. count = btrfs_extent_data_ref_count(leaf, dref);
  592. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  593. dref);
  594. key.type = BTRFS_EXTENT_DATA_KEY;
  595. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  596. root = btrfs_extent_data_ref_root(leaf, dref);
  597. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  598. bytenr, count);
  599. break;
  600. }
  601. default:
  602. WARN_ON(1);
  603. }
  604. if (ret)
  605. return ret;
  606. ptr += btrfs_extent_inline_ref_size(type);
  607. }
  608. return 0;
  609. }
  610. /*
  611. * add all non-inline backrefs for bytenr to the list
  612. */
  613. static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
  614. struct btrfs_path *path, u64 bytenr,
  615. int info_level, struct list_head *prefs)
  616. {
  617. struct btrfs_root *extent_root = fs_info->extent_root;
  618. int ret;
  619. int slot;
  620. struct extent_buffer *leaf;
  621. struct btrfs_key key;
  622. while (1) {
  623. ret = btrfs_next_item(extent_root, path);
  624. if (ret < 0)
  625. break;
  626. if (ret) {
  627. ret = 0;
  628. break;
  629. }
  630. slot = path->slots[0];
  631. leaf = path->nodes[0];
  632. btrfs_item_key_to_cpu(leaf, &key, slot);
  633. if (key.objectid != bytenr)
  634. break;
  635. if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
  636. continue;
  637. if (key.type > BTRFS_SHARED_DATA_REF_KEY)
  638. break;
  639. switch (key.type) {
  640. case BTRFS_SHARED_BLOCK_REF_KEY:
  641. ret = __add_prelim_ref(prefs, 0, NULL,
  642. info_level + 1, key.offset,
  643. bytenr, 1);
  644. break;
  645. case BTRFS_SHARED_DATA_REF_KEY: {
  646. struct btrfs_shared_data_ref *sdref;
  647. int count;
  648. sdref = btrfs_item_ptr(leaf, slot,
  649. struct btrfs_shared_data_ref);
  650. count = btrfs_shared_data_ref_count(leaf, sdref);
  651. ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
  652. bytenr, count);
  653. break;
  654. }
  655. case BTRFS_TREE_BLOCK_REF_KEY:
  656. ret = __add_prelim_ref(prefs, key.offset, NULL,
  657. info_level + 1, 0,
  658. bytenr, 1);
  659. break;
  660. case BTRFS_EXTENT_DATA_REF_KEY: {
  661. struct btrfs_extent_data_ref *dref;
  662. int count;
  663. u64 root;
  664. dref = btrfs_item_ptr(leaf, slot,
  665. struct btrfs_extent_data_ref);
  666. count = btrfs_extent_data_ref_count(leaf, dref);
  667. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  668. dref);
  669. key.type = BTRFS_EXTENT_DATA_KEY;
  670. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  671. root = btrfs_extent_data_ref_root(leaf, dref);
  672. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  673. bytenr, count);
  674. break;
  675. }
  676. default:
  677. WARN_ON(1);
  678. }
  679. if (ret)
  680. return ret;
  681. }
  682. return ret;
  683. }
  684. /*
  685. * this adds all existing backrefs (inline backrefs, backrefs and delayed
  686. * refs) for the given bytenr to the refs list, merges duplicates and resolves
  687. * indirect refs to their parent bytenr.
  688. * When roots are found, they're added to the roots list
  689. *
  690. * FIXME some caching might speed things up
  691. */
  692. static int find_parent_nodes(struct btrfs_trans_handle *trans,
  693. struct btrfs_fs_info *fs_info, u64 bytenr,
  694. u64 time_seq, struct ulist *refs,
  695. struct ulist *roots, const u64 *extent_item_pos)
  696. {
  697. struct btrfs_key key;
  698. struct btrfs_path *path;
  699. struct btrfs_delayed_ref_root *delayed_refs = NULL;
  700. struct btrfs_delayed_ref_head *head;
  701. int info_level = 0;
  702. int ret;
  703. struct list_head prefs_delayed;
  704. struct list_head prefs;
  705. struct __prelim_ref *ref;
  706. INIT_LIST_HEAD(&prefs);
  707. INIT_LIST_HEAD(&prefs_delayed);
  708. key.objectid = bytenr;
  709. key.type = BTRFS_EXTENT_ITEM_KEY;
  710. key.offset = (u64)-1;
  711. path = btrfs_alloc_path();
  712. if (!path)
  713. return -ENOMEM;
  714. if (!trans)
  715. path->search_commit_root = 1;
  716. /*
  717. * grab both a lock on the path and a lock on the delayed ref head.
