page_alloc.c 133 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/page_cgroup.h>
  47. #include <linux/debugobjects.h>
  48. #include <linux/kmemleak.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/div64.h>
  51. #include "internal.h"
  52. /*
  53. * Array of node states.
  54. */
  55. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  56. [N_POSSIBLE] = NODE_MASK_ALL,
  57. [N_ONLINE] = { { [0] = 1UL } },
  58. #ifndef CONFIG_NUMA
  59. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  60. #ifdef CONFIG_HIGHMEM
  61. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  62. #endif
  63. [N_CPU] = { { [0] = 1UL } },
  64. #endif /* NUMA */
  65. };
  66. EXPORT_SYMBOL(node_states);
  67. unsigned long totalram_pages __read_mostly;
  68. unsigned long totalreserve_pages __read_mostly;
  69. unsigned long highest_memmap_pfn __read_mostly;
  70. int percpu_pagelist_fraction;
  71. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  72. int pageblock_order __read_mostly;
  73. #endif
  74. static void __free_pages_ok(struct page *page, unsigned int order);
  75. /*
  76. * results with 256, 32 in the lowmem_reserve sysctl:
  77. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  78. * 1G machine -> (16M dma, 784M normal, 224M high)
  79. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  80. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  81. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  82. *
  83. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  84. * don't need any ZONE_NORMAL reservation
  85. */
  86. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  87. #ifdef CONFIG_ZONE_DMA
  88. 256,
  89. #endif
  90. #ifdef CONFIG_ZONE_DMA32
  91. 256,
  92. #endif
  93. #ifdef CONFIG_HIGHMEM
  94. 32,
  95. #endif
  96. 32,
  97. };
  98. EXPORT_SYMBOL(totalram_pages);
  99. static char * const zone_names[MAX_NR_ZONES] = {
  100. #ifdef CONFIG_ZONE_DMA
  101. "DMA",
  102. #endif
  103. #ifdef CONFIG_ZONE_DMA32
  104. "DMA32",
  105. #endif
  106. "Normal",
  107. #ifdef CONFIG_HIGHMEM
  108. "HighMem",
  109. #endif
  110. "Movable",
  111. };
  112. int min_free_kbytes = 1024;
  113. unsigned long __meminitdata nr_kernel_pages;
  114. unsigned long __meminitdata nr_all_pages;
  115. static unsigned long __meminitdata dma_reserve;
  116. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  117. /*
  118. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  119. * ranges of memory (RAM) that may be registered with add_active_range().
  120. * Ranges passed to add_active_range() will be merged if possible
  121. * so the number of times add_active_range() can be called is
  122. * related to the number of nodes and the number of holes
  123. */
  124. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  125. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  126. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  127. #else
  128. #if MAX_NUMNODES >= 32
  129. /* If there can be many nodes, allow up to 50 holes per node */
  130. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  131. #else
  132. /* By default, allow up to 256 distinct regions */
  133. #define MAX_ACTIVE_REGIONS 256
  134. #endif
  135. #endif
  136. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  137. static int __meminitdata nr_nodemap_entries;
  138. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  139. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  140. static unsigned long __initdata required_kernelcore;
  141. static unsigned long __initdata required_movablecore;
  142. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  143. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  144. int movable_zone;
  145. EXPORT_SYMBOL(movable_zone);
  146. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  147. #if MAX_NUMNODES > 1
  148. int nr_node_ids __read_mostly = MAX_NUMNODES;
  149. EXPORT_SYMBOL(nr_node_ids);
  150. #endif
  151. int page_group_by_mobility_disabled __read_mostly;
  152. static void set_pageblock_migratetype(struct page *page, int migratetype)
  153. {
  154. if (unlikely(page_group_by_mobility_disabled))
  155. migratetype = MIGRATE_UNMOVABLE;
  156. set_pageblock_flags_group(page, (unsigned long)migratetype,
  157. PB_migrate, PB_migrate_end);
  158. }
  159. #ifdef CONFIG_DEBUG_VM
  160. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  161. {
  162. int ret = 0;
  163. unsigned seq;
  164. unsigned long pfn = page_to_pfn(page);
  165. do {
  166. seq = zone_span_seqbegin(zone);
  167. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  168. ret = 1;
  169. else if (pfn < zone->zone_start_pfn)
  170. ret = 1;
  171. } while (zone_span_seqretry(zone, seq));
  172. return ret;
  173. }
  174. static int page_is_consistent(struct zone *zone, struct page *page)
  175. {
  176. if (!pfn_valid_within(page_to_pfn(page)))
  177. return 0;
  178. if (zone != page_zone(page))
  179. return 0;
  180. return 1;
  181. }
  182. /*
  183. * Temporary debugging check for pages not lying within a given zone.
  184. */
  185. static int bad_range(struct zone *zone, struct page *page)
  186. {
  187. if (page_outside_zone_boundaries(zone, page))
  188. return 1;
  189. if (!page_is_consistent(zone, page))
  190. return 1;
  191. return 0;
  192. }
  193. #else
  194. static inline int bad_range(struct zone *zone, struct page *page)
  195. {
  196. return 0;
  197. }
  198. #endif
  199. static void bad_page(struct page *page)
  200. {
  201. static unsigned long resume;
  202. static unsigned long nr_shown;
  203. static unsigned long nr_unshown;
  204. /*
  205. * Allow a burst of 60 reports, then keep quiet for that minute;
  206. * or allow a steady drip of one report per second.
  207. */
  208. if (nr_shown == 60) {
  209. if (time_before(jiffies, resume)) {
  210. nr_unshown++;
  211. goto out;
  212. }
  213. if (nr_unshown) {
  214. printk(KERN_ALERT
  215. "BUG: Bad page state: %lu messages suppressed\n",
  216. nr_unshown);
  217. nr_unshown = 0;
  218. }
  219. nr_shown = 0;
  220. }
  221. if (nr_shown++ == 0)
  222. resume = jiffies + 60 * HZ;
  223. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  224. current->comm, page_to_pfn(page));
  225. printk(KERN_ALERT
  226. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  227. page, (void *)page->flags, page_count(page),
  228. page_mapcount(page), page->mapping, page->index);
  229. dump_stack();
  230. out:
  231. /* Leave bad fields for debug, except PageBuddy could make trouble */
  232. __ClearPageBuddy(page);
  233. add_taint(TAINT_BAD_PAGE);
  234. }
  235. /*
  236. * Higher-order pages are called "compound pages". They are structured thusly:
  237. *
  238. * The first PAGE_SIZE page is called the "head page".
  239. *
  240. * The remaining PAGE_SIZE pages are called "tail pages".
  241. *
  242. * All pages have PG_compound set. All pages have their ->private pointing at
  243. * the head page (even the head page has this).
  244. *
  245. * The first tail page's ->lru.next holds the address of the compound page's
  246. * put_page() function. Its ->lru.prev holds the order of allocation.
  247. * This usage means that zero-order pages may not be compound.
  248. */
  249. static void free_compound_page(struct page *page)
  250. {
  251. __free_pages_ok(page, compound_order(page));
  252. }
  253. void prep_compound_page(struct page *page, unsigned long order)
  254. {
  255. int i;
  256. int nr_pages = 1 << order;
  257. set_compound_page_dtor(page, free_compound_page);
  258. set_compound_order(page, order);
  259. __SetPageHead(page);
  260. for (i = 1; i < nr_pages; i++) {
  261. struct page *p = page + i;
  262. __SetPageTail(p);
  263. p->first_page = page;
  264. }
  265. }
  266. #ifdef CONFIG_HUGETLBFS
  267. void prep_compound_gigantic_page(struct page *page, unsigned long order)
  268. {
  269. int i;
  270. int nr_pages = 1 << order;
  271. struct page *p = page + 1;
  272. set_compound_page_dtor(page, free_compound_page);
  273. set_compound_order(page, order);
  274. __SetPageHead(page);
  275. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  276. __SetPageTail(p);
  277. p->first_page = page;
  278. }
  279. }
  280. #endif
  281. static int destroy_compound_page(struct page *page, unsigned long order)
  282. {
  283. int i;
  284. int nr_pages = 1 << order;
  285. int bad = 0;
  286. if (unlikely(compound_order(page) != order) ||
  287. unlikely(!PageHead(page))) {
  288. bad_page(page);
  289. bad++;
  290. }
  291. __ClearPageHead(page);
  292. for (i = 1; i < nr_pages; i++) {
  293. struct page *p = page + i;
  294. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  295. bad_page(page);
  296. bad++;
  297. }
  298. __ClearPageTail(p);
  299. }
  300. return bad;
  301. }
  302. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  303. {
  304. int i;
  305. /*
  306. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  307. * and __GFP_HIGHMEM from hard or soft interrupt context.
  308. */
  309. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  310. for (i = 0; i < (1 << order); i++)
  311. clear_highpage(page + i);
  312. }
  313. static inline void set_page_order(struct page *page, int order)
  314. {
  315. set_page_private(page, order);
  316. __SetPageBuddy(page);
  317. }
  318. static inline void rmv_page_order(struct page *page)
  319. {
  320. __ClearPageBuddy(page);
  321. set_page_private(page, 0);
  322. }
  323. /*
  324. * Locate the struct page for both the matching buddy in our
  325. * pair (buddy1) and the combined O(n+1) page they form (page).
  326. *
  327. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  328. * the following equation:
  329. * B2 = B1 ^ (1 << O)
  330. * For example, if the starting buddy (buddy2) is #8 its order
  331. * 1 buddy is #10:
  332. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  333. *
  334. * 2) Any buddy B will have an order O+1 parent P which
  335. * satisfies the following equation:
  336. * P = B & ~(1 << O)
  337. *
  338. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  339. */
  340. static inline struct page *
  341. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  342. {
  343. unsigned long buddy_idx = page_idx ^ (1 << order);
  344. return page + (buddy_idx - page_idx);
  345. }
  346. static inline unsigned long
  347. __find_combined_index(unsigned long page_idx, unsigned int order)
  348. {
  349. return (page_idx & ~(1 << order));
  350. }
  351. /*
  352. * This function checks whether a page is free && is the buddy
  353. * we can do coalesce a page and its buddy if
  354. * (a) the buddy is not in a hole &&
  355. * (b) the buddy is in the buddy system &&
  356. * (c) a page and its buddy have the same order &&
  357. * (d) a page and its buddy are in the same zone.
  358. *
  359. * For recording whether a page is in the buddy system, we use PG_buddy.
  360. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  361. *
  362. * For recording page's order, we use page_private(page).
  363. */
  364. static inline int page_is_buddy(struct page *page, struct page *buddy,
  365. int order)
  366. {
  367. if (!pfn_valid_within(page_to_pfn(buddy)))
  368. return 0;
  369. if (page_zone_id(page) != page_zone_id(buddy))
  370. return 0;
  371. if (PageBuddy(buddy) && page_order(buddy) == order) {
  372. BUG_ON(page_count(buddy) != 0);
  373. return 1;
  374. }
  375. return 0;
  376. }
  377. /*
  378. * Freeing function for a buddy system allocator.
  379. *
  380. * The concept of a buddy system is to maintain direct-mapped table
  381. * (containing bit values) for memory blocks of various "orders".
  382. * The bottom level table contains the map for the smallest allocatable
  383. * units of memory (here, pages), and each level above it describes
  384. * pairs of units from the levels below, hence, "buddies".
  385. * At a high level, all that happens here is marking the table entry
  386. * at the bottom level available, and propagating the changes upward
  387. * as necessary, plus some accounting needed to play nicely with other
  388. * parts of the VM system.
  389. * At each level, we keep a list of pages, which are heads of continuous
  390. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  391. * order is recorded in page_private(page) field.
  392. * So when we are allocating or freeing one, we can derive the state of the
  393. * other. That is, if we allocate a small block, and both were
  394. * free, the remainder of the region must be split into blocks.
  395. * If a block is freed, and its buddy is also free, then this
  396. * triggers coalescing into a block of larger size.
  397. *
  398. * -- wli
  399. */
  400. static inline void __free_one_page(struct page *page,
  401. struct zone *zone, unsigned int order,
  402. int migratetype)
  403. {
  404. unsigned long page_idx;
  405. int order_size = 1 << order;
  406. if (unlikely(PageCompound(page)))
  407. if (unlikely(destroy_compound_page(page, order)))
  408. return;
  409. VM_BUG_ON(migratetype == -1);
  410. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  411. VM_BUG_ON(page_idx & (order_size - 1));
  412. VM_BUG_ON(bad_range(zone, page));
  413. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  414. while (order < MAX_ORDER-1) {
  415. unsigned long combined_idx;
  416. struct page *buddy;
  417. buddy = __page_find_buddy(page, page_idx, order);
  418. if (!page_is_buddy(page, buddy, order))
  419. break;
  420. /* Our buddy is free, merge with it and move up one order. */
  421. list_del(&buddy->lru);
  422. zone->free_area[order].nr_free--;
  423. rmv_page_order(buddy);
  424. combined_idx = __find_combined_index(page_idx, order);
  425. page = page + (combined_idx - page_idx);
  426. page_idx = combined_idx;
  427. order++;
  428. }
  429. set_page_order(page, order);
  430. list_add(&page->lru,
  431. &zone->free_area[order].free_list[migratetype]);
  432. zone->free_area[order].nr_free++;
  433. }
  434. static inline int free_pages_check(struct page *page)
  435. {
  436. if (unlikely(page_mapcount(page) |
  437. (page->mapping != NULL) |
  438. (page_count(page) != 0) |
  439. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  440. bad_page(page);
  441. return 1;
  442. }
  443. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  444. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  445. return 0;
  446. }
  447. /*
  448. * Frees a list of pages.
  449. * Assumes all pages on list are in same zone, and of same order.
  450. * count is the number of pages to free.
  451. *
  452. * If the zone was previously in an "all pages pinned" state then look to
  453. * see if this freeing clears that state.
  454. *
  455. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  456. * pinned" detection logic.
  457. */
  458. static void free_pages_bulk(struct zone *zone, int count,
  459. struct list_head *list, int order)
  460. {
  461. spin_lock(&zone->lock);
  462. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  463. zone->pages_scanned = 0;
  464. while (count--) {
  465. struct page *page;
  466. VM_BUG_ON(list_empty(list));
  467. page = list_entry(list->prev, struct page, lru);
  468. /* have to delete it as __free_one_page list manipulates */
  469. list_del(&page->lru);
  470. __free_one_page(page, zone, order, page_private(page));
  471. }
  472. spin_unlock(&zone->lock);
  473. }
  474. static void free_one_page(struct zone *zone, struct page *page, int order,
  475. int migratetype)
  476. {
  477. spin_lock(&zone->lock);
  478. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  479. zone->pages_scanned = 0;
  480. __free_one_page(page, zone, order, migratetype);
  481. spin_unlock(&zone->lock);
  482. }
  483. static void __free_pages_ok(struct page *page, unsigned int order)
  484. {
  485. unsigned long flags;
  486. int i;
  487. int bad = 0;
  488. int clearMlocked = PageMlocked(page);
  489. for (i = 0 ; i < (1 << order) ; ++i)
  490. bad += free_pages_check(page + i);
  491. if (bad)
  492. return;
  493. if (!PageHighMem(page)) {
  494. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  495. debug_check_no_obj_freed(page_address(page),
  496. PAGE_SIZE << order);
  497. }
  498. arch_free_page(page, order);
  499. kernel_map_pages(page, 1 << order, 0);
  500. local_irq_save(flags);
  501. if (unlikely(clearMlocked))
  502. free_page_mlock(page);
  503. __count_vm_events(PGFREE, 1 << order);
  504. free_one_page(page_zone(page), page, order,
  505. get_pageblock_migratetype(page));
  506. local_irq_restore(flags);
  507. }
  508. /*
  509. * permit the bootmem allocator to evade page validation on high-order frees
  510. */
  511. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  512. {
  513. if (order == 0) {
  514. __ClearPageReserved(page);
  515. set_page_count(page, 0);
  516. set_page_refcounted(page);
  517. __free_page(page);
  518. } else {
  519. int loop;
  520. prefetchw(page);
  521. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  522. struct page *p = &page[loop];
  523. if (loop + 1 < BITS_PER_LONG)
  524. prefetchw(p + 1);
  525. __ClearPageReserved(p);
  526. set_page_count(p, 0);
  527. }
  528. set_page_refcounted(page);
  529. __free_pages(page, order);
  530. }
  531. }
  532. /*
  533. * The order of subdivision here is critical for the IO subsystem.
  534. * Please do not alter this order without good reasons and regression
  535. * testing. Specifically, as large blocks of memory are subdivided,
  536. * the order in which smaller blocks are delivered depends on the order
  537. * they're subdivided in this function. This is the primary factor
  538. * influencing the order in which pages are delivered to the IO
  539. * subsystem according to empirical testing, and this is also justified
  540. * by considering the behavior of a buddy system containing a single
  541. * large block of memory acted on by a series of small allocations.
  542. * This behavior is a critical factor in sglist merging's success.
  543. *
  544. * -- wli
  545. */
  546. static inline void expand(struct zone *zone, struct page *page,
  547. int low, int high, struct free_area *area,
  548. int migratetype)
  549. {
  550. unsigned long size = 1 << high;
  551. while (high > low) {
  552. area--;
  553. high--;
  554. size >>= 1;
  555. VM_BUG_ON(bad_range(zone, &page[size]));
  556. list_add(&page[size].lru, &area->free_list[migratetype]);
  557. area->nr_free++;
  558. set_page_order(&page[size], high);
  559. }
  560. }
  561. /*
  562. * This page is about to be returned from the page allocator
  563. */
  564. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  565. {
  566. if (unlikely(page_mapcount(page) |
  567. (page->mapping != NULL) |
  568. (page_count(page) != 0) |
  569. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  570. bad_page(page);
  571. return 1;
  572. }
  573. set_page_private(page, 0);
  574. set_page_refcounted(page);
  575. arch_alloc_page(page, order);
  576. kernel_map_pages(page, 1 << order, 1);
  577. if (gfp_flags & __GFP_ZERO)
  578. prep_zero_page(page, order, gfp_flags);
  579. if (order && (gfp_flags & __GFP_COMP))
  580. prep_compound_page(page, order);
  581. return 0;
  582. }
  583. /*
  584. * Go through the free lists for the given migratetype and remove
  585. * the smallest available page from the freelists
  586. */
  587. static inline
  588. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  589. int migratetype)
  590. {
  591. unsigned int current_order;
  592. struct free_area * area;
  593. struct page *page;
  594. /* Find a page of the appropriate size in the preferred list */
  595. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  596. area = &(zone->free_area[current_order]);
  597. if (list_empty(&area->free_list[migratetype]))
  598. continue;
  599. page = list_entry(area->free_list[migratetype].next,
  600. struct page, lru);
  601. list_del(&page->lru);
  602. rmv_page_order(page);
  603. area->nr_free--;
  604. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  605. expand(zone, page, order, current_order, area, migratetype);
  606. return page;
  607. }
  608. return NULL;
  609. }
  610. /*
  611. * This array describes the order lists are fallen back to when
  612. * the free lists for the desirable migrate type are depleted
  613. */
  614. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  615. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  616. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  617. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  618. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  619. };
  620. /*
  621. * Move the free pages in a range to the free lists of the requested type.
