spi-atmel.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724
  1. /*
  2. * Driver for Atmel AT32 and AT91 SPI Controllers
  3. *
  4. * Copyright (C) 2006 Atmel Corporation
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/init.h>
  12. #include <linux/clk.h>
  13. #include <linux/module.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/delay.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/dmaengine.h>
  18. #include <linux/err.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/spi/spi.h>
  21. #include <linux/slab.h>
  22. #include <linux/platform_data/atmel.h>
  23. #include <linux/platform_data/dma-atmel.h>
  24. #include <linux/of.h>
  25. #include <linux/io.h>
  26. #include <linux/gpio.h>
  27. /* SPI register offsets */
  28. #define SPI_CR 0x0000
  29. #define SPI_MR 0x0004
  30. #define SPI_RDR 0x0008
  31. #define SPI_TDR 0x000c
  32. #define SPI_SR 0x0010
  33. #define SPI_IER 0x0014
  34. #define SPI_IDR 0x0018
  35. #define SPI_IMR 0x001c
  36. #define SPI_CSR0 0x0030
  37. #define SPI_CSR1 0x0034
  38. #define SPI_CSR2 0x0038
  39. #define SPI_CSR3 0x003c
  40. #define SPI_VERSION 0x00fc
  41. #define SPI_RPR 0x0100
  42. #define SPI_RCR 0x0104
  43. #define SPI_TPR 0x0108
  44. #define SPI_TCR 0x010c
  45. #define SPI_RNPR 0x0110
  46. #define SPI_RNCR 0x0114
  47. #define SPI_TNPR 0x0118
  48. #define SPI_TNCR 0x011c
  49. #define SPI_PTCR 0x0120
  50. #define SPI_PTSR 0x0124
  51. /* Bitfields in CR */
  52. #define SPI_SPIEN_OFFSET 0
  53. #define SPI_SPIEN_SIZE 1
  54. #define SPI_SPIDIS_OFFSET 1
  55. #define SPI_SPIDIS_SIZE 1
  56. #define SPI_SWRST_OFFSET 7
  57. #define SPI_SWRST_SIZE 1
  58. #define SPI_LASTXFER_OFFSET 24
  59. #define SPI_LASTXFER_SIZE 1
  60. /* Bitfields in MR */
  61. #define SPI_MSTR_OFFSET 0
  62. #define SPI_MSTR_SIZE 1
  63. #define SPI_PS_OFFSET 1
  64. #define SPI_PS_SIZE 1
  65. #define SPI_PCSDEC_OFFSET 2
  66. #define SPI_PCSDEC_SIZE 1
  67. #define SPI_FDIV_OFFSET 3
  68. #define SPI_FDIV_SIZE 1
  69. #define SPI_MODFDIS_OFFSET 4
  70. #define SPI_MODFDIS_SIZE 1
  71. #define SPI_WDRBT_OFFSET 5
  72. #define SPI_WDRBT_SIZE 1
  73. #define SPI_LLB_OFFSET 7
  74. #define SPI_LLB_SIZE 1
  75. #define SPI_PCS_OFFSET 16
  76. #define SPI_PCS_SIZE 4
  77. #define SPI_DLYBCS_OFFSET 24
  78. #define SPI_DLYBCS_SIZE 8
  79. /* Bitfields in RDR */
  80. #define SPI_RD_OFFSET 0
  81. #define SPI_RD_SIZE 16
  82. /* Bitfields in TDR */
  83. #define SPI_TD_OFFSET 0
  84. #define SPI_TD_SIZE 16
  85. /* Bitfields in SR */
  86. #define SPI_RDRF_OFFSET 0
  87. #define SPI_RDRF_SIZE 1
  88. #define SPI_TDRE_OFFSET 1
  89. #define SPI_TDRE_SIZE 1
  90. #define SPI_MODF_OFFSET 2
  91. #define SPI_MODF_SIZE 1
  92. #define SPI_OVRES_OFFSET 3
  93. #define SPI_OVRES_SIZE 1
  94. #define SPI_ENDRX_OFFSET 4
  95. #define SPI_ENDRX_SIZE 1
  96. #define SPI_ENDTX_OFFSET 5
  97. #define SPI_ENDTX_SIZE 1
  98. #define SPI_RXBUFF_OFFSET 6
  99. #define SPI_RXBUFF_SIZE 1
  100. #define SPI_TXBUFE_OFFSET 7
  101. #define SPI_TXBUFE_SIZE 1
  102. #define SPI_NSSR_OFFSET 8
  103. #define SPI_NSSR_SIZE 1
  104. #define SPI_TXEMPTY_OFFSET 9
  105. #define SPI_TXEMPTY_SIZE 1
  106. #define SPI_SPIENS_OFFSET 16
  107. #define SPI_SPIENS_SIZE 1
  108. /* Bitfields in CSR0 */
  109. #define SPI_CPOL_OFFSET 0
  110. #define SPI_CPOL_SIZE 1
  111. #define SPI_NCPHA_OFFSET 1
  112. #define SPI_NCPHA_SIZE 1
  113. #define SPI_CSAAT_OFFSET 3
  114. #define SPI_CSAAT_SIZE 1
  115. #define SPI_BITS_OFFSET 4
  116. #define SPI_BITS_SIZE 4
  117. #define SPI_SCBR_OFFSET 8
  118. #define SPI_SCBR_SIZE 8
  119. #define SPI_DLYBS_OFFSET 16
  120. #define SPI_DLYBS_SIZE 8
  121. #define SPI_DLYBCT_OFFSET 24
  122. #define SPI_DLYBCT_SIZE 8
  123. /* Bitfields in RCR */
  124. #define SPI_RXCTR_OFFSET 0
  125. #define SPI_RXCTR_SIZE 16
  126. /* Bitfields in TCR */
  127. #define SPI_TXCTR_OFFSET 0
  128. #define SPI_TXCTR_SIZE 16
  129. /* Bitfields in RNCR */
  130. #define SPI_RXNCR_OFFSET 0
  131. #define SPI_RXNCR_SIZE 16
  132. /* Bitfields in TNCR */
  133. #define SPI_TXNCR_OFFSET 0
  134. #define SPI_TXNCR_SIZE 16
  135. /* Bitfields in PTCR */
  136. #define SPI_RXTEN_OFFSET 0
  137. #define SPI_RXTEN_SIZE 1
  138. #define SPI_RXTDIS_OFFSET 1
  139. #define SPI_RXTDIS_SIZE 1
  140. #define SPI_TXTEN_OFFSET 8
  141. #define SPI_TXTEN_SIZE 1
  142. #define SPI_TXTDIS_OFFSET 9
  143. #define SPI_TXTDIS_SIZE 1
  144. /* Constants for BITS */
  145. #define SPI_BITS_8_BPT 0
  146. #define SPI_BITS_9_BPT 1
  147. #define SPI_BITS_10_BPT 2
  148. #define SPI_BITS_11_BPT 3
  149. #define SPI_BITS_12_BPT 4
  150. #define SPI_BITS_13_BPT 5
  151. #define SPI_BITS_14_BPT 6
  152. #define SPI_BITS_15_BPT 7
  153. #define SPI_BITS_16_BPT 8
  154. /* Bit manipulation macros */
  155. #define SPI_BIT(name) \
  156. (1 << SPI_##name##_OFFSET)
  157. #define SPI_BF(name,value) \
  158. (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
  159. #define SPI_BFEXT(name,value) \
  160. (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
  161. #define SPI_BFINS(name,value,old) \
  162. ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
  163. | SPI_BF(name,value))
  164. /* Register access macros */
  165. #define spi_readl(port,reg) \
  166. __raw_readl((port)->regs + SPI_##reg)
  167. #define spi_writel(port,reg,value) \
  168. __raw_writel((value), (port)->regs + SPI_##reg)
  169. /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
  170. * cache operations; better heuristics consider wordsize and bitrate.
