sched.c 260 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_counter.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/reciprocal_div.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. #ifdef CONFIG_SMP
  113. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  114. /*
  115. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  116. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  117. */
  118. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  119. {
  120. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  121. }
  122. /*
  123. * Each time a sched group cpu_power is changed,
  124. * we must compute its reciprocal value
  125. */
  126. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  127. {
  128. sg->__cpu_power += val;
  129. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  130. }
  131. #endif
  132. static inline int rt_policy(int policy)
  133. {
  134. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  135. return 1;
  136. return 0;
  137. }
  138. static inline int task_has_rt_policy(struct task_struct *p)
  139. {
  140. return rt_policy(p->policy);
  141. }
  142. /*
  143. * This is the priority-queue data structure of the RT scheduling class:
  144. */
  145. struct rt_prio_array {
  146. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  147. struct list_head queue[MAX_RT_PRIO];
  148. };
  149. struct rt_bandwidth {
  150. /* nests inside the rq lock: */
  151. spinlock_t rt_runtime_lock;
  152. ktime_t rt_period;
  153. u64 rt_runtime;
  154. struct hrtimer rt_period_timer;
  155. };
  156. static struct rt_bandwidth def_rt_bandwidth;
  157. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  158. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  159. {
  160. struct rt_bandwidth *rt_b =
  161. container_of(timer, struct rt_bandwidth, rt_period_timer);
  162. ktime_t now;
  163. int overrun;
  164. int idle = 0;
  165. for (;;) {
  166. now = hrtimer_cb_get_time(timer);
  167. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  168. if (!overrun)
  169. break;
  170. idle = do_sched_rt_period_timer(rt_b, overrun);
  171. }
  172. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  173. }
  174. static
  175. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  176. {
  177. rt_b->rt_period = ns_to_ktime(period);
  178. rt_b->rt_runtime = runtime;
  179. spin_lock_init(&rt_b->rt_runtime_lock);
  180. hrtimer_init(&rt_b->rt_period_timer,
  181. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  182. rt_b->rt_period_timer.function = sched_rt_period_timer;
  183. }
  184. static inline int rt_bandwidth_enabled(void)
  185. {
  186. return sysctl_sched_rt_runtime >= 0;
  187. }
  188. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  189. {
  190. ktime_t now;
  191. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  192. return;
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. return;
  195. spin_lock(&rt_b->rt_runtime_lock);
  196. for (;;) {
  197. unsigned long delta;
  198. ktime_t soft, hard;
  199. if (hrtimer_active(&rt_b->rt_period_timer))
  200. break;
  201. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  202. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  203. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  204. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  205. delta = ktime_to_ns(ktime_sub(hard, soft));
  206. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  207. HRTIMER_MODE_ABS_PINNED, 0);
  208. }
  209. spin_unlock(&rt_b->rt_runtime_lock);
  210. }
  211. #ifdef CONFIG_RT_GROUP_SCHED
  212. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  213. {
  214. hrtimer_cancel(&rt_b->rt_period_timer);
  215. }
  216. #endif
  217. /*
  218. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  219. * detach_destroy_domains and partition_sched_domains.
  220. */
  221. static DEFINE_MUTEX(sched_domains_mutex);
  222. #ifdef CONFIG_GROUP_SCHED
  223. #include <linux/cgroup.h>
  224. struct cfs_rq;
  225. static LIST_HEAD(task_groups);
  226. /* task group related information */
  227. struct task_group {
  228. #ifdef CONFIG_CGROUP_SCHED
  229. struct cgroup_subsys_state css;
  230. #endif
  231. #ifdef CONFIG_USER_SCHED
  232. uid_t uid;
  233. #endif
  234. #ifdef CONFIG_FAIR_GROUP_SCHED
  235. /* schedulable entities of this group on each cpu */
  236. struct sched_entity **se;
  237. /* runqueue "owned" by this group on each cpu */
  238. struct cfs_rq **cfs_rq;
  239. unsigned long shares;
  240. #endif
  241. #ifdef CONFIG_RT_GROUP_SCHED
  242. struct sched_rt_entity **rt_se;
  243. struct rt_rq **rt_rq;
  244. struct rt_bandwidth rt_bandwidth;
  245. #endif
  246. struct rcu_head rcu;
  247. struct list_head list;
  248. struct task_group *parent;
  249. struct list_head siblings;
  250. struct list_head children;
  251. };
  252. #ifdef CONFIG_USER_SCHED
  253. /* Helper function to pass uid information to create_sched_user() */
  254. void set_tg_uid(struct user_struct *user)
  255. {
  256. user->tg->uid = user->uid;
  257. }
  258. /*
  259. * Root task group.
  260. * Every UID task group (including init_task_group aka UID-0) will
  261. * be a child to this group.
  262. */
  263. struct task_group root_task_group;
  264. #ifdef CONFIG_FAIR_GROUP_SCHED
  265. /* Default task group's sched entity on each cpu */
  266. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  267. /* Default task group's cfs_rq on each cpu */
  268. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  269. #endif /* CONFIG_FAIR_GROUP_SCHED */
  270. #ifdef CONFIG_RT_GROUP_SCHED
  271. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  272. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  273. #endif /* CONFIG_RT_GROUP_SCHED */
  274. #else /* !CONFIG_USER_SCHED */
  275. #define root_task_group init_task_group
  276. #endif /* CONFIG_USER_SCHED */
  277. /* task_group_lock serializes add/remove of task groups and also changes to
  278. * a task group's cpu shares.