  718. * We need both to get a consistent picture of how the refs look
  719. * at a specified point in time
  720. */
  721. again:
  722. head = NULL;
  723. ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
  724. if (ret < 0)
  725. goto out;
  726. BUG_ON(ret == 0);
  727. if (trans) {
  728. /*
  729. * look if there are updates for this ref queued and lock the
  730. * head
  731. */
  732. delayed_refs = &trans->transaction->delayed_refs;
  733. spin_lock(&delayed_refs->lock);
  734. head = btrfs_find_delayed_ref_head(trans, bytenr);
  735. if (head) {
  736. if (!mutex_trylock(&head->mutex)) {
  737. atomic_inc(&head->node.refs);
  738. spin_unlock(&delayed_refs->lock);
  739. btrfs_release_path(path);
  740. /*
  741. * Mutex was contended, block until it's
  742. * released and try again
  743. */
  744. mutex_lock(&head->mutex);
  745. mutex_unlock(&head->mutex);
  746. btrfs_put_delayed_ref(&head->node);
  747. goto again;
  748. }
  749. ret = __add_delayed_refs(head, time_seq,
  750. &prefs_delayed);
  751. mutex_unlock(&head->mutex);
  752. if (ret) {
  753. spin_unlock(&delayed_refs->lock);
  754. goto out;
  755. }
  756. }
  757. spin_unlock(&delayed_refs->lock);
  758. }
  759. if (path->slots[0]) {
  760. struct extent_buffer *leaf;
  761. int slot;
  762. path->slots[0]--;
  763. leaf = path->nodes[0];
  764. slot = path->slots[0];
  765. btrfs_item_key_to_cpu(leaf, &key, slot);
  766. if (key.objectid == bytenr &&
  767. key.type == BTRFS_EXTENT_ITEM_KEY) {
  768. ret = __add_inline_refs(fs_info, path, bytenr,
  769. &info_level, &prefs);
  770. if (ret)
  771. goto out;
  772. ret = __add_keyed_refs(fs_info, path, bytenr,
  773. info_level, &prefs);
  774. if (ret)
  775. goto out;
  776. }
  777. }
  778. btrfs_release_path(path);
  779. list_splice_init(&prefs_delayed, &prefs);
  780. ret = __add_missing_keys(fs_info, &prefs);
  781. if (ret)
  782. goto out;
  783. __merge_refs(&prefs, 1);
  784. ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
  785. extent_item_pos);
  786. if (ret)
  787. goto out;
  788. __merge_refs(&prefs, 2);
  789. while (!list_empty(&prefs)) {
  790. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  791. list_del(&ref->list);
  792. WARN_ON(ref->count < 0);
  793. if (ref->count && ref->root_id && ref->parent == 0) {
  794. /* no parent == root of tree */
  795. ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
  796. if (ret < 0)
  797. goto out;
  798. }
  799. if (ref->count && ref->parent) {
  800. struct extent_inode_elem *eie = NULL;
  801. if (extent_item_pos && !ref->inode_list) {
  802. u32 bsz;
  803. struct extent_buffer *eb;
  804. bsz = btrfs_level_size(fs_info->extent_root,
  805. info_level);
  806. eb = read_tree_block(fs_info->extent_root,
  807. ref->parent, bsz, 0);
  808. if (!eb || !extent_buffer_uptodate(eb)) {
  809. free_extent_buffer(eb);
  810. ret = -EIO;
  811. goto out;
  812. }
  813. ret = find_extent_in_eb(eb, bytenr,
  814. *extent_item_pos, &eie);
  815. ref->inode_list = eie;
  816. free_extent_buffer(eb);
  817. }
  818. ret = ulist_add_merge(refs, ref->parent,
  819. (uintptr_t)ref->inode_list,
  820. (u64 *)&eie, GFP_NOFS);
  821. if (ret < 0)
  822. goto out;
  823. if (!ret && extent_item_pos) {
  824. /*
  825. * we've recorded that parent, so we must extend
  826. * its inode list here
  827. */
  828. BUG_ON(!eie);
  829. while (eie->next)
  830. eie = eie->next;
  831. eie->next = ref->inode_list;
  832. }
  833. }
  834. kfree(ref);
  835. }
  836. out:
  837. btrfs_free_path(path);
  838. while (!list_empty(&prefs)) {
  839. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  840. list_del(&ref->list);
  841. kfree(ref);
  842. }
  843. while (!list_empty(&prefs_delayed)) {
  844. ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
  845. list);
  846. list_del(&ref->list);
  847. kfree(ref);
  848. }
  849. return ret;
  850. }
  851. static void free_leaf_list(struct ulist *blocks)
  852. {
  853. struct ulist_node *node = NULL;
  854. struct extent_inode_elem *eie;
  855. struct extent_inode_elem *eie_next;
  856. struct ulist_iterator uiter;
  857. ULIST_ITER_INIT(&uiter);
  858. while ((node = ulist_next(blocks, &uiter))) {
  859. if (!node->aux)
  860. continue;
  861. eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
  862. for (; eie; eie = eie_next) {
  863. eie_next = eie->next;
  864. kfree(eie);
  865. }
  866. node->aux = 0;
  867. }
  868. ulist_free(blocks);
  869. }
  870. /*
  871. * Finds all leafs with a reference to the specified combination of bytenr and
  872. * offset. key_list_head will point to a list of corresponding keys (caller must
  873. * free each list element). The leafs will be stored in the leafs ulist, which
  874. * must be freed with ulist_free.