  171. */
  172. #define DMA_MIN_BYTES 16
  173. struct atmel_spi_dma {
  174. struct dma_chan *chan_rx;
  175. struct dma_chan *chan_tx;
  176. struct scatterlist sgrx;
  177. struct scatterlist sgtx;
  178. struct dma_async_tx_descriptor *data_desc_rx;
  179. struct dma_async_tx_descriptor *data_desc_tx;
  180. struct at_dma_slave dma_slave;
  181. };
  182. struct atmel_spi_caps {
  183. bool is_spi2;
  184. bool has_wdrbt;
  185. bool has_dma_support;
  186. };
  187. /*
  188. * The core SPI transfer engine just talks to a register bank to set up
  189. * DMA transfers; transfer queue progress is driven by IRQs. The clock
  190. * framework provides the base clock, subdivided for each spi_device.
  191. */
  192. struct atmel_spi {
  193. spinlock_t lock;
  194. unsigned long flags;
  195. phys_addr_t phybase;
  196. void __iomem *regs;
  197. int irq;
  198. struct clk *clk;
  199. struct platform_device *pdev;
  200. struct spi_device *stay;
  201. u8 stopping;
  202. struct list_head queue;
  203. struct tasklet_struct tasklet;
  204. struct spi_transfer *current_transfer;
  205. unsigned long current_remaining_bytes;
  206. struct spi_transfer *next_transfer;
  207. unsigned long next_remaining_bytes;
  208. int done_status;
  209. /* scratch buffer */
  210. void *buffer;
  211. dma_addr_t buffer_dma;
  212. struct atmel_spi_caps caps;
  213. bool use_dma;
  214. bool use_pdc;
  215. /* dmaengine data */
  216. struct atmel_spi_dma dma;
  217. };
  218. /* Controller-specific per-slave state */
  219. struct atmel_spi_device {
  220. unsigned int npcs_pin;
  221. u32 csr;
  222. };
  223. #define BUFFER_SIZE PAGE_SIZE
  224. #define INVALID_DMA_ADDRESS 0xffffffff
  225. /*
  226. * Version 2 of the SPI controller has
  227. * - CR.LASTXFER
  228. * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
  229. * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
  230. * - SPI_CSRx.CSAAT
  231. * - SPI_CSRx.SBCR allows faster clocking
  232. */
  233. static bool atmel_spi_is_v2(struct atmel_spi *as)
  234. {
  235. return as->caps.is_spi2;
  236. }
  237. /*
  238. * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
  239. * they assume that spi slave device state will not change on deselect, so
  240. * that automagic deselection is OK. ("NPCSx rises if no data is to be
  241. * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
  242. * controllers have CSAAT and friends.
  243. *
  244. * Since the CSAAT functionality is a bit weird on newer controllers as
  245. * well, we use GPIO to control nCSx pins on all controllers, updating
  246. * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
  247. * support active-high chipselects despite the controller's belief that
  248. * only active-low devices/systems exists.
  249. *
  250. * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
  251. * right when driven with GPIO. ("Mode Fault does not allow more than one
  252. * Master on Chip Select 0.") No workaround exists for that ... so for
  253. * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
  254. * and (c) will trigger that first erratum in some cases.
  255. */
  256. static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
  257. {
  258. struct atmel_spi_device *asd = spi->controller_state;
  259. unsigned active = spi->mode & SPI_CS_HIGH;
  260. u32 mr;
  261. if (atmel_spi_is_v2(as)) {
  262. spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
  263. /* For the low SPI version, there is a issue that PDC transfer
  264. * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
  265. */
  266. spi_writel(as, CSR0, asd->csr);
  267. if (as->caps.has_wdrbt) {
  268. spi_writel(as, MR,
  269. SPI_BF(PCS, ~(0x01 << spi->chip_select))
  270. | SPI_BIT(WDRBT)
  271. | SPI_BIT(MODFDIS)
  272. | SPI_BIT(MSTR));
  273. } else {
  274. spi_writel(as, MR,
  275. SPI_BF(PCS, ~(0x01 << spi->chip_select))
  276. | SPI_BIT(MODFDIS)
  277. | SPI_BIT(MSTR));
  278. }
  279. mr = spi_readl(as, MR);
  280. gpio_set_value(asd->npcs_pin, active);
  281. } else {
  282. u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
  283. int i;
  284. u32 csr;
  285. /* Make sure clock polarity is correct */
  286. for (i = 0; i < spi->master->num_chipselect; i++) {
  287. csr = spi_readl(as, CSR0 + 4 * i);
  288. if ((csr ^ cpol) & SPI_BIT(CPOL))
  289. spi_writel(as, CSR0 + 4 * i,
  290. csr ^ SPI_BIT(CPOL));
  291. }
  292. mr = spi_readl(as, MR);
  293. mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
  294. if (spi->chip_select != 0)
  295. gpio_set_value(asd->npcs_pin, active);
  296. spi_writel(as, MR, mr);
  297. }
  298. dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
  299. asd->npcs_pin, active ? " (high)" : "",
  300. mr);
  301. }
  302. static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
  303. {
  304. struct atmel_spi_device *asd = spi->controller_state;
  305. unsigned active = spi->mode & SPI_CS_HIGH;
  306. u32 mr;
  307. /* only deactivate *this* device; sometimes transfers to
  308. * another device may be active when this routine is called.