  622. * Note that start_page and end_pages are not aligned on a pageblock
  623. * boundary. If alignment is required, use move_freepages_block()
  624. */
  625. static int move_freepages(struct zone *zone,
  626. struct page *start_page, struct page *end_page,
  627. int migratetype)
  628. {
  629. struct page *page;
  630. unsigned long order;
  631. int pages_moved = 0;
  632. #ifndef CONFIG_HOLES_IN_ZONE
  633. /*
  634. * page_zone is not safe to call in this context when
  635. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  636. * anyway as we check zone boundaries in move_freepages_block().
  637. * Remove at a later date when no bug reports exist related to
  638. * grouping pages by mobility
  639. */
  640. BUG_ON(page_zone(start_page) != page_zone(end_page));
  641. #endif
  642. for (page = start_page; page <= end_page;) {
  643. /* Make sure we are not inadvertently changing nodes */
  644. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  645. if (!pfn_valid_within(page_to_pfn(page))) {
  646. page++;
  647. continue;
  648. }
  649. if (!PageBuddy(page)) {
  650. page++;
  651. continue;
  652. }
  653. order = page_order(page);
  654. list_del(&page->lru);
  655. list_add(&page->lru,
  656. &zone->free_area[order].free_list[migratetype]);
  657. page += 1 << order;
  658. pages_moved += 1 << order;
  659. }
  660. return pages_moved;
  661. }
  662. static int move_freepages_block(struct zone *zone, struct page *page,
  663. int migratetype)
  664. {
  665. unsigned long start_pfn, end_pfn;
  666. struct page *start_page, *end_page;
  667. start_pfn = page_to_pfn(page);
  668. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  669. start_page = pfn_to_page(start_pfn);
  670. end_page = start_page + pageblock_nr_pages - 1;
  671. end_pfn = start_pfn + pageblock_nr_pages - 1;
  672. /* Do not cross zone boundaries */
  673. if (start_pfn < zone->zone_start_pfn)
  674. start_page = page;
  675. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  676. return 0;
  677. return move_freepages(zone, start_page, end_page, migratetype);
  678. }
  679. /* Remove an element from the buddy allocator from the fallback list */
  680. static inline struct page *
  681. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  682. {
  683. struct free_area * area;
  684. int current_order;
  685. struct page *page;
  686. int migratetype, i;
  687. /* Find the largest possible block of pages in the other list */
  688. for (current_order = MAX_ORDER-1; current_order >= order;
  689. --current_order) {
  690. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  691. migratetype = fallbacks[start_migratetype][i];
  692. /* MIGRATE_RESERVE handled later if necessary */
  693. if (migratetype == MIGRATE_RESERVE)
  694. continue;
  695. area = &(zone->free_area[current_order]);
  696. if (list_empty(&area->free_list[migratetype]))
  697. continue;
  698. page = list_entry(area->free_list[migratetype].next,
  699. struct page, lru);
  700. area->nr_free--;
  701. /*
  702. * If breaking a large block of pages, move all free
  703. * pages to the preferred allocation list. If falling
  704. * back for a reclaimable kernel allocation, be more
  705. * agressive about taking ownership of free pages
  706. */
  707. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  708. start_migratetype == MIGRATE_RECLAIMABLE) {
  709. unsigned long pages;
  710. pages = move_freepages_block(zone, page,
  711. start_migratetype);
  712. /* Claim the whole block if over half of it is free */
  713. if (pages >= (1 << (pageblock_order-1)))
  714. set_pageblock_migratetype(page,
  715. start_migratetype);
  716. migratetype = start_migratetype;
  717. }
  718. /* Remove the page from the freelists */
  719. list_del(&page->lru);
  720. rmv_page_order(page);
  721. __mod_zone_page_state(zone, NR_FREE_PAGES,
  722. -(1UL << order));
  723. if (current_order == pageblock_order)
  724. set_pageblock_migratetype(page,
  725. start_migratetype);
  726. expand(zone, page, order, current_order, area, migratetype);
  727. return page;
  728. }
  729. }
  730. return NULL;
  731. }
  732. /*
  733. * Do the hard work of removing an element from the buddy allocator.
  734. * Call me with the zone->lock already held.
  735. */
  736. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  737. int migratetype)
  738. {
  739. struct page *page;
  740. retry_reserve:
  741. page = __rmqueue_smallest(zone, order, migratetype);
  742. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  743. page = __rmqueue_fallback(zone, order, migratetype);
  744. /*
  745. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  746. * is used because __rmqueue_smallest is an inline function
  747. * and we want just one call site
  748. */
  749. if (!page) {
  750. migratetype = MIGRATE_RESERVE;
  751. goto retry_reserve;
  752. }
  753. }
  754. return page;
  755. }
  756. /*
  757. * Obtain a specified number of elements from the buddy allocator, all under
  758. * a single hold of the lock, for efficiency. Add them to the supplied list.
  759. * Returns the number of new pages which were placed at *list.
  760. */
  761. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  762. unsigned long count, struct list_head *list,
  763. int migratetype)
  764. {
  765. int i;
  766. spin_lock(&zone->lock);
  767. for (i = 0; i < count; ++i) {
  768. struct page *page = __rmqueue(zone, order, migratetype);
  769. if (unlikely(page == NULL))
  770. break;
  771. /*
  772. * Split buddy pages returned by expand() are received here
  773. * in physical page order. The page is added to the callers and
  774. * list and the list head then moves forward. From the callers
  775. * perspective, the linked list is ordered by page number in
  776. * some conditions. This is useful for IO devices that can
  777. * merge IO requests if the physical pages are ordered
  778. * properly.
  779. */
  780. list_add(&page->lru, list);
  781. set_page_private(page, migratetype);
  782. list = &page->lru;
  783. }
  784. spin_unlock(&zone->lock);
  785. return i;
  786. }
  787. #ifdef CONFIG_NUMA
  788. /*
  789. * Called from the vmstat counter updater to drain pagesets of this
  790. * currently executing processor on remote nodes after they have
  791. * expired.
  792. *
  793. * Note that this function must be called with the thread pinned to
  794. * a single processor.
  795. */
  796. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  797. {
  798. unsigned long flags;
  799. int to_drain;
  800. local_irq_save(flags);
  801. if (pcp->count >= pcp->batch)
  802. to_drain = pcp->batch;
  803. else
  804. to_drain = pcp->count;
  805. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  806. pcp->count -= to_drain;
  807. local_irq_restore(flags);
  808. }
  809. #endif
  810. /*
  811. * Drain pages of the indicated processor.
  812. *
  813. * The processor must either be the current processor and the
  814. * thread pinned to the current processor or a processor that
  815. * is not online.
  816. */
  817. static void drain_pages(unsigned int cpu)
  818. {
  819. unsigned long flags;
  820. struct zone *zone;
  821. for_each_populated_zone(zone) {
  822. struct per_cpu_pageset *pset;
  823. struct per_cpu_pages *pcp;
  824. pset = zone_pcp(zone, cpu);
  825. pcp = &pset->pcp;
  826. local_irq_save(flags);
  827. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  828. pcp->count = 0;
  829. local_irq_restore(flags);
  830. }
  831. }
  832. /*
  833. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  834. */
  835. void drain_local_pages(void *arg)
  836. {
  837. drain_pages(smp_processor_id());
  838. }
  839. /*
  840. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  841. */
  842. void drain_all_pages(void)
  843. {
  844. on_each_cpu(drain_local_pages, NULL, 1);
  845. }
  846. #ifdef CONFIG_HIBERNATION
  847. void mark_free_pages(struct zone *zone)
  848. {
  849. unsigned long pfn, max_zone_pfn;
  850. unsigned long flags;
  851. int order, t;
  852. struct list_head *curr;
  853. if (!zone->spanned_pages)
  854. return;
  855. spin_lock_irqsave(&zone->lock, flags);
  856. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  857. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  858. if (pfn_valid(pfn)) {
  859. struct page *page = pfn_to_page(pfn);
  860. if (!swsusp_page_is_forbidden(page))
  861. swsusp_unset_page_free(page);
  862. }
  863. for_each_migratetype_order(order, t) {
  864. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  865. unsigned long i;
  866. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  867. for (i = 0; i < (1UL << order); i++)
  868. swsusp_set_page_free(pfn_to_page(pfn + i));
  869. }
  870. }
  871. spin_unlock_irqrestore(&zone->lock, flags);
  872. }
  873. #endif /* CONFIG_PM */
  874. /*
  875. * Free a 0-order page
  876. */
  877. static void free_hot_cold_page(struct page *page, int cold)
  878. {
  879. struct zone *zone = page_zone(page);
  880. struct per_cpu_pages *pcp;
  881. unsigned long flags;
  882. int clearMlocked = PageMlocked(page);
  883. if (PageAnon(page))
  884. page->mapping = NULL;
  885. if (free_pages_check(page))
  886. return;
  887. if (!PageHighMem(page)) {
  888. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  889. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  890. }
  891. arch_free_page(page, 0);
  892. kernel_map_pages(page, 1, 0);
  893. pcp = &zone_pcp(zone, get_cpu())->pcp;
  894. local_irq_save(flags);
  895. if (unlikely(clearMlocked))
  896. free_page_mlock(page);
  897. __count_vm_event(PGFREE);
  898. if (cold)
  899. list_add_tail(&page->lru, &pcp->list);
  900. else
  901. list_add(&page->lru, &pcp->list);
  902. set_page_private(page, get_pageblock_migratetype(page));
  903. pcp->count++;
  904. if (pcp->count >= pcp->high) {
  905. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  906. pcp->count -= pcp->batch;
  907. }
  908. local_irq_restore(flags);
  909. put_cpu();
  910. }
  911. void free_hot_page(struct page *page)
  912. {
  913. free_hot_cold_page(page, 0);
  914. }
  915. void free_cold_page(struct page *page)
  916. {
  917. free_hot_cold_page(page, 1);
  918. }
  919. /*
  920. * split_page takes a non-compound higher-order page, and splits it into
  921. * n (1<<order) sub-pages: page[0..n]
  922. * Each sub-page must be freed individually.
  923. *
  924. * Note: this is probably too low level an operation for use in drivers.
  925. * Please consult with lkml before using this in your driver.
  926. */
  927. void split_page(struct page *page, unsigned int order)
  928. {
  929. int i;
  930. VM_BUG_ON(PageCompound(page));
  931. VM_BUG_ON(!page_count(page));
  932. for (i = 1; i < (1 << order); i++)
  933. set_page_refcounted(page + i);
  934. }
  935. /*
  936. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  937. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  938. * or two.
  939. */
  940. static inline
  941. struct page *buffered_rmqueue(struct zone *preferred_zone,
  942. struct zone *zone, int order, gfp_t gfp_flags,
  943. int migratetype)
  944. {
  945. unsigned long flags;
  946. struct page *page;
  947. int cold = !!(gfp_flags & __GFP_COLD);
  948. int cpu;
  949. again:
  950. cpu = get_cpu();
  951. if (likely(order == 0)) {
  952. struct per_cpu_pages *pcp;
  953. pcp = &zone_pcp(zone, cpu)->pcp;
  954. local_irq_save(flags);
  955. if (!pcp->count) {
  956. pcp->count = rmqueue_bulk(zone, 0,
  957. pcp->batch, &pcp->list, migratetype);
  958. if (unlikely(!pcp->count))
  959. goto failed;
  960. }
  961. /* Find a page of the appropriate migrate type */
  962. if (cold) {
  963. list_for_each_entry_reverse(page, &pcp->list, lru)
  964. if (page_private(page) == migratetype)
  965. break;
  966. } else {
  967. list_for_each_entry(page, &pcp->list, lru)
  968. if (page_private(page) == migratetype)
  969. break;
  970. }
  971. /* Allocate more to the pcp list if necessary */
  972. if (unlikely(&page->lru == &pcp->list)) {
  973. pcp->count += rmqueue_bulk(zone, 0,
  974. pcp->batch, &pcp->list, migratetype);
  975. page = list_entry(pcp->list.next, struct page, lru);
  976. }
  977. list_del(&page->lru);
  978. pcp->count--;
  979. } else {
  980. spin_lock_irqsave(&zone->lock, flags);
  981. page = __rmqueue(zone, order, migratetype);
  982. spin_unlock(&zone->lock);
  983. if (!page)
  984. goto failed;
  985. }
  986. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  987. zone_statistics(preferred_zone, zone);
  988. local_irq_restore(flags);
  989. put_cpu();
  990. VM_BUG_ON(bad_range(zone, page));
  991. if (prep_new_page(page, order, gfp_flags))
  992. goto again;
  993. return page;
  994. failed:
  995. local_irq_restore(flags);
  996. put_cpu();
  997. return NULL;
  998. }
  999. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  1000. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  1001. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  1002. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  1003. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1004. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1005. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1006. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1007. static struct fail_page_alloc_attr {
  1008. struct fault_attr attr;
  1009. u32 ignore_gfp_highmem;
  1010. u32 ignore_gfp_wait;
  1011. u32 min_order;
  1012. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1013. struct dentry *ignore_gfp_highmem_file;
  1014. struct dentry *ignore_gfp_wait_file;
  1015. struct dentry *min_order_file;
  1016. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1017. } fail_page_alloc = {
  1018. .attr = FAULT_ATTR_INITIALIZER,
  1019. .ignore_gfp_wait = 1,
  1020. .ignore_gfp_highmem = 1,
  1021. .min_order = 1,
  1022. };
  1023. static int __init setup_fail_page_alloc(char *str)
  1024. {
  1025. return setup_fault_attr(&fail_page_alloc.attr, str);
  1026. }
  1027. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1028. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1029. {
  1030. if (order < fail_page_alloc.min_order)
  1031. return 0;
  1032. if (gfp_mask & __GFP_NOFAIL)
  1033. return 0;
  1034. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1035. return 0;
  1036. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1037. return 0;
  1038. return should_fail(&fail_page_alloc.attr, 1 << order);
  1039. }
  1040. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1041. static int __init fail_page_alloc_debugfs(void)
  1042. {
  1043. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1044. struct dentry *dir;
  1045. int err;
  1046. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1047. "fail_page_alloc");
  1048. if (err)
  1049. return err;
  1050. dir = fail_page_alloc.attr.dentries.dir;
  1051. fail_page_alloc.ignore_gfp_wait_file =
  1052. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1053. &fail_page_alloc.ignore_gfp_wait);
  1054. fail_page_alloc.ignore_gfp_highmem_file =
  1055. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1056. &fail_page_alloc.ignore_gfp_highmem);
  1057. fail_page_alloc.min_order_file =
  1058. debugfs_create_u32("min-order", mode, dir,
  1059. &fail_page_alloc.min_order);
  1060. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1061. !fail_page_alloc.ignore_gfp_highmem_file ||
  1062. !fail_page_alloc.min_order_file) {
  1063. err = -ENOMEM;
  1064. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1065. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1066. debugfs_remove(fail_page_alloc.min_order_file);
  1067. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1068. }
  1069. return err;
  1070. }
  1071. late_initcall(fail_page_alloc_debugfs);
  1072. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1073. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1074. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1075. {
  1076. return 0;
  1077. }
  1078. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1079. /*
  1080. * Return 1 if free pages are above 'mark'. This takes into account the order
  1081. * of the allocation.
  1082. */
  1083. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1084. int classzone_idx, int alloc_flags)
  1085. {
  1086. /* free_pages my go negative - that's OK */
  1087. long min = mark;
  1088. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1089. int o;
  1090. if (alloc_flags & ALLOC_HIGH)
  1091. min -= min / 2;
  1092. if (alloc_flags & ALLOC_HARDER)
  1093. min -= min / 4;
  1094. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1095. return 0;
  1096. for (o = 0; o < order; o++) {
  1097. /* At the next order, this order's pages become unavailable */
  1098. free_pages -= z->free_area[o].nr_free << o;
  1099. /* Require fewer higher order pages to be free */
  1100. min >>= 1;
  1101. if (free_pages <= min)
  1102. return 0;
  1103. }
  1104. return 1;
  1105. }
  1106. #ifdef CONFIG_NUMA
  1107. /*
  1108. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1109. * skip over zones that are not allowed by the cpuset, or that have
  1110. * been recently (in last second) found to be nearly full. See further
  1111. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1112. * that have to skip over a lot of full or unallowed zones.
  1113. *
  1114. * If the zonelist cache is present in the passed in zonelist, then
  1115. * returns a pointer to the allowed node mask (either the current
  1116. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1117. *
  1118. * If the zonelist cache is not available for this zonelist, does
  1119. * nothing and returns NULL.
  1120. *
  1121. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1122. * a second since last zap'd) then we zap it out (clear its bits.)
  1123. *
  1124. * We hold off even calling zlc_setup, until after we've checked the
  1125. * first zone in the zonelist, on the theory that most allocations will
  1126. * be satisfied from that first zone, so best to examine that zone as
  1127. * quickly as we can.
  1128. */
  1129. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1130. {
  1131. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1132. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1133. zlc = zonelist->zlcache_ptr;
  1134. if (!zlc)
  1135. return NULL;
  1136. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1137. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1138. zlc->last_full_zap = jiffies;
  1139. }
  1140. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1141. &cpuset_current_mems_allowed :
  1142. &node_states[N_HIGH_MEMORY];
  1143. return allowednodes;
  1144. }
  1145. /*
  1146. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1147. * if it is worth looking at further for free memory:
  1148. * 1) Check that the zone isn't thought to be full (doesn't have its
  1149. * bit set in the zonelist_cache fullzones BITMAP).
