spi-mxs.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626
  1. /*
  2. * Freescale MXS SPI master driver
  3. *
  4. * Copyright 2012 DENX Software Engineering, GmbH.
  5. * Copyright 2012 Freescale Semiconductor, Inc.
  6. * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
  7. *
  8. * Rework and transition to new API by:
  9. * Marek Vasut <marex@denx.de>
  10. *
  11. * Based on previous attempt by:
  12. * Fabio Estevam <fabio.estevam@freescale.com>
  13. *
  14. * Based on code from U-Boot bootloader by:
  15. * Marek Vasut <marex@denx.de>
  16. *
  17. * Based on spi-stmp.c, which is:
  18. * Author: Dmitry Pervushin <dimka@embeddedalley.com>
  19. *
  20. * This program is free software; you can redistribute it and/or modify
  21. * it under the terms of the GNU General Public License as published by
  22. * the Free Software Foundation; either version 2 of the License, or
  23. * (at your option) any later version.
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/init.h>
  32. #include <linux/ioport.h>
  33. #include <linux/of.h>
  34. #include <linux/of_device.h>
  35. #include <linux/of_gpio.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/delay.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/dmaengine.h>
  41. #include <linux/highmem.h>
  42. #include <linux/clk.h>
  43. #include <linux/err.h>
  44. #include <linux/completion.h>
  45. #include <linux/gpio.h>
  46. #include <linux/regulator/consumer.h>
  47. #include <linux/module.h>
  48. #include <linux/stmp_device.h>
  49. #include <linux/spi/spi.h>
  50. #include <linux/spi/mxs-spi.h>
  51. #define DRIVER_NAME "mxs-spi"
  52. /* Use 10S timeout for very long transfers, it should suffice. */
  53. #define SSP_TIMEOUT 10000
  54. #define SG_MAXLEN 0xff00
  55. struct mxs_spi {
  56. struct mxs_ssp ssp;
  57. struct completion c;
  58. };
  59. static int mxs_spi_setup_transfer(struct spi_device *dev,
  60. struct spi_transfer *t)
  61. {
  62. struct mxs_spi *spi = spi_master_get_devdata(dev->master);
  63. struct mxs_ssp *ssp = &spi->ssp;
  64. uint8_t bits_per_word;
  65. uint32_t hz = 0;
  66. bits_per_word = dev->bits_per_word;
  67. if (t && t->bits_per_word)
  68. bits_per_word = t->bits_per_word;
  69. hz = dev->max_speed_hz;
  70. if (t && t->speed_hz)
  71. hz = min(hz, t->speed_hz);
  72. if (hz == 0) {
  73. dev_err(&dev->dev, "Cannot continue with zero clock\n");
  74. return -EINVAL;
  75. }
  76. mxs_ssp_set_clk_rate(ssp, hz);
  77. writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
  78. BF_SSP_CTRL1_WORD_LENGTH
  79. (BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
  80. ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
  81. ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
  82. ssp->base + HW_SSP_CTRL1(ssp));
  83. writel(0x0, ssp->base + HW_SSP_CMD0);
  84. writel(0x0, ssp->base + HW_SSP_CMD1);
  85. return 0;
  86. }
  87. static int mxs_spi_setup(struct spi_device *dev)
  88. {
  89. int err = 0;
  90. if (!dev->bits_per_word)
  91. dev->bits_per_word = 8;
  92. if (dev->mode & ~(SPI_CPOL | SPI_CPHA))
  93. return -EINVAL;
  94. err = mxs_spi_setup_transfer(dev, NULL);
  95. if (err) {
  96. dev_err(&dev->dev,
  97. "Failed to setup transfer, error = %d\n", err);
  98. }
  99. return err;
  100. }
  101. static uint32_t mxs_spi_cs_to_reg(unsigned cs)
  102. {
  103. uint32_t select = 0;
  104. /*
  105. * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
  106. *
  107. * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
  108. * in HW_SSP_CTRL0 register do have multiple usage, please refer to
  109. * the datasheet for further details. In SPI mode, they are used to
  110. * toggle the chip-select lines (nCS pins).