  309. */
  310. mr = spi_readl(as, MR);
  311. if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
  312. mr = SPI_BFINS(PCS, 0xf, mr);
  313. spi_writel(as, MR, mr);
  314. }
  315. dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
  316. asd->npcs_pin, active ? " (low)" : "",
  317. mr);
  318. if (atmel_spi_is_v2(as) || spi->chip_select != 0)
  319. gpio_set_value(asd->npcs_pin, !active);
  320. }
  321. static void atmel_spi_lock(struct atmel_spi *as)
  322. {
  323. spin_lock_irqsave(&as->lock, as->flags);
  324. }
  325. static void atmel_spi_unlock(struct atmel_spi *as)
  326. {
  327. spin_unlock_irqrestore(&as->lock, as->flags);
  328. }
  329. static inline bool atmel_spi_use_dma(struct atmel_spi *as,
  330. struct spi_transfer *xfer)
  331. {
  332. return as->use_dma && xfer->len >= DMA_MIN_BYTES;
  333. }
  334. static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
  335. struct spi_transfer *xfer)
  336. {
  337. return msg->transfers.prev == &xfer->transfer_list;
  338. }
  339. static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
  340. {
  341. return xfer->delay_usecs == 0 && !xfer->cs_change;
  342. }
  343. static int atmel_spi_dma_slave_config(struct atmel_spi *as,
  344. struct dma_slave_config *slave_config,
  345. u8 bits_per_word)
  346. {
  347. int err = 0;
  348. if (bits_per_word > 8) {
  349. slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  350. slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  351. } else {
  352. slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  353. slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  354. }
  355. slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
  356. slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
  357. slave_config->src_maxburst = 1;
  358. slave_config->dst_maxburst = 1;
  359. slave_config->device_fc = false;
  360. slave_config->direction = DMA_MEM_TO_DEV;
  361. if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
  362. dev_err(&as->pdev->dev,
  363. "failed to configure tx dma channel\n");
  364. err = -EINVAL;
  365. }
  366. slave_config->direction = DMA_DEV_TO_MEM;
  367. if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
  368. dev_err(&as->pdev->dev,
  369. "failed to configure rx dma channel\n");
  370. err = -EINVAL;
  371. }
  372. return err;
  373. }
  374. static bool filter(struct dma_chan *chan, void *pdata)
  375. {
  376. struct atmel_spi_dma *sl_pdata = pdata;
  377. struct at_dma_slave *sl;
  378. if (!sl_pdata)
  379. return false;
  380. sl = &sl_pdata->dma_slave;
  381. if (sl->dma_dev == chan->device->dev) {
  382. chan->private = sl;
  383. return true;
  384. } else {
  385. return false;
  386. }
  387. }
  388. static int atmel_spi_configure_dma(struct atmel_spi *as)
  389. {
  390. struct dma_slave_config slave_config;
  391. struct device *dev = &as->pdev->dev;
  392. int err;
  393. dma_cap_mask_t mask;
  394. dma_cap_zero(mask);
  395. dma_cap_set(DMA_SLAVE, mask);
  396. as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter,
  397. &as->dma,
  398. dev, "tx");
  399. if (!as->dma.chan_tx) {
  400. dev_err(dev,
  401. "DMA TX channel not available, SPI unable to use DMA\n");
  402. err = -EBUSY;
  403. goto error;
  404. }
  405. as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter,
  406. &as->dma,
  407. dev, "rx");
  408. if (!as->dma.chan_rx) {
  409. dev_err(dev,
  410. "DMA RX channel not available, SPI unable to use DMA\n");
  411. err = -EBUSY;
  412. goto error;
  413. }
  414. err = atmel_spi_dma_slave_config(as, &slave_config, 8);
  415. if (err)
  416. goto error;
  417. dev_info(&as->pdev->dev,
  418. "Using %s (tx) and %s (rx) for DMA transfers\n",
  419. dma_chan_name(as->dma.chan_tx),
  420. dma_chan_name(as->dma.chan_rx));
  421. return 0;
  422. error:
  423. if (as->dma.chan_rx)
  424. dma_release_channel(as->dma.chan_rx);
  425. if (as->dma.chan_tx)
  426. dma_release_channel(as->dma.chan_tx);
  427. return err;
  428. }
  429. static void atmel_spi_stop_dma(struct atmel_spi *as)
  430. {
  431. if (as->dma.chan_rx)
  432. as->dma.chan_rx->device->device_control(as->dma.chan_rx,
  433. DMA_TERMINATE_ALL, 0);
  434. if (as->dma.chan_tx)
  435. as->dma.chan_tx->device->device_control(as->dma.chan_tx,
  436. DMA_TERMINATE_ALL, 0);
  437. }
  438. static void atmel_spi_release_dma(struct atmel_spi *as)
  439. {
  440. if (as->dma.chan_rx)
  441. dma_release_channel(as->dma.chan_rx);
  442. if (as->dma.chan_tx)
  443. dma_release_channel(as->dma.chan_tx);
  444. }
  445. /* This function is called by the DMA driver from tasklet context */
  446. static void dma_callback(void *data)
  447. {
  448. struct spi_master *master = data;
  449. struct atmel_spi *as = spi_master_get_devdata(master);
  450. /* trigger SPI tasklet */
  451. tasklet_schedule(&as->tasklet);
  452. }
  453. /*
  454. * Next transfer using PIO.
  455. * lock is held, spi tasklet is blocked
  456. */
  457. static void atmel_spi_next_xfer_pio(struct spi_master *master,
  458. struct spi_transfer *xfer)
  459. {
  460. struct atmel_spi *as = spi_master_get_devdata(master);
  461. dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
  462. as->current_remaining_bytes = xfer->len;
  463. /* Make sure data is not remaining in RDR */
  464. spi_readl(as, RDR);
  465. while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
  466. spi_readl(as, RDR);
  467. cpu_relax();
  468. }
  469. if (xfer->tx_buf)
  470. if (xfer->bits_per_word > 8)
  471. spi_writel(as, TDR, *(u16 *)(xfer->tx_buf));
  472. else
  473. spi_writel(as, TDR, *(u8 *)(xfer->tx_buf));
  474. else
  475. spi_writel(as, TDR, 0);
  476. dev_dbg(master->dev.parent,
  477. " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
  478. xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
  479. xfer->bits_per_word);
  480. /* Enable relevant interrupts */
  481. spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
  482. }
  483. /*
  484. * Submit next transfer for DMA.
  485. * lock is held, spi tasklet is blocked
  486. */
  487. static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
  488. struct spi_transfer *xfer,
  489. u32 *plen)
  490. {
  491. struct atmel_spi *as = spi_master_get_devdata(master);
  492. struct dma_chan *rxchan = as->dma.chan_rx;
  493. struct dma_chan *txchan = as->dma.chan_tx;
  494. struct dma_async_tx_descriptor *rxdesc;
  495. struct dma_async_tx_descriptor *txdesc;
  496. struct dma_slave_config slave_config;
  497. dma_cookie_t cookie;
  498. u32 len = *plen;
  499. dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
  500. /* Check that the channels are available */
  501. if (!rxchan || !txchan)
  502. return -ENODEV;
  503. /* release lock for DMA operations */
  504. atmel_spi_unlock(as);
  505. /* prepare the RX dma transfer */
  506. sg_init_table(&as->dma.sgrx, 1);
  507. if (xfer->rx_buf) {
  508. as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
  509. } else {
  510. as->dma.sgrx.dma_address = as->buffer_dma;
  511. if (len > BUFFER_SIZE)
  512. len = BUFFER_SIZE;
  513. }
  514. /* prepare the TX dma transfer */
  515. sg_init_table(&as->dma.sgtx, 1);
  516. if (xfer->tx_buf) {
  517. as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
  518. } else {
  519. as->dma.sgtx.dma_address = as->buffer_dma;
  520. if (len > BUFFER_SIZE)
  521. len = BUFFER_SIZE;
  522. memset(as->buffer, 0, len);
  523. }
  524. sg_dma_len(&as->dma.sgtx) = len;
  525. sg_dma_len(&as->dma.sgrx) = len;
  526. *plen = len;
  527. if (atmel_spi_dma_slave_config(as, &slave_config, 8))
  528. goto err_exit;
  529. /* Send both scatterlists */
  530. rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
  531. &as->dma.sgrx,
  532. 1,
  533. DMA_FROM_DEVICE,