  875. *
  876. * returns 0 on success, <0 on error
  877. */
  878. static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
  879. struct btrfs_fs_info *fs_info, u64 bytenr,
  880. u64 time_seq, struct ulist **leafs,
  881. const u64 *extent_item_pos)
  882. {
  883. struct ulist *tmp;
  884. int ret;
  885. tmp = ulist_alloc(GFP_NOFS);
  886. if (!tmp)
  887. return -ENOMEM;
  888. *leafs = ulist_alloc(GFP_NOFS);
  889. if (!*leafs) {
  890. ulist_free(tmp);
  891. return -ENOMEM;
  892. }
  893. ret = find_parent_nodes(trans, fs_info, bytenr,
  894. time_seq, *leafs, tmp, extent_item_pos);
  895. ulist_free(tmp);
  896. if (ret < 0 && ret != -ENOENT) {
  897. free_leaf_list(*leafs);
  898. return ret;
  899. }
  900. return 0;
  901. }
  902. /*
  903. * walk all backrefs for a given extent to find all roots that reference this
  904. * extent. Walking a backref means finding all extents that reference this
  905. * extent and in turn walk the backrefs of those, too. Naturally this is a
  906. * recursive process, but here it is implemented in an iterative fashion: We
  907. * find all referencing extents for the extent in question and put them on a
  908. * list. In turn, we find all referencing extents for those, further appending
  909. * to the list. The way we iterate the list allows adding more elements after
  910. * the current while iterating. The process stops when we reach the end of the
  911. * list. Found roots are added to the roots list.
  912. *
  913. * returns 0 on success, < 0 on error.
  914. */
  915. int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
  916. struct btrfs_fs_info *fs_info, u64 bytenr,
  917. u64 time_seq, struct ulist **roots)
  918. {
  919. struct ulist *tmp;
  920. struct ulist_node *node = NULL;
  921. struct ulist_iterator uiter;
  922. int ret;
  923. tmp = ulist_alloc(GFP_NOFS);
  924. if (!tmp)
  925. return -ENOMEM;
  926. *roots = ulist_alloc(GFP_NOFS);
  927. if (!*roots) {
  928. ulist_free(tmp);
  929. return -ENOMEM;
  930. }
  931. ULIST_ITER_INIT(&uiter);
  932. while (1) {
  933. ret = find_parent_nodes(trans, fs_info, bytenr,
  934. time_seq, tmp, *roots, NULL);
  935. if (ret < 0 && ret != -ENOENT) {
  936. ulist_free(tmp);
  937. ulist_free(*roots);
  938. return ret;
  939. }
  940. node = ulist_next(tmp, &uiter);
  941. if (!node)
  942. break;
  943. bytenr = node->val;
  944. }
  945. ulist_free(tmp);
  946. return 0;
  947. }
  948. static int __inode_info(u64 inum, u64 ioff, u8 key_type,
  949. struct btrfs_root *fs_root, struct btrfs_path *path,
  950. struct btrfs_key *found_key)
  951. {
  952. int ret;
  953. struct btrfs_key key;
  954. struct extent_buffer *eb;
  955. key.type = key_type;
  956. key.objectid = inum;
  957. key.offset = ioff;
  958. ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
  959. if (ret < 0)
  960. return ret;
  961. eb = path->nodes[0];
  962. if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
  963. ret = btrfs_next_leaf(fs_root, path);
  964. if (ret)
  965. return ret;
  966. eb = path->nodes[0];
  967. }
  968. btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
  969. if (found_key->type != key.type || found_key->objectid != key.objectid)
  970. return 1;
  971. return 0;
  972. }
  973. /*
  974. * this makes the path point to (inum INODE_ITEM ioff)
  975. */
  976. int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  977. struct btrfs_path *path)
  978. {
  979. struct btrfs_key key;
  980. return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
  981. &key);
  982. }
  983. static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  984. struct btrfs_path *path,
  985. struct btrfs_key *found_key)
  986. {
  987. return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
  988. found_key);
  989. }
  990. int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
  991. u64 start_off, struct btrfs_path *path,
  992. struct btrfs_inode_extref **ret_extref,
  993. u64 *found_off)
  994. {
  995. int ret, slot;
  996. struct btrfs_key key;
  997. struct btrfs_key found_key;
  998. struct btrfs_inode_extref *extref;
  999. struct extent_buffer *leaf;
  1000. unsigned long ptr;
  1001. key.objectid = inode_objectid;
  1002. btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
  1003. key.offset = start_off;
  1004. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1005. if (ret < 0)