  1150. * 2) Check that the zones node (obtained from the zonelist_cache
  1151. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1152. * Return true (non-zero) if zone is worth looking at further, or
  1153. * else return false (zero) if it is not.
  1154. *
  1155. * This check -ignores- the distinction between various watermarks,
  1156. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1157. * found to be full for any variation of these watermarks, it will
  1158. * be considered full for up to one second by all requests, unless
  1159. * we are so low on memory on all allowed nodes that we are forced
  1160. * into the second scan of the zonelist.
  1161. *
  1162. * In the second scan we ignore this zonelist cache and exactly
  1163. * apply the watermarks to all zones, even it is slower to do so.
  1164. * We are low on memory in the second scan, and should leave no stone
  1165. * unturned looking for a free page.
  1166. */
  1167. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1168. nodemask_t *allowednodes)
  1169. {
  1170. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1171. int i; /* index of *z in zonelist zones */
  1172. int n; /* node that zone *z is on */
  1173. zlc = zonelist->zlcache_ptr;
  1174. if (!zlc)
  1175. return 1;
  1176. i = z - zonelist->_zonerefs;
  1177. n = zlc->z_to_n[i];
  1178. /* This zone is worth trying if it is allowed but not full */
  1179. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1180. }
  1181. /*
  1182. * Given 'z' scanning a zonelist, set the corresponding bit in
  1183. * zlc->fullzones, so that subsequent attempts to allocate a page
  1184. * from that zone don't waste time re-examining it.
  1185. */
  1186. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1187. {
  1188. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1189. int i; /* index of *z in zonelist zones */
  1190. zlc = zonelist->zlcache_ptr;
  1191. if (!zlc)
  1192. return;
  1193. i = z - zonelist->_zonerefs;
  1194. set_bit(i, zlc->fullzones);
  1195. }
  1196. #else /* CONFIG_NUMA */
  1197. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1198. {
  1199. return NULL;
  1200. }
  1201. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1202. nodemask_t *allowednodes)
  1203. {
  1204. return 1;
  1205. }
  1206. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1207. {
  1208. }
  1209. #endif /* CONFIG_NUMA */
  1210. /*
  1211. * get_page_from_freelist goes through the zonelist trying to allocate
  1212. * a page.
  1213. */
  1214. static struct page *
  1215. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1216. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1217. struct zone *preferred_zone, int migratetype)
  1218. {
  1219. struct zoneref *z;
  1220. struct page *page = NULL;
  1221. int classzone_idx;
  1222. struct zone *zone;
  1223. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1224. int zlc_active = 0; /* set if using zonelist_cache */
  1225. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1226. if (WARN_ON_ONCE(order >= MAX_ORDER))
  1227. return NULL;
  1228. classzone_idx = zone_idx(preferred_zone);
  1229. zonelist_scan:
  1230. /*
  1231. * Scan zonelist, looking for a zone with enough free.
  1232. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1233. */
  1234. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1235. high_zoneidx, nodemask) {
  1236. if (NUMA_BUILD && zlc_active &&
  1237. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1238. continue;
  1239. if ((alloc_flags & ALLOC_CPUSET) &&
  1240. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1241. goto try_next_zone;
  1242. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1243. unsigned long mark;
  1244. if (alloc_flags & ALLOC_WMARK_MIN)
  1245. mark = zone->pages_min;
  1246. else if (alloc_flags & ALLOC_WMARK_LOW)
  1247. mark = zone->pages_low;
  1248. else
  1249. mark = zone->pages_high;
  1250. if (!zone_watermark_ok(zone, order, mark,
  1251. classzone_idx, alloc_flags)) {
  1252. if (!zone_reclaim_mode ||
  1253. !zone_reclaim(zone, gfp_mask, order))
  1254. goto this_zone_full;
  1255. }
  1256. }
  1257. page = buffered_rmqueue(preferred_zone, zone, order,
  1258. gfp_mask, migratetype);
  1259. if (page)
  1260. break;
  1261. this_zone_full:
  1262. if (NUMA_BUILD)
  1263. zlc_mark_zone_full(zonelist, z);
  1264. try_next_zone:
  1265. if (NUMA_BUILD && !did_zlc_setup) {
  1266. /* we do zlc_setup after the first zone is tried */
  1267. allowednodes = zlc_setup(zonelist, alloc_flags);
  1268. zlc_active = 1;
  1269. did_zlc_setup = 1;
  1270. }
  1271. }
  1272. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1273. /* Disable zlc cache for second zonelist scan */
  1274. zlc_active = 0;
  1275. goto zonelist_scan;
  1276. }
  1277. return page;
  1278. }
  1279. static inline int
  1280. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1281. unsigned long pages_reclaimed)
  1282. {
  1283. /* Do not loop if specifically requested */
  1284. if (gfp_mask & __GFP_NORETRY)
  1285. return 0;
  1286. /*
  1287. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1288. * means __GFP_NOFAIL, but that may not be true in other
  1289. * implementations.
  1290. */
  1291. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1292. return 1;
  1293. /*
  1294. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1295. * specified, then we retry until we no longer reclaim any pages
  1296. * (above), or we've reclaimed an order of pages at least as
  1297. * large as the allocation's order. In both cases, if the
  1298. * allocation still fails, we stop retrying.
  1299. */
  1300. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1301. return 1;
  1302. /*
  1303. * Don't let big-order allocations loop unless the caller
  1304. * explicitly requests that.
  1305. */
  1306. if (gfp_mask & __GFP_NOFAIL)
  1307. return 1;
  1308. return 0;
  1309. }
  1310. static inline struct page *
  1311. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1312. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1313. nodemask_t *nodemask, struct zone *preferred_zone,
  1314. int migratetype)
  1315. {
  1316. struct page *page;
  1317. /* Acquire the OOM killer lock for the zones in zonelist */
  1318. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1319. schedule_timeout_uninterruptible(1);
  1320. return NULL;
  1321. }
  1322. /*
  1323. * Go through the zonelist yet one more time, keep very high watermark
  1324. * here, this is only to catch a parallel oom killing, we must fail if
  1325. * we're still under heavy pressure.
  1326. */
  1327. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1328. order, zonelist, high_zoneidx,
  1329. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1330. preferred_zone, migratetype);
  1331. if (page)
  1332. goto out;
  1333. /* The OOM killer will not help higher order allocs */
  1334. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1335. goto out;
  1336. /* Exhausted what can be done so it's blamo time */
  1337. out_of_memory(zonelist, gfp_mask, order);
  1338. out:
  1339. clear_zonelist_oom(zonelist, gfp_mask);
  1340. return page;
  1341. }
  1342. /* The really slow allocator path where we enter direct reclaim */
  1343. static inline struct page *
  1344. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1345. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1346. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1347. int migratetype, unsigned long *did_some_progress)
  1348. {
  1349. struct page *page = NULL;
  1350. struct reclaim_state reclaim_state;
  1351. struct task_struct *p = current;
  1352. cond_resched();
  1353. /* We now go into synchronous reclaim */
  1354. cpuset_memory_pressure_bump();
  1355. /*
  1356. * The task's cpuset might have expanded its set of allowable nodes
  1357. */
  1358. p->flags |= PF_MEMALLOC;
  1359. lockdep_set_current_reclaim_state(gfp_mask);
  1360. reclaim_state.reclaimed_slab = 0;
  1361. p->reclaim_state = &reclaim_state;
  1362. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1363. p->reclaim_state = NULL;
  1364. lockdep_clear_current_reclaim_state();
  1365. p->flags &= ~PF_MEMALLOC;
  1366. cond_resched();
  1367. if (order != 0)
  1368. drain_all_pages();
  1369. if (likely(*did_some_progress))
  1370. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1371. zonelist, high_zoneidx,
  1372. alloc_flags, preferred_zone,
  1373. migratetype);
  1374. return page;
  1375. }
  1376. /*
  1377. * This is called in the allocator slow-path if the allocation request is of
  1378. * sufficient urgency to ignore watermarks and take other desperate measures
  1379. */
  1380. static inline struct page *
  1381. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1382. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1383. nodemask_t *nodemask, struct zone *preferred_zone,
  1384. int migratetype)
  1385. {
  1386. struct page *page;
  1387. do {
  1388. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1389. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1390. preferred_zone, migratetype);
  1391. if (!page && gfp_mask & __GFP_NOFAIL)
  1392. congestion_wait(WRITE, HZ/50);
  1393. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1394. return page;
  1395. }
  1396. static inline
  1397. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1398. enum zone_type high_zoneidx)
  1399. {
  1400. struct zoneref *z;
  1401. struct zone *zone;
  1402. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1403. wakeup_kswapd(zone, order);
  1404. }
  1405. static inline int
  1406. gfp_to_alloc_flags(gfp_t gfp_mask)
  1407. {
  1408. struct task_struct *p = current;
  1409. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1410. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1411. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1412. BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
  1413. /*
  1414. * The caller may dip into page reserves a bit more if the caller
  1415. * cannot run direct reclaim, or if the caller has realtime scheduling
  1416. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1417. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1418. */
  1419. alloc_flags |= (gfp_mask & __GFP_HIGH);
  1420. if (!wait) {
  1421. alloc_flags |= ALLOC_HARDER;
  1422. /*
  1423. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1424. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1425. */
  1426. alloc_flags &= ~ALLOC_CPUSET;
  1427. } else if (unlikely(rt_task(p)))
  1428. alloc_flags |= ALLOC_HARDER;
  1429. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1430. if (!in_interrupt() &&
  1431. ((p->flags & PF_MEMALLOC) ||
  1432. unlikely(test_thread_flag(TIF_MEMDIE))))
  1433. alloc_flags |= ALLOC_NO_WATERMARKS;
  1434. }
  1435. return alloc_flags;
  1436. }
  1437. static inline struct page *
  1438. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1439. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1440. nodemask_t *nodemask, struct zone *preferred_zone,
  1441. int migratetype)
  1442. {
  1443. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1444. struct page *page = NULL;
  1445. int alloc_flags;
  1446. unsigned long pages_reclaimed = 0;
  1447. unsigned long did_some_progress;
  1448. struct task_struct *p = current;
  1449. /*
  1450. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1451. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1452. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1453. * using a larger set of nodes after it has established that the
  1454. * allowed per node queues are empty and that nodes are
  1455. * over allocated.
  1456. */
  1457. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1458. goto nopage;
  1459. wake_all_kswapd(order, zonelist, high_zoneidx);
  1460. /*
  1461. * OK, we're below the kswapd watermark and have kicked background
  1462. * reclaim. Now things get more complex, so set up alloc_flags according
  1463. * to how we want to proceed.
  1464. */
  1465. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1466. restart:
  1467. /* This is the last chance, in general, before the goto nopage. */
  1468. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1469. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1470. preferred_zone, migratetype);
  1471. if (page)
  1472. goto got_pg;
  1473. rebalance:
  1474. /* Allocate without watermarks if the context allows */
  1475. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1476. page = __alloc_pages_high_priority(gfp_mask, order,
  1477. zonelist, high_zoneidx, nodemask,
  1478. preferred_zone, migratetype);
  1479. if (page)
  1480. goto got_pg;
  1481. }
  1482. /* Atomic allocations - we can't balance anything */
  1483. if (!wait)
  1484. goto nopage;
  1485. /* Avoid recursion of direct reclaim */
  1486. if (p->flags & PF_MEMALLOC)
  1487. goto nopage;
  1488. /* Try direct reclaim and then allocating */
  1489. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1490. zonelist, high_zoneidx,
  1491. nodemask,
  1492. alloc_flags, preferred_zone,
  1493. migratetype, &did_some_progress);
  1494. if (page)
  1495. goto got_pg;
  1496. /*
  1497. * If we failed to make any progress reclaiming, then we are
  1498. * running out of options and have to consider going OOM
  1499. */
  1500. if (!did_some_progress) {
  1501. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1502. page = __alloc_pages_may_oom(gfp_mask, order,
  1503. zonelist, high_zoneidx,
  1504. nodemask, preferred_zone,
  1505. migratetype);
  1506. if (page)
  1507. goto got_pg;
  1508. /*
  1509. * The OOM killer does not trigger for high-order allocations
  1510. * but if no progress is being made, there are no other
  1511. * options and retrying is unlikely to help
  1512. */
  1513. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1514. goto nopage;
  1515. goto restart;
  1516. }
  1517. }
  1518. /* Check if we should retry the allocation */
  1519. pages_reclaimed += did_some_progress;
  1520. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1521. /* Wait for some write requests to complete then retry */
  1522. congestion_wait(WRITE, HZ/50);
  1523. goto rebalance;
  1524. }
  1525. nopage:
  1526. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1527. printk(KERN_WARNING "%s: page allocation failure."
  1528. " order:%d, mode:0x%x\n",
  1529. p->comm, order, gfp_mask);
  1530. dump_stack();
  1531. show_mem();
  1532. }
  1533. got_pg:
  1534. return page;
  1535. }
  1536. /*
  1537. * This is the 'heart' of the zoned buddy allocator.
  1538. */
  1539. struct page *
  1540. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1541. struct zonelist *zonelist, nodemask_t *nodemask)
  1542. {
  1543. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1544. struct zone *preferred_zone;
  1545. struct page *page;
  1546. int migratetype = allocflags_to_migratetype(gfp_mask);
  1547. lockdep_trace_alloc(gfp_mask);
  1548. might_sleep_if(gfp_mask & __GFP_WAIT);
  1549. if (should_fail_alloc_page(gfp_mask, order))
  1550. return NULL;
  1551. /*
  1552. * Check the zones suitable for the gfp_mask contain at least one
  1553. * valid zone. It's possible to have an empty zonelist as a result
  1554. * of GFP_THISNODE and a memoryless node
  1555. */
  1556. if (unlikely(!zonelist->_zonerefs->zone))
  1557. return NULL;
  1558. /* The preferred zone is used for statistics later */
  1559. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1560. if (!preferred_zone)
  1561. return NULL;
  1562. /* First allocation attempt */
  1563. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1564. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1565. preferred_zone, migratetype);
  1566. if (unlikely(!page))
  1567. page = __alloc_pages_slowpath(gfp_mask, order,
  1568. zonelist, high_zoneidx, nodemask,
  1569. preferred_zone, migratetype);
  1570. return page;
  1571. }
  1572. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1573. /*
  1574. * Common helper functions.
  1575. */
  1576. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1577. {
  1578. struct page * page;
  1579. page = alloc_pages(gfp_mask, order);
  1580. if (!page)
  1581. return 0;
  1582. return (unsigned long) page_address(page);
  1583. }
  1584. EXPORT_SYMBOL(__get_free_pages);
  1585. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1586. {
  1587. struct page * page;
  1588. /*
  1589. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1590. * a highmem page
  1591. */
  1592. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1593. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1594. if (page)
  1595. return (unsigned long) page_address(page);
  1596. return 0;
  1597. }
  1598. EXPORT_SYMBOL(get_zeroed_page);
  1599. void __pagevec_free(struct pagevec *pvec)
  1600. {
  1601. int i = pagevec_count(pvec);
  1602. while (--i >= 0)
  1603. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1604. }
  1605. void __free_pages(struct page *page, unsigned int order)
  1606. {
  1607. if (put_page_testzero(page)) {
  1608. if (order == 0)
  1609. free_hot_page(page);
  1610. else
  1611. __free_pages_ok(page, order);
  1612. }
  1613. }
  1614. EXPORT_SYMBOL(__free_pages);
  1615. void free_pages(unsigned long addr, unsigned int order)
  1616. {
  1617. if (addr != 0) {
  1618. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1619. __free_pages(virt_to_page((void *)addr), order);
  1620. }
  1621. }
  1622. EXPORT_SYMBOL(free_pages);
  1623. /**
  1624. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1625. * @size: the number of bytes to allocate
  1626. * @gfp_mask: GFP flags for the allocation
  1627. *
  1628. * This function is similar to alloc_pages(), except that it allocates the
  1629. * minimum number of pages to satisfy the request. alloc_pages() can only
  1630. * allocate memory in power-of-two pages.
  1631. *
  1632. * This function is also limited by MAX_ORDER.
  1633. *
  1634. * Memory allocated by this function must be released by free_pages_exact().
  1635. */
  1636. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1637. {
  1638. unsigned int order = get_order(size);
  1639. unsigned long addr;
  1640. addr = __get_free_pages(gfp_mask, order);
  1641. if (addr) {
  1642. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1643. unsigned long used = addr + PAGE_ALIGN(size);
  1644. split_page(virt_to_page(addr), order);
  1645. while (used < alloc_end) {
  1646. free_page(used);
  1647. used += PAGE_SIZE;
  1648. }
  1649. }
  1650. return (void *)addr;
  1651. }
  1652. EXPORT_SYMBOL(alloc_pages_exact);
  1653. /**
  1654. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1655. * @virt: the value returned by alloc_pages_exact.
  1656. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1657. *
  1658. * Release the memory allocated by a previous call to alloc_pages_exact.