  111. */
  112. if (cs & 1)
  113. select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
  114. if (cs & 2)
  115. select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
  116. return select;
  117. }
  118. static void mxs_spi_set_cs(struct mxs_spi *spi, unsigned cs)
  119. {
  120. const uint32_t mask =
  121. BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ;
  122. uint32_t select;
  123. struct mxs_ssp *ssp = &spi->ssp;
  124. writel(mask, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  125. select = mxs_spi_cs_to_reg(cs);
  126. writel(select, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  127. }
  128. static inline void mxs_spi_enable(struct mxs_spi *spi)
  129. {
  130. struct mxs_ssp *ssp = &spi->ssp;
  131. writel(BM_SSP_CTRL0_LOCK_CS,
  132. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  133. writel(BM_SSP_CTRL0_IGNORE_CRC,
  134. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  135. }
  136. static inline void mxs_spi_disable(struct mxs_spi *spi)
  137. {
  138. struct mxs_ssp *ssp = &spi->ssp;
  139. writel(BM_SSP_CTRL0_LOCK_CS,
  140. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  141. writel(BM_SSP_CTRL0_IGNORE_CRC,
  142. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  143. }
  144. static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
  145. {
  146. const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
  147. struct mxs_ssp *ssp = &spi->ssp;
  148. uint32_t reg;
  149. do {
  150. reg = readl_relaxed(ssp->base + offset);
  151. if (!set)
  152. reg = ~reg;
  153. reg &= mask;
  154. if (reg == mask)
  155. return 0;
  156. } while (time_before(jiffies, timeout));
  157. return -ETIMEDOUT;
  158. }
  159. static void mxs_ssp_dma_irq_callback(void *param)
  160. {
  161. struct mxs_spi *spi = param;
  162. complete(&spi->c);
  163. }
  164. static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
  165. {
  166. struct mxs_ssp *ssp = dev_id;
  167. dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
  168. __func__, __LINE__,
  169. readl(ssp->base + HW_SSP_CTRL1(ssp)),
  170. readl(ssp->base + HW_SSP_STATUS(ssp)));
  171. return IRQ_HANDLED;
  172. }
  173. static int mxs_spi_txrx_dma(struct mxs_spi *spi, int cs,
  174. unsigned char *buf, int len,
  175. int *first, int *last, int write)
  176. {
  177. struct mxs_ssp *ssp = &spi->ssp;
  178. struct dma_async_tx_descriptor *desc = NULL;
  179. const bool vmalloced_buf = is_vmalloc_addr(buf);
  180. const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
  181. const int sgs = DIV_ROUND_UP(len, desc_len);
  182. int sg_count;
  183. int min, ret;
  184. uint32_t ctrl0;
  185. struct page *vm_page;
  186. void *sg_buf;
  187. struct {
  188. uint32_t pio[4];
  189. struct scatterlist sg;
  190. } *dma_xfer;
  191. if (!len)
  192. return -EINVAL;
  193. dma_xfer = kzalloc(sizeof(*dma_xfer) * sgs, GFP_KERNEL);
  194. if (!dma_xfer)
  195. return -ENOMEM;
  196. INIT_COMPLETION(spi->c);
  197. ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
  198. ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
  199. ctrl0 |= BM_SSP_CTRL0_DATA_XFER | mxs_spi_cs_to_reg(cs);
  200. if (*first)
  201. ctrl0 |= BM_SSP_CTRL0_LOCK_CS;
  202. if (!write)
  203. ctrl0 |= BM_SSP_CTRL0_READ;
  204. /* Queue the DMA data transfer. */
  205. for (sg_count = 0; sg_count < sgs; sg_count++) {
  206. min = min(len, desc_len);
  207. /* Prepare the transfer descriptor. */
  208. if ((sg_count + 1 == sgs) && *last)