  1006. return ret;
  1007. while (1) {
  1008. leaf = path->nodes[0];
  1009. slot = path->slots[0];
  1010. if (slot >= btrfs_header_nritems(leaf)) {
  1011. /*
  1012. * If the item at offset is not found,
  1013. * btrfs_search_slot will point us to the slot
  1014. * where it should be inserted. In our case
  1015. * that will be the slot directly before the
  1016. * next INODE_REF_KEY_V2 item. In the case
  1017. * that we're pointing to the last slot in a
  1018. * leaf, we must move one leaf over.
  1019. */
  1020. ret = btrfs_next_leaf(root, path);
  1021. if (ret) {
  1022. if (ret >= 1)
  1023. ret = -ENOENT;
  1024. break;
  1025. }
  1026. continue;
  1027. }
  1028. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  1029. /*
  1030. * Check that we're still looking at an extended ref key for
  1031. * this particular objectid. If we have different
  1032. * objectid or type then there are no more to be found
  1033. * in the tree and we can exit.
  1034. */
  1035. ret = -ENOENT;
  1036. if (found_key.objectid != inode_objectid)
  1037. break;
  1038. if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
  1039. break;
  1040. ret = 0;
  1041. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1042. extref = (struct btrfs_inode_extref *)ptr;
  1043. *ret_extref = extref;
  1044. if (found_off)
  1045. *found_off = found_key.offset;
  1046. break;
  1047. }
  1048. return ret;
  1049. }
  1050. /*
  1051. * this iterates to turn a name (from iref/extref) into a full filesystem path.
  1052. * Elements of the path are separated by '/' and the path is guaranteed to be
  1053. * 0-terminated. the path is only given within the current file system.
  1054. * Therefore, it never starts with a '/'. the caller is responsible to provide
  1055. * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
  1056. * the start point of the resulting string is returned. this pointer is within
  1057. * dest, normally.
  1058. * in case the path buffer would overflow, the pointer is decremented further
  1059. * as if output was written to the buffer, though no more output is actually
  1060. * generated. that way, the caller can determine how much space would be
  1061. * required for the path to fit into the buffer. in that case, the returned
  1062. * value will be smaller than dest. callers must check this!
  1063. */
  1064. char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
  1065. u32 name_len, unsigned long name_off,
  1066. struct extent_buffer *eb_in, u64 parent,
  1067. char *dest, u32 size)
  1068. {
  1069. int slot;
  1070. u64 next_inum;
  1071. int ret;
  1072. s64 bytes_left = ((s64)size) - 1;
  1073. struct extent_buffer *eb = eb_in;
  1074. struct btrfs_key found_key;
  1075. int leave_spinning = path->leave_spinning;
  1076. struct btrfs_inode_ref *iref;
  1077. if (bytes_left >= 0)
  1078. dest[bytes_left] = '\0';
  1079. path->leave_spinning = 1;
  1080. while (1) {
  1081. bytes_left -= name_len;
  1082. if (bytes_left >= 0)
  1083. read_extent_buffer(eb, dest + bytes_left,
  1084. name_off, name_len);
  1085. if (eb != eb_in) {
  1086. btrfs_tree_read_unlock_blocking(eb);
  1087. free_extent_buffer(eb);
  1088. }
  1089. ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
  1090. if (ret > 0)
  1091. ret = -ENOENT;
  1092. if (ret)
  1093. break;
  1094. next_inum = found_key.offset;
  1095. /* regular exit ahead */
  1096. if (parent == next_inum)
  1097. break;
  1098. slot = path->slots[0];
  1099. eb = path->nodes[0];
  1100. /* make sure we can use eb after releasing the path */
  1101. if (eb != eb_in) {
  1102. atomic_inc(&eb->refs);
  1103. btrfs_tree_read_lock(eb);
  1104. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1105. }
  1106. btrfs_release_path(path);
  1107. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1108. name_len = btrfs_inode_ref_name_len(eb, iref);
  1109. name_off = (unsigned long)(iref + 1);
  1110. parent = next_inum;
  1111. --bytes_left;
  1112. if (bytes_left >= 0)
  1113. dest[bytes_left] = '/';
  1114. }
  1115. btrfs_release_path(path);
  1116. path->leave_spinning = leave_spinning;
  1117. if (ret)
  1118. return ERR_PTR(ret);
  1119. return dest + bytes_left;
  1120. }
  1121. /*
  1122. * this makes the path point to (logical EXTENT_ITEM *)
  1123. * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
  1124. * tree blocks and <0 on error.