  1659. */
  1660. void free_pages_exact(void *virt, size_t size)
  1661. {
  1662. unsigned long addr = (unsigned long)virt;
  1663. unsigned long end = addr + PAGE_ALIGN(size);
  1664. while (addr < end) {
  1665. free_page(addr);
  1666. addr += PAGE_SIZE;
  1667. }
  1668. }
  1669. EXPORT_SYMBOL(free_pages_exact);
  1670. static unsigned int nr_free_zone_pages(int offset)
  1671. {
  1672. struct zoneref *z;
  1673. struct zone *zone;
  1674. /* Just pick one node, since fallback list is circular */
  1675. unsigned int sum = 0;
  1676. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1677. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1678. unsigned long size = zone->present_pages;
  1679. unsigned long high = zone->pages_high;
  1680. if (size > high)
  1681. sum += size - high;
  1682. }
  1683. return sum;
  1684. }
  1685. /*
  1686. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1687. */
  1688. unsigned int nr_free_buffer_pages(void)
  1689. {
  1690. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1691. }
  1692. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1693. /*
  1694. * Amount of free RAM allocatable within all zones
  1695. */
  1696. unsigned int nr_free_pagecache_pages(void)
  1697. {
  1698. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1699. }
  1700. static inline void show_node(struct zone *zone)
  1701. {
  1702. if (NUMA_BUILD)
  1703. printk("Node %d ", zone_to_nid(zone));
  1704. }
  1705. void si_meminfo(struct sysinfo *val)
  1706. {
  1707. val->totalram = totalram_pages;
  1708. val->sharedram = 0;
  1709. val->freeram = global_page_state(NR_FREE_PAGES);
  1710. val->bufferram = nr_blockdev_pages();
  1711. val->totalhigh = totalhigh_pages;
  1712. val->freehigh = nr_free_highpages();
  1713. val->mem_unit = PAGE_SIZE;
  1714. }
  1715. EXPORT_SYMBOL(si_meminfo);
  1716. #ifdef CONFIG_NUMA
  1717. void si_meminfo_node(struct sysinfo *val, int nid)
  1718. {
  1719. pg_data_t *pgdat = NODE_DATA(nid);
  1720. val->totalram = pgdat->node_present_pages;
  1721. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1722. #ifdef CONFIG_HIGHMEM
  1723. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1724. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1725. NR_FREE_PAGES);
  1726. #else
  1727. val->totalhigh = 0;
  1728. val->freehigh = 0;
  1729. #endif
  1730. val->mem_unit = PAGE_SIZE;
  1731. }
  1732. #endif
  1733. #define K(x) ((x) << (PAGE_SHIFT-10))
  1734. /*
  1735. * Show free area list (used inside shift_scroll-lock stuff)
  1736. * We also calculate the percentage fragmentation. We do this by counting the
  1737. * memory on each free list with the exception of the first item on the list.
  1738. */
  1739. void show_free_areas(void)
  1740. {
  1741. int cpu;
  1742. struct zone *zone;
  1743. for_each_populated_zone(zone) {
  1744. show_node(zone);
  1745. printk("%s per-cpu:\n", zone->name);
  1746. for_each_online_cpu(cpu) {
  1747. struct per_cpu_pageset *pageset;
  1748. pageset = zone_pcp(zone, cpu);
  1749. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1750. cpu, pageset->pcp.high,
  1751. pageset->pcp.batch, pageset->pcp.count);
  1752. }
  1753. }
  1754. printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
  1755. " inactive_file:%lu"
  1756. //TODO: check/adjust line lengths
  1757. #ifdef CONFIG_UNEVICTABLE_LRU
  1758. " unevictable:%lu"
  1759. #endif
  1760. " dirty:%lu writeback:%lu unstable:%lu\n"
  1761. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1762. global_page_state(NR_ACTIVE_ANON),
  1763. global_page_state(NR_ACTIVE_FILE),
  1764. global_page_state(NR_INACTIVE_ANON),
  1765. global_page_state(NR_INACTIVE_FILE),
  1766. #ifdef CONFIG_UNEVICTABLE_LRU
  1767. global_page_state(NR_UNEVICTABLE),
  1768. #endif
  1769. global_page_state(NR_FILE_DIRTY),
  1770. global_page_state(NR_WRITEBACK),
  1771. global_page_state(NR_UNSTABLE_NFS),
  1772. global_page_state(NR_FREE_PAGES),
  1773. global_page_state(NR_SLAB_RECLAIMABLE) +
  1774. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1775. global_page_state(NR_FILE_MAPPED),
  1776. global_page_state(NR_PAGETABLE),
  1777. global_page_state(NR_BOUNCE));
  1778. for_each_populated_zone(zone) {
  1779. int i;
  1780. show_node(zone);
  1781. printk("%s"
  1782. " free:%lukB"
  1783. " min:%lukB"
  1784. " low:%lukB"
  1785. " high:%lukB"
  1786. " active_anon:%lukB"
  1787. " inactive_anon:%lukB"
  1788. " active_file:%lukB"
  1789. " inactive_file:%lukB"
  1790. #ifdef CONFIG_UNEVICTABLE_LRU
  1791. " unevictable:%lukB"
  1792. #endif
  1793. " present:%lukB"
  1794. " pages_scanned:%lu"
  1795. " all_unreclaimable? %s"
  1796. "\n",
  1797. zone->name,
  1798. K(zone_page_state(zone, NR_FREE_PAGES)),
  1799. K(zone->pages_min),
  1800. K(zone->pages_low),
  1801. K(zone->pages_high),
  1802. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1803. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1804. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1805. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1806. #ifdef CONFIG_UNEVICTABLE_LRU
  1807. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1808. #endif
  1809. K(zone->present_pages),
  1810. zone->pages_scanned,
  1811. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1812. );
  1813. printk("lowmem_reserve[]:");
  1814. for (i = 0; i < MAX_NR_ZONES; i++)
  1815. printk(" %lu", zone->lowmem_reserve[i]);
  1816. printk("\n");
  1817. }
  1818. for_each_populated_zone(zone) {
  1819. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1820. show_node(zone);
  1821. printk("%s: ", zone->name);
  1822. spin_lock_irqsave(&zone->lock, flags);
  1823. for (order = 0; order < MAX_ORDER; order++) {
  1824. nr[order] = zone->free_area[order].nr_free;
  1825. total += nr[order] << order;
  1826. }
  1827. spin_unlock_irqrestore(&zone->lock, flags);
  1828. for (order = 0; order < MAX_ORDER; order++)
  1829. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1830. printk("= %lukB\n", K(total));
  1831. }
  1832. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1833. show_swap_cache_info();
  1834. }
  1835. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1836. {
  1837. zoneref->zone = zone;
  1838. zoneref->zone_idx = zone_idx(zone);
  1839. }
  1840. /*
  1841. * Builds allocation fallback zone lists.
  1842. *
  1843. * Add all populated zones of a node to the zonelist.
  1844. */
  1845. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1846. int nr_zones, enum zone_type zone_type)
  1847. {
  1848. struct zone *zone;
  1849. BUG_ON(zone_type >= MAX_NR_ZONES);
  1850. zone_type++;
  1851. do {
  1852. zone_type--;
  1853. zone = pgdat->node_zones + zone_type;
  1854. if (populated_zone(zone)) {
  1855. zoneref_set_zone(zone,
  1856. &zonelist->_zonerefs[nr_zones++]);
  1857. check_highest_zone(zone_type);
  1858. }
  1859. } while (zone_type);
  1860. return nr_zones;
  1861. }
  1862. /*
  1863. * zonelist_order:
  1864. * 0 = automatic detection of better ordering.
  1865. * 1 = order by ([node] distance, -zonetype)
  1866. * 2 = order by (-zonetype, [node] distance)
  1867. *
  1868. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1869. * the same zonelist. So only NUMA can configure this param.
  1870. */
  1871. #define ZONELIST_ORDER_DEFAULT 0
  1872. #define ZONELIST_ORDER_NODE 1
  1873. #define ZONELIST_ORDER_ZONE 2
  1874. /* zonelist order in the kernel.
  1875. * set_zonelist_order() will set this to NODE or ZONE.
  1876. */
  1877. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1878. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1879. #ifdef CONFIG_NUMA
  1880. /* The value user specified ....changed by config */
  1881. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1882. /* string for sysctl */
  1883. #define NUMA_ZONELIST_ORDER_LEN 16
  1884. char numa_zonelist_order[16] = "default";
  1885. /*
  1886. * interface for configure zonelist ordering.
  1887. * command line option "numa_zonelist_order"
  1888. * = "[dD]efault - default, automatic configuration.
  1889. * = "[nN]ode - order by node locality, then by zone within node
  1890. * = "[zZ]one - order by zone, then by locality within zone
  1891. */
  1892. static int __parse_numa_zonelist_order(char *s)
  1893. {
  1894. if (*s == 'd' || *s == 'D') {
  1895. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1896. } else if (*s == 'n' || *s == 'N') {
  1897. user_zonelist_order = ZONELIST_ORDER_NODE;
  1898. } else if (*s == 'z' || *s == 'Z') {
  1899. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1900. } else {
  1901. printk(KERN_WARNING
  1902. "Ignoring invalid numa_zonelist_order value: "
  1903. "%s\n", s);
  1904. return -EINVAL;
  1905. }
  1906. return 0;
  1907. }
  1908. static __init int setup_numa_zonelist_order(char *s)
  1909. {
  1910. if (s)
  1911. return __parse_numa_zonelist_order(s);
  1912. return 0;
  1913. }
  1914. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1915. /*
  1916. * sysctl handler for numa_zonelist_order
  1917. */
  1918. int numa_zonelist_order_handler(ctl_table *table, int write,
  1919. struct file *file, void __user *buffer, size_t *length,
  1920. loff_t *ppos)
  1921. {
  1922. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1923. int ret;
  1924. if (write)
  1925. strncpy(saved_string, (char*)table->data,
  1926. NUMA_ZONELIST_ORDER_LEN);
  1927. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1928. if (ret)
  1929. return ret;
  1930. if (write) {
  1931. int oldval = user_zonelist_order;
  1932. if (__parse_numa_zonelist_order((char*)table->data)) {
  1933. /*
  1934. * bogus value. restore saved string
  1935. */
  1936. strncpy((char*)table->data, saved_string,
  1937. NUMA_ZONELIST_ORDER_LEN);
  1938. user_zonelist_order = oldval;
  1939. } else if (oldval != user_zonelist_order)
  1940. build_all_zonelists();
  1941. }
  1942. return 0;
  1943. }
  1944. #define MAX_NODE_LOAD (num_online_nodes())
  1945. static int node_load[MAX_NUMNODES];
  1946. /**
  1947. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1948. * @node: node whose fallback list we're appending
  1949. * @used_node_mask: nodemask_t of already used nodes
  1950. *
  1951. * We use a number of factors to determine which is the next node that should
  1952. * appear on a given node's fallback list. The node should not have appeared
  1953. * already in @node's fallback list, and it should be the next closest node
  1954. * according to the distance array (which contains arbitrary distance values
  1955. * from each node to each node in the system), and should also prefer nodes
  1956. * with no CPUs, since presumably they'll have very little allocation pressure
  1957. * on them otherwise.
  1958. * It returns -1 if no node is found.
  1959. */
  1960. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1961. {
  1962. int n, val;
  1963. int min_val = INT_MAX;
  1964. int best_node = -1;
  1965. const struct cpumask *tmp = cpumask_of_node(0);
  1966. /* Use the local node if we haven't already */
  1967. if (!node_isset(node, *used_node_mask)) {
  1968. node_set(node, *used_node_mask);
  1969. return node;
  1970. }
  1971. for_each_node_state(n, N_HIGH_MEMORY) {
  1972. /* Don't want a node to appear more than once */
  1973. if (node_isset(n, *used_node_mask))
  1974. continue;
  1975. /* Use the distance array to find the distance */
  1976. val = node_distance(node, n);
  1977. /* Penalize nodes under us ("prefer the next node") */
  1978. val += (n < node);
  1979. /* Give preference to headless and unused nodes */
  1980. tmp = cpumask_of_node(n);
  1981. if (!cpumask_empty(tmp))
  1982. val += PENALTY_FOR_NODE_WITH_CPUS;
  1983. /* Slight preference for less loaded node */
  1984. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1985. val += node_load[n];
  1986. if (val < min_val) {
  1987. min_val = val;
  1988. best_node = n;
  1989. }
  1990. }
  1991. if (best_node >= 0)
  1992. node_set(best_node, *used_node_mask);
  1993. return best_node;
  1994. }
  1995. /*
  1996. * Build zonelists ordered by node and zones within node.
  1997. * This results in maximum locality--normal zone overflows into local
  1998. * DMA zone, if any--but risks exhausting DMA zone.
  1999. */
  2000. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2001. {
  2002. int j;
  2003. struct zonelist *zonelist;
  2004. zonelist = &pgdat->node_zonelists[0];
  2005. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2006. ;
  2007. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2008. MAX_NR_ZONES - 1);
  2009. zonelist->_zonerefs[j].zone = NULL;
  2010. zonelist->_zonerefs[j].zone_idx = 0;
  2011. }
  2012. /*
  2013. * Build gfp_thisnode zonelists
  2014. */
  2015. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2016. {
  2017. int j;
  2018. struct zonelist *zonelist;
  2019. zonelist = &pgdat->node_zonelists[1];
  2020. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2021. zonelist->_zonerefs[j].zone = NULL;
  2022. zonelist->_zonerefs[j].zone_idx = 0;
  2023. }
  2024. /*
  2025. * Build zonelists ordered by zone and nodes within zones.
  2026. * This results in conserving DMA zone[s] until all Normal memory is
  2027. * exhausted, but results in overflowing to remote node while memory
  2028. * may still exist in local DMA zone.
  2029. */
  2030. static int node_order[MAX_NUMNODES];
  2031. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2032. {
  2033. int pos, j, node;
  2034. int zone_type; /* needs to be signed */
  2035. struct zone *z;
  2036. struct zonelist *zonelist;
  2037. zonelist = &pgdat->node_zonelists[0];
  2038. pos = 0;
  2039. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2040. for (j = 0; j < nr_nodes; j++) {
  2041. node = node_order[j];
  2042. z = &NODE_DATA(node)->node_zones[zone_type];
  2043. if (populated_zone(z)) {
  2044. zoneref_set_zone(z,
  2045. &zonelist->_zonerefs[pos++]);
  2046. check_highest_zone(zone_type);
  2047. }
  2048. }
  2049. }
  2050. zonelist->_zonerefs[pos].zone = NULL;
  2051. zonelist->_zonerefs[pos].zone_idx = 0;
  2052. }
  2053. static int default_zonelist_order(void)
  2054. {
  2055. int nid, zone_type;
  2056. unsigned long low_kmem_size,total_size;
  2057. struct zone *z;
  2058. int average_size;
  2059. /*
  2060. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  2061. * If they are really small and used heavily, the system can fall
  2062. * into OOM very easily.
  2063. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  2064. */
  2065. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2066. low_kmem_size = 0;
  2067. total_size = 0;
  2068. for_each_online_node(nid) {
  2069. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2070. z = &NODE_DATA(nid)->node_zones[zone_type];
  2071. if (populated_zone(z)) {
  2072. if (zone_type < ZONE_NORMAL)
  2073. low_kmem_size += z->present_pages;
  2074. total_size += z->present_pages;
  2075. }
  2076. }
  2077. }
  2078. if (!low_kmem_size || /* there are no DMA area. */
  2079. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2080. return ZONELIST_ORDER_NODE;
  2081. /*
  2082. * look into each node's config.
  2083. * If there is a node whose DMA/DMA32 memory is very big area on
  2084. * local memory, NODE_ORDER may be suitable.
  2085. */
  2086. average_size = total_size /
  2087. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2088. for_each_online_node(nid) {
  2089. low_kmem_size = 0;
  2090. total_size = 0;
  2091. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2092. z = &NODE_DATA(nid)->node_zones[zone_type];
  2093. if (populated_zone(z)) {
  2094. if (zone_type < ZONE_NORMAL)
  2095. low_kmem_size += z->present_pages;
  2096. total_size += z->present_pages;
  2097. }
  2098. }
  2099. if (low_kmem_size &&
  2100. total_size > average_size && /* ignore small node */
  2101. low_kmem_size > total_size * 70/100)
  2102. return ZONELIST_ORDER_NODE;
  2103. }
  2104. return ZONELIST_ORDER_ZONE;
  2105. }
  2106. static void set_zonelist_order(void)
  2107. {
  2108. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2109. current_zonelist_order = default_zonelist_order();
  2110. else
  2111. current_zonelist_order = user_zonelist_order;
  2112. }
  2113. static void build_zonelists(pg_data_t *pgdat)
  2114. {
  2115. int j, node, load;
  2116. enum zone_type i;
  2117. nodemask_t used_mask;
  2118. int local_node, prev_node;
  2119. struct zonelist *zonelist;
  2120. int order = current_zonelist_order;
  2121. /* initialize zonelists */
  2122. for (i = 0; i < MAX_ZONELISTS; i++) {
  2123. zonelist = pgdat->node_zonelists + i;
  2124. zonelist->_zonerefs[0].zone = NULL;
  2125. zonelist->_zonerefs[0].zone_idx = 0;
  2126. }
  2127. /* NUMA-aware ordering of nodes */
  2128. local_node = pgdat->node_id;
  2129. load = num_online_nodes();
  2130. prev_node = local_node;
  2131. nodes_clear(used_mask);
  2132. memset(node_load, 0, sizeof(node_load));
  2133. memset(node_order, 0, sizeof(node_order));
  2134. j = 0;
  2135. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2136. int distance = node_distance(local_node, node);
  2137. /*
  2138. * If another node is sufficiently far away then it is better
  2139. * to reclaim pages in a zone before going off node.
  2140. */
  2141. if (distance > RECLAIM_DISTANCE)
  2142. zone_reclaim_mode = 1;
  2143. /*
  2144. * We don't want to pressure a particular node.
  2145. * So adding penalty to the first node in same
  2146. * distance group to make it round-robin.
  2147. */
  2148. if (distance != node_distance(local_node, prev_node))
  2149. node_load[node] = load;
  2150. prev_node = node;
  2151. load--;
  2152. if (order == ZONELIST_ORDER_NODE)
  2153. build_zonelists_in_node_order(pgdat, node);
  2154. else
  2155. node_order[j++] = node; /* remember order */
  2156. }
  2157. if (order == ZONELIST_ORDER_ZONE) {
  2158. /* calculate node order -- i.e., DMA last! */
  2159. build_zonelists_in_zone_order(pgdat, j);
  2160. }
  2161. build_thisnode_zonelists(pgdat);
  2162. }
  2163. /* Construct the zonelist performance cache - see further mmzone.h */
  2164. static void build_zonelist_cache(pg_data_t *pgdat)
  2165. {
  2166. struct zonelist *zonelist;
  2167. struct zonelist_cache *zlc;
  2168. struct zoneref *z;
  2169. zonelist = &pgdat->node_zonelists[0];
  2170. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2171. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2172. for (z = zonelist->_zonerefs; z->zone; z++)
  2173. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2174. }
  2175. #else /* CONFIG_NUMA */
  2176. static void set_zonelist_order(void)
  2177. {
  2178. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2179. }
  2180. static void build_zonelists(pg_data_t *pgdat)
  2181. {
  2182. int node, local_node;
  2183. enum zone_type j;
  2184. struct zonelist *zonelist;
  2185. local_node = pgdat->node_id;
  2186. zonelist = &pgdat->node_zonelists[0];
  2187. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2188. /*
  2189. * Now we build the zonelist so that it contains the zones
  2190. * of all the other nodes.