  209. ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
  210. if (ssp->devid == IMX23_SSP) {
  211. ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
  212. ctrl0 |= min;
  213. }
  214. dma_xfer[sg_count].pio[0] = ctrl0;
  215. dma_xfer[sg_count].pio[3] = min;
  216. if (vmalloced_buf) {
  217. vm_page = vmalloc_to_page(buf);
  218. if (!vm_page) {
  219. ret = -ENOMEM;
  220. goto err_vmalloc;
  221. }
  222. sg_buf = page_address(vm_page) +
  223. ((size_t)buf & ~PAGE_MASK);
  224. } else {
  225. sg_buf = buf;
  226. }
  227. sg_init_one(&dma_xfer[sg_count].sg, sg_buf, min);
  228. ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
  229. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  230. len -= min;
  231. buf += min;
  232. /* Queue the PIO register write transfer. */
  233. desc = dmaengine_prep_slave_sg(ssp->dmach,
  234. (struct scatterlist *)dma_xfer[sg_count].pio,
  235. (ssp->devid == IMX23_SSP) ? 1 : 4,
  236. DMA_TRANS_NONE,
  237. sg_count ? DMA_PREP_INTERRUPT : 0);
  238. if (!desc) {
  239. dev_err(ssp->dev,
  240. "Failed to get PIO reg. write descriptor.\n");
  241. ret = -EINVAL;
  242. goto err_mapped;
  243. }
  244. desc = dmaengine_prep_slave_sg(ssp->dmach,
  245. &dma_xfer[sg_count].sg, 1,
  246. write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
  247. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  248. if (!desc) {
  249. dev_err(ssp->dev,
  250. "Failed to get DMA data write descriptor.\n");
  251. ret = -EINVAL;
  252. goto err_mapped;
  253. }
  254. }
  255. /*
  256. * The last descriptor must have this callback,
  257. * to finish the DMA transaction.
  258. */
  259. desc->callback = mxs_ssp_dma_irq_callback;
  260. desc->callback_param = spi;
  261. /* Start the transfer. */
  262. dmaengine_submit(desc);
  263. dma_async_issue_pending(ssp->dmach);
  264. ret = wait_for_completion_timeout(&spi->c,
  265. msecs_to_jiffies(SSP_TIMEOUT));
  266. if (!ret) {
  267. dev_err(ssp->dev, "DMA transfer timeout\n");
  268. ret = -ETIMEDOUT;
  269. dmaengine_terminate_all(ssp->dmach);
  270. goto err_vmalloc;
  271. }
  272. ret = 0;
  273. err_vmalloc:
  274. while (--sg_count >= 0) {
  275. err_mapped:
  276. dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
  277. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  278. }
  279. kfree(dma_xfer);
  280. return ret;
  281. }
  282. static int mxs_spi_txrx_pio(struct mxs_spi *spi, int cs,
  283. unsigned char *buf, int len,
  284. int *first, int *last, int write)
  285. {
  286. struct mxs_ssp *ssp = &spi->ssp;
  287. if (*first)
  288. mxs_spi_enable(spi);
  289. mxs_spi_set_cs(spi, cs);
  290. while (len--) {
  291. if (*last && len == 0)
  292. mxs_spi_disable(spi);
  293. if (ssp->devid == IMX23_SSP) {
  294. writel(BM_SSP_CTRL0_XFER_COUNT,
  295. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  296. writel(1,
  297. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  298. } else {
  299. writel(1, ssp->base + HW_SSP_XFER_SIZE);
  300. }
  301. if (write)
  302. writel(BM_SSP_CTRL0_READ,
  303. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  304. else
  305. writel(BM_SSP_CTRL0_READ,
  306. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  307. writel(BM_SSP_CTRL0_RUN,
  308. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  309. if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
  310. return -ETIMEDOUT;
  311. if (write)
  312. writel(*buf, ssp->base + HW_SSP_DATA(ssp));
  313. writel(BM_SSP_CTRL0_DATA_XFER,