  279. */
  280. static DEFINE_SPINLOCK(task_group_lock);
  281. #ifdef CONFIG_SMP
  282. static int root_task_group_empty(void)
  283. {
  284. return list_empty(&root_task_group.children);
  285. }
  286. #endif
  287. #ifdef CONFIG_FAIR_GROUP_SCHED
  288. #ifdef CONFIG_USER_SCHED
  289. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  290. #else /* !CONFIG_USER_SCHED */
  291. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  292. #endif /* CONFIG_USER_SCHED */
  293. /*
  294. * A weight of 0 or 1 can cause arithmetics problems.
  295. * A weight of a cfs_rq is the sum of weights of which entities
  296. * are queued on this cfs_rq, so a weight of a entity should not be
  297. * too large, so as the shares value of a task group.
  298. * (The default weight is 1024 - so there's no practical
  299. * limitation from this.)
  300. */
  301. #define MIN_SHARES 2
  302. #define MAX_SHARES (1UL << 18)
  303. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  304. #endif
  305. /* Default task group.
  306. * Every task in system belong to this group at bootup.
  307. */
  308. struct task_group init_task_group;
  309. /* return group to which a task belongs */
  310. static inline struct task_group *task_group(struct task_struct *p)
  311. {
  312. struct task_group *tg;
  313. #ifdef CONFIG_USER_SCHED
  314. rcu_read_lock();
  315. tg = __task_cred(p)->user->tg;
  316. rcu_read_unlock();
  317. #elif defined(CONFIG_CGROUP_SCHED)
  318. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  319. struct task_group, css);
  320. #else
  321. tg = &init_task_group;
  322. #endif
  323. return tg;
  324. }
  325. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  326. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  327. {
  328. #ifdef CONFIG_FAIR_GROUP_SCHED
  329. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  330. p->se.parent = task_group(p)->se[cpu];
  331. #endif
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  334. p->rt.parent = task_group(p)->rt_se[cpu];
  335. #endif
  336. }
  337. #else
  338. #ifdef CONFIG_SMP
  339. static int root_task_group_empty(void)
  340. {
  341. return 1;
  342. }
  343. #endif
  344. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  345. static inline struct task_group *task_group(struct task_struct *p)
  346. {
  347. return NULL;
  348. }
  349. #endif /* CONFIG_GROUP_SCHED */
  350. /* CFS-related fields in a runqueue */
  351. struct cfs_rq {
  352. struct load_weight load;
  353. unsigned long nr_running;
  354. u64 exec_clock;
  355. u64 min_vruntime;
  356. struct rb_root tasks_timeline;
  357. struct rb_node *rb_leftmost;
  358. struct list_head tasks;
  359. struct list_head *balance_iterator;
  360. /*
  361. * 'curr' points to currently running entity on this cfs_rq.
  362. * It is set to NULL otherwise (i.e when none are currently running).
  363. */
  364. struct sched_entity *curr, *next, *last;
  365. unsigned int nr_spread_over;
  366. #ifdef CONFIG_FAIR_GROUP_SCHED
  367. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  368. /*
  369. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  370. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  371. * (like users, containers etc.)
  372. *
  373. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  374. * list is used during load balance.
  375. */
  376. struct list_head leaf_cfs_rq_list;
  377. struct task_group *tg; /* group that "owns" this runqueue */
  378. #ifdef CONFIG_SMP
  379. /*
  380. * the part of load.weight contributed by tasks
  381. */
  382. unsigned long task_weight;
  383. /*
  384. * h_load = weight * f(tg)
  385. *
  386. * Where f(tg) is the recursive weight fraction assigned to
  387. * this group.
  388. */
  389. unsigned long h_load;
  390. /*
  391. * this cpu's part of tg->shares
  392. */
  393. unsigned long shares;
  394. /*
  395. * load.weight at the time we set shares
  396. */
  397. unsigned long rq_weight;
  398. #endif
  399. #endif
  400. };
  401. /* Real-Time classes' related field in a runqueue: */
  402. struct rt_rq {
  403. struct rt_prio_array active;
  404. unsigned long rt_nr_running;
  405. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  406. struct {
  407. int curr; /* highest queued rt task prio */
  408. #ifdef CONFIG_SMP
  409. int next; /* next highest */
  410. #endif
  411. } highest_prio;
  412. #endif
  413. #ifdef CONFIG_SMP
  414. unsigned long rt_nr_migratory;
  415. unsigned long rt_nr_total;
  416. int overloaded;
  417. struct plist_head pushable_tasks;
  418. #endif
  419. int rt_throttled;
  420. u64 rt_time;
  421. u64 rt_runtime;
  422. /* Nests inside the rq lock: */
  423. spinlock_t rt_runtime_lock;
  424. #ifdef CONFIG_RT_GROUP_SCHED
  425. unsigned long rt_nr_boosted;
  426. struct rq *rq;
  427. struct list_head leaf_rt_rq_list;
  428. struct task_group *tg;
  429. struct sched_rt_entity *rt_se;
  430. #endif
  431. };
  432. #ifdef CONFIG_SMP
  433. /*
  434. * We add the notion of a root-domain which will be used to define per-domain
  435. * variables. Each exclusive cpuset essentially defines an island domain by
  436. * fully partitioning the member cpus from any other cpuset. Whenever a new
  437. * exclusive cpuset is created, we also create and attach a new root-domain
  438. * object.