  2191. * We don't want to pressure a particular node, so when
  2192. * building the zones for node N, we make sure that the
  2193. * zones coming right after the local ones are those from
  2194. * node N+1 (modulo N)
  2195. */
  2196. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2197. if (!node_online(node))
  2198. continue;
  2199. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2200. MAX_NR_ZONES - 1);
  2201. }
  2202. for (node = 0; node < local_node; node++) {
  2203. if (!node_online(node))
  2204. continue;
  2205. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2206. MAX_NR_ZONES - 1);
  2207. }
  2208. zonelist->_zonerefs[j].zone = NULL;
  2209. zonelist->_zonerefs[j].zone_idx = 0;
  2210. }
  2211. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2212. static void build_zonelist_cache(pg_data_t *pgdat)
  2213. {
  2214. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2215. }
  2216. #endif /* CONFIG_NUMA */
  2217. /* return values int ....just for stop_machine() */
  2218. static int __build_all_zonelists(void *dummy)
  2219. {
  2220. int nid;
  2221. for_each_online_node(nid) {
  2222. pg_data_t *pgdat = NODE_DATA(nid);
  2223. build_zonelists(pgdat);
  2224. build_zonelist_cache(pgdat);
  2225. }
  2226. return 0;
  2227. }
  2228. void build_all_zonelists(void)
  2229. {
  2230. set_zonelist_order();
  2231. if (system_state == SYSTEM_BOOTING) {
  2232. __build_all_zonelists(NULL);
  2233. mminit_verify_zonelist();
  2234. cpuset_init_current_mems_allowed();
  2235. } else {
  2236. /* we have to stop all cpus to guarantee there is no user
  2237. of zonelist */
  2238. stop_machine(__build_all_zonelists, NULL, NULL);
  2239. /* cpuset refresh routine should be here */
  2240. }
  2241. vm_total_pages = nr_free_pagecache_pages();
  2242. /*
  2243. * Disable grouping by mobility if the number of pages in the
  2244. * system is too low to allow the mechanism to work. It would be
  2245. * more accurate, but expensive to check per-zone. This check is
  2246. * made on memory-hotadd so a system can start with mobility
  2247. * disabled and enable it later
  2248. */
  2249. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2250. page_group_by_mobility_disabled = 1;
  2251. else
  2252. page_group_by_mobility_disabled = 0;
  2253. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2254. "Total pages: %ld\n",
  2255. num_online_nodes(),
  2256. zonelist_order_name[current_zonelist_order],
  2257. page_group_by_mobility_disabled ? "off" : "on",
  2258. vm_total_pages);
  2259. #ifdef CONFIG_NUMA
  2260. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2261. #endif
  2262. }
  2263. /*
  2264. * Helper functions to size the waitqueue hash table.
  2265. * Essentially these want to choose hash table sizes sufficiently
  2266. * large so that collisions trying to wait on pages are rare.
  2267. * But in fact, the number of active page waitqueues on typical
  2268. * systems is ridiculously low, less than 200. So this is even
  2269. * conservative, even though it seems large.
  2270. *
  2271. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2272. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2273. */
  2274. #define PAGES_PER_WAITQUEUE 256
  2275. #ifndef CONFIG_MEMORY_HOTPLUG
  2276. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2277. {
  2278. unsigned long size = 1;
  2279. pages /= PAGES_PER_WAITQUEUE;
  2280. while (size < pages)
  2281. size <<= 1;
  2282. /*
  2283. * Once we have dozens or even hundreds of threads sleeping
  2284. * on IO we've got bigger problems than wait queue collision.
  2285. * Limit the size of the wait table to a reasonable size.
  2286. */
  2287. size = min(size, 4096UL);
  2288. return max(size, 4UL);
  2289. }
  2290. #else
  2291. /*
  2292. * A zone's size might be changed by hot-add, so it is not possible to determine
  2293. * a suitable size for its wait_table. So we use the maximum size now.
  2294. *
  2295. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2296. *
  2297. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2298. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2299. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2300. *
  2301. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2302. * or more by the traditional way. (See above). It equals:
  2303. *
  2304. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2305. * ia64(16K page size) : = ( 8G + 4M)byte.
  2306. * powerpc (64K page size) : = (32G +16M)byte.
  2307. */
  2308. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2309. {
  2310. return 4096UL;
  2311. }
  2312. #endif
  2313. /*
  2314. * This is an integer logarithm so that shifts can be used later
  2315. * to extract the more random high bits from the multiplicative
  2316. * hash function before the remainder is taken.
  2317. */
  2318. static inline unsigned long wait_table_bits(unsigned long size)
  2319. {
  2320. return ffz(~size);
  2321. }
  2322. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2323. /*
  2324. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2325. * of blocks reserved is based on zone->pages_min. The memory within the
  2326. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2327. * higher will lead to a bigger reserve which will get freed as contiguous
  2328. * blocks as reclaim kicks in
  2329. */
  2330. static void setup_zone_migrate_reserve(struct zone *zone)
  2331. {
  2332. unsigned long start_pfn, pfn, end_pfn;
  2333. struct page *page;
  2334. unsigned long reserve, block_migratetype;
  2335. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2336. start_pfn = zone->zone_start_pfn;
  2337. end_pfn = start_pfn + zone->spanned_pages;
  2338. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2339. pageblock_order;
  2340. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2341. if (!pfn_valid(pfn))
  2342. continue;
  2343. page = pfn_to_page(pfn);
  2344. /* Watch out for overlapping nodes */
  2345. if (page_to_nid(page) != zone_to_nid(zone))
  2346. continue;
  2347. /* Blocks with reserved pages will never free, skip them. */
  2348. if (PageReserved(page))
  2349. continue;
  2350. block_migratetype = get_pageblock_migratetype(page);
  2351. /* If this block is reserved, account for it */
  2352. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2353. reserve--;
  2354. continue;
  2355. }
  2356. /* Suitable for reserving if this block is movable */
  2357. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2358. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2359. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2360. reserve--;
  2361. continue;
  2362. }
  2363. /*
  2364. * If the reserve is met and this is a previous reserved block,
  2365. * take it back
  2366. */
  2367. if (block_migratetype == MIGRATE_RESERVE) {
  2368. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2369. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2370. }
  2371. }
  2372. }
  2373. /*
  2374. * Initially all pages are reserved - free ones are freed
  2375. * up by free_all_bootmem() once the early boot process is
  2376. * done. Non-atomic initialization, single-pass.
  2377. */
  2378. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2379. unsigned long start_pfn, enum memmap_context context)
  2380. {
  2381. struct page *page;
  2382. unsigned long end_pfn = start_pfn + size;
  2383. unsigned long pfn;
  2384. struct zone *z;
  2385. if (highest_memmap_pfn < end_pfn - 1)
  2386. highest_memmap_pfn = end_pfn - 1;
  2387. z = &NODE_DATA(nid)->node_zones[zone];
  2388. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2389. /*
  2390. * There can be holes in boot-time mem_map[]s
  2391. * handed to this function. They do not
  2392. * exist on hotplugged memory.
  2393. */
  2394. if (context == MEMMAP_EARLY) {
  2395. if (!early_pfn_valid(pfn))
  2396. continue;
  2397. if (!early_pfn_in_nid(pfn, nid))
  2398. continue;
  2399. }
  2400. page = pfn_to_page(pfn);
  2401. set_page_links(page, zone, nid, pfn);
  2402. mminit_verify_page_links(page, zone, nid, pfn);
  2403. init_page_count(page);
  2404. reset_page_mapcount(page);
  2405. SetPageReserved(page);
  2406. /*
  2407. * Mark the block movable so that blocks are reserved for
  2408. * movable at startup. This will force kernel allocations
  2409. * to reserve their blocks rather than leaking throughout
  2410. * the address space during boot when many long-lived
  2411. * kernel allocations are made. Later some blocks near
  2412. * the start are marked MIGRATE_RESERVE by
  2413. * setup_zone_migrate_reserve()
  2414. *
  2415. * bitmap is created for zone's valid pfn range. but memmap
  2416. * can be created for invalid pages (for alignment)
  2417. * check here not to call set_pageblock_migratetype() against
  2418. * pfn out of zone.
  2419. */
  2420. if ((z->zone_start_pfn <= pfn)
  2421. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2422. && !(pfn & (pageblock_nr_pages - 1)))
  2423. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2424. INIT_LIST_HEAD(&page->lru);
  2425. #ifdef WANT_PAGE_VIRTUAL
  2426. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2427. if (!is_highmem_idx(zone))
  2428. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2429. #endif
  2430. }
  2431. }
  2432. static void __meminit zone_init_free_lists(struct zone *zone)
  2433. {
  2434. int order, t;
  2435. for_each_migratetype_order(order, t) {
  2436. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2437. zone->free_area[order].nr_free = 0;
  2438. }
  2439. }
  2440. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2441. #define memmap_init(size, nid, zone, start_pfn) \
  2442. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2443. #endif
  2444. static int zone_batchsize(struct zone *zone)
  2445. {
  2446. #ifdef CONFIG_MMU
  2447. int batch;
  2448. /*
  2449. * The per-cpu-pages pools are set to around 1000th of the
  2450. * size of the zone. But no more than 1/2 of a meg.
  2451. *
  2452. * OK, so we don't know how big the cache is. So guess.
  2453. */
  2454. batch = zone->present_pages / 1024;
  2455. if (batch * PAGE_SIZE > 512 * 1024)
  2456. batch = (512 * 1024) / PAGE_SIZE;
  2457. batch /= 4; /* We effectively *= 4 below */
  2458. if (batch < 1)
  2459. batch = 1;
  2460. /*
  2461. * Clamp the batch to a 2^n - 1 value. Having a power
  2462. * of 2 value was found to be more likely to have
  2463. * suboptimal cache aliasing properties in some cases.
  2464. *
  2465. * For example if 2 tasks are alternately allocating
  2466. * batches of pages, one task can end up with a lot
  2467. * of pages of one half of the possible page colors
  2468. * and the other with pages of the other colors.
  2469. */
  2470. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2471. return batch;
  2472. #else
  2473. /* The deferral and batching of frees should be suppressed under NOMMU
  2474. * conditions.
  2475. *
  2476. * The problem is that NOMMU needs to be able to allocate large chunks
  2477. * of contiguous memory as there's no hardware page translation to
  2478. * assemble apparent contiguous memory from discontiguous pages.
  2479. *
  2480. * Queueing large contiguous runs of pages for batching, however,
  2481. * causes the pages to actually be freed in smaller chunks. As there
  2482. * can be a significant delay between the individual batches being
  2483. * recycled, this leads to the once large chunks of space being
  2484. * fragmented and becoming unavailable for high-order allocations.
  2485. */
  2486. return 0;
  2487. #endif
  2488. }
  2489. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2490. {
  2491. struct per_cpu_pages *pcp;
  2492. memset(p, 0, sizeof(*p));
  2493. pcp = &p->pcp;
  2494. pcp->count = 0;
  2495. pcp->high = 6 * batch;
  2496. pcp->batch = max(1UL, 1 * batch);
  2497. INIT_LIST_HEAD(&pcp->list);
  2498. }
  2499. /*
  2500. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2501. * to the value high for the pageset p.
  2502. */
  2503. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2504. unsigned long high)
  2505. {
  2506. struct per_cpu_pages *pcp;
  2507. pcp = &p->pcp;
  2508. pcp->high = high;
  2509. pcp->batch = max(1UL, high/4);
  2510. if ((high/4) > (PAGE_SHIFT * 8))
  2511. pcp->batch = PAGE_SHIFT * 8;
  2512. }
  2513. #ifdef CONFIG_NUMA
  2514. /*
  2515. * Boot pageset table. One per cpu which is going to be used for all
  2516. * zones and all nodes. The parameters will be set in such a way
  2517. * that an item put on a list will immediately be handed over to
  2518. * the buddy list. This is safe since pageset manipulation is done
  2519. * with interrupts disabled.
  2520. *
  2521. * Some NUMA counter updates may also be caught by the boot pagesets.
  2522. *
  2523. * The boot_pagesets must be kept even after bootup is complete for
  2524. * unused processors and/or zones. They do play a role for bootstrapping
  2525. * hotplugged processors.
  2526. *
  2527. * zoneinfo_show() and maybe other functions do
  2528. * not check if the processor is online before following the pageset pointer.
  2529. * Other parts of the kernel may not check if the zone is available.
  2530. */
  2531. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2532. /*
  2533. * Dynamically allocate memory for the
  2534. * per cpu pageset array in struct zone.
  2535. */
  2536. static int __cpuinit process_zones(int cpu)
  2537. {
  2538. struct zone *zone, *dzone;
  2539. int node = cpu_to_node(cpu);
  2540. node_set_state(node, N_CPU); /* this node has a cpu */
  2541. for_each_populated_zone(zone) {
  2542. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2543. GFP_KERNEL, node);
  2544. if (!zone_pcp(zone, cpu))
  2545. goto bad;
  2546. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2547. if (percpu_pagelist_fraction)
  2548. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2549. (zone->present_pages / percpu_pagelist_fraction));
  2550. }
  2551. return 0;
  2552. bad:
  2553. for_each_zone(dzone) {
  2554. if (!populated_zone(dzone))
  2555. continue;
  2556. if (dzone == zone)
  2557. break;
  2558. kfree(zone_pcp(dzone, cpu));
  2559. zone_pcp(dzone, cpu) = NULL;
  2560. }
  2561. return -ENOMEM;
  2562. }
  2563. static inline void free_zone_pagesets(int cpu)
  2564. {
  2565. struct zone *zone;
  2566. for_each_zone(zone) {
  2567. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2568. /* Free per_cpu_pageset if it is slab allocated */
  2569. if (pset != &boot_pageset[cpu])
  2570. kfree(pset);
  2571. zone_pcp(zone, cpu) = NULL;
  2572. }
  2573. }
  2574. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2575. unsigned long action,
  2576. void *hcpu)
  2577. {
  2578. int cpu = (long)hcpu;
  2579. int ret = NOTIFY_OK;
  2580. switch (action) {
  2581. case CPU_UP_PREPARE:
  2582. case CPU_UP_PREPARE_FROZEN:
  2583. if (process_zones(cpu))
  2584. ret = NOTIFY_BAD;
  2585. break;
  2586. case CPU_UP_CANCELED:
  2587. case CPU_UP_CANCELED_FROZEN:
  2588. case CPU_DEAD:
  2589. case CPU_DEAD_FROZEN:
  2590. free_zone_pagesets(cpu);
  2591. break;
  2592. default:
  2593. break;
  2594. }
  2595. return ret;
  2596. }
  2597. static struct notifier_block __cpuinitdata pageset_notifier =
  2598. { &pageset_cpuup_callback, NULL, 0 };
  2599. void __init setup_per_cpu_pageset(void)
  2600. {
  2601. int err;
  2602. /* Initialize per_cpu_pageset for cpu 0.
  2603. * A cpuup callback will do this for every cpu
  2604. * as it comes online
  2605. */
  2606. err = process_zones(smp_processor_id());
  2607. BUG_ON(err);
  2608. register_cpu_notifier(&pageset_notifier);
  2609. }
  2610. #endif
  2611. static noinline __init_refok
  2612. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2613. {
  2614. int i;
  2615. struct pglist_data *pgdat = zone->zone_pgdat;
  2616. size_t alloc_size;
  2617. /*
  2618. * The per-page waitqueue mechanism uses hashed waitqueues
  2619. * per zone.
  2620. */
  2621. zone->wait_table_hash_nr_entries =
  2622. wait_table_hash_nr_entries(zone_size_pages);
  2623. zone->wait_table_bits =
  2624. wait_table_bits(zone->wait_table_hash_nr_entries);
  2625. alloc_size = zone->wait_table_hash_nr_entries
  2626. * sizeof(wait_queue_head_t);
  2627. if (!slab_is_available()) {
  2628. zone->wait_table = (wait_queue_head_t *)
  2629. alloc_bootmem_node(pgdat, alloc_size);
  2630. } else {
  2631. /*
  2632. * This case means that a zone whose size was 0 gets new memory
  2633. * via memory hot-add.
  2634. * But it may be the case that a new node was hot-added. In
  2635. * this case vmalloc() will not be able to use this new node's
  2636. * memory - this wait_table must be initialized to use this new
  2637. * node itself as well.
  2638. * To use this new node's memory, further consideration will be
  2639. * necessary.