  1125. */
  1126. int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
  1127. struct btrfs_path *path, struct btrfs_key *found_key,
  1128. u64 *flags_ret)
  1129. {
  1130. int ret;
  1131. u64 flags;
  1132. u32 item_size;
  1133. struct extent_buffer *eb;
  1134. struct btrfs_extent_item *ei;
  1135. struct btrfs_key key;
  1136. key.type = BTRFS_EXTENT_ITEM_KEY;
  1137. key.objectid = logical;
  1138. key.offset = (u64)-1;
  1139. ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
  1140. if (ret < 0)
  1141. return ret;
  1142. ret = btrfs_previous_item(fs_info->extent_root, path,
  1143. 0, BTRFS_EXTENT_ITEM_KEY);
  1144. if (ret < 0)
  1145. return ret;
  1146. btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
  1147. if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
  1148. found_key->objectid > logical ||
  1149. found_key->objectid + found_key->offset <= logical) {
  1150. pr_debug("logical %llu is not within any extent\n",
  1151. (unsigned long long)logical);
  1152. return -ENOENT;
  1153. }
  1154. eb = path->nodes[0];
  1155. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  1156. BUG_ON(item_size < sizeof(*ei));
  1157. ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
  1158. flags = btrfs_extent_flags(eb, ei);
  1159. pr_debug("logical %llu is at position %llu within the extent (%llu "
  1160. "EXTENT_ITEM %llu) flags %#llx size %u\n",
  1161. (unsigned long long)logical,
  1162. (unsigned long long)(logical - found_key->objectid),
  1163. (unsigned long long)found_key->objectid,
  1164. (unsigned long long)found_key->offset,
  1165. (unsigned long long)flags, item_size);
  1166. WARN_ON(!flags_ret);
  1167. if (flags_ret) {
  1168. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1169. *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  1170. else if (flags & BTRFS_EXTENT_FLAG_DATA)
  1171. *flags_ret = BTRFS_EXTENT_FLAG_DATA;
  1172. else
  1173. BUG_ON(1);
  1174. return 0;
  1175. }
  1176. return -EIO;
  1177. }
  1178. /*
  1179. * helper function to iterate extent inline refs. ptr must point to a 0 value
  1180. * for the first call and may be modified. it is used to track state.
  1181. * if more refs exist, 0 is returned and the next call to
  1182. * __get_extent_inline_ref must pass the modified ptr parameter to get the
  1183. * next ref. after the last ref was processed, 1 is returned.
  1184. * returns <0 on error
  1185. */
  1186. static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
  1187. struct btrfs_extent_item *ei, u32 item_size,
  1188. struct btrfs_extent_inline_ref **out_eiref,
  1189. int *out_type)
  1190. {
  1191. unsigned long end;
  1192. u64 flags;
  1193. struct btrfs_tree_block_info *info;
  1194. if (!*ptr) {
  1195. /* first call */
  1196. flags = btrfs_extent_flags(eb, ei);
  1197. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1198. info = (struct btrfs_tree_block_info *)(ei + 1);
  1199. *out_eiref =
  1200. (struct btrfs_extent_inline_ref *)(info + 1);
  1201. } else {
  1202. *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
  1203. }
  1204. *ptr = (unsigned long)*out_eiref;
  1205. if ((void *)*ptr >= (void *)ei + item_size)
  1206. return -ENOENT;
  1207. }
  1208. end = (unsigned long)ei + item_size;
  1209. *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
  1210. *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
  1211. *ptr += btrfs_extent_inline_ref_size(*out_type);
  1212. WARN_ON(*ptr > end);
  1213. if (*ptr == end)
  1214. return 1; /* last */
  1215. return 0;
  1216. }
  1217. /*
  1218. * reads the tree block backref for an extent. tree level and root are returned
  1219. * through out_level and out_root. ptr must point to a 0 value for the first
  1220. * call and may be modified (see __get_extent_inline_ref comment).