  439. *
  440. */
  441. struct root_domain {
  442. atomic_t refcount;
  443. cpumask_var_t span;
  444. cpumask_var_t online;
  445. /*
  446. * The "RT overload" flag: it gets set if a CPU has more than
  447. * one runnable RT task.
  448. */
  449. cpumask_var_t rto_mask;
  450. atomic_t rto_count;
  451. #ifdef CONFIG_SMP
  452. struct cpupri cpupri;
  453. #endif
  454. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  455. /*
  456. * Preferred wake up cpu nominated by sched_mc balance that will be
  457. * used when most cpus are idle in the system indicating overall very
  458. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  459. */
  460. unsigned int sched_mc_preferred_wakeup_cpu;
  461. #endif
  462. };
  463. /*
  464. * By default the system creates a single root-domain with all cpus as
  465. * members (mimicking the global state we have today).
  466. */
  467. static struct root_domain def_root_domain;
  468. #endif
  469. /*
  470. * This is the main, per-CPU runqueue data structure.
  471. *
  472. * Locking rule: those places that want to lock multiple runqueues
  473. * (such as the load balancing or the thread migration code), lock
  474. * acquire operations must be ordered by ascending &runqueue.
  475. */
  476. struct rq {
  477. /* runqueue lock: */
  478. spinlock_t lock;
  479. /*
  480. * nr_running and cpu_load should be in the same cacheline because
  481. * remote CPUs use both these fields when doing load calculation.
  482. */
  483. unsigned long nr_running;
  484. #define CPU_LOAD_IDX_MAX 5
  485. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  486. #ifdef CONFIG_NO_HZ
  487. unsigned long last_tick_seen;
  488. unsigned char in_nohz_recently;
  489. #endif
  490. /* capture load from *all* tasks on this cpu: */
  491. struct load_weight load;
  492. unsigned long nr_load_updates;
  493. u64 nr_switches;
  494. u64 nr_migrations_in;
  495. struct cfs_rq cfs;
  496. struct rt_rq rt;
  497. #ifdef CONFIG_FAIR_GROUP_SCHED
  498. /* list of leaf cfs_rq on this cpu: */
  499. struct list_head leaf_cfs_rq_list;
  500. #endif
  501. #ifdef CONFIG_RT_GROUP_SCHED
  502. struct list_head leaf_rt_rq_list;
  503. #endif
  504. /*
  505. * This is part of a global counter where only the total sum
  506. * over all CPUs matters. A task can increase this counter on
  507. * one CPU and if it got migrated afterwards it may decrease
  508. * it on another CPU. Always updated under the runqueue lock:
  509. */
  510. unsigned long nr_uninterruptible;
  511. struct task_struct *curr, *idle;
  512. unsigned long next_balance;
  513. struct mm_struct *prev_mm;
  514. u64 clock;
  515. atomic_t nr_iowait;
  516. #ifdef CONFIG_SMP
  517. struct root_domain *rd;
  518. struct sched_domain *sd;
  519. unsigned char idle_at_tick;
  520. /* For active balancing */
  521. int active_balance;
  522. int push_cpu;
  523. /* cpu of this runqueue: */
  524. int cpu;
  525. int online;
  526. unsigned long avg_load_per_task;
  527. struct task_struct *migration_thread;
  528. struct list_head migration_queue;
  529. #endif
  530. /* calc_load related fields */
  531. unsigned long calc_load_update;
  532. long calc_load_active;
  533. #ifdef CONFIG_SCHED_HRTICK
  534. #ifdef CONFIG_SMP
  535. int hrtick_csd_pending;
  536. struct call_single_data hrtick_csd;
  537. #endif
  538. struct hrtimer hrtick_timer;
  539. #endif
  540. #ifdef CONFIG_SCHEDSTATS
  541. /* latency stats */
  542. struct sched_info rq_sched_info;
  543. unsigned long long rq_cpu_time;
  544. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  545. /* sys_sched_yield() stats */
  546. unsigned int yld_count;
  547. /* schedule() stats */
  548. unsigned int sched_switch;
  549. unsigned int sched_count;
  550. unsigned int sched_goidle;
  551. /* try_to_wake_up() stats */
  552. unsigned int ttwu_count;
  553. unsigned int ttwu_local;
  554. /* BKL stats */
  555. unsigned int bkl_count;
  556. #endif
  557. };
  558. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  559. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  560. {
  561. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  562. }
  563. static inline int cpu_of(struct rq *rq)
  564. {
  565. #ifdef CONFIG_SMP
  566. return rq->cpu;
  567. #else
  568. return 0;
  569. #endif
  570. }
  571. /*
  572. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  573. * See detach_destroy_domains: synchronize_sched for details.
  574. *
  575. * The domain tree of any CPU may only be accessed from within
  576. * preempt-disabled sections.