  2640. */
  2641. zone->wait_table = vmalloc(alloc_size);
  2642. }
  2643. if (!zone->wait_table)
  2644. return -ENOMEM;
  2645. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2646. init_waitqueue_head(zone->wait_table + i);
  2647. return 0;
  2648. }
  2649. static __meminit void zone_pcp_init(struct zone *zone)
  2650. {
  2651. int cpu;
  2652. unsigned long batch = zone_batchsize(zone);
  2653. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2654. #ifdef CONFIG_NUMA
  2655. /* Early boot. Slab allocator not functional yet */
  2656. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2657. setup_pageset(&boot_pageset[cpu],0);
  2658. #else
  2659. setup_pageset(zone_pcp(zone,cpu), batch);
  2660. #endif
  2661. }
  2662. if (zone->present_pages)
  2663. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2664. zone->name, zone->present_pages, batch);
  2665. }
  2666. __meminit int init_currently_empty_zone(struct zone *zone,
  2667. unsigned long zone_start_pfn,
  2668. unsigned long size,
  2669. enum memmap_context context)
  2670. {
  2671. struct pglist_data *pgdat = zone->zone_pgdat;
  2672. int ret;
  2673. ret = zone_wait_table_init(zone, size);
  2674. if (ret)
  2675. return ret;
  2676. pgdat->nr_zones = zone_idx(zone) + 1;
  2677. zone->zone_start_pfn = zone_start_pfn;
  2678. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2679. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2680. pgdat->node_id,
  2681. (unsigned long)zone_idx(zone),
  2682. zone_start_pfn, (zone_start_pfn + size));
  2683. zone_init_free_lists(zone);
  2684. return 0;
  2685. }
  2686. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2687. /*
  2688. * Basic iterator support. Return the first range of PFNs for a node
  2689. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2690. */
  2691. static int __meminit first_active_region_index_in_nid(int nid)
  2692. {
  2693. int i;
  2694. for (i = 0; i < nr_nodemap_entries; i++)
  2695. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2696. return i;
  2697. return -1;
  2698. }
  2699. /*
  2700. * Basic iterator support. Return the next active range of PFNs for a node
  2701. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2702. */
  2703. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2704. {
  2705. for (index = index + 1; index < nr_nodemap_entries; index++)
  2706. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2707. return index;
  2708. return -1;
  2709. }
  2710. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2711. /*
  2712. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2713. * Architectures may implement their own version but if add_active_range()
  2714. * was used and there are no special requirements, this is a convenient
  2715. * alternative
  2716. */
  2717. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2718. {
  2719. int i;
  2720. for (i = 0; i < nr_nodemap_entries; i++) {
  2721. unsigned long start_pfn = early_node_map[i].start_pfn;
  2722. unsigned long end_pfn = early_node_map[i].end_pfn;
  2723. if (start_pfn <= pfn && pfn < end_pfn)
  2724. return early_node_map[i].nid;
  2725. }
  2726. /* This is a memory hole */
  2727. return -1;
  2728. }
  2729. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2730. int __meminit early_pfn_to_nid(unsigned long pfn)
  2731. {
  2732. int nid;
  2733. nid = __early_pfn_to_nid(pfn);
  2734. if (nid >= 0)
  2735. return nid;
  2736. /* just returns 0 */
  2737. return 0;
  2738. }
  2739. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2740. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2741. {
  2742. int nid;
  2743. nid = __early_pfn_to_nid(pfn);
  2744. if (nid >= 0 && nid != node)
  2745. return false;
  2746. return true;
  2747. }
  2748. #endif
  2749. /* Basic iterator support to walk early_node_map[] */
  2750. #define for_each_active_range_index_in_nid(i, nid) \
  2751. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2752. i = next_active_region_index_in_nid(i, nid))
  2753. /**
  2754. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2755. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2756. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2757. *
  2758. * If an architecture guarantees that all ranges registered with
  2759. * add_active_ranges() contain no holes and may be freed, this
  2760. * this function may be used instead of calling free_bootmem() manually.
  2761. */
  2762. void __init free_bootmem_with_active_regions(int nid,
  2763. unsigned long max_low_pfn)
  2764. {
  2765. int i;
  2766. for_each_active_range_index_in_nid(i, nid) {
  2767. unsigned long size_pages = 0;
  2768. unsigned long end_pfn = early_node_map[i].end_pfn;
  2769. if (early_node_map[i].start_pfn >= max_low_pfn)
  2770. continue;
  2771. if (end_pfn > max_low_pfn)
  2772. end_pfn = max_low_pfn;
  2773. size_pages = end_pfn - early_node_map[i].start_pfn;
  2774. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2775. PFN_PHYS(early_node_map[i].start_pfn),
  2776. size_pages << PAGE_SHIFT);
  2777. }
  2778. }
  2779. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2780. {
  2781. int i;
  2782. int ret;
  2783. for_each_active_range_index_in_nid(i, nid) {
  2784. ret = work_fn(early_node_map[i].start_pfn,
  2785. early_node_map[i].end_pfn, data);
  2786. if (ret)
  2787. break;
  2788. }
  2789. }
  2790. /**
  2791. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2792. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2793. *
  2794. * If an architecture guarantees that all ranges registered with
  2795. * add_active_ranges() contain no holes and may be freed, this
  2796. * function may be used instead of calling memory_present() manually.
  2797. */
  2798. void __init sparse_memory_present_with_active_regions(int nid)
  2799. {
  2800. int i;
  2801. for_each_active_range_index_in_nid(i, nid)
  2802. memory_present(early_node_map[i].nid,
  2803. early_node_map[i].start_pfn,
  2804. early_node_map[i].end_pfn);
  2805. }
  2806. /**
  2807. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2808. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2809. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2810. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2811. *
  2812. * It returns the start and end page frame of a node based on information
  2813. * provided by an arch calling add_active_range(). If called for a node
  2814. * with no available memory, a warning is printed and the start and end
  2815. * PFNs will be 0.
  2816. */
  2817. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2818. unsigned long *start_pfn, unsigned long *end_pfn)
  2819. {
  2820. int i;
  2821. *start_pfn = -1UL;
  2822. *end_pfn = 0;
  2823. for_each_active_range_index_in_nid(i, nid) {
  2824. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2825. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2826. }
  2827. if (*start_pfn == -1UL)
  2828. *start_pfn = 0;
  2829. }
  2830. /*
  2831. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2832. * assumption is made that zones within a node are ordered in monotonic
  2833. * increasing memory addresses so that the "highest" populated zone is used
  2834. */
  2835. static void __init find_usable_zone_for_movable(void)
  2836. {
  2837. int zone_index;
  2838. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2839. if (zone_index == ZONE_MOVABLE)
  2840. continue;
  2841. if (arch_zone_highest_possible_pfn[zone_index] >
  2842. arch_zone_lowest_possible_pfn[zone_index])
  2843. break;
  2844. }
  2845. VM_BUG_ON(zone_index == -1);
  2846. movable_zone = zone_index;
  2847. }
  2848. /*
  2849. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2850. * because it is sized independant of architecture. Unlike the other zones,
  2851. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2852. * in each node depending on the size of each node and how evenly kernelcore
  2853. * is distributed. This helper function adjusts the zone ranges
  2854. * provided by the architecture for a given node by using the end of the
  2855. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2856. * zones within a node are in order of monotonic increases memory addresses
  2857. */
  2858. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2859. unsigned long zone_type,
  2860. unsigned long node_start_pfn,
  2861. unsigned long node_end_pfn,
  2862. unsigned long *zone_start_pfn,
  2863. unsigned long *zone_end_pfn)
  2864. {
  2865. /* Only adjust if ZONE_MOVABLE is on this node */
  2866. if (zone_movable_pfn[nid]) {
  2867. /* Size ZONE_MOVABLE */
  2868. if (zone_type == ZONE_MOVABLE) {
  2869. *zone_start_pfn = zone_movable_pfn[nid];
  2870. *zone_end_pfn = min(node_end_pfn,
  2871. arch_zone_highest_possible_pfn[movable_zone]);
  2872. /* Adjust for ZONE_MOVABLE starting within this range */
  2873. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2874. *zone_end_pfn > zone_movable_pfn[nid]) {
  2875. *zone_end_pfn = zone_movable_pfn[nid];
  2876. /* Check if this whole range is within ZONE_MOVABLE */
  2877. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2878. *zone_start_pfn = *zone_end_pfn;
  2879. }
  2880. }
  2881. /*
  2882. * Return the number of pages a zone spans in a node, including holes
  2883. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2884. */
  2885. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2886. unsigned long zone_type,
  2887. unsigned long *ignored)
  2888. {
  2889. unsigned long node_start_pfn, node_end_pfn;
  2890. unsigned long zone_start_pfn, zone_end_pfn;
  2891. /* Get the start and end of the node and zone */
  2892. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2893. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2894. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2895. adjust_zone_range_for_zone_movable(nid, zone_type,
  2896. node_start_pfn, node_end_pfn,
  2897. &zone_start_pfn, &zone_end_pfn);
  2898. /* Check that this node has pages within the zone's required range */
  2899. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2900. return 0;
  2901. /* Move the zone boundaries inside the node if necessary */
  2902. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2903. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2904. /* Return the spanned pages */
  2905. return zone_end_pfn - zone_start_pfn;
  2906. }
  2907. /*
  2908. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2909. * then all holes in the requested range will be accounted for.
  2910. */
  2911. static unsigned long __meminit __absent_pages_in_range(int nid,
  2912. unsigned long range_start_pfn,
  2913. unsigned long range_end_pfn)
  2914. {
  2915. int i = 0;
  2916. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2917. unsigned long start_pfn;
  2918. /* Find the end_pfn of the first active range of pfns in the node */
  2919. i = first_active_region_index_in_nid(nid);
  2920. if (i == -1)
  2921. return 0;
  2922. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2923. /* Account for ranges before physical memory on this node */
  2924. if (early_node_map[i].start_pfn > range_start_pfn)
  2925. hole_pages = prev_end_pfn - range_start_pfn;
  2926. /* Find all holes for the zone within the node */
  2927. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2928. /* No need to continue if prev_end_pfn is outside the zone */
  2929. if (prev_end_pfn >= range_end_pfn)
  2930. break;
  2931. /* Make sure the end of the zone is not within the hole */
  2932. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2933. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2934. /* Update the hole size cound and move on */
  2935. if (start_pfn > range_start_pfn) {
  2936. BUG_ON(prev_end_pfn > start_pfn);
  2937. hole_pages += start_pfn - prev_end_pfn;
  2938. }
  2939. prev_end_pfn = early_node_map[i].end_pfn;
  2940. }
  2941. /* Account for ranges past physical memory on this node */
  2942. if (range_end_pfn > prev_end_pfn)
  2943. hole_pages += range_end_pfn -
  2944. max(range_start_pfn, prev_end_pfn);
  2945. return hole_pages;
  2946. }
  2947. /**
  2948. * absent_pages_in_range - Return number of page frames in holes within a range
  2949. * @start_pfn: The start PFN to start searching for holes
  2950. * @end_pfn: The end PFN to stop searching for holes
  2951. *
  2952. * It returns the number of pages frames in memory holes within a range.
  2953. */
  2954. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2955. unsigned long end_pfn)
  2956. {
  2957. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2958. }
  2959. /* Return the number of page frames in holes in a zone on a node */
  2960. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2961. unsigned long zone_type,
  2962. unsigned long *ignored)
  2963. {
  2964. unsigned long node_start_pfn, node_end_pfn;
  2965. unsigned long zone_start_pfn, zone_end_pfn;
  2966. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2967. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2968. node_start_pfn);
  2969. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2970. node_end_pfn);
  2971. adjust_zone_range_for_zone_movable(nid, zone_type,
  2972. node_start_pfn, node_end_pfn,
  2973. &zone_start_pfn, &zone_end_pfn);
  2974. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2975. }
  2976. #else
  2977. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2978. unsigned long zone_type,
  2979. unsigned long *zones_size)
  2980. {
  2981. return zones_size[zone_type];
  2982. }
  2983. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2984. unsigned long zone_type,
  2985. unsigned long *zholes_size)
  2986. {
  2987. if (!zholes_size)
  2988. return 0;
  2989. return zholes_size[zone_type];
  2990. }
  2991. #endif
  2992. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2993. unsigned long *zones_size, unsigned long *zholes_size)
  2994. {
  2995. unsigned long realtotalpages, totalpages = 0;
  2996. enum zone_type i;
  2997. for (i = 0; i < MAX_NR_ZONES; i++)
  2998. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2999. zones_size);
  3000. pgdat->node_spanned_pages = totalpages;
  3001. realtotalpages = totalpages;
  3002. for (i = 0; i < MAX_NR_ZONES; i++)
  3003. realtotalpages -=
  3004. zone_absent_pages_in_node(pgdat->node_id, i,
  3005. zholes_size);
  3006. pgdat->node_present_pages = realtotalpages;
  3007. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3008. realtotalpages);
  3009. }
  3010. #ifndef CONFIG_SPARSEMEM
  3011. /*
  3012. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3013. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3014. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3015. * round what is now in bits to nearest long in bits, then return it in
  3016. * bytes.
  3017. */
  3018. static unsigned long __init usemap_size(unsigned long zonesize)
  3019. {
  3020. unsigned long usemapsize;
  3021. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3022. usemapsize = usemapsize >> pageblock_order;
  3023. usemapsize *= NR_PAGEBLOCK_BITS;
  3024. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3025. return usemapsize / 8;
  3026. }
  3027. static void __init setup_usemap(struct pglist_data *pgdat,
  3028. struct zone *zone, unsigned long zonesize)
  3029. {
  3030. unsigned long usemapsize = usemap_size(zonesize);
  3031. zone->pageblock_flags = NULL;
  3032. if (usemapsize)
  3033. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3034. }
  3035. #else
  3036. static void inline setup_usemap(struct pglist_data *pgdat,
  3037. struct zone *zone, unsigned long zonesize) {}
  3038. #endif /* CONFIG_SPARSEMEM */
  3039. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3040. /* Return a sensible default order for the pageblock size. */
  3041. static inline int pageblock_default_order(void)
  3042. {
  3043. if (HPAGE_SHIFT > PAGE_SHIFT)
  3044. return HUGETLB_PAGE_ORDER;
  3045. return MAX_ORDER-1;
  3046. }
  3047. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3048. static inline void __init set_pageblock_order(unsigned int order)
  3049. {
  3050. /* Check that pageblock_nr_pages has not already been setup */
  3051. if (pageblock_order)
  3052. return;
  3053. /*
  3054. * Assume the largest contiguous order of interest is a huge page.
  3055. * This value may be variable depending on boot parameters on IA64
  3056. */
  3057. pageblock_order = order;
  3058. }
  3059. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3060. /*
  3061. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3062. * and pageblock_default_order() are unused as pageblock_order is set
  3063. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3064. * pageblock_order based on the kernel config
  3065. */
  3066. static inline int pageblock_default_order(unsigned int order)
  3067. {
  3068. return MAX_ORDER-1;
  3069. }
  3070. #define set_pageblock_order(x) do {} while (0)
  3071. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3072. /*
  3073. * Set up the zone data structures:
  3074. * - mark all pages reserved
  3075. * - mark all memory queues empty
  3076. * - clear the memory bitmaps
  3077. */
  3078. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3079. unsigned long *zones_size, unsigned long *zholes_size)
  3080. {
  3081. enum zone_type j;
  3082. int nid = pgdat->node_id;
  3083. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3084. int ret;
  3085. pgdat_resize_init(pgdat);
  3086. pgdat->nr_zones = 0;
  3087. init_waitqueue_head(&pgdat->kswapd_wait);
  3088. pgdat->kswapd_max_order = 0;
  3089. pgdat_page_cgroup_init(pgdat);
  3090. for (j = 0; j < MAX_NR_ZONES; j++) {
  3091. struct zone *zone = pgdat->node_zones + j;
  3092. unsigned long size, realsize, memmap_pages;
  3093. enum lru_list l;
  3094. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3095. realsize = size - zone_absent_pages_in_node(nid, j,
  3096. zholes_size);
  3097. /*
  3098. * Adjust realsize so that it accounts for how much memory
  3099. * is used by this zone for memmap. This affects the watermark
  3100. * and per-cpu initialisations
  3101. */
  3102. memmap_pages =
  3103. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3104. if (realsize >= memmap_pages) {
  3105. realsize -= memmap_pages;
  3106. if (memmap_pages)
  3107. printk(KERN_DEBUG
  3108. " %s zone: %lu pages used for memmap\n",
  3109. zone_names[j], memmap_pages);
  3110. } else
  3111. printk(KERN_WARNING
  3112. " %s zone: %lu pages exceeds realsize %lu\n",
  3113. zone_names[j], memmap_pages, realsize);
  3114. /* Account for reserved pages */
  3115. if (j == 0 && realsize > dma_reserve) {
  3116. realsize -= dma_reserve;
  3117. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3118. zone_names[0], dma_reserve);
  3119. }
  3120. if (!is_highmem_idx(j))
  3121. nr_kernel_pages += realsize;
  3122. nr_all_pages += realsize;
  3123. zone->spanned_pages = size;
  3124. zone->present_pages = realsize;
  3125. #ifdef CONFIG_NUMA
  3126. zone->node = nid;
  3127. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3128. / 100;
  3129. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3130. #endif
  3131. zone->name = zone_names[j];
  3132. spin_lock_init(&zone->lock);
  3133. spin_lock_init(&zone->lru_lock);
  3134. zone_seqlock_init(zone);
  3135. zone->zone_pgdat = pgdat;
  3136. zone->prev_priority = DEF_PRIORITY;
  3137. zone_pcp_init(zone);
  3138. for_each_lru(l) {
  3139. INIT_LIST_HEAD(&zone->lru[l].list);
  3140. zone->lru[l].nr_scan = 0;
  3141. }
  3142. zone->reclaim_stat.recent_rotated[0] = 0;
  3143. zone->reclaim_stat.recent_rotated[1] = 0;
  3144. zone->reclaim_stat.recent_scanned[0] = 0;
  3145. zone->reclaim_stat.recent_scanned[1] = 0;
  3146. zap_zone_vm_stats(zone);
  3147. zone->flags = 0;
  3148. if (!size)
  3149. continue;
  3150. set_pageblock_order(pageblock_default_order());
  3151. setup_usemap(pgdat, zone, size);
  3152. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3153. size, MEMMAP_EARLY);
  3154. BUG_ON(ret);
  3155. memmap_init(size, nid, j, zone_start_pfn);
  3156. zone_start_pfn += size;
  3157. }
  3158. }
  3159. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3160. {
  3161. /* Skip empty nodes */
  3162. if (!pgdat->node_spanned_pages)
  3163. return;
  3164. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3165. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3166. if (!pgdat->node_mem_map) {
  3167. unsigned long size, start, end;
  3168. struct page *map;
  3169. /*
  3170. * The zone's endpoints aren't required to be MAX_ORDER
  3171. * aligned but the node_mem_map endpoints must be in order
  3172. * for the buddy allocator to function correctly.
  3173. */
  3174. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3175. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3176. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3177. size = (end - start) * sizeof(struct page);
  3178. map = alloc_remap(pgdat->node_id, size);
  3179. if (!map)
  3180. map = alloc_bootmem_node(pgdat, size);
  3181. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3182. }
  3183. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3184. /*
  3185. * With no DISCONTIG, the global mem_map is just set as node 0's
  3186. */
  3187. if (pgdat == NODE_DATA(0)) {
  3188. mem_map = NODE_DATA(0)->node_mem_map;
  3189. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3190. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3191. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3192. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3193. }
  3194. #endif
  3195. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3196. }
  3197. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3198. unsigned long node_start_pfn, unsigned long *zholes_size)
  3199. {
  3200. pg_data_t *pgdat = NODE_DATA(nid);
  3201. pgdat->node_id = nid;
  3202. pgdat->node_start_pfn = node_start_pfn;
  3203. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3204. alloc_node_mem_map(pgdat);
  3205. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3206. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3207. nid, (unsigned long)pgdat,
  3208. (unsigned long)pgdat->node_mem_map);
  3209. #endif
  3210. free_area_init_core(pgdat, zones_size, zholes_size);
  3211. }
  3212. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3213. #if MAX_NUMNODES > 1
  3214. /*
  3215. * Figure out the number of possible node ids.