  1221. * returns 0 if data was provided, 1 if there was no more data to provide or
  1222. * <0 on error.
  1223. */
  1224. int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
  1225. struct btrfs_extent_item *ei, u32 item_size,
  1226. u64 *out_root, u8 *out_level)
  1227. {
  1228. int ret;
  1229. int type;
  1230. struct btrfs_tree_block_info *info;
  1231. struct btrfs_extent_inline_ref *eiref;
  1232. if (*ptr == (unsigned long)-1)
  1233. return 1;
  1234. while (1) {
  1235. ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
  1236. &eiref, &type);
  1237. if (ret < 0)
  1238. return ret;
  1239. if (type == BTRFS_TREE_BLOCK_REF_KEY ||
  1240. type == BTRFS_SHARED_BLOCK_REF_KEY)
  1241. break;
  1242. if (ret == 1)
  1243. return 1;
  1244. }
  1245. /* we can treat both ref types equally here */
  1246. info = (struct btrfs_tree_block_info *)(ei + 1);
  1247. *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
  1248. *out_level = btrfs_tree_block_level(eb, info);
  1249. if (ret == 1)
  1250. *ptr = (unsigned long)-1;
  1251. return 0;
  1252. }
  1253. static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
  1254. u64 root, u64 extent_item_objectid,
  1255. iterate_extent_inodes_t *iterate, void *ctx)
  1256. {
  1257. struct extent_inode_elem *eie;
  1258. int ret = 0;
  1259. for (eie = inode_list; eie; eie = eie->next) {
  1260. pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
  1261. "root %llu\n", extent_item_objectid,
  1262. eie->inum, eie->offset, root);
  1263. ret = iterate(eie->inum, eie->offset, root, ctx);
  1264. if (ret) {
  1265. pr_debug("stopping iteration for %llu due to ret=%d\n",
  1266. extent_item_objectid, ret);
  1267. break;
  1268. }
  1269. }
  1270. return ret;
  1271. }
  1272. /*
  1273. * calls iterate() for every inode that references the extent identified by
  1274. * the given parameters.
  1275. * when the iterator function returns a non-zero value, iteration stops.
  1276. */
  1277. int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
  1278. u64 extent_item_objectid, u64 extent_item_pos,
  1279. int search_commit_root,
  1280. iterate_extent_inodes_t *iterate, void *ctx)
  1281. {
  1282. int ret;
  1283. struct btrfs_trans_handle *trans = NULL;
  1284. struct ulist *refs = NULL;
  1285. struct ulist *roots = NULL;
  1286. struct ulist_node *ref_node = NULL;
  1287. struct ulist_node *root_node = NULL;
  1288. struct seq_list tree_mod_seq_elem = {};
  1289. struct ulist_iterator ref_uiter;
  1290. struct ulist_iterator root_uiter;
  1291. pr_debug("resolving all inodes for extent %llu\n",
  1292. extent_item_objectid);
  1293. if (!search_commit_root) {
  1294. trans = btrfs_join_transaction(fs_info->extent_root);
  1295. if (IS_ERR(trans))
  1296. return PTR_ERR(trans);
  1297. btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1298. }
  1299. ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
  1300. tree_mod_seq_elem.seq, &refs,
  1301. &extent_item_pos);
  1302. if (ret)
  1303. goto out;
  1304. ULIST_ITER_INIT(&ref_uiter);
  1305. while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
  1306. ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
  1307. tree_mod_seq_elem.seq, &roots);
  1308. if (ret)
  1309. break;
  1310. ULIST_ITER_INIT(&root_uiter);
  1311. while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
  1312. pr_debug("root %llu references leaf %llu, data list "
  1313. "%#llx\n", root_node->val, ref_node->val,
  1314. (long long)ref_node->aux);
  1315. ret = iterate_leaf_refs((struct extent_inode_elem *)
  1316. (uintptr_t)ref_node->aux,
  1317. root_node->val,
  1318. extent_item_objectid,
  1319. iterate, ctx);
  1320. }
  1321. ulist_free(roots);
  1322. }
  1323. free_leaf_list(refs);
  1324. out:
  1325. if (!search_commit_root) {
  1326. btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1327. btrfs_end_transaction(trans, fs_info->extent_root);
  1328. }
  1329. return ret;
  1330. }
  1331. int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
  1332. struct btrfs_path *path,
  1333. iterate_extent_inodes_t *iterate, void *ctx)
  1334. {
  1335. int ret;
  1336. u64 extent_item_pos;
  1337. u64 flags = 0;
  1338. struct btrfs_key found_key;
  1339. int search_commit_root = path->search_commit_root;
  1340. ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
  1341. btrfs_release_path(path);
  1342. if (ret < 0)
  1343. return ret;
  1344. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1345. return -EINVAL;
  1346. extent_item_pos = logical - found_key.objectid;
  1347. ret = iterate_extent_inodes(fs_info, found_key.objectid,
  1348. extent_item_pos, search_commit_root,
  1349. iterate, ctx);
  1350. return ret;
  1351. }
