inode.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609
  1. /*
  2. * VFS-related code for RelayFS, a high-speed data relay filesystem.
  3. *
  4. * Copyright (C) 2003-2005 - Tom Zanussi <zanussi@us.ibm.com>, IBM Corp
  5. * Copyright (C) 2003-2005 - Karim Yaghmour <karim@opersys.com>
  6. *
  7. * Based on ramfs, Copyright (C) 2002 - Linus Torvalds
  8. *
  9. * This file is released under the GPL.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/fs.h>
  13. #include <linux/mount.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/init.h>
  16. #include <linux/string.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/namei.h>
  19. #include <linux/poll.h>
  20. #include <linux/relayfs_fs.h>
  21. #include "relay.h"
  22. #include "buffers.h"
  23. #define RELAYFS_MAGIC 0xF0B4A981
  24. static struct vfsmount * relayfs_mount;
  25. static int relayfs_mount_count;
  26. static kmem_cache_t * relayfs_inode_cachep;
  27. static struct backing_dev_info relayfs_backing_dev_info = {
  28. .ra_pages = 0, /* No readahead */
  29. .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
  30. };
  31. static struct inode *relayfs_get_inode(struct super_block *sb, int mode,
  32. struct rchan *chan)
  33. {
  34. struct rchan_buf *buf = NULL;
  35. struct inode *inode;
  36. if (S_ISREG(mode)) {
  37. BUG_ON(!chan);
  38. buf = relay_create_buf(chan);
  39. if (!buf)
  40. return NULL;
  41. }
  42. inode = new_inode(sb);
  43. if (!inode) {
  44. relay_destroy_buf(buf);
  45. return NULL;
  46. }
  47. inode->i_mode = mode;
  48. inode->i_uid = 0;
  49. inode->i_gid = 0;
  50. inode->i_blksize = PAGE_CACHE_SIZE;
  51. inode->i_blocks = 0;
  52. inode->i_mapping->backing_dev_info = &relayfs_backing_dev_info;
  53. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  54. switch (mode & S_IFMT) {
  55. case S_IFREG:
  56. inode->i_fop = &relayfs_file_operations;
  57. RELAYFS_I(inode)->buf = buf;
  58. break;
  59. case S_IFDIR:
  60. inode->i_op = &simple_dir_inode_operations;
  61. inode->i_fop = &simple_dir_operations;
  62. /* directory inodes start off with i_nlink == 2 (for "." entry) */
  63. inode->i_nlink++;
  64. break;
  65. default:
  66. break;
  67. }
  68. return inode;
  69. }
  70. /**
  71. * relayfs_create_entry - create a relayfs directory or file
  72. * @name: the name of the file to create
  73. * @parent: parent directory
  74. * @mode: mode
  75. * @chan: relay channel associated with the file
  76. *
  77. * Returns the new dentry, NULL on failure
  78. *
  79. * Creates a file or directory with the specifed permissions.
  80. */
  81. static struct dentry *relayfs_create_entry(const char *name,
  82. struct dentry *parent,
  83. int mode,
  84. struct rchan *chan)
  85. {
  86. struct dentry *d;
  87. struct inode *inode;
  88. int error = 0;
  89. BUG_ON(!name || !(S_ISREG(mode) || S_ISDIR(mode)));
  90. error = simple_pin_fs("relayfs", &relayfs_mount, &relayfs_mount_count);
  91. if (error) {
  92. printk(KERN_ERR "Couldn't mount relayfs: errcode %d\n", error);
  93. return NULL;
  94. }
  95. if (!parent && relayfs_mount && relayfs_mount->mnt_sb)
  96. parent = relayfs_mount->mnt_sb->s_root;
  97. if (!parent) {
  98. simple_release_fs(&relayfs_mount, &relayfs_mount_count);
  99. return NULL;
  100. }
  101. parent = dget(parent);
  102. down(&parent->d_inode->i_sem);
  103. d = lookup_one_len(name, parent, strlen(name));
  104. if (IS_ERR(d)) {
  105. d = NULL;
  106. goto release_mount;
  107. }
  108. if (d->d_inode) {
  109. d = NULL;
  110. goto release_mount;
  111. }
  112. inode = relayfs_get_inode(parent->d_inode->i_sb, mode, chan);
  113. if (!inode) {
  114. d = NULL;
  115. goto release_mount;
  116. }
  117. d_instantiate(d, inode);
  118. dget(d); /* Extra count - pin the dentry in core */
  119. if (S_ISDIR(mode))
  120. parent->d_inode->i_nlink++;
  121. goto exit;
  122. release_mount:
  123. simple_release_fs(&relayfs_mount, &relayfs_mount_count);
  124. exit:
  125. up(&parent->d_inode->i_sem);
  126. dput(parent);
  127. return d;
  128. }
  129. /**
  130. * relayfs_create_file - create a file in the relay filesystem
  131. * @name: the name of the file to create
  132. * @parent: parent directory
  133. * @mode: mode, if not specied the default perms are used
  134. * @chan: channel associated with the file
  135. *
  136. * Returns file dentry if successful, NULL otherwise.