  3216. */
  3217. static void __init setup_nr_node_ids(void)
  3218. {
  3219. unsigned int node;
  3220. unsigned int highest = 0;
  3221. for_each_node_mask(node, node_possible_map)
  3222. highest = node;
  3223. nr_node_ids = highest + 1;
  3224. }
  3225. #else
  3226. static inline void setup_nr_node_ids(void)
  3227. {
  3228. }
  3229. #endif
  3230. /**
  3231. * add_active_range - Register a range of PFNs backed by physical memory
  3232. * @nid: The node ID the range resides on
  3233. * @start_pfn: The start PFN of the available physical memory
  3234. * @end_pfn: The end PFN of the available physical memory
  3235. *
  3236. * These ranges are stored in an early_node_map[] and later used by
  3237. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3238. * range spans a memory hole, it is up to the architecture to ensure
  3239. * the memory is not freed by the bootmem allocator. If possible
  3240. * the range being registered will be merged with existing ranges.
  3241. */
  3242. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3243. unsigned long end_pfn)
  3244. {
  3245. int i;
  3246. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3247. "Entering add_active_range(%d, %#lx, %#lx) "
  3248. "%d entries of %d used\n",
  3249. nid, start_pfn, end_pfn,
  3250. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3251. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3252. /* Merge with existing active regions if possible */
  3253. for (i = 0; i < nr_nodemap_entries; i++) {
  3254. if (early_node_map[i].nid != nid)
  3255. continue;
  3256. /* Skip if an existing region covers this new one */
  3257. if (start_pfn >= early_node_map[i].start_pfn &&
  3258. end_pfn <= early_node_map[i].end_pfn)
  3259. return;
  3260. /* Merge forward if suitable */
  3261. if (start_pfn <= early_node_map[i].end_pfn &&
  3262. end_pfn > early_node_map[i].end_pfn) {
  3263. early_node_map[i].end_pfn = end_pfn;
  3264. return;
  3265. }
  3266. /* Merge backward if suitable */
  3267. if (start_pfn < early_node_map[i].end_pfn &&
  3268. end_pfn >= early_node_map[i].start_pfn) {
  3269. early_node_map[i].start_pfn = start_pfn;
  3270. return;
  3271. }
  3272. }
  3273. /* Check that early_node_map is large enough */
  3274. if (i >= MAX_ACTIVE_REGIONS) {
  3275. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3276. MAX_ACTIVE_REGIONS);
  3277. return;
  3278. }
  3279. early_node_map[i].nid = nid;
  3280. early_node_map[i].start_pfn = start_pfn;
  3281. early_node_map[i].end_pfn = end_pfn;
  3282. nr_nodemap_entries = i + 1;
  3283. }
  3284. /**
  3285. * remove_active_range - Shrink an existing registered range of PFNs
  3286. * @nid: The node id the range is on that should be shrunk
  3287. * @start_pfn: The new PFN of the range
  3288. * @end_pfn: The new PFN of the range
  3289. *
  3290. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3291. * The map is kept near the end physical page range that has already been
  3292. * registered. This function allows an arch to shrink an existing registered
  3293. * range.
  3294. */
  3295. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3296. unsigned long end_pfn)
  3297. {
  3298. int i, j;
  3299. int removed = 0;
  3300. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3301. nid, start_pfn, end_pfn);
  3302. /* Find the old active region end and shrink */
  3303. for_each_active_range_index_in_nid(i, nid) {
  3304. if (early_node_map[i].start_pfn >= start_pfn &&
  3305. early_node_map[i].end_pfn <= end_pfn) {
  3306. /* clear it */
  3307. early_node_map[i].start_pfn = 0;
  3308. early_node_map[i].end_pfn = 0;
  3309. removed = 1;
  3310. continue;
  3311. }
  3312. if (early_node_map[i].start_pfn < start_pfn &&
  3313. early_node_map[i].end_pfn > start_pfn) {
  3314. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3315. early_node_map[i].end_pfn = start_pfn;
  3316. if (temp_end_pfn > end_pfn)
  3317. add_active_range(nid, end_pfn, temp_end_pfn);
  3318. continue;
  3319. }
  3320. if (early_node_map[i].start_pfn >= start_pfn &&
  3321. early_node_map[i].end_pfn > end_pfn &&
  3322. early_node_map[i].start_pfn < end_pfn) {
  3323. early_node_map[i].start_pfn = end_pfn;
  3324. continue;
  3325. }
  3326. }
  3327. if (!removed)
  3328. return;
  3329. /* remove the blank ones */
  3330. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3331. if (early_node_map[i].nid != nid)
  3332. continue;
  3333. if (early_node_map[i].end_pfn)
  3334. continue;
  3335. /* we found it, get rid of it */
  3336. for (j = i; j < nr_nodemap_entries - 1; j++)
  3337. memcpy(&early_node_map[j], &early_node_map[j+1],
  3338. sizeof(early_node_map[j]));
  3339. j = nr_nodemap_entries - 1;
  3340. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3341. nr_nodemap_entries--;
  3342. }
  3343. }
  3344. /**
  3345. * remove_all_active_ranges - Remove all currently registered regions
  3346. *
  3347. * During discovery, it may be found that a table like SRAT is invalid
  3348. * and an alternative discovery method must be used. This function removes
  3349. * all currently registered regions.
  3350. */
  3351. void __init remove_all_active_ranges(void)
  3352. {
  3353. memset(early_node_map, 0, sizeof(early_node_map));
  3354. nr_nodemap_entries = 0;
  3355. }
  3356. /* Compare two active node_active_regions */
  3357. static int __init cmp_node_active_region(const void *a, const void *b)
  3358. {
  3359. struct node_active_region *arange = (struct node_active_region *)a;
  3360. struct node_active_region *brange = (struct node_active_region *)b;
  3361. /* Done this way to avoid overflows */
  3362. if (arange->start_pfn > brange->start_pfn)
  3363. return 1;
  3364. if (arange->start_pfn < brange->start_pfn)
  3365. return -1;
  3366. return 0;
  3367. }
  3368. /* sort the node_map by start_pfn */
  3369. static void __init sort_node_map(void)
  3370. {
  3371. sort(early_node_map, (size_t)nr_nodemap_entries,
  3372. sizeof(struct node_active_region),
  3373. cmp_node_active_region, NULL);
  3374. }
  3375. /* Find the lowest pfn for a node */
  3376. static unsigned long __init find_min_pfn_for_node(int nid)
  3377. {
  3378. int i;
  3379. unsigned long min_pfn = ULONG_MAX;
  3380. /* Assuming a sorted map, the first range found has the starting pfn */
  3381. for_each_active_range_index_in_nid(i, nid)
  3382. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3383. if (min_pfn == ULONG_MAX) {
  3384. printk(KERN_WARNING
  3385. "Could not find start_pfn for node %d\n", nid);
  3386. return 0;
  3387. }
  3388. return min_pfn;
  3389. }
  3390. /**
  3391. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3392. *
  3393. * It returns the minimum PFN based on information provided via
  3394. * add_active_range().
  3395. */
  3396. unsigned long __init find_min_pfn_with_active_regions(void)
  3397. {
  3398. return find_min_pfn_for_node(MAX_NUMNODES);
  3399. }
  3400. /*
  3401. * early_calculate_totalpages()
  3402. * Sum pages in active regions for movable zone.
  3403. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3404. */
  3405. static unsigned long __init early_calculate_totalpages(void)
  3406. {
  3407. int i;
  3408. unsigned long totalpages = 0;
  3409. for (i = 0; i < nr_nodemap_entries; i++) {
  3410. unsigned long pages = early_node_map[i].end_pfn -
  3411. early_node_map[i].start_pfn;
  3412. totalpages += pages;
  3413. if (pages)
  3414. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3415. }
  3416. return totalpages;
  3417. }
  3418. /*
  3419. * Find the PFN the Movable zone begins in each node. Kernel memory
  3420. * is spread evenly between nodes as long as the nodes have enough
  3421. * memory. When they don't, some nodes will have more kernelcore than
  3422. * others
  3423. */
  3424. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3425. {
  3426. int i, nid;
  3427. unsigned long usable_startpfn;
  3428. unsigned long kernelcore_node, kernelcore_remaining;
  3429. unsigned long totalpages = early_calculate_totalpages();
  3430. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3431. /*
  3432. * If movablecore was specified, calculate what size of
  3433. * kernelcore that corresponds so that memory usable for
  3434. * any allocation type is evenly spread. If both kernelcore
  3435. * and movablecore are specified, then the value of kernelcore
  3436. * will be used for required_kernelcore if it's greater than
  3437. * what movablecore would have allowed.
  3438. */
  3439. if (required_movablecore) {
  3440. unsigned long corepages;
  3441. /*
  3442. * Round-up so that ZONE_MOVABLE is at least as large as what
  3443. * was requested by the user
  3444. */
  3445. required_movablecore =
  3446. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3447. corepages = totalpages - required_movablecore;
  3448. required_kernelcore = max(required_kernelcore, corepages);
  3449. }
  3450. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3451. if (!required_kernelcore)
  3452. return;
  3453. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3454. find_usable_zone_for_movable();
  3455. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3456. restart:
  3457. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3458. kernelcore_node = required_kernelcore / usable_nodes;
  3459. for_each_node_state(nid, N_HIGH_MEMORY) {
  3460. /*
  3461. * Recalculate kernelcore_node if the division per node
  3462. * now exceeds what is necessary to satisfy the requested
  3463. * amount of memory for the kernel
  3464. */
  3465. if (required_kernelcore < kernelcore_node)
  3466. kernelcore_node = required_kernelcore / usable_nodes;
  3467. /*
  3468. * As the map is walked, we track how much memory is usable
  3469. * by the kernel using kernelcore_remaining. When it is
  3470. * 0, the rest of the node is usable by ZONE_MOVABLE
  3471. */
  3472. kernelcore_remaining = kernelcore_node;
  3473. /* Go through each range of PFNs within this node */
  3474. for_each_active_range_index_in_nid(i, nid) {
  3475. unsigned long start_pfn, end_pfn;
  3476. unsigned long size_pages;
  3477. start_pfn = max(early_node_map[i].start_pfn,
  3478. zone_movable_pfn[nid]);
  3479. end_pfn = early_node_map[i].end_pfn;
  3480. if (start_pfn >= end_pfn)
  3481. continue;
  3482. /* Account for what is only usable for kernelcore */
  3483. if (start_pfn < usable_startpfn) {
  3484. unsigned long kernel_pages;
  3485. kernel_pages = min(end_pfn, usable_startpfn)
  3486. - start_pfn;
  3487. kernelcore_remaining -= min(kernel_pages,
  3488. kernelcore_remaining);
  3489. required_kernelcore -= min(kernel_pages,
  3490. required_kernelcore);
  3491. /* Continue if range is now fully accounted */
  3492. if (end_pfn <= usable_startpfn) {
  3493. /*
  3494. * Push zone_movable_pfn to the end so
  3495. * that if we have to rebalance
  3496. * kernelcore across nodes, we will
  3497. * not double account here
  3498. */
  3499. zone_movable_pfn[nid] = end_pfn;
  3500. continue;
  3501. }
  3502. start_pfn = usable_startpfn;
  3503. }
  3504. /*
  3505. * The usable PFN range for ZONE_MOVABLE is from
  3506. * start_pfn->end_pfn. Calculate size_pages as the
  3507. * number of pages used as kernelcore
  3508. */
  3509. size_pages = end_pfn - start_pfn;
  3510. if (size_pages > kernelcore_remaining)
  3511. size_pages = kernelcore_remaining;
  3512. zone_movable_pfn[nid] = start_pfn + size_pages;
  3513. /*
  3514. * Some kernelcore has been met, update counts and
  3515. * break if the kernelcore for this node has been
  3516. * satisified
  3517. */
  3518. required_kernelcore -= min(required_kernelcore,
  3519. size_pages);
  3520. kernelcore_remaining -= size_pages;
  3521. if (!kernelcore_remaining)
  3522. break;
  3523. }
  3524. }
  3525. /*
  3526. * If there is still required_kernelcore, we do another pass with one
  3527. * less node in the count. This will push zone_movable_pfn[nid] further
  3528. * along on the nodes that still have memory until kernelcore is
  3529. * satisified
  3530. */
  3531. usable_nodes--;
  3532. if (usable_nodes && required_kernelcore > usable_nodes)
  3533. goto restart;
  3534. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3535. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3536. zone_movable_pfn[nid] =
  3537. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3538. }
  3539. /* Any regular memory on that node ? */
  3540. static void check_for_regular_memory(pg_data_t *pgdat)
  3541. {
  3542. #ifdef CONFIG_HIGHMEM
  3543. enum zone_type zone_type;
  3544. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3545. struct zone *zone = &pgdat->node_zones[zone_type];
  3546. if (zone->present_pages)
  3547. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3548. }
  3549. #endif
  3550. }
  3551. /**
  3552. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3553. * @max_zone_pfn: an array of max PFNs for each zone
  3554. *
  3555. * This will call free_area_init_node() for each active node in the system.
  3556. * Using the page ranges provided by add_active_range(), the size of each
  3557. * zone in each node and their holes is calculated. If the maximum PFN
  3558. * between two adjacent zones match, it is assumed that the zone is empty.
  3559. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3560. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3561. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3562. * at arch_max_dma_pfn.
  3563. */
  3564. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3565. {
  3566. unsigned long nid;
  3567. int i;
  3568. /* Sort early_node_map as initialisation assumes it is sorted */
  3569. sort_node_map();
  3570. /* Record where the zone boundaries are */
  3571. memset(arch_zone_lowest_possible_pfn, 0,
  3572. sizeof(arch_zone_lowest_possible_pfn));
  3573. memset(arch_zone_highest_possible_pfn, 0,
  3574. sizeof(arch_zone_highest_possible_pfn));
  3575. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3576. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3577. for (i = 1; i < MAX_NR_ZONES; i++) {
  3578. if (i == ZONE_MOVABLE)
  3579. continue;
  3580. arch_zone_lowest_possible_pfn[i] =
  3581. arch_zone_highest_possible_pfn[i-1];
  3582. arch_zone_highest_possible_pfn[i] =
  3583. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3584. }
  3585. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3586. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3587. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3588. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3589. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3590. /* Print out the zone ranges */
  3591. printk("Zone PFN ranges:\n");
  3592. for (i = 0; i < MAX_NR_ZONES; i++) {
  3593. if (i == ZONE_MOVABLE)
  3594. continue;
  3595. printk(" %-8s %0#10lx -> %0#10lx\n",
  3596. zone_names[i],
  3597. arch_zone_lowest_possible_pfn[i],
  3598. arch_zone_highest_possible_pfn[i]);
  3599. }
  3600. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3601. printk("Movable zone start PFN for each node\n");
  3602. for (i = 0; i < MAX_NUMNODES; i++) {
  3603. if (zone_movable_pfn[i])
  3604. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3605. }
  3606. /* Print out the early_node_map[] */
  3607. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3608. for (i = 0; i < nr_nodemap_entries; i++)
  3609. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3610. early_node_map[i].start_pfn,
  3611. early_node_map[i].end_pfn);
  3612. /* Initialise every node */
  3613. mminit_verify_pageflags_layout();
  3614. setup_nr_node_ids();
  3615. for_each_online_node(nid) {
  3616. pg_data_t *pgdat = NODE_DATA(nid);
  3617. free_area_init_node(nid, NULL,
  3618. find_min_pfn_for_node(nid), NULL);
  3619. /* Any memory on that node */
  3620. if (pgdat->node_present_pages)
  3621. node_set_state(nid, N_HIGH_MEMORY);
  3622. check_for_regular_memory(pgdat);
  3623. }
  3624. }
  3625. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3626. {
  3627. unsigned long long coremem;
  3628. if (!p)
  3629. return -EINVAL;
  3630. coremem = memparse(p, &p);
  3631. *core = coremem >> PAGE_SHIFT;
  3632. /* Paranoid check that UL is enough for the coremem value */
  3633. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3634. return 0;
  3635. }
  3636. /*
  3637. * kernelcore=size sets the amount of memory for use for allocations that
  3638. * cannot be reclaimed or migrated.
  3639. */
  3640. static int __init cmdline_parse_kernelcore(char *p)
  3641. {
  3642. return cmdline_parse_core(p, &required_kernelcore);
  3643. }
  3644. /*
  3645. * movablecore=size sets the amount of memory for use for allocations that
  3646. * can be reclaimed or migrated.
  3647. */
  3648. static int __init cmdline_parse_movablecore(char *p)
  3649. {
  3650. return cmdline_parse_core(p, &required_movablecore);
  3651. }
  3652. early_param("kernelcore", cmdline_parse_kernelcore);
  3653. early_param("movablecore", cmdline_parse_movablecore);
  3654. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3655. /**
  3656. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3657. * @new_dma_reserve: The number of pages to mark reserved
  3658. *
  3659. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3660. * In the DMA zone, a significant percentage may be consumed by kernel image
  3661. * and other unfreeable allocations which can skew the watermarks badly. This
  3662. * function may optionally be used to account for unfreeable pages in the
  3663. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3664. * smaller per-cpu batchsize.
  3665. */
  3666. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3667. {
  3668. dma_reserve = new_dma_reserve;
  3669. }
  3670. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3671. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3672. EXPORT_SYMBOL(contig_page_data);
  3673. #endif
  3674. void __init free_area_init(unsigned long *zones_size)
  3675. {
  3676. free_area_init_node(0, zones_size,
  3677. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3678. }
  3679. static int page_alloc_cpu_notify(struct notifier_block *self,
  3680. unsigned long action, void *hcpu)
  3681. {
  3682. int cpu = (unsigned long)hcpu;
  3683. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3684. drain_pages(cpu);
  3685. /*
  3686. * Spill the event counters of the dead processor
  3687. * into the current processors event counters.
  3688. * This artificially elevates the count of the current
  3689. * processor.
  3690. */
  3691. vm_events_fold_cpu(cpu);
  3692. /*
  3693. * Zero the differential counters of the dead processor
  3694. * so that the vm statistics are consistent.
  3695. *
  3696. * This is only okay since the processor is dead and cannot
  3697. * race with what we are doing.