  1352. typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
  1353. struct extent_buffer *eb, void *ctx);
  1354. static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
  1355. struct btrfs_path *path,
  1356. iterate_irefs_t *iterate, void *ctx)
  1357. {
  1358. int ret = 0;
  1359. int slot;
  1360. u32 cur;
  1361. u32 len;
  1362. u32 name_len;
  1363. u64 parent = 0;
  1364. int found = 0;
  1365. struct extent_buffer *eb;
  1366. struct btrfs_item *item;
  1367. struct btrfs_inode_ref *iref;
  1368. struct btrfs_key found_key;
  1369. while (!ret) {
  1370. path->leave_spinning = 1;
  1371. ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
  1372. &found_key);
  1373. if (ret < 0)
  1374. break;
  1375. if (ret) {
  1376. ret = found ? 0 : -ENOENT;
  1377. break;
  1378. }
  1379. ++found;
  1380. parent = found_key.offset;
  1381. slot = path->slots[0];
  1382. eb = path->nodes[0];
  1383. /* make sure we can use eb after releasing the path */
  1384. atomic_inc(&eb->refs);
  1385. btrfs_tree_read_lock(eb);
  1386. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1387. btrfs_release_path(path);
  1388. item = btrfs_item_nr(eb, slot);
  1389. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1390. for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
  1391. name_len = btrfs_inode_ref_name_len(eb, iref);
  1392. /* path must be released before calling iterate()! */
  1393. pr_debug("following ref at offset %u for inode %llu in "
  1394. "tree %llu\n", cur,
  1395. (unsigned long long)found_key.objectid,
  1396. (unsigned long long)fs_root->objectid);
  1397. ret = iterate(parent, name_len,
  1398. (unsigned long)(iref + 1), eb, ctx);
  1399. if (ret)
  1400. break;
  1401. len = sizeof(*iref) + name_len;
  1402. iref = (struct btrfs_inode_ref *)((char *)iref + len);
  1403. }
  1404. btrfs_tree_read_unlock_blocking(eb);
  1405. free_extent_buffer(eb);
  1406. }
  1407. btrfs_release_path(path);
  1408. return ret;
  1409. }
  1410. static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
  1411. struct btrfs_path *path,
  1412. iterate_irefs_t *iterate, void *ctx)
  1413. {
  1414. int ret;
  1415. int slot;
  1416. u64 offset = 0;
  1417. u64 parent;
  1418. int found = 0;
  1419. struct extent_buffer *eb;
  1420. struct btrfs_inode_extref *extref;
  1421. struct extent_buffer *leaf;
  1422. u32 item_size;
  1423. u32 cur_offset;
  1424. unsigned long ptr;
  1425. while (1) {
  1426. ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
  1427. &offset);
  1428. if (ret < 0)
  1429. break;
  1430. if (ret) {
  1431. ret = found ? 0 : -ENOENT;
  1432. break;
  1433. }
  1434. ++found;
  1435. slot = path->slots[0];
  1436. eb = path->nodes[0];
  1437. /* make sure we can use eb after releasing the path */
  1438. atomic_inc(&eb->refs);
  1439. btrfs_tree_read_lock(eb);
  1440. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1441. btrfs_release_path(path);
  1442. leaf = path->nodes[0];
  1443. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1444. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1445. cur_offset = 0;
  1446. while (cur_offset < item_size) {
  1447. u32 name_len;
  1448. extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
  1449. parent = btrfs_inode_extref_parent(eb, extref);
  1450. name_len = btrfs_inode_extref_name_len(eb, extref);
  1451. ret = iterate(parent, name_len,
  1452. (unsigned long)&extref->name, eb, ctx);
  1453. if (ret)
  1454. break;
  1455. cur_offset += btrfs_inode_extref_name_len(leaf, extref);
  1456. cur_offset += sizeof(*extref);
  1457. }
  1458. btrfs_tree_read_unlock_blocking(eb);
  1459. free_extent_buffer(eb);
  1460. offset++;
  1461. }
  1462. btrfs_release_path(path);
  1463. return ret;
  1464. }
  1465. static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
  1466. struct btrfs_path *path, iterate_irefs_t *iterate,
  1467. void *ctx)
  1468. {
  1469. int ret;
  1470. int found_refs = 0;
  1471. ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
  1472. if (!ret)
  1473. ++found_refs;
  1474. else if (ret != -ENOENT)
  1475. return ret;
  1476. ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
  1477. if (ret == -ENOENT && found_refs)
  1478. return 0;
  1479. return ret;
  1480. }
  1481. /*
  1482. * returns 0 if the path could be dumped (probably truncated)
  1483. * returns <0 in case of an error
  1484. */
  1485. static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
  1486. struct extent_buffer *eb, void *ctx)
  1487. {
  1488. struct inode_fs_paths *ipath = ctx;
  1489. char *fspath;
  1490. char *fspath_min;
  1491. int i = ipath->fspath->elem_cnt;
  1492. const int s_ptr = sizeof(char *);
  1493. u32 bytes_left;
  1494. bytes_left = ipath->fspath->bytes_left > s_ptr ?