  534. DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
  535. NULL);
  536. if (!rxdesc)
  537. goto err_dma;
  538. txdesc = txchan->device->device_prep_slave_sg(txchan,
  539. &as->dma.sgtx,
  540. 1,
  541. DMA_TO_DEVICE,
  542. DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
  543. NULL);
  544. if (!txdesc)
  545. goto err_dma;
  546. dev_dbg(master->dev.parent,
  547. " start dma xfer %p: len %u tx %p/%08x rx %p/%08x\n",
  548. xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
  549. xfer->rx_buf, xfer->rx_dma);
  550. /* Enable relevant interrupts */
  551. spi_writel(as, IER, SPI_BIT(OVRES));
  552. /* Put the callback on the RX transfer only, that should finish last */
  553. rxdesc->callback = dma_callback;
  554. rxdesc->callback_param = master;
  555. /* Submit and fire RX and TX with TX last so we're ready to read! */
  556. cookie = rxdesc->tx_submit(rxdesc);
  557. if (dma_submit_error(cookie))
  558. goto err_dma;
  559. cookie = txdesc->tx_submit(txdesc);
  560. if (dma_submit_error(cookie))
  561. goto err_dma;
  562. rxchan->device->device_issue_pending(rxchan);
  563. txchan->device->device_issue_pending(txchan);
  564. /* take back lock */
  565. atmel_spi_lock(as);
  566. return 0;
  567. err_dma:
  568. spi_writel(as, IDR, SPI_BIT(OVRES));
  569. atmel_spi_stop_dma(as);
  570. err_exit:
  571. atmel_spi_lock(as);
  572. return -ENOMEM;
  573. }
  574. static void atmel_spi_next_xfer_data(struct spi_master *master,
  575. struct spi_transfer *xfer,
  576. dma_addr_t *tx_dma,
  577. dma_addr_t *rx_dma,
  578. u32 *plen)
  579. {
  580. struct atmel_spi *as = spi_master_get_devdata(master);
  581. u32 len = *plen;
  582. /* use scratch buffer only when rx or tx data is unspecified */
  583. if (xfer->rx_buf)
  584. *rx_dma = xfer->rx_dma + xfer->len - *plen;
  585. else {
  586. *rx_dma = as->buffer_dma;
  587. if (len > BUFFER_SIZE)
  588. len = BUFFER_SIZE;
  589. }
  590. if (xfer->tx_buf)
  591. *tx_dma = xfer->tx_dma + xfer->len - *plen;
  592. else {
  593. *tx_dma = as->buffer_dma;
  594. if (len > BUFFER_SIZE)
  595. len = BUFFER_SIZE;
  596. memset(as->buffer, 0, len);
  597. dma_sync_single_for_device(&as->pdev->dev,
  598. as->buffer_dma, len, DMA_TO_DEVICE);
  599. }
  600. *plen = len;
  601. }
  602. /*
  603. * Submit next transfer for PDC.
  604. * lock is held, spi irq is blocked
  605. */
  606. static void atmel_spi_pdc_next_xfer(struct spi_master *master,
  607. struct spi_message *msg)
  608. {
  609. struct atmel_spi *as = spi_master_get_devdata(master);
  610. struct spi_transfer *xfer;
  611. u32 len, remaining;
  612. u32 ieval;
  613. dma_addr_t tx_dma, rx_dma;
  614. if (!as->current_transfer)
  615. xfer = list_entry(msg->transfers.next,
  616. struct spi_transfer, transfer_list);
  617. else if (!as->next_transfer)
  618. xfer = list_entry(as->current_transfer->transfer_list.next,
  619. struct spi_transfer, transfer_list);
  620. else
  621. xfer = NULL;
  622. if (xfer) {
  623. spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
  624. len = xfer->len;
  625. atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
  626. remaining = xfer->len - len;
  627. spi_writel(as, RPR, rx_dma);
  628. spi_writel(as, TPR, tx_dma);
  629. if (msg->spi->bits_per_word > 8)
  630. len >>= 1;
  631. spi_writel(as, RCR, len);
  632. spi_writel(as, TCR, len);
  633. dev_dbg(&msg->spi->dev,
  634. " start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
  635. xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
  636. xfer->rx_buf, xfer->rx_dma);
  637. } else {
  638. xfer = as->next_transfer;
  639. remaining = as->next_remaining_bytes;
  640. }
  641. as->current_transfer = xfer;
  642. as->current_remaining_bytes = remaining;
  643. if (remaining > 0)
  644. len = remaining;
  645. else if (!atmel_spi_xfer_is_last(msg, xfer)
  646. && atmel_spi_xfer_can_be_chained(xfer)) {
  647. xfer = list_entry(xfer->transfer_list.next,
  648. struct spi_transfer, transfer_list);
  649. len = xfer->len;
  650. } else
  651. xfer = NULL;
  652. as->next_transfer = xfer;
  653. if (xfer) {
  654. u32 total;
  655. total = len;
  656. atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
  657. as->next_remaining_bytes = total - len;
  658. spi_writel(as, RNPR, rx_dma);
  659. spi_writel(as, TNPR, tx_dma);
  660. if (msg->spi->bits_per_word > 8)
  661. len >>= 1;
  662. spi_writel(as, RNCR, len);
  663. spi_writel(as, TNCR, len);
  664. dev_dbg(&msg->spi->dev,
  665. " next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
  666. xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
  667. xfer->rx_buf, xfer->rx_dma);
  668. ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
  669. } else {
  670. spi_writel(as, RNCR, 0);
  671. spi_writel(as, TNCR, 0);
  672. ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
  673. }
  674. /* REVISIT: We're waiting for ENDRX before we start the next
  675. * transfer because we need to handle some difficult timing
  676. * issues otherwise. If we wait for ENDTX in one transfer and
  677. * then starts waiting for ENDRX in the next, it's difficult
  678. * to tell the difference between the ENDRX interrupt we're
  679. * actually waiting for and the ENDRX interrupt of the
  680. * previous transfer.
  681. *
  682. * It should be doable, though. Just not now...
  683. */
  684. spi_writel(as, IER, ieval);
  685. spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
  686. }
  687. /*
  688. * Choose way to submit next transfer and start it.
  689. * lock is held, spi tasklet is blocked
  690. */
  691. static void atmel_spi_dma_next_xfer(struct spi_master *master,
  692. struct spi_message *msg)
  693. {
  694. struct atmel_spi *as = spi_master_get_devdata(master);
  695. struct spi_transfer *xfer;
  696. u32 remaining, len;
  697. remaining = as->current_remaining_bytes;
  698. if (remaining) {
  699. xfer = as->current_transfer;
  700. len = remaining;
  701. } else {
  702. if (!as->current_transfer)
  703. xfer = list_entry(msg->transfers.next,
  704. struct spi_transfer, transfer_list);
  705. else
  706. xfer = list_entry(
  707. as->current_transfer->transfer_list.next,
  708. struct spi_transfer, transfer_list);
  709. as->current_transfer = xfer;
  710. len = xfer->len;
  711. }
  712. if (atmel_spi_use_dma(as, xfer)) {
  713. u32 total = len;
  714. if (!atmel_spi_next_xfer_dma_submit(master, xfer, &len)) {
  715. as->current_remaining_bytes = total - len;
  716. return;
  717. } else {
  718. dev_err(&msg->spi->dev, "unable to use DMA, fallback to PIO\n");
  719. }
  720. }
  721. /* use PIO if error appened using DMA */
  722. atmel_spi_next_xfer_pio(master, xfer);
  723. }
  724. static void atmel_spi_next_message(struct spi_master *master)
  725. {
  726. struct atmel_spi *as = spi_master_get_devdata(master);
  727. struct spi_message *msg;
  728. struct spi_device *spi;
  729. BUG_ON(as->current_transfer);
  730. msg = list_entry(as->queue.next, struct spi_message, queue);
  731. spi = msg->spi;
  732. dev_dbg(master->dev.parent, "start message %p for %s\n",
  733. msg, dev_name(&spi->dev));
  734. /* select chip if it's not still active */
  735. if (as->stay) {
  736. if (as->stay != spi) {
  737. cs_deactivate(as, as->stay);
  738. cs_activate(as, spi);
  739. }
  740. as->stay = NULL;
  741. } else
  742. cs_activate(as, spi);
  743. if (as->use_pdc)
  744. atmel_spi_pdc_next_xfer(master, msg);
  745. else
  746. atmel_spi_dma_next_xfer(master, msg);
  747. }
  748. /*
  749. * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
  750. * - The buffer is either valid for CPU access, else NULL
  751. * - If the buffer is valid, so is its DMA address
  752. *
  753. * This driver manages the dma address unless message->is_dma_mapped.