  3698. */
  3699. refresh_cpu_vm_stats(cpu);
  3700. }
  3701. return NOTIFY_OK;
  3702. }
  3703. void __init page_alloc_init(void)
  3704. {
  3705. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3706. }
  3707. /*
  3708. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3709. * or min_free_kbytes changes.
  3710. */
  3711. static void calculate_totalreserve_pages(void)
  3712. {
  3713. struct pglist_data *pgdat;
  3714. unsigned long reserve_pages = 0;
  3715. enum zone_type i, j;
  3716. for_each_online_pgdat(pgdat) {
  3717. for (i = 0; i < MAX_NR_ZONES; i++) {
  3718. struct zone *zone = pgdat->node_zones + i;
  3719. unsigned long max = 0;
  3720. /* Find valid and maximum lowmem_reserve in the zone */
  3721. for (j = i; j < MAX_NR_ZONES; j++) {
  3722. if (zone->lowmem_reserve[j] > max)
  3723. max = zone->lowmem_reserve[j];
  3724. }
  3725. /* we treat pages_high as reserved pages. */
  3726. max += zone->pages_high;
  3727. if (max > zone->present_pages)
  3728. max = zone->present_pages;
  3729. reserve_pages += max;
  3730. }
  3731. }
  3732. totalreserve_pages = reserve_pages;
  3733. }
  3734. /*
  3735. * setup_per_zone_lowmem_reserve - called whenever
  3736. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3737. * has a correct pages reserved value, so an adequate number of
  3738. * pages are left in the zone after a successful __alloc_pages().
  3739. */
  3740. static void setup_per_zone_lowmem_reserve(void)
  3741. {
  3742. struct pglist_data *pgdat;
  3743. enum zone_type j, idx;
  3744. for_each_online_pgdat(pgdat) {
  3745. for (j = 0; j < MAX_NR_ZONES; j++) {
  3746. struct zone *zone = pgdat->node_zones + j;
  3747. unsigned long present_pages = zone->present_pages;
  3748. zone->lowmem_reserve[j] = 0;
  3749. idx = j;
  3750. while (idx) {
  3751. struct zone *lower_zone;
  3752. idx--;
  3753. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3754. sysctl_lowmem_reserve_ratio[idx] = 1;
  3755. lower_zone = pgdat->node_zones + idx;
  3756. lower_zone->lowmem_reserve[j] = present_pages /
  3757. sysctl_lowmem_reserve_ratio[idx];
  3758. present_pages += lower_zone->present_pages;
  3759. }
  3760. }
  3761. }
  3762. /* update totalreserve_pages */
  3763. calculate_totalreserve_pages();
  3764. }
  3765. /**
  3766. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3767. *
  3768. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3769. * with respect to min_free_kbytes.
  3770. */
  3771. void setup_per_zone_pages_min(void)
  3772. {
  3773. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3774. unsigned long lowmem_pages = 0;
  3775. struct zone *zone;
  3776. unsigned long flags;
  3777. /* Calculate total number of !ZONE_HIGHMEM pages */
  3778. for_each_zone(zone) {
  3779. if (!is_highmem(zone))
  3780. lowmem_pages += zone->present_pages;
  3781. }
  3782. for_each_zone(zone) {
  3783. u64 tmp;
  3784. spin_lock_irqsave(&zone->lock, flags);
  3785. tmp = (u64)pages_min * zone->present_pages;
  3786. do_div(tmp, lowmem_pages);
  3787. if (is_highmem(zone)) {
  3788. /*
  3789. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3790. * need highmem pages, so cap pages_min to a small
  3791. * value here.
  3792. *
  3793. * The (pages_high-pages_low) and (pages_low-pages_min)
  3794. * deltas controls asynch page reclaim, and so should
  3795. * not be capped for highmem.
  3796. */
  3797. int min_pages;
  3798. min_pages = zone->present_pages / 1024;
  3799. if (min_pages < SWAP_CLUSTER_MAX)
  3800. min_pages = SWAP_CLUSTER_MAX;
  3801. if (min_pages > 128)
  3802. min_pages = 128;
  3803. zone->pages_min = min_pages;
  3804. } else {
  3805. /*
  3806. * If it's a lowmem zone, reserve a number of pages
  3807. * proportionate to the zone's size.
  3808. */
  3809. zone->pages_min = tmp;
  3810. }
  3811. zone->pages_low = zone->pages_min + (tmp >> 2);
  3812. zone->pages_high = zone->pages_min + (tmp >> 1);
  3813. setup_zone_migrate_reserve(zone);
  3814. spin_unlock_irqrestore(&zone->lock, flags);
  3815. }
  3816. /* update totalreserve_pages */
  3817. calculate_totalreserve_pages();
  3818. }
  3819. /**
  3820. * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
  3821. *
  3822. * The inactive anon list should be small enough that the VM never has to
  3823. * do too much work, but large enough that each inactive page has a chance
  3824. * to be referenced again before it is swapped out.
  3825. *
  3826. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3827. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3828. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3829. * the anonymous pages are kept on the inactive list.
  3830. *
  3831. * total target max
  3832. * memory ratio inactive anon
  3833. * -------------------------------------
  3834. * 10MB 1 5MB
  3835. * 100MB 1 50MB
  3836. * 1GB 3 250MB
  3837. * 10GB 10 0.9GB
  3838. * 100GB 31 3GB
  3839. * 1TB 101 10GB
  3840. * 10TB 320 32GB
  3841. */
  3842. static void setup_per_zone_inactive_ratio(void)
  3843. {
  3844. struct zone *zone;
  3845. for_each_zone(zone) {
  3846. unsigned int gb, ratio;
  3847. /* Zone size in gigabytes */
  3848. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3849. ratio = int_sqrt(10 * gb);
  3850. if (!ratio)
  3851. ratio = 1;
  3852. zone->inactive_ratio = ratio;
  3853. }
  3854. }
  3855. /*
  3856. * Initialise min_free_kbytes.
  3857. *
  3858. * For small machines we want it small (128k min). For large machines
  3859. * we want it large (64MB max). But it is not linear, because network
  3860. * bandwidth does not increase linearly with machine size. We use
  3861. *
  3862. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3863. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3864. *
  3865. * which yields
  3866. *
  3867. * 16MB: 512k
  3868. * 32MB: 724k
  3869. * 64MB: 1024k
  3870. * 128MB: 1448k
  3871. * 256MB: 2048k
  3872. * 512MB: 2896k
  3873. * 1024MB: 4096k
  3874. * 2048MB: 5792k
  3875. * 4096MB: 8192k
  3876. * 8192MB: 11584k
  3877. * 16384MB: 16384k
  3878. */
  3879. static int __init init_per_zone_pages_min(void)
  3880. {
  3881. unsigned long lowmem_kbytes;
  3882. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3883. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3884. if (min_free_kbytes < 128)
  3885. min_free_kbytes = 128;
  3886. if (min_free_kbytes > 65536)
  3887. min_free_kbytes = 65536;
  3888. setup_per_zone_pages_min();
  3889. setup_per_zone_lowmem_reserve();
  3890. setup_per_zone_inactive_ratio();
  3891. return 0;
  3892. }
  3893. module_init(init_per_zone_pages_min)
  3894. /*
  3895. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3896. * that we can call two helper functions whenever min_free_kbytes
  3897. * changes.
  3898. */
  3899. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3900. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3901. {
  3902. proc_dointvec(table, write, file, buffer, length, ppos);
  3903. if (write)
  3904. setup_per_zone_pages_min();
  3905. return 0;
  3906. }
  3907. #ifdef CONFIG_NUMA
  3908. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3909. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3910. {
  3911. struct zone *zone;
  3912. int rc;
  3913. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3914. if (rc)
  3915. return rc;
  3916. for_each_zone(zone)
  3917. zone->min_unmapped_pages = (zone->present_pages *
  3918. sysctl_min_unmapped_ratio) / 100;
  3919. return 0;
  3920. }
  3921. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3922. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3923. {
  3924. struct zone *zone;
  3925. int rc;
  3926. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3927. if (rc)
  3928. return rc;
  3929. for_each_zone(zone)
  3930. zone->min_slab_pages = (zone->present_pages *
  3931. sysctl_min_slab_ratio) / 100;
  3932. return 0;
  3933. }
  3934. #endif
  3935. /*
  3936. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3937. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3938. * whenever sysctl_lowmem_reserve_ratio changes.
  3939. *
  3940. * The reserve ratio obviously has absolutely no relation with the
  3941. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3942. * if in function of the boot time zone sizes.
  3943. */
  3944. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3945. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3946. {
  3947. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3948. setup_per_zone_lowmem_reserve();
  3949. return 0;
  3950. }
  3951. /*
  3952. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3953. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3954. * can have before it gets flushed back to buddy allocator.
  3955. */
  3956. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3957. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3958. {
  3959. struct zone *zone;
  3960. unsigned int cpu;
  3961. int ret;
  3962. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3963. if (!write || (ret == -EINVAL))
  3964. return ret;
  3965. for_each_zone(zone) {
  3966. for_each_online_cpu(cpu) {
  3967. unsigned long high;
  3968. high = zone->present_pages / percpu_pagelist_fraction;
  3969. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3970. }
  3971. }
  3972. return 0;
  3973. }
  3974. int hashdist = HASHDIST_DEFAULT;
  3975. #ifdef CONFIG_NUMA
  3976. static int __init set_hashdist(char *str)
  3977. {
  3978. if (!str)
  3979. return 0;
  3980. hashdist = simple_strtoul(str, &str, 0);
  3981. return 1;
  3982. }
  3983. __setup("hashdist=", set_hashdist);
  3984. #endif
  3985. /*
  3986. * allocate a large system hash table from bootmem
  3987. * - it is assumed that the hash table must contain an exact power-of-2
  3988. * quantity of entries
  3989. * - limit is the number of hash buckets, not the total allocation size
  3990. */
  3991. void *__init alloc_large_system_hash(const char *tablename,
  3992. unsigned long bucketsize,
  3993. unsigned long numentries,
  3994. int scale,
  3995. int flags,
  3996. unsigned int *_hash_shift,
  3997. unsigned int *_hash_mask,
  3998. unsigned long limit)
  3999. {
  4000. unsigned long long max = limit;
  4001. unsigned long log2qty, size;
  4002. void *table = NULL;
  4003. /* allow the kernel cmdline to have a say */
  4004. if (!numentries) {
  4005. /* round applicable memory size up to nearest megabyte */
  4006. numentries = nr_kernel_pages;
  4007. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4008. numentries >>= 20 - PAGE_SHIFT;
  4009. numentries <<= 20 - PAGE_SHIFT;
  4010. /* limit to 1 bucket per 2^scale bytes of low memory */
  4011. if (scale > PAGE_SHIFT)
  4012. numentries >>= (scale - PAGE_SHIFT);
  4013. else
  4014. numentries <<= (PAGE_SHIFT - scale);
  4015. /* Make sure we've got at least a 0-order allocation.. */
  4016. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4017. numentries = PAGE_SIZE / bucketsize;
  4018. }
  4019. numentries = roundup_pow_of_two(numentries);
  4020. /* limit allocation size to 1/16 total memory by default */
  4021. if (max == 0) {
  4022. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4023. do_div(max, bucketsize);
  4024. }
  4025. if (numentries > max)
  4026. numentries = max;
  4027. log2qty = ilog2(numentries);
  4028. do {
  4029. size = bucketsize << log2qty;
  4030. if (flags & HASH_EARLY)
  4031. table = alloc_bootmem_nopanic(size);
  4032. else if (hashdist)
  4033. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4034. else {
  4035. unsigned long order = get_order(size);
  4036. if (order < MAX_ORDER)
  4037. table = (void *)__get_free_pages(GFP_ATOMIC,
  4038. order);
  4039. /*
  4040. * If bucketsize is not a power-of-two, we may free
  4041. * some pages at the end of hash table.
  4042. */
  4043. if (table) {
  4044. unsigned long alloc_end = (unsigned long)table +
  4045. (PAGE_SIZE << order);
  4046. unsigned long used = (unsigned long)table +
  4047. PAGE_ALIGN(size);
  4048. split_page(virt_to_page(table), order);
  4049. while (used < alloc_end) {
  4050. free_page(used);
  4051. used += PAGE_SIZE;
  4052. }
  4053. }
  4054. }
  4055. } while (!table && size > PAGE_SIZE && --log2qty);
  4056. if (!table)
  4057. panic("Failed to allocate %s hash table\n", tablename);
  4058. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  4059. tablename,
  4060. (1U << log2qty),
  4061. ilog2(size) - PAGE_SHIFT,
  4062. size);
  4063. if (_hash_shift)
  4064. *_hash_shift = log2qty;
  4065. if (_hash_mask)
  4066. *_hash_mask = (1 << log2qty) - 1;
  4067. /*
  4068. * If hashdist is set, the table allocation is done with __vmalloc()
  4069. * which invokes the kmemleak_alloc() callback. This function may also
  4070. * be called before the slab and kmemleak are initialised when
  4071. * kmemleak simply buffers the request to be executed later
  4072. * (GFP_ATOMIC flag ignored in this case).
  4073. */
  4074. if (!hashdist)
  4075. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4076. return table;
  4077. }
  4078. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4079. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4080. unsigned long pfn)
  4081. {
  4082. #ifdef CONFIG_SPARSEMEM
  4083. return __pfn_to_section(pfn)->pageblock_flags;
  4084. #else
  4085. return zone->pageblock_flags;
  4086. #endif /* CONFIG_SPARSEMEM */
  4087. }
  4088. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4089. {
  4090. #ifdef CONFIG_SPARSEMEM
  4091. pfn &= (PAGES_PER_SECTION-1);
  4092. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4093. #else
  4094. pfn = pfn - zone->zone_start_pfn;
  4095. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4096. #endif /* CONFIG_SPARSEMEM */
  4097. }
  4098. /**
  4099. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4100. * @page: The page within the block of interest
  4101. * @start_bitidx: The first bit of interest to retrieve
  4102. * @end_bitidx: The last bit of interest
  4103. * returns pageblock_bits flags
  4104. */
  4105. unsigned long get_pageblock_flags_group(struct page *page,
  4106. int start_bitidx, int end_bitidx)
  4107. {
  4108. struct zone *zone;
  4109. unsigned long *bitmap;
  4110. unsigned long pfn, bitidx;
  4111. unsigned long flags = 0;
  4112. unsigned long value = 1;
  4113. zone = page_zone(page);
  4114. pfn = page_to_pfn(page);
  4115. bitmap = get_pageblock_bitmap(zone, pfn);
  4116. bitidx = pfn_to_bitidx(zone, pfn);
  4117. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4118. if (test_bit(bitidx + start_bitidx, bitmap))
  4119. flags |= value;
  4120. return flags;
  4121. }
  4122. /**
  4123. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4124. * @page: The page within the block of interest
  4125. * @start_bitidx: The first bit of interest
  4126. * @end_bitidx: The last bit of interest
  4127. * @flags: The flags to set
  4128. */
  4129. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4130. int start_bitidx, int end_bitidx)
  4131. {
  4132. struct zone *zone;
  4133. unsigned long *bitmap;
  4134. unsigned long pfn, bitidx;
  4135. unsigned long value = 1;
  4136. zone = page_zone(page);
  4137. pfn = page_to_pfn(page);
  4138. bitmap = get_pageblock_bitmap(zone, pfn);
  4139. bitidx = pfn_to_bitidx(zone, pfn);
  4140. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4141. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4142. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4143. if (flags & value)
  4144. __set_bit(bitidx + start_bitidx, bitmap);
  4145. else
  4146. __clear_bit(bitidx + start_bitidx, bitmap);
  4147. }
  4148. /*
  4149. * This is designed as sub function...plz see page_isolation.c also.
  4150. * set/clear page block's type to be ISOLATE.
  4151. * page allocater never alloc memory from ISOLATE block.
  4152. */
  4153. int set_migratetype_isolate(struct page *page)
  4154. {
  4155. struct zone *zone;
  4156. unsigned long flags;
  4157. int ret = -EBUSY;
  4158. zone = page_zone(page);
  4159. spin_lock_irqsave(&zone->lock, flags);
  4160. /*
  4161. * In future, more migrate types will be able to be isolation target.
  4162. */
  4163. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  4164. goto out;
  4165. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4166. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4167. ret = 0;
  4168. out:
  4169. spin_unlock_irqrestore(&zone->lock, flags);
  4170. if (!ret)
  4171. drain_all_pages();
  4172. return ret;
  4173. }
  4174. void unset_migratetype_isolate(struct page *page)
  4175. {
  4176. struct zone *zone;
  4177. unsigned long flags;
  4178. zone = page_zone(page);
  4179. spin_lock_irqsave(&zone->lock, flags);
  4180. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4181. goto out;
  4182. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4183. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4184. out:
  4185. spin_unlock_irqrestore(&zone->lock, flags);
  4186. }
  4187. #ifdef CONFIG_MEMORY_HOTREMOVE
  4188. /*
  4189. * All pages in the range must be isolated before calling this.
  4190. */
  4191. void
  4192. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4193. {
  4194. struct page *page;
  4195. struct zone *zone;
  4196. int order, i;
  4197. unsigned long pfn;
  4198. unsigned long flags;
  4199. /* find the first valid pfn */
  4200. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4201. if (pfn_valid(pfn))
  4202. break;
  4203. if (pfn == end_pfn)
  4204. return;
  4205. zone = page_zone(pfn_to_page(pfn));
  4206. spin_lock_irqsave(&zone->lock, flags);
  4207. pfn = start_pfn;
  4208. while (pfn < end_pfn) {
  4209. if (!pfn_valid(pfn)) {
  4210. pfn++;
  4211. continue;
  4212. }
  4213. page = pfn_to_page(pfn);
  4214. BUG_ON(page_count(page));
  4215. BUG_ON(!PageBuddy(page));
  4216. order = page_order(page);
  4217. #ifdef CONFIG_DEBUG_VM
  4218. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4219. pfn, 1 << order, end_pfn);
  4220. #endif
  4221. list_del(&page->lru);
  4222. rmv_page_order(page);
  4223. zone->free_area[order].nr_free--;
  4224. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4225. - (1UL << order));
  4226. for (i = 0; i < (1 << order); i++)
  4227. SetPageReserved((page+i));
  4228. pfn += (1 << order);
  4229. }
  4230. spin_unlock_irqrestore(&zone->lock, flags);
  4231. }
  4232. #endif