  137. *
  138. * The file will be created user r on behalf of current user.
  139. */
  140. struct dentry *relayfs_create_file(const char *name, struct dentry *parent,
  141. int mode, struct rchan *chan)
  142. {
  143. if (!mode)
  144. mode = S_IRUSR;
  145. mode = (mode & S_IALLUGO) | S_IFREG;
  146. return relayfs_create_entry(name, parent, mode, chan);
  147. }
  148. /**
  149. * relayfs_create_dir - create a directory in the relay filesystem
  150. * @name: the name of the directory to create
  151. * @parent: parent directory, NULL if parent should be fs root
  152. *
  153. * Returns directory dentry if successful, NULL otherwise.
  154. *
  155. * The directory will be created world rwx on behalf of current user.
  156. */
  157. struct dentry *relayfs_create_dir(const char *name, struct dentry *parent)
  158. {
  159. int mode = S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO;
  160. return relayfs_create_entry(name, parent, mode, NULL);
  161. }
  162. /**
  163. * relayfs_remove - remove a file or directory in the relay filesystem
  164. * @dentry: file or directory dentry
  165. *
  166. * Returns 0 if successful, negative otherwise.
  167. */
  168. int relayfs_remove(struct dentry *dentry)
  169. {
  170. struct dentry *parent;
  171. int error = 0;
  172. if (!dentry)
  173. return -EINVAL;
  174. parent = dentry->d_parent;
  175. if (!parent)
  176. return -EINVAL;
  177. parent = dget(parent);
  178. down(&parent->d_inode->i_sem);
  179. if (dentry->d_inode) {
  180. if (S_ISDIR(dentry->d_inode->i_mode))
  181. error = simple_rmdir(parent->d_inode, dentry);
  182. else
  183. error = simple_unlink(parent->d_inode, dentry);
  184. if (!error)
  185. d_delete(dentry);
  186. }
  187. if (!error)
  188. dput(dentry);
  189. up(&parent->d_inode->i_sem);
  190. dput(parent);
  191. if (!error)
  192. simple_release_fs(&relayfs_mount, &relayfs_mount_count);
  193. return error;
  194. }
  195. /**
  196. * relayfs_remove_dir - remove a directory in the relay filesystem
  197. * @dentry: directory dentry
  198. *
  199. * Returns 0 if successful, negative otherwise.
  200. */
  201. int relayfs_remove_dir(struct dentry *dentry)
  202. {
  203. return relayfs_remove(dentry);
  204. }
  205. /**
  206. * relayfs_open - open file op for relayfs files
  207. * @inode: the inode
  208. * @filp: the file
  209. *
  210. * Increments the channel buffer refcount.
  211. */
  212. static int relayfs_open(struct inode *inode, struct file *filp)
  213. {
  214. struct rchan_buf *buf = RELAYFS_I(inode)->buf;
  215. kref_get(&buf->kref);
  216. return 0;
  217. }
  218. /**
  219. * relayfs_mmap - mmap file op for relayfs files
  220. * @filp: the file
  221. * @vma: the vma describing what to map
  222. *
  223. * Calls upon relay_mmap_buf to map the file into user space.