  754. */
  755. static int
  756. atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
  757. {
  758. struct device *dev = &as->pdev->dev;
  759. xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
  760. if (xfer->tx_buf) {
  761. /* tx_buf is a const void* where we need a void * for the dma
  762. * mapping */
  763. void *nonconst_tx = (void *)xfer->tx_buf;
  764. xfer->tx_dma = dma_map_single(dev,
  765. nonconst_tx, xfer->len,
  766. DMA_TO_DEVICE);
  767. if (dma_mapping_error(dev, xfer->tx_dma))
  768. return -ENOMEM;
  769. }
  770. if (xfer->rx_buf) {
  771. xfer->rx_dma = dma_map_single(dev,
  772. xfer->rx_buf, xfer->len,
  773. DMA_FROM_DEVICE);
  774. if (dma_mapping_error(dev, xfer->rx_dma)) {
  775. if (xfer->tx_buf)
  776. dma_unmap_single(dev,
  777. xfer->tx_dma, xfer->len,
  778. DMA_TO_DEVICE);
  779. return -ENOMEM;
  780. }
  781. }
  782. return 0;
  783. }
  784. static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
  785. struct spi_transfer *xfer)
  786. {
  787. if (xfer->tx_dma != INVALID_DMA_ADDRESS)
  788. dma_unmap_single(master->dev.parent, xfer->tx_dma,
  789. xfer->len, DMA_TO_DEVICE);
  790. if (xfer->rx_dma != INVALID_DMA_ADDRESS)
  791. dma_unmap_single(master->dev.parent, xfer->rx_dma,
  792. xfer->len, DMA_FROM_DEVICE);
  793. }
  794. static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
  795. {
  796. spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
  797. }
  798. static void
  799. atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
  800. struct spi_message *msg, int stay)
  801. {
  802. if (!stay || as->done_status < 0)
  803. cs_deactivate(as, msg->spi);
  804. else
  805. as->stay = msg->spi;
  806. list_del(&msg->queue);
  807. msg->status = as->done_status;
  808. dev_dbg(master->dev.parent,
  809. "xfer complete: %u bytes transferred\n",
  810. msg->actual_length);
  811. atmel_spi_unlock(as);
  812. msg->complete(msg->context);
  813. atmel_spi_lock(as);
  814. as->current_transfer = NULL;
  815. as->next_transfer = NULL;
  816. as->done_status = 0;
  817. /* continue if needed */
  818. if (list_empty(&as->queue) || as->stopping) {
  819. if (as->use_pdc)
  820. atmel_spi_disable_pdc_transfer(as);
  821. } else {
  822. atmel_spi_next_message(master);
  823. }
  824. }
  825. /* Called from IRQ
  826. * lock is held
  827. *
  828. * Must update "current_remaining_bytes" to keep track of data
  829. * to transfer.
  830. */
  831. static void
  832. atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
  833. {
  834. u8 *txp;
  835. u8 *rxp;
  836. u16 *txp16;
  837. u16 *rxp16;
  838. unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
  839. if (xfer->rx_buf) {
  840. if (xfer->bits_per_word > 8) {
  841. rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
  842. *rxp16 = spi_readl(as, RDR);
  843. } else {
  844. rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
  845. *rxp = spi_readl(as, RDR);
  846. }
  847. } else {
  848. spi_readl(as, RDR);
  849. }
  850. if (xfer->bits_per_word > 8) {
  851. as->current_remaining_bytes -= 2;
  852. if (as->current_remaining_bytes < 0)
  853. as->current_remaining_bytes = 0;
  854. } else {
  855. as->current_remaining_bytes--;
  856. }
  857. if (as->current_remaining_bytes) {
  858. if (xfer->tx_buf) {
  859. if (xfer->bits_per_word > 8) {
  860. txp16 = (u16 *)(((u8 *)xfer->tx_buf)
  861. + xfer_pos + 2);
  862. spi_writel(as, TDR, *txp16);
  863. } else {
  864. txp = ((u8 *)xfer->tx_buf) + xfer_pos + 1;
  865. spi_writel(as, TDR, *txp);
  866. }
  867. } else {
  868. spi_writel(as, TDR, 0);
  869. }
  870. }
  871. }
  872. /* Tasklet
  873. * Called from DMA callback + pio transfer and overrun IRQ.
  874. */
  875. static void atmel_spi_tasklet_func(unsigned long data)
  876. {
  877. struct spi_master *master = (struct spi_master *)data;
  878. struct atmel_spi *as = spi_master_get_devdata(master);
  879. struct spi_message *msg;
  880. struct spi_transfer *xfer;
  881. dev_vdbg(master->dev.parent, "atmel_spi_tasklet_func\n");
  882. atmel_spi_lock(as);
  883. xfer = as->current_transfer;
  884. if (xfer == NULL)
  885. /* already been there */
  886. goto tasklet_out;
  887. msg = list_entry(as->queue.next, struct spi_message, queue);
  888. if (as->current_remaining_bytes == 0) {
  889. if (as->done_status < 0) {
  890. /* error happened (overrun) */
  891. if (atmel_spi_use_dma(as, xfer))
  892. atmel_spi_stop_dma(as);
  893. } else {
  894. /* only update length if no error */
  895. msg->actual_length += xfer->len;
  896. }
  897. if (atmel_spi_use_dma(as, xfer))
  898. if (!msg->is_dma_mapped)
  899. atmel_spi_dma_unmap_xfer(master, xfer);
  900. if (xfer->delay_usecs)
  901. udelay(xfer->delay_usecs);
  902. if (atmel_spi_xfer_is_last(msg, xfer) || as->done_status < 0) {
  903. /* report completed (or erroneous) message */
  904. atmel_spi_msg_done(master, as, msg, xfer->cs_change);
  905. } else {
  906. if (xfer->cs_change) {
  907. cs_deactivate(as, msg->spi);
  908. udelay(1);
  909. cs_activate(as, msg->spi);
  910. }
  911. /*
  912. * Not done yet. Submit the next transfer.
  913. *
  914. * FIXME handle protocol options for xfer
  915. */
  916. atmel_spi_dma_next_xfer(master, msg);
  917. }
  918. } else {
  919. /*
  920. * Keep going, we still have data to send in
  921. * the current transfer.