  1495. ipath->fspath->bytes_left - s_ptr : 0;
  1496. fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
  1497. fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
  1498. name_off, eb, inum, fspath_min, bytes_left);
  1499. if (IS_ERR(fspath))
  1500. return PTR_ERR(fspath);
  1501. if (fspath > fspath_min) {
  1502. ipath->fspath->val[i] = (u64)(unsigned long)fspath;
  1503. ++ipath->fspath->elem_cnt;
  1504. ipath->fspath->bytes_left = fspath - fspath_min;
  1505. } else {
  1506. ++ipath->fspath->elem_missed;
  1507. ipath->fspath->bytes_missing += fspath_min - fspath;
  1508. ipath->fspath->bytes_left = 0;
  1509. }
  1510. return 0;
  1511. }
  1512. /*
  1513. * this dumps all file system paths to the inode into the ipath struct, provided
  1514. * is has been created large enough. each path is zero-terminated and accessed
  1515. * from ipath->fspath->val[i].
  1516. * when it returns, there are ipath->fspath->elem_cnt number of paths available
  1517. * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
  1518. * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
  1519. * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
  1520. * have been needed to return all paths.
  1521. */
  1522. int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
  1523. {
  1524. return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
  1525. inode_to_path, ipath);
  1526. }
  1527. struct btrfs_data_container *init_data_container(u32 total_bytes)
  1528. {
  1529. struct btrfs_data_container *data;
  1530. size_t alloc_bytes;
  1531. alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
  1532. data = vmalloc(alloc_bytes);
  1533. if (!data)
  1534. return ERR_PTR(-ENOMEM);
  1535. if (total_bytes >= sizeof(*data)) {
  1536. data->bytes_left = total_bytes - sizeof(*data);
  1537. data->bytes_missing = 0;
  1538. } else {
  1539. data->bytes_missing = sizeof(*data) - total_bytes;
  1540. data->bytes_left = 0;
  1541. }
  1542. data->elem_cnt = 0;
  1543. data->elem_missed = 0;
  1544. return data;
  1545. }
  1546. /*
  1547. * allocates space to return multiple file system paths for an inode.
  1548. * total_bytes to allocate are passed, note that space usable for actual path
  1549. * information will be total_bytes - sizeof(struct inode_fs_paths).
  1550. * the returned pointer must be freed with free_ipath() in the end.
  1551. */
  1552. struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
  1553. struct btrfs_path *path)
  1554. {
  1555. struct inode_fs_paths *ifp;
  1556. struct btrfs_data_container *fspath;
  1557. fspath = init_data_container(total_bytes);
  1558. if (IS_ERR(fspath))
  1559. return (void *)fspath;
  1560. ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
  1561. if (!ifp) {
  1562. kfree(fspath);
  1563. return ERR_PTR(-ENOMEM);
  1564. }
  1565. ifp->btrfs_path = path;
  1566. ifp->fspath = fspath;
  1567. ifp->fs_root = fs_root;
  1568. return ifp;
  1569. }
  1570. void free_ipath(struct inode_fs_paths *ipath)
  1571. {
  1572. if (!ipath)
  1573. return;
  1574. vfree(ipath->fspath);
  1575. kfree(ipath);
  1576. }