  224. */
  225. static int relayfs_mmap(struct file *filp, struct vm_area_struct *vma)
  226. {
  227. struct inode *inode = filp->f_dentry->d_inode;
  228. return relay_mmap_buf(RELAYFS_I(inode)->buf, vma);
  229. }
  230. /**
  231. * relayfs_poll - poll file op for relayfs files
  232. * @filp: the file
  233. * @wait: poll table
  234. *
  235. * Poll implemention.
  236. */
  237. static unsigned int relayfs_poll(struct file *filp, poll_table *wait)
  238. {
  239. unsigned int mask = 0;
  240. struct inode *inode = filp->f_dentry->d_inode;
  241. struct rchan_buf *buf = RELAYFS_I(inode)->buf;
  242. if (buf->finalized)
  243. return POLLERR;
  244. if (filp->f_mode & FMODE_READ) {
  245. poll_wait(filp, &buf->read_wait, wait);
  246. if (!relay_buf_empty(buf))
  247. mask |= POLLIN | POLLRDNORM;
  248. }
  249. return mask;
  250. }
  251. /**
  252. * relayfs_release - release file op for relayfs files
  253. * @inode: the inode
  254. * @filp: the file
  255. *
  256. * Decrements the channel refcount, as the filesystem is
  257. * no longer using it.
  258. */
  259. static int relayfs_release(struct inode *inode, struct file *filp)
  260. {
  261. struct rchan_buf *buf = RELAYFS_I(inode)->buf;
  262. kref_put(&buf->kref, relay_remove_buf);
  263. return 0;
  264. }
  265. /**
  266. * relayfs_read_consume - update the consumed count for the buffer
  267. */
  268. static void relayfs_read_consume(struct rchan_buf *buf,
  269. size_t read_pos,
  270. size_t bytes_consumed)
  271. {
  272. size_t subbuf_size = buf->chan->subbuf_size;
  273. size_t n_subbufs = buf->chan->n_subbufs;
  274. size_t read_subbuf;
  275. if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
  276. relay_subbufs_consumed(buf->chan, buf->cpu, 1);
  277. buf->bytes_consumed = 0;
  278. }
  279. buf->bytes_consumed += bytes_consumed;
  280. read_subbuf = read_pos / buf->chan->subbuf_size;
  281. if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
  282. if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
  283. (buf->offset == subbuf_size))
  284. return;
  285. relay_subbufs_consumed(buf->chan, buf->cpu, 1);
  286. buf->bytes_consumed = 0;
  287. }
  288. }
  289. /**
  290. * relayfs_read_avail - boolean, are there unconsumed bytes available?
  291. */
  292. static int relayfs_read_avail(struct rchan_buf *buf, size_t read_pos)
  293. {
  294. size_t bytes_produced, bytes_consumed, write_offset;
  295. size_t subbuf_size = buf->chan->subbuf_size;
  296. size_t n_subbufs = buf->chan->n_subbufs;
  297. size_t produced = buf->subbufs_produced % n_subbufs;
  298. size_t consumed = buf->subbufs_consumed % n_subbufs;
  299. write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
  300. if (consumed > produced) {
  301. if ((produced > n_subbufs) &&
  302. (produced + n_subbufs - consumed <= n_subbufs))
  303. produced += n_subbufs;
  304. } else if (consumed == produced) {
  305. if (buf->offset > subbuf_size) {
  306. produced += n_subbufs;
  307. if (buf->subbufs_produced == buf->subbufs_consumed)
  308. consumed += n_subbufs;
  309. }
  310. }
  311. if (buf->offset > subbuf_size)
  312. bytes_produced = (produced - 1) * subbuf_size + write_offset;
  313. else
  314. bytes_produced = produced * subbuf_size + write_offset;
  315. bytes_consumed = consumed * subbuf_size + buf->bytes_consumed;
  316. if (bytes_produced == bytes_consumed)
  317. return 0;
  318. relayfs_read_consume(buf, read_pos, 0);
  319. return 1;
  320. }
  321. /**
  322. * relayfs_read_subbuf_avail - return bytes available in sub-buffer
  323. */
  324. static size_t relayfs_read_subbuf_avail(size_t read_pos,
  325. struct rchan_buf *buf)
  326. {
  327. size_t padding, avail = 0;
  328. size_t read_subbuf, read_offset, write_subbuf, write_offset;
  329. size_t subbuf_size = buf->chan->subbuf_size;
  330. write_subbuf = (buf->data - buf->start) / subbuf_size;
  331. write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
  332. read_subbuf = read_pos / subbuf_size;
  333. read_offset = read_pos % subbuf_size;
  334. padding = buf->padding[read_subbuf];
  335. if (read_subbuf == write_subbuf) {
  336. if (read_offset + padding < write_offset)
  337. avail = write_offset - (read_offset + padding);
  338. } else
  339. avail = (subbuf_size - padding) - read_offset;
  340. return avail;
  341. }
  342. /**
  343. * relayfs_read_start_pos - find the first available byte to read
  344. *
  345. * If the read_pos is in the middle of padding, return the
  346. * position of the first actually available byte, otherwise
  347. * return the original value.