  922. */
  923. atmel_spi_dma_next_xfer(master, msg);
  924. }
  925. tasklet_out:
  926. atmel_spi_unlock(as);
  927. }
  928. /* Interrupt
  929. *
  930. * No need for locking in this Interrupt handler: done_status is the
  931. * only information modified. What we need is the update of this field
  932. * before tasklet runs. This is ensured by using barrier.
  933. */
  934. static irqreturn_t
  935. atmel_spi_pio_interrupt(int irq, void *dev_id)
  936. {
  937. struct spi_master *master = dev_id;
  938. struct atmel_spi *as = spi_master_get_devdata(master);
  939. u32 status, pending, imr;
  940. struct spi_transfer *xfer;
  941. int ret = IRQ_NONE;
  942. imr = spi_readl(as, IMR);
  943. status = spi_readl(as, SR);
  944. pending = status & imr;
  945. if (pending & SPI_BIT(OVRES)) {
  946. ret = IRQ_HANDLED;
  947. spi_writel(as, IDR, SPI_BIT(OVRES));
  948. dev_warn(master->dev.parent, "overrun\n");
  949. /*
  950. * When we get an overrun, we disregard the current
  951. * transfer. Data will not be copied back from any
  952. * bounce buffer and msg->actual_len will not be
  953. * updated with the last xfer.
  954. *
  955. * We will also not process any remaning transfers in
  956. * the message.
  957. *
  958. * All actions are done in tasklet with done_status indication
  959. */
  960. as->done_status = -EIO;
  961. smp_wmb();
  962. /* Clear any overrun happening while cleaning up */
  963. spi_readl(as, SR);
  964. tasklet_schedule(&as->tasklet);
  965. } else if (pending & SPI_BIT(RDRF)) {
  966. atmel_spi_lock(as);
  967. if (as->current_remaining_bytes) {
  968. ret = IRQ_HANDLED;
  969. xfer = as->current_transfer;
  970. atmel_spi_pump_pio_data(as, xfer);
  971. if (!as->current_remaining_bytes) {
  972. /* no more data to xfer, kick tasklet */
  973. spi_writel(as, IDR, pending);
  974. tasklet_schedule(&as->tasklet);
  975. }
  976. }
  977. atmel_spi_unlock(as);
  978. } else {
  979. WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
  980. ret = IRQ_HANDLED;
  981. spi_writel(as, IDR, pending);
  982. }
  983. return ret;
  984. }
  985. static irqreturn_t
  986. atmel_spi_pdc_interrupt(int irq, void *dev_id)
  987. {
  988. struct spi_master *master = dev_id;
  989. struct atmel_spi *as = spi_master_get_devdata(master);
  990. struct spi_message *msg;
  991. struct spi_transfer *xfer;
  992. u32 status, pending, imr;
  993. int ret = IRQ_NONE;
  994. atmel_spi_lock(as);
  995. xfer = as->current_transfer;
  996. msg = list_entry(as->queue.next, struct spi_message, queue);
  997. imr = spi_readl(as, IMR);
  998. status = spi_readl(as, SR);
  999. pending = status & imr;
  1000. if (pending & SPI_BIT(OVRES)) {
  1001. int timeout;
  1002. ret = IRQ_HANDLED;
  1003. spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
  1004. | SPI_BIT(OVRES)));
  1005. /*
  1006. * When we get an overrun, we disregard the current
  1007. * transfer. Data will not be copied back from any
  1008. * bounce buffer and msg->actual_len will not be
  1009. * updated with the last xfer.
  1010. *
  1011. * We will also not process any remaning transfers in
  1012. * the message.
  1013. *
  1014. * First, stop the transfer and unmap the DMA buffers.
  1015. */
  1016. spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
  1017. if (!msg->is_dma_mapped)
  1018. atmel_spi_dma_unmap_xfer(master, xfer);
  1019. /* REVISIT: udelay in irq is unfriendly */
  1020. if (xfer->delay_usecs)
  1021. udelay(xfer->delay_usecs);
  1022. dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
  1023. spi_readl(as, TCR), spi_readl(as, RCR));
  1024. /*
  1025. * Clean up DMA registers and make sure the data
  1026. * registers are empty.
  1027. */
  1028. spi_writel(as, RNCR, 0);
  1029. spi_writel(as, TNCR, 0);
  1030. spi_writel(as, RCR, 0);
  1031. spi_writel(as, TCR, 0);
  1032. for (timeout = 1000; timeout; timeout--)
  1033. if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
  1034. break;
  1035. if (!timeout)
  1036. dev_warn(master->dev.parent,
  1037. "timeout waiting for TXEMPTY");
  1038. while (spi_readl(as, SR) & SPI_BIT(RDRF))
  1039. spi_readl(as, RDR);
  1040. /* Clear any overrun happening while cleaning up */
  1041. spi_readl(as, SR);
  1042. as->done_status = -EIO;
  1043. atmel_spi_msg_done(master, as, msg, 0);
  1044. } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
  1045. ret = IRQ_HANDLED;
  1046. spi_writel(as, IDR, pending);
  1047. if (as->current_remaining_bytes == 0) {
  1048. msg->actual_length += xfer->len;
  1049. if (!msg->is_dma_mapped)
  1050. atmel_spi_dma_unmap_xfer(master, xfer);
  1051. /* REVISIT: udelay in irq is unfriendly */
  1052. if (xfer->delay_usecs)
  1053. udelay(xfer->delay_usecs);
  1054. if (atmel_spi_xfer_is_last(msg, xfer)) {
  1055. /* report completed message */
  1056. atmel_spi_msg_done(master, as, msg,
  1057. xfer->cs_change);
  1058. } else {
  1059. if (xfer->cs_change) {
  1060. cs_deactivate(as, msg->spi);
  1061. udelay(1);
  1062. cs_activate(as, msg->spi);
  1063. }
  1064. /*
  1065. * Not done yet. Submit the next transfer.
  1066. *
  1067. * FIXME handle protocol options for xfer
  1068. */
  1069. atmel_spi_pdc_next_xfer(master, msg);
  1070. }
  1071. } else {
  1072. /*
  1073. * Keep going, we still have data to send in
  1074. * the current transfer.
  1075. */
  1076. atmel_spi_pdc_next_xfer(master, msg);
  1077. }
  1078. }
  1079. atmel_spi_unlock(as);
  1080. return ret;
  1081. }
  1082. static int atmel_spi_setup(struct spi_device *spi)
  1083. {
  1084. struct atmel_spi *as;
  1085. struct atmel_spi_device *asd;
  1086. u32 scbr, csr;
  1087. unsigned int bits = spi->bits_per_word;
  1088. unsigned long bus_hz;
  1089. unsigned int npcs_pin;
  1090. int ret;
  1091. as = spi_master_get_devdata(spi->master);
  1092. if (as->stopping)
  1093. return -ESHUTDOWN;
  1094. if (spi->chip_select > spi->master->num_chipselect) {
  1095. dev_dbg(&spi->dev,
  1096. "setup: invalid chipselect %u (%u defined)\n",
  1097. spi->chip_select, spi->master->num_chipselect);
  1098. return -EINVAL;
  1099. }
  1100. /* see notes above re chipselect */
  1101. if (!atmel_spi_is_v2(as)
  1102. && spi->chip_select == 0
  1103. && (spi->mode & SPI_CS_HIGH)) {
  1104. dev_dbg(&spi->dev, "setup: can't be active-high\n");
  1105. return -EINVAL;
  1106. }
  1107. /* v1 chips start out at half the peripheral bus speed. */
  1108. bus_hz = clk_get_rate(as->clk);
  1109. if (!atmel_spi_is_v2(as))
  1110. bus_hz /= 2;
  1111. if (spi->max_speed_hz) {
  1112. /*
  1113. * Calculate the lowest divider that satisfies the
  1114. * constraint, assuming div32/fdiv/mbz == 0.