  314. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  315. if (!write) {
  316. if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
  317. BM_SSP_STATUS_FIFO_EMPTY, 0))
  318. return -ETIMEDOUT;
  319. *buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
  320. }
  321. if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
  322. return -ETIMEDOUT;
  323. buf++;
  324. }
  325. if (len <= 0)
  326. return 0;
  327. return -ETIMEDOUT;
  328. }
  329. static int mxs_spi_transfer_one(struct spi_master *master,
  330. struct spi_message *m)
  331. {
  332. struct mxs_spi *spi = spi_master_get_devdata(master);
  333. struct mxs_ssp *ssp = &spi->ssp;
  334. int first, last;
  335. struct spi_transfer *t, *tmp_t;
  336. int status = 0;
  337. int cs;
  338. first = last = 0;
  339. cs = m->spi->chip_select;
  340. list_for_each_entry_safe(t, tmp_t, &m->transfers, transfer_list) {
  341. status = mxs_spi_setup_transfer(m->spi, t);
  342. if (status)
  343. break;
  344. if (&t->transfer_list == m->transfers.next)
  345. first = 1;
  346. if (&t->transfer_list == m->transfers.prev)
  347. last = 1;
  348. if ((t->rx_buf && t->tx_buf) || (t->rx_dma && t->tx_dma)) {
  349. dev_err(ssp->dev,
  350. "Cannot send and receive simultaneously\n");
  351. status = -EINVAL;
  352. break;
  353. }
  354. /*
  355. * Small blocks can be transfered via PIO.
  356. * Measured by empiric means:
  357. *
  358. * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
  359. *
  360. * DMA only: 2.164808 seconds, 473.0KB/s
  361. * Combined: 1.676276 seconds, 610.9KB/s
  362. */
  363. if (t->len < 32) {
  364. writel(BM_SSP_CTRL1_DMA_ENABLE,
  365. ssp->base + HW_SSP_CTRL1(ssp) +
  366. STMP_OFFSET_REG_CLR);
  367. if (t->tx_buf)
  368. status = mxs_spi_txrx_pio(spi, cs,
  369. (void *)t->tx_buf,
  370. t->len, &first, &last, 1);
  371. if (t->rx_buf)
  372. status = mxs_spi_txrx_pio(spi, cs,
  373. t->rx_buf, t->len,
  374. &first, &last, 0);
  375. } else {
  376. writel(BM_SSP_CTRL1_DMA_ENABLE,
  377. ssp->base + HW_SSP_CTRL1(ssp) +
  378. STMP_OFFSET_REG_SET);
  379. if (t->tx_buf)
  380. status = mxs_spi_txrx_dma(spi, cs,
  381. (void *)t->tx_buf, t->len,
  382. &first, &last, 1);
  383. if (t->rx_buf)
  384. status = mxs_spi_txrx_dma(spi, cs,
  385. t->rx_buf, t->len,
  386. &first, &last, 0);
  387. }
  388. if (status) {
  389. stmp_reset_block(ssp->base);
  390. break;
  391. }
  392. m->actual_length += t->len;
  393. first = last = 0;
  394. }
  395. m->status = status;
  396. spi_finalize_current_message(master);
  397. return status;
  398. }
  399. static const struct of_device_id mxs_spi_dt_ids[] = {
  400. { .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
  401. { .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
  402. { /* sentinel */ }
  403. };
  404. MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
  405. static int mxs_spi_probe(struct platform_device *pdev)
  406. {
  407. const struct of_device_id *of_id =
  408. of_match_device(mxs_spi_dt_ids, &pdev->dev);
  409. struct device_node *np = pdev->dev.of_node;
  410. struct spi_master *master;
  411. struct mxs_spi *spi;
  412. struct mxs_ssp *ssp;
  413. struct resource *iores;
  414. struct clk *clk;
  415. void __iomem *base;
  416. int devid, clk_freq;
  417. int ret = 0, irq_err;
  418. /*
  419. * Default clock speed for the SPI core. 160MHz seems to
  420. * work reasonably well with most SPI flashes, so use this
  421. * as a default. Override with "clock-frequency" DT prop.