  348. */
  349. static size_t relayfs_read_start_pos(size_t read_pos,
  350. struct rchan_buf *buf)
  351. {
  352. size_t read_subbuf, padding, padding_start, padding_end;
  353. size_t subbuf_size = buf->chan->subbuf_size;
  354. size_t n_subbufs = buf->chan->n_subbufs;
  355. read_subbuf = read_pos / subbuf_size;
  356. padding = buf->padding[read_subbuf];
  357. padding_start = (read_subbuf + 1) * subbuf_size - padding;
  358. padding_end = (read_subbuf + 1) * subbuf_size;
  359. if (read_pos >= padding_start && read_pos < padding_end) {
  360. read_subbuf = (read_subbuf + 1) % n_subbufs;
  361. read_pos = read_subbuf * subbuf_size;
  362. }
  363. return read_pos;
  364. }
  365. /**
  366. * relayfs_read_end_pos - return the new read position
  367. */
  368. static size_t relayfs_read_end_pos(struct rchan_buf *buf,
  369. size_t read_pos,
  370. size_t count)
  371. {
  372. size_t read_subbuf, padding, end_pos;
  373. size_t subbuf_size = buf->chan->subbuf_size;
  374. size_t n_subbufs = buf->chan->n_subbufs;
  375. read_subbuf = read_pos / subbuf_size;
  376. padding = buf->padding[read_subbuf];
  377. if (read_pos % subbuf_size + count + padding == subbuf_size)
  378. end_pos = (read_subbuf + 1) * subbuf_size;
  379. else
  380. end_pos = read_pos + count;
  381. if (end_pos >= subbuf_size * n_subbufs)
  382. end_pos = 0;
  383. return end_pos;
  384. }
  385. /**
  386. * relayfs_read - read file op for relayfs files
  387. * @filp: the file
  388. * @buffer: the userspace buffer
  389. * @count: number of bytes to read
  390. * @ppos: position to read from
  391. *
  392. * Reads count bytes or the number of bytes available in the
  393. * current sub-buffer being read, whichever is smaller.