  1115. */
  1116. scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
  1117. /*
  1118. * If the resulting divider doesn't fit into the
  1119. * register bitfield, we can't satisfy the constraint.
  1120. */
  1121. if (scbr >= (1 << SPI_SCBR_SIZE)) {
  1122. dev_dbg(&spi->dev,
  1123. "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
  1124. spi->max_speed_hz, scbr, bus_hz/255);
  1125. return -EINVAL;
  1126. }
  1127. } else
  1128. /* speed zero means "as slow as possible" */
  1129. scbr = 0xff;
  1130. csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
  1131. if (spi->mode & SPI_CPOL)
  1132. csr |= SPI_BIT(CPOL);
  1133. if (!(spi->mode & SPI_CPHA))
  1134. csr |= SPI_BIT(NCPHA);
  1135. /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
  1136. *
  1137. * DLYBCT would add delays between words, slowing down transfers.
  1138. * It could potentially be useful to cope with DMA bottlenecks, but
  1139. * in those cases it's probably best to just use a lower bitrate.
  1140. */
  1141. csr |= SPI_BF(DLYBS, 0);
  1142. csr |= SPI_BF(DLYBCT, 0);
  1143. /* chipselect must have been muxed as GPIO (e.g. in board setup) */
  1144. npcs_pin = (unsigned int)spi->controller_data;
  1145. if (gpio_is_valid(spi->cs_gpio))
  1146. npcs_pin = spi->cs_gpio;
  1147. asd = spi->controller_state;
  1148. if (!asd) {
  1149. asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
  1150. if (!asd)
  1151. return -ENOMEM;
  1152. ret = gpio_request(npcs_pin, dev_name(&spi->dev));
  1153. if (ret) {
  1154. kfree(asd);
  1155. return ret;
  1156. }
  1157. asd->npcs_pin = npcs_pin;
  1158. spi->controller_state = asd;
  1159. gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
  1160. } else {
  1161. atmel_spi_lock(as);
  1162. if (as->stay == spi)
  1163. as->stay = NULL;
  1164. cs_deactivate(as, spi);
  1165. atmel_spi_unlock(as);
  1166. }
  1167. asd->csr = csr;
  1168. dev_dbg(&spi->dev,
  1169. "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
  1170. bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
  1171. if (!atmel_spi_is_v2(as))
  1172. spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
  1173. return 0;
  1174. }
  1175. static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  1176. {
  1177. struct atmel_spi *as;
  1178. struct spi_transfer *xfer;
  1179. struct device *controller = spi->master->dev.parent;
  1180. u8 bits;
  1181. struct atmel_spi_device *asd;
  1182. as = spi_master_get_devdata(spi->master);
  1183. dev_dbg(controller, "new message %p submitted for %s\n",
  1184. msg, dev_name(&spi->dev));
  1185. if (unlikely(list_empty(&msg->transfers)))
  1186. return -EINVAL;
  1187. if (as->stopping)
  1188. return -ESHUTDOWN;
  1189. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  1190. if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
  1191. dev_dbg(&spi->dev, "missing rx or tx buf\n");
  1192. return -EINVAL;
  1193. }
  1194. if (xfer->bits_per_word) {
  1195. asd = spi->controller_state;
  1196. bits = (asd->csr >> 4) & 0xf;
  1197. if (bits != xfer->bits_per_word - 8) {
  1198. dev_dbg(&spi->dev, "you can't yet change "
  1199. "bits_per_word in transfers\n");
  1200. return -ENOPROTOOPT;
  1201. }
  1202. }
  1203. if (xfer->bits_per_word > 8) {
  1204. if (xfer->len % 2) {
  1205. dev_dbg(&spi->dev, "buffer len should be 16 bits aligned\n");
  1206. return -EINVAL;
  1207. }
  1208. }
  1209. /* FIXME implement these protocol options!! */
  1210. if (xfer->speed_hz < spi->max_speed_hz) {
  1211. dev_dbg(&spi->dev, "can't change speed in transfer\n");
  1212. return -ENOPROTOOPT;
  1213. }
  1214. /*
  1215. * DMA map early, for performance (empties dcache ASAP) and
  1216. * better fault reporting.
  1217. */
  1218. if ((!msg->is_dma_mapped) && (atmel_spi_use_dma(as, xfer)
  1219. || as->use_pdc)) {
  1220. if (atmel_spi_dma_map_xfer(as, xfer) < 0)
  1221. return -ENOMEM;
  1222. }
  1223. }
  1224. #ifdef VERBOSE
  1225. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  1226. dev_dbg(controller,
  1227. " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
  1228. xfer, xfer->len,
  1229. xfer->tx_buf, xfer->tx_dma,
  1230. xfer->rx_buf, xfer->rx_dma);
  1231. }
  1232. #endif
  1233. msg->status = -EINPROGRESS;
  1234. msg->actual_length = 0;
  1235. atmel_spi_lock(as);
  1236. list_add_tail(&msg->queue, &as->queue);
  1237. if (!as->current_transfer)
  1238. atmel_spi_next_message(spi->master);
  1239. atmel_spi_unlock(as);
  1240. return 0;
  1241. }
  1242. static void atmel_spi_cleanup(struct spi_device *spi)
  1243. {
  1244. struct atmel_spi *as = spi_master_get_devdata(spi->master);
  1245. struct atmel_spi_device *asd = spi->controller_state;
  1246. unsigned gpio = (unsigned) spi->controller_data;
  1247. if (!asd)
  1248. return;
  1249. atmel_spi_lock(as);
  1250. if (as->stay == spi) {
  1251. as->stay = NULL;
  1252. cs_deactivate(as, spi);
  1253. }
  1254. atmel_spi_unlock(as);
  1255. spi->controller_state = NULL;
  1256. gpio_free(gpio);
  1257. kfree(asd);
  1258. }
  1259. static inline unsigned int atmel_get_version(struct atmel_spi *as)
  1260. {
  1261. return spi_readl(as, VERSION) & 0x00000fff;
  1262. }
  1263. static void atmel_get_caps(struct atmel_spi *as)
  1264. {
  1265. unsigned int version;
  1266. version = atmel_get_version(as);
  1267. dev_info(&as->pdev->dev, "version: 0x%x\n", version);
  1268. as->caps.is_spi2 = version > 0x121;
  1269. as->caps.has_wdrbt = version >= 0x210;
  1270. as->caps.has_dma_support = version >= 0x212;
  1271. }
  1272. /*-------------------------------------------------------------------------*/
  1273. static int atmel_spi_probe(struct platform_device *pdev)
  1274. {
  1275. struct resource *regs;
  1276. int irq;
  1277. struct clk *clk;
  1278. int ret;
  1279. struct spi_master *master;
  1280. struct atmel_spi *as;
  1281. regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1282. if (!regs)
  1283. return -ENXIO;
  1284. irq = platform_get_irq(pdev, 0);
  1285. if (irq < 0)
  1286. return irq;
  1287. clk = clk_get(&pdev->dev, "spi_clk");
  1288. if (IS_ERR(clk))
  1289. return PTR_ERR(clk);
  1290. /* setup spi core then atmel-specific driver state */
  1291. ret = -ENOMEM;
  1292. master = spi_alloc_master(&pdev->dev, sizeof *as);
  1293. if (!master)
  1294. goto out_free;
  1295. /* the spi->mode bits understood by this driver: */
  1296. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1297. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
  1298. master->dev.of_node = pdev->dev.of_node;
  1299. master->bus_num = pdev->id;
  1300. master->num_chipselect = master->dev.of_node ? 0 : 4;
  1301. master->setup = atmel_spi_setup;
  1302. master->transfer = atmel_spi_transfer;
  1303. master->cleanup = atmel_spi_cleanup;
  1304. platform_set_drvdata(pdev, master);
  1305. as = spi_master_get_devdata(master);
  1306. /*
  1307. * Scratch buffer is used for throwaway rx and tx data.