  577. */
  578. #define for_each_domain(cpu, __sd) \
  579. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  580. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  581. #define this_rq() (&__get_cpu_var(runqueues))
  582. #define task_rq(p) cpu_rq(task_cpu(p))
  583. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  584. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  585. inline void update_rq_clock(struct rq *rq)
  586. {
  587. rq->clock = sched_clock_cpu(cpu_of(rq));
  588. }
  589. /*
  590. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  591. */
  592. #ifdef CONFIG_SCHED_DEBUG
  593. # define const_debug __read_mostly
  594. #else
  595. # define const_debug static const
  596. #endif
  597. /**
  598. * runqueue_is_locked
  599. *
  600. * Returns true if the current cpu runqueue is locked.
  601. * This interface allows printk to be called with the runqueue lock
  602. * held and know whether or not it is OK to wake up the klogd.
  603. */
  604. int runqueue_is_locked(void)
  605. {
  606. int cpu = get_cpu();
  607. struct rq *rq = cpu_rq(cpu);
  608. int ret;
  609. ret = spin_is_locked(&rq->lock);
  610. put_cpu();
  611. return ret;
  612. }
  613. /*
  614. * Debugging: various feature bits
  615. */
  616. #define SCHED_FEAT(name, enabled) \
  617. __SCHED_FEAT_##name ,
  618. enum {
  619. #include "sched_features.h"
  620. };
  621. #undef SCHED_FEAT
  622. #define SCHED_FEAT(name, enabled) \
  623. (1UL << __SCHED_FEAT_##name) * enabled |
  624. const_debug unsigned int sysctl_sched_features =
  625. #include "sched_features.h"
  626. 0;
  627. #undef SCHED_FEAT
  628. #ifdef CONFIG_SCHED_DEBUG
  629. #define SCHED_FEAT(name, enabled) \
  630. #name ,
  631. static __read_mostly char *sched_feat_names[] = {
  632. #include "sched_features.h"
  633. NULL
  634. };
  635. #undef SCHED_FEAT
  636. static int sched_feat_show(struct seq_file *m, void *v)
  637. {
  638. int i;
  639. for (i = 0; sched_feat_names[i]; i++) {
  640. if (!(sysctl_sched_features & (1UL << i)))
  641. seq_puts(m, "NO_");
  642. seq_printf(m, "%s ", sched_feat_names[i]);
  643. }
  644. seq_puts(m, "\n");
  645. return 0;
  646. }
  647. static ssize_t
  648. sched_feat_write(struct file *filp, const char __user *ubuf,
  649. size_t cnt, loff_t *ppos)
  650. {
  651. char buf[64];
  652. char *cmp = buf;
  653. int neg = 0;
  654. int i;
  655. if (cnt > 63)
  656. cnt = 63;
  657. if (copy_from_user(&buf, ubuf, cnt))
  658. return -EFAULT;
  659. buf[cnt] = 0;
  660. if (strncmp(buf, "NO_", 3) == 0) {
  661. neg = 1;
  662. cmp += 3;
  663. }
  664. for (i = 0; sched_feat_names[i]; i++) {
  665. int len = strlen(sched_feat_names[i]);
  666. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  667. if (neg)
  668. sysctl_sched_features &= ~(1UL << i);
  669. else
  670. sysctl_sched_features |= (1UL << i);
  671. break;
  672. }
  673. }
  674. if (!sched_feat_names[i])
  675. return -EINVAL;
  676. filp->f_pos += cnt;
  677. return cnt;
  678. }
  679. static int sched_feat_open(struct inode *inode, struct file *filp)
  680. {
  681. return single_open(filp, sched_feat_show, NULL);
  682. }
  683. static struct file_operations sched_feat_fops = {
  684. .open = sched_feat_open,
  685. .write = sched_feat_write,
  686. .read = seq_read,
  687. .llseek = seq_lseek,
  688. .release = single_release,
  689. };
  690. static __init int sched_init_debug(void)
  691. {
  692. debugfs_create_file("sched_features", 0644, NULL, NULL,
  693. &sched_feat_fops);
  694. return 0;
  695. }
  696. late_initcall(sched_init_debug);
  697. #endif
  698. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  699. /*
  700. * Number of tasks to iterate in a single balance run.
  701. * Limited because this is done with IRQs disabled.
  702. */
  703. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  704. /*
  705. * ratelimit for updating the group shares.
  706. * default: 0.25ms
  707. */
  708. unsigned int sysctl_sched_shares_ratelimit = 250000;
  709. /*
  710. * Inject some fuzzyness into changing the per-cpu group shares
  711. * this avoids remote rq-locks at the expense of fairness.
  712. * default: 4
  713. */
  714. unsigned int sysctl_sched_shares_thresh = 4;
  715. /*
  716. * period over which we measure -rt task cpu usage in us.
  717. * default: 1s
  718. */
  719. unsigned int sysctl_sched_rt_period = 1000000;
  720. static __read_mostly int scheduler_running;
  721. /*
  722. * part of the period that we allow rt tasks to run in us.