  394. */
  395. static ssize_t relayfs_read(struct file *filp,
  396. char __user *buffer,
  397. size_t count,
  398. loff_t *ppos)
  399. {
  400. struct inode *inode = filp->f_dentry->d_inode;
  401. struct rchan_buf *buf = RELAYFS_I(inode)->buf;
  402. size_t read_start, avail;
  403. ssize_t ret = 0;
  404. void *from;
  405. down(&inode->i_sem);
  406. if(!relayfs_read_avail(buf, *ppos))
  407. goto out;
  408. read_start = relayfs_read_start_pos(*ppos, buf);
  409. avail = relayfs_read_subbuf_avail(read_start, buf);
  410. if (!avail)
  411. goto out;
  412. from = buf->start + read_start;
  413. ret = count = min(count, avail);
  414. if (copy_to_user(buffer, from, count)) {
  415. ret = -EFAULT;
  416. goto out;
  417. }
  418. relayfs_read_consume(buf, read_start, count);
  419. *ppos = relayfs_read_end_pos(buf, read_start, count);
  420. out:
  421. up(&inode->i_sem);
  422. return ret;
  423. }
  424. /**
  425. * relayfs alloc_inode() implementation
  426. */
  427. static struct inode *relayfs_alloc_inode(struct super_block *sb)
  428. {
  429. struct relayfs_inode_info *p = kmem_cache_alloc(relayfs_inode_cachep, SLAB_KERNEL);
  430. if (!p)
  431. return NULL;
  432. p->buf = NULL;
  433. return &p->vfs_inode;
  434. }
  435. /**
  436. * relayfs destroy_inode() implementation
  437. */
  438. static void relayfs_destroy_inode(struct inode *inode)
  439. {
  440. if (RELAYFS_I(inode)->buf)
  441. relay_destroy_buf(RELAYFS_I(inode)->buf);
  442. kmem_cache_free(relayfs_inode_cachep, RELAYFS_I(inode));
  443. }
  444. static void init_once(void *p, kmem_cache_t *cachep, unsigned long flags)
  445. {
  446. struct relayfs_inode_info *i = p;
  447. if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR)
  448. inode_init_once(&i->vfs_inode);
  449. }
  450. struct file_operations relayfs_file_operations = {
  451. .open = relayfs_open,
  452. .poll = relayfs_poll,
  453. .mmap = relayfs_mmap,
  454. .read = relayfs_read,
  455. .llseek = no_llseek,
  456. .release = relayfs_release,
  457. };
  458. static struct super_operations relayfs_ops = {
  459. .statfs = simple_statfs,
  460. .drop_inode = generic_delete_inode,
  461. .alloc_inode = relayfs_alloc_inode,
  462. .destroy_inode = relayfs_destroy_inode,
  463. };
  464. static int relayfs_fill_super(struct super_block * sb, void * data, int silent)
  465. {
  466. struct inode *inode;
  467. struct dentry *root;
  468. int mode = S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO;
  469. sb->s_blocksize = PAGE_CACHE_SIZE;
  470. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  471. sb->s_magic = RELAYFS_MAGIC;
  472. sb->s_op = &relayfs_ops;
  473. inode = relayfs_get_inode(sb, mode, NULL);
  474. if (!inode)
  475. return -ENOMEM;
  476. root = d_alloc_root(inode);
  477. if (!root) {
  478. iput(inode);
  479. return -ENOMEM;
  480. }
  481. sb->s_root = root;
  482. return 0;
  483. }
  484. static struct super_block * relayfs_get_sb(struct file_system_type *fs_type,
  485. int flags, const char *dev_name,
  486. void *data)
  487. {
  488. return get_sb_single(fs_type, flags, data, relayfs_fill_super);
  489. }
  490. static struct file_system_type relayfs_fs_type = {
  491. .owner = THIS_MODULE,
  492. .name = "relayfs",
  493. .get_sb = relayfs_get_sb,
  494. .kill_sb = kill_litter_super,
  495. };
  496. static int __init init_relayfs_fs(void)
  497. {
  498. int err;
  499. relayfs_inode_cachep = kmem_cache_create("relayfs_inode_cache",
  500. sizeof(struct relayfs_inode_info), 0,
  501. 0, init_once, NULL);
  502. if (!relayfs_inode_cachep)
  503. return -ENOMEM;
  504. err = register_filesystem(&relayfs_fs_type);
  505. if (err)
  506. kmem_cache_destroy(relayfs_inode_cachep);
  507. return err;
  508. }
  509. static void __exit exit_relayfs_fs(void)
  510. {
  511. unregister_filesystem(&relayfs_fs_type);
  512. kmem_cache_destroy(relayfs_inode_cachep);
  513. }
  514. module_init(init_relayfs_fs)
  515. module_exit(exit_relayfs_fs)
  516. EXPORT_SYMBOL_GPL(relayfs_file_operations);
  517. EXPORT_SYMBOL_GPL(relayfs_create_dir);
  518. EXPORT_SYMBOL_GPL(relayfs_remove_dir);
  519. MODULE_AUTHOR("Tom Zanussi <zanussi@us.ibm.com> and Karim Yaghmour <karim@opersys.com>");
  520. MODULE_DESCRIPTION("Relay Filesystem");
  521. MODULE_LICENSE("GPL");