  1308. * It's coherent to minimize dcache pollution.
  1309. */
  1310. as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
  1311. &as->buffer_dma, GFP_KERNEL);
  1312. if (!as->buffer)
  1313. goto out_free;
  1314. spin_lock_init(&as->lock);
  1315. INIT_LIST_HEAD(&as->queue);
  1316. as->pdev = pdev;
  1317. as->regs = ioremap(regs->start, resource_size(regs));
  1318. if (!as->regs)
  1319. goto out_free_buffer;
  1320. as->phybase = regs->start;
  1321. as->irq = irq;
  1322. as->clk = clk;
  1323. atmel_get_caps(as);
  1324. as->use_dma = false;
  1325. as->use_pdc = false;
  1326. if (as->caps.has_dma_support) {
  1327. if (atmel_spi_configure_dma(as) == 0)
  1328. as->use_dma = true;
  1329. } else {
  1330. as->use_pdc = true;
  1331. }
  1332. if (as->caps.has_dma_support && !as->use_dma)
  1333. dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
  1334. if (as->use_pdc) {
  1335. ret = request_irq(irq, atmel_spi_pdc_interrupt, 0,
  1336. dev_name(&pdev->dev), master);
  1337. } else {
  1338. tasklet_init(&as->tasklet, atmel_spi_tasklet_func,
  1339. (unsigned long)master);
  1340. ret = request_irq(irq, atmel_spi_pio_interrupt, 0,
  1341. dev_name(&pdev->dev), master);
  1342. }
  1343. if (ret)
  1344. goto out_unmap_regs;
  1345. /* Initialize the hardware */
  1346. clk_enable(clk);
  1347. spi_writel(as, CR, SPI_BIT(SWRST));
  1348. spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
  1349. if (as->caps.has_wdrbt) {
  1350. spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
  1351. | SPI_BIT(MSTR));
  1352. } else {
  1353. spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
  1354. }
  1355. if (as->use_pdc)
  1356. spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
  1357. spi_writel(as, CR, SPI_BIT(SPIEN));
  1358. /* go! */
  1359. dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
  1360. (unsigned long)regs->start, irq);
  1361. ret = spi_register_master(master);
  1362. if (ret)
  1363. goto out_free_dma;
  1364. return 0;
  1365. out_free_dma:
  1366. if (as->use_dma)
  1367. atmel_spi_release_dma(as);
  1368. spi_writel(as, CR, SPI_BIT(SWRST));
  1369. spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
  1370. clk_disable(clk);
  1371. free_irq(irq, master);
  1372. out_unmap_regs:
  1373. iounmap(as->regs);
  1374. out_free_buffer:
  1375. if (!as->use_pdc)
  1376. tasklet_kill(&as->tasklet);
  1377. dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
  1378. as->buffer_dma);
  1379. out_free:
  1380. clk_put(clk);
  1381. spi_master_put(master);
  1382. return ret;
  1383. }
  1384. static int atmel_spi_remove(struct platform_device *pdev)
  1385. {
  1386. struct spi_master *master = platform_get_drvdata(pdev);
  1387. struct atmel_spi *as = spi_master_get_devdata(master);
  1388. struct spi_message *msg;
  1389. struct spi_transfer *xfer;
  1390. /* reset the hardware and block queue progress */
  1391. spin_lock_irq(&as->lock);
  1392. as->stopping = 1;
  1393. if (as->use_dma) {
  1394. atmel_spi_stop_dma(as);
  1395. atmel_spi_release_dma(as);
  1396. }
  1397. spi_writel(as, CR, SPI_BIT(SWRST));
  1398. spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
  1399. spi_readl(as, SR);
  1400. spin_unlock_irq(&as->lock);
  1401. /* Terminate remaining queued transfers */
  1402. list_for_each_entry(msg, &as->queue, queue) {
  1403. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  1404. if (!msg->is_dma_mapped
  1405. && (atmel_spi_use_dma(as, xfer)
  1406. || as->use_pdc))
  1407. atmel_spi_dma_unmap_xfer(master, xfer);
  1408. }
  1409. msg->status = -ESHUTDOWN;
  1410. msg->complete(msg->context);
  1411. }
  1412. if (!as->use_pdc)
  1413. tasklet_kill(&as->tasklet);
  1414. dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
  1415. as->buffer_dma);
  1416. clk_disable(as->clk);
  1417. clk_put(as->clk);
  1418. free_irq(as->irq, master);
  1419. iounmap(as->regs);
  1420. spi_unregister_master(master);
  1421. return 0;
  1422. }
  1423. #ifdef CONFIG_PM
  1424. static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
  1425. {
  1426. struct spi_master *master = platform_get_drvdata(pdev);
  1427. struct atmel_spi *as = spi_master_get_devdata(master);
  1428. clk_disable(as->clk);
  1429. return 0;
  1430. }
  1431. static int atmel_spi_resume(struct platform_device *pdev)
  1432. {
  1433. struct spi_master *master = platform_get_drvdata(pdev);
  1434. struct atmel_spi *as = spi_master_get_devdata(master);
  1435. clk_enable(as->clk);
  1436. return 0;
  1437. }
  1438. #else
  1439. #define atmel_spi_suspend NULL
  1440. #define atmel_spi_resume NULL
  1441. #endif
  1442. #if defined(CONFIG_OF)
  1443. static const struct of_device_id atmel_spi_dt_ids[] = {
  1444. { .compatible = "atmel,at91rm9200-spi" },
  1445. { /* sentinel */ }
  1446. };
  1447. MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
  1448. #endif
  1449. static struct platform_driver atmel_spi_driver = {
  1450. .driver = {
  1451. .name = "atmel_spi",
  1452. .owner = THIS_MODULE,
  1453. .of_match_table = of_match_ptr(atmel_spi_dt_ids),
  1454. },
  1455. .suspend = atmel_spi_suspend,
  1456. .resume = atmel_spi_resume,
  1457. .probe = atmel_spi_probe,
  1458. .remove = atmel_spi_remove,
  1459. };
  1460. module_platform_driver(atmel_spi_driver);
  1461. MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
  1462. MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
  1463. MODULE_LICENSE("GPL");
  1464. MODULE_ALIAS("platform:atmel_spi");