  422. */
  423. const int clk_freq_default = 160000000;
  424. iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  425. irq_err = platform_get_irq(pdev, 0);
  426. if (!iores || irq_err < 0)
  427. return -EINVAL;
  428. base = devm_ioremap_resource(&pdev->dev, iores);
  429. if (IS_ERR(base))
  430. return PTR_ERR(base);
  431. clk = devm_clk_get(&pdev->dev, NULL);
  432. if (IS_ERR(clk))
  433. return PTR_ERR(clk);
  434. devid = (enum mxs_ssp_id) of_id->data;
  435. ret = of_property_read_u32(np, "clock-frequency",
  436. &clk_freq);
  437. if (ret)
  438. clk_freq = clk_freq_default;
  439. master = spi_alloc_master(&pdev->dev, sizeof(*spi));
  440. if (!master)
  441. return -ENOMEM;
  442. master->transfer_one_message = mxs_spi_transfer_one;
  443. master->setup = mxs_spi_setup;
  444. master->bits_per_word_mask = SPI_BPW_MASK(8);
  445. master->mode_bits = SPI_CPOL | SPI_CPHA;
  446. master->num_chipselect = 3;
  447. master->dev.of_node = np;
  448. master->flags = SPI_MASTER_HALF_DUPLEX;
  449. spi = spi_master_get_devdata(master);
  450. ssp = &spi->ssp;
  451. ssp->dev = &pdev->dev;
  452. ssp->clk = clk;
  453. ssp->base = base;
  454. ssp->devid = devid;
  455. init_completion(&spi->c);
  456. ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
  457. DRIVER_NAME, ssp);
  458. if (ret)
  459. goto out_master_free;
  460. ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx");
  461. if (!ssp->dmach) {
  462. dev_err(ssp->dev, "Failed to request DMA\n");
  463. ret = -ENODEV;
  464. goto out_master_free;
  465. }
  466. clk_prepare_enable(ssp->clk);
  467. clk_set_rate(ssp->clk, clk_freq);
  468. ssp->clk_rate = clk_get_rate(ssp->clk) / 1000;
  469. stmp_reset_block(ssp->base);
  470. platform_set_drvdata(pdev, master);
  471. ret = spi_register_master(master);
  472. if (ret) {
  473. dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
  474. goto out_free_dma;
  475. }
  476. return 0;
  477. out_free_dma:
  478. dma_release_channel(ssp->dmach);
  479. clk_disable_unprepare(ssp->clk);
  480. out_master_free:
  481. spi_master_put(master);
  482. return ret;
  483. }
  484. static int mxs_spi_remove(struct platform_device *pdev)
  485. {
  486. struct spi_master *master;
  487. struct mxs_spi *spi;
  488. struct mxs_ssp *ssp;
  489. master = spi_master_get(platform_get_drvdata(pdev));
  490. spi = spi_master_get_devdata(master);
  491. ssp = &spi->ssp;
  492. spi_unregister_master(master);
  493. dma_release_channel(ssp->dmach);
  494. clk_disable_unprepare(ssp->clk);
  495. spi_master_put(master);
  496. return 0;
  497. }
  498. static struct platform_driver mxs_spi_driver = {
  499. .probe = mxs_spi_probe,
  500. .remove = mxs_spi_remove,
  501. .driver = {
  502. .name = DRIVER_NAME,
  503. .owner = THIS_MODULE,
  504. .of_match_table = mxs_spi_dt_ids,
  505. },
  506. };
  507. module_platform_driver(mxs_spi_driver);
  508. MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
  509. MODULE_DESCRIPTION("MXS SPI master driver");
  510. MODULE_LICENSE("GPL");
  511. MODULE_ALIAS("platform:mxs-spi");