  723. * default: 0.95s
  724. */
  725. int sysctl_sched_rt_runtime = 950000;
  726. static inline u64 global_rt_period(void)
  727. {
  728. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  729. }
  730. static inline u64 global_rt_runtime(void)
  731. {
  732. if (sysctl_sched_rt_runtime < 0)
  733. return RUNTIME_INF;
  734. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  735. }
  736. #ifndef prepare_arch_switch
  737. # define prepare_arch_switch(next) do { } while (0)
  738. #endif
  739. #ifndef finish_arch_switch
  740. # define finish_arch_switch(prev) do { } while (0)
  741. #endif
  742. static inline int task_current(struct rq *rq, struct task_struct *p)
  743. {
  744. return rq->curr == p;
  745. }
  746. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  747. static inline int task_running(struct rq *rq, struct task_struct *p)
  748. {
  749. return task_current(rq, p);
  750. }
  751. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  752. {
  753. }
  754. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  755. {
  756. #ifdef CONFIG_DEBUG_SPINLOCK
  757. /* this is a valid case when another task releases the spinlock */
  758. rq->lock.owner = current;
  759. #endif
  760. /*
  761. * If we are tracking spinlock dependencies then we have to
  762. * fix up the runqueue lock - which gets 'carried over' from
  763. * prev into current:
  764. */
  765. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  766. spin_unlock_irq(&rq->lock);
  767. }
  768. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  769. static inline int task_running(struct rq *rq, struct task_struct *p)
  770. {
  771. #ifdef CONFIG_SMP
  772. return p->oncpu;
  773. #else
  774. return task_current(rq, p);
  775. #endif
  776. }
  777. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  778. {
  779. #ifdef CONFIG_SMP
  780. /*
  781. * We can optimise this out completely for !SMP, because the
  782. * SMP rebalancing from interrupt is the only thing that cares
  783. * here.
  784. */
  785. next->oncpu = 1;
  786. #endif
  787. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  788. spin_unlock_irq(&rq->lock);
  789. #else
  790. spin_unlock(&rq->lock);
  791. #endif
  792. }
  793. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  794. {
  795. #ifdef CONFIG_SMP
  796. /*
  797. * After ->oncpu is cleared, the task can be moved to a different CPU.
  798. * We must ensure this doesn't happen until the switch is completely
  799. * finished.
  800. */
  801. smp_wmb();
  802. prev->oncpu = 0;
  803. #endif
  804. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  805. local_irq_enable();
  806. #endif
  807. }
  808. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  809. /*
  810. * __task_rq_lock - lock the runqueue a given task resides on.
  811. * Must be called interrupts disabled.
  812. */
  813. static inline struct rq *__task_rq_lock(struct task_struct *p)
  814. __acquires(rq->lock)
  815. {
  816. for (;;) {
  817. struct rq *rq = task_rq(p);
  818. spin_lock(&rq->lock);
  819. if (likely(rq == task_rq(p)))
  820. return rq;
  821. spin_unlock(&rq->lock);
  822. }
  823. }
  824. /*
  825. * task_rq_lock - lock the runqueue a given task resides on and disable
  826. * interrupts. Note the ordering: we can safely lookup the task_rq without
  827. * explicitly disabling preemption.
  828. */
  829. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  830. __acquires(rq->lock)
  831. {
  832. struct rq *rq;
  833. for (;;) {
  834. local_irq_save(*flags);
  835. rq = task_rq(p);
  836. spin_lock(&rq->lock);
  837. if (likely(rq == task_rq(p)))
  838. return rq;
  839. spin_unlock_irqrestore(&rq->lock, *flags);
  840. }
  841. }
  842. void task_rq_unlock_wait(struct task_struct *p)
  843. {
  844. struct rq *rq = task_rq(p);
  845. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  846. spin_unlock_wait(&rq->lock);
  847. }
  848. static void __task_rq_unlock(struct rq *rq)
  849. __releases(rq->lock)
  850. {
  851. spin_unlock(&rq->lock);
  852. }
  853. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  854. __releases(rq->lock)
  855. {
  856. spin_unlock_irqrestore(&rq->lock, *flags);
  857. }
  858. /*
  859. * this_rq_lock - lock this runqueue and disable interrupts.
  860. */
  861. static struct rq *this_rq_lock(void)
  862. __acquires(rq->lock)
  863. {
  864. struct rq *rq;
  865. local_irq_disable();
  866. rq = this_rq();
  867. spin_lock(&rq->lock);
  868. return rq;
  869. }
  870. #ifdef CONFIG_SCHED_HRTICK
  871. /*
  872. * Use HR-timers to deliver accurate preemption points.
  873. *
  874. * Its all a bit involved since we cannot program an hrt while holding the
  875. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  876. * reschedule event.
  877. *
  878. * When we get rescheduled we reprogram the hrtick_timer outside of the
  879. * rq->lock.
  880. */
  881. /*
  882. * Use hrtick when:
  883. * - enabled by features
  884. * - hrtimer is actually high res
  885. */
  886. static inline int hrtick_enabled(struct rq *rq)
  887. {
  888. if (!sched_feat(HRTICK))
  889. return 0;
  890. if (!cpu_active(cpu_of(rq)))
  891. return 0;
  892. return hrtimer_is_hres_active(&rq->hrtick_timer);
  893. }
  894. static void hrtick_clear(struct rq *rq)
  895. {
  896. if (hrtimer_active(&rq->hrtick_timer))
  897. hrtimer_cancel(&rq->hrtick_timer);
  898. }
  899. /*
  900. * High-resolution timer tick.
  901. * Runs from hardirq context with interrupts disabled.
  902. */
  903. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  904. {
  905. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  906. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  907. spin_lock(&rq->lock);
  908. update_rq_clock(rq);
  909. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  910. spin_unlock(&rq->lock);
  911. return HRTIMER_NORESTART;
  912. }
  913. #ifdef CONFIG_SMP
  914. /*
  915. * called from hardirq (IPI) context
  916. */
  917. static void __hrtick_start(void *arg)
  918. {
  919. struct rq *rq = arg;
  920. spin_lock(&rq->lock);
  921. hrtimer_restart(&rq->hrtick_timer);
  922. rq->hrtick_csd_pending = 0;
  923. spin_unlock(&rq->lock);
  924. }
  925. /*
  926. * Called to set the hrtick timer state.
  927. *
  928. * called with rq->lock held and irqs disabled
  929. */
  930. static void hrtick_start(struct rq *rq, u64 delay)
  931. {
  932. struct hrtimer *timer = &rq->hrtick_timer;
  933. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  934. hrtimer_set_expires(timer, time);
  935. if (rq == this_rq()) {
  936. hrtimer_restart(timer);
  937. } else if (!rq->hrtick_csd_pending) {
  938. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  939. rq->hrtick_csd_pending = 1;
  940. }
  941. }
  942. static int
  943. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  944. {
  945. int cpu = (int)(long)hcpu;
  946. switch (action) {
  947. case CPU_UP_CANCELED:
  948. case CPU_UP_CANCELED_FROZEN:
  949. case CPU_DOWN_PREPARE:
  950. case CPU_DOWN_PREPARE_FROZEN:
  951. case CPU_DEAD:
  952. case CPU_DEAD_FROZEN:
  953. hrtick_clear(cpu_rq(cpu));
  954. return NOTIFY_OK;
  955. }
  956. return NOTIFY_DONE;
  957. }
  958. static __init void init_hrtick(void)
  959. {
  960. hotcpu_notifier(hotplug_hrtick, 0);
  961. }
  962. #else
  963. /*
  964. * Called to set the hrtick timer state.
  965. *
  966. * called with rq->lock held and irqs disabled
  967. */
  968. static void hrtick_start(struct rq *rq, u64 delay)
  969. {
  970. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  971. HRTIMER_MODE_REL_PINNED, 0);
  972. }
  973. static inline void init_hrtick(void)
  974. {
  975. }
  976. #endif /* CONFIG_SMP */
  977. static void init_rq_hrtick(struct rq *rq)
  978. {
  979. #ifdef CONFIG_SMP
  980. rq->hrtick_csd_pending = 0;
  981. rq->hrtick_csd.flags = 0;
  982. rq->hrtick_csd.func = __hrtick_start;
  983. rq->hrtick_csd.info = rq;
  984. #endif
  985. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  986. rq->hrtick_timer.function = hrtick;
  987. }
  988. #else /* CONFIG_SCHED_HRTICK */
  989. static inline void hrtick_clear(struct rq *rq)
  990. {
  991. }
  992. static inline void init_rq_hrtick(struct rq *rq)
  993. {
  994. }
  995. static inline void init_hrtick(void)
  996. {
  997. }
  998. #endif /* CONFIG_SCHED_HRTICK */
  999. /*
  1000. * resched_task - mark a task 'to be rescheduled now'.
  1001. *
  1002. * On UP this means the setting of the need_resched flag, on SMP it
  1003. * might also involve a cross-CPU call to trigger the scheduler on
  1004. * the target CPU.
  1005. */
  1006. #ifdef CONFIG_SMP
  1007. #ifndef tsk_is_polling
  1008. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1009. #endif
  1010. static void resched_task(struct task_struct *p)
  1011. {
  1012. int cpu;
  1013. assert_spin_locked(&task_rq(p)->lock);
  1014. if (test_tsk_need_resched(p))
  1015. return;
  1016. set_tsk_need_resched(p);
  1017. cpu = task_cpu(p);
  1018. if (cpu == smp_processor_id())
  1019. return;
  1020. /* NEED_RESCHED must be visible before we test polling */
  1021. smp_mb();
  1022. if (!tsk_is_polling(p))
  1023. smp_send_reschedule(cpu);
  1024. }
  1025. static void resched_cpu(int cpu)
  1026. {
  1027. struct rq *rq = cpu_rq(cpu);
  1028. unsigned long flags;
  1029. if (!spin_trylock_irqsave(&rq->lock, flags))
  1030. return;
  1031. resched_task(cpu_curr(cpu));
  1032. spin_unlock_irqrestore(&rq->lock, flags);
  1033. }
  1034. #ifdef CONFIG_NO_HZ
  1035. /*
  1036. * When add_timer_on() enqueues a timer into the timer wheel of an
  1037. * idle CPU then this timer might expire before the next timer event
  1038. * which is scheduled to wake up that CPU. In case of a completely
  1039. * idle system the next event might even be infinite time into the
  1040. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1041. * leaves the inner idle loop so the newly added timer is taken into
  1042. * account when the CPU goes back to idle and evaluates the timer
  1043. * wheel for the next timer event.
  1044. */
  1045. void wake_up_idle_cpu(int cpu)
  1046. {
  1047. struct rq *rq = cpu_rq(cpu);
  1048. if (cpu == smp_processor_id())
  1049. return;
  1050. /*
  1051. * This is safe, as this function is called with the timer
  1052. * wheel base lock of (cpu) held. When the CPU is on the way
  1053. * to idle and has not yet set rq->curr to idle then it will
  1054. * be serialized on the timer wheel base lock and take the new
  1055. * timer into account automatically.
  1056. */
  1057. if (rq->curr != rq->idle)
  1058. return;
  1059. /*
  1060. * We can set TIF_RESCHED on the idle task of the other CPU
  1061. * lockless. The worst case is that the other CPU runs the
  1062. * idle task through an additional NOOP schedule()
  1063. */
  1064. set_tsk_need_resched(rq->idle);
  1065. /* NEED_RESCHED must be visible before we test polling */
  1066. smp_mb();
  1067. if (!tsk_is_polling(rq->idle))
  1068. smp_send_reschedule(cpu);
  1069. }
  1070. #endif /* CONFIG_NO_HZ */
  1071. #else /* !CONFIG_SMP */
  1072. static void resched_task(struct task_struct *p)
  1073. {
  1074. assert_spin_locked(&task_rq(p)->lock);
  1075. set_tsk_need_resched(p);
  1076. }
  1077. #endif /* CONFIG_SMP */
  1078. #if BITS_PER_LONG == 32
  1079. # define WMULT_CONST (~0UL)
  1080. #else
  1081. # define WMULT_CONST (1UL << 32)
  1082. #endif
  1083. #define WMULT_SHIFT 32
  1084. /*
  1085. * Shift right and round:
  1086. */
  1087. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1088. /*
  1089. * delta *= weight / lw
  1090. */
  1091. static unsigned long
  1092. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1093. struct load_weight *lw)
  1094. {
  1095. u64 tmp;
  1096. if (!lw->inv_weight) {
  1097. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1098. lw->inv_weight = 1;
  1099. else
  1100. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1101. / (lw->weight+1);
  1102. }
  1103. tmp = (u64)delta_exec * weight;
  1104. /*
  1105. * Check whether we'd overflow the 64-bit multiplication:
  1106. */
  1107. if (unlikely(tmp > WMULT_CONST))
  1108. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1109. WMULT_SHIFT/2);
  1110. else
  1111. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1112. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1113. }
  1114. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1115. {
  1116. lw->weight += inc;
  1117. lw->inv_weight = 0;
  1118. }
  1119. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1120. {
  1121. lw->weight -= dec;
  1122. lw->inv_weight = 0;
  1123. }
  1124. /*
  1125. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1126. * of tasks with abnormal "nice" values across CPUs the contribution that
  1127. * each task makes to its run queue's load is weighted according to its
  1128. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1129. * scaled version of the new time slice allocation that they receive on time
  1130. * slice expiry etc.
  1131. */
  1132. #define WEIGHT_IDLEPRIO 3
  1133. #define WMULT_IDLEPRIO 1431655765
  1134. /*
  1135. * Nice levels are multiplicative, with a gentle 10% change for every
  1136. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1137. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1138. * that remained on nice 0.
  1139. *
  1140. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1141. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1142. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1143. * If a task goes up by ~10% and another task goes down by ~10% then
  1144. * the relative distance between them is ~25%.)
  1145. */
  1146. static const int prio_to_weight[40] = {
  1147. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1148. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1149. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1150. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1151. /* 0 */ 1024, 820, 655, 526, 423,
  1152. /* 5 */ 335, 272, 215, 172, 137,
  1153. /* 10 */ 110, 87, 70, 56, 45,
  1154. /* 15 */ 36, 29, 23, 18, 15,
  1155. };
  1156. /*
  1157. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1158. *
  1159. * In cases where the weight does not change often, we can use the
  1160. * precalculated inverse to speed up arithmetics by turning divisions
  1161. * into multiplications:
  1162. */
  1163. static const u32 prio_to_wmult[40] = {
  1164. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1165. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1166. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1167. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1168. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1169. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1170. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1171. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1172. };
  1173. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1174. /*
  1175. * runqueue iterator, to support SMP load-balancing between different
  1176. * scheduling classes, without having to expose their internal data
  1177. * structures to the load-balancing proper:
  1178. */
  1179. struct rq_iterator {
  1180. void *arg;
  1181. struct task_struct *(*start)(void *);
  1182. struct task_struct *(*next)(void *);
  1183. };
  1184. #ifdef CONFIG_SMP
  1185. static unsigned long
  1186. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1187. unsigned long max_load_move, struct sched_domain *sd,
  1188. enum cpu_idle_type idle, int *all_pinned,
  1189. int *this_best_prio, struct rq_iterator *iterator);
  1190. static int
  1191. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1192. struct sched_domain *sd, enum cpu_idle_type idle,
  1193. struct rq_iterator *iterator);
  1194. #endif
  1195. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1196. enum cpuacct_stat_index {
  1197. CPUACCT_STAT_USER, /* ... user mode */
  1198. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1199. CPUACCT_STAT_NSTATS,
  1200. };
  1201. #ifdef CONFIG_CGROUP_CPUACCT
  1202. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1203. static void cpuacct_update_stats(struct task_struct *tsk,
  1204. enum cpuacct_stat_index idx, cputime_t val);
  1205. #else
  1206. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1207. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1208. enum cpuacct_stat_index idx, cputime_t val) {}
  1209. #endif
  1210. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1211. {
  1212. update_load_add(&rq->load, load);
  1213. }
  1214. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1215. {
  1216. update_load_sub(&rq->load, load);
  1217. }
  1218. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1219. typedef int (*tg_visitor)(struct task_group *, void *);
  1220. /*
  1221. * Iterate the full tree, calling @down when first entering a node and @up when
  1222. * leaving it for the final time.
  1223. */
  1224. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1225. {
  1226. struct task_group *parent, *child;
  1227. int ret;
  1228. rcu_read_lock();
  1229. parent = &root_task_group;
  1230. down:
  1231. ret = (*down)(parent, data);
  1232. if (ret)
  1233. goto out_unlock;
  1234. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1235. parent = child;
  1236. goto down;
  1237. up:
  1238. continue;
  1239. }
  1240. ret = (*up)(parent, data);
  1241. if (ret)
  1242. goto out_unlock;
  1243. child = parent;
  1244. parent = parent->parent;
  1245. if (parent)
  1246. goto up;
  1247. out_unlock:
  1248. rcu_read_unlock();
  1249. return ret;
  1250. }
  1251. static int tg_nop(struct task_group *tg, void *data)
  1252. {
  1253. return 0;
  1254. }
  1255. #endif
  1256. #ifdef CONFIG_SMP
  1257. static unsigned long source_load(int cpu, int type);
  1258. static unsigned long target_load(int cpu, int type);
  1259. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1260. static unsigned long cpu_avg_load_per_task(int cpu)
  1261. {
  1262. struct rq *rq = cpu_rq(cpu);
  1263. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1264. if (nr_running)
  1265. rq->avg_load_per_task = rq->load.weight / nr_running;
  1266. else
  1267. rq->avg_load_per_task = 0;
  1268. return rq->avg_load_per_task;
  1269. }
  1270. #ifdef CONFIG_FAIR_GROUP_SCHED
  1271. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1272. /*
  1273. * Calculate and set the cpu's group shares.
  1274. */
  1275. static void
  1276. update_group_shares_cpu(struct task_group *tg, int cpu,
  1277. unsigned long sd_shares, unsigned long sd_rq_weight)
  1278. {
  1279. unsigned long rq_weight;
  1280. unsigned long shares;
  1281. int boost = 0;
  1282. if (!tg->se[cpu])
  1283. return;
  1284. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1285. if (!rq_weight) {
  1286. boost = 1;
  1287. rq_weight = NICE_0_LOAD;
  1288. }
  1289. /*
  1290. * \Sum shares * rq_weight
  1291. * shares = -----------------------
  1292. * \Sum rq_weight
  1293. *
  1294. */
  1295. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1296. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1297. if (abs(shares - tg->se[cpu]->load.weight) >
  1298. sysctl_sched_shares_thresh) {
  1299. struct rq *rq = cpu_rq(cpu);
  1300. unsigned long flags;
  1301. spin_lock_irqsave(&rq->lock, flags);
  1302. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1303. __set_se_shares(tg->se[cpu], shares);
  1304. spin_unlock_irqrestore(&rq->lock, flags);
  1305. }
  1306. }
  1307. /*
  1308. * Re-compute the task group their per cpu shares over the given domain.
  1309. * This needs to be done in a bottom-up fashion because the rq weight of a
  1310. * parent group depends on the shares of its child groups.
  1311. */
  1312. static int tg_shares_up(struct task_group *tg, void *data)
  1313. {
  1314. unsigned long weight, rq_weight = 0, eff_weight = 0;
  1315. unsigned long shares = 0;
  1316. struct sched_domain *sd = data;
  1317. int i;
  1318. for_each_cpu(i, sched_domain_span(sd)) {
  1319. /*
  1320. * If there are currently no tasks on the cpu pretend there
  1321. * is one of average load so that when a new task gets to
  1322. * run here it will not get delayed by group starvation.
  1323. */
  1324. weight = tg->cfs_rq[i]->load.weight;
  1325. tg->cfs_rq[i]->rq_weight = weight;
  1326. rq_weight += weight;
  1327. if (!weight)
  1328. weight = NICE_0_LOAD;
  1329. eff_weight += weight;
  1330. shares += tg->cfs_rq[i]->shares;
  1331. }
  1332. if ((!shares && rq_weight) || shares > tg->shares)
  1333. shares = tg->shares;
  1334. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1335. shares = tg->shares;
  1336. for_each_cpu(i, sched_domain_span(sd)) {
  1337. unsigned long sd_rq_weight = rq_weight;
  1338. if (!tg->cfs_rq[i]->rq_weight)
  1339. sd_rq_weight = eff_weight;
  1340. update_group_shares_cpu(tg, i, shares, sd_rq_weight);
  1341. }
  1342. return 0;
  1343. }
  1344. /*
  1345. * Compute the cpu's hierarchical load factor for each task group.
  1346. * This needs to be done in a top-down fashion because the load of a child
  1347. * group is a fraction of its parents load.
  1348. */
  1349. static int tg_load_down(struct task_group *tg, void *data)
  1350. {
  1351. unsigned long load;
  1352. long cpu = (long)data;
  1353. if (!tg->parent) {
  1354. load = cpu_rq(cpu)->load.weight;
  1355. } else {
  1356. load = tg->parent->cfs_rq[cpu]->h_load;
  1357. load *= tg->cfs_rq[cpu]->shares;
  1358. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1359. }
  1360. tg->cfs_rq[cpu]->h_load = load;
  1361. return 0;
  1362. }
  1363. static void update_shares(struct sched_domain *sd)
  1364. {
  1365. s64 elapsed;
  1366. u64 now;
  1367. if (root_task_group_empty())
  1368. return;
  1369. now = cpu_clock(raw_smp_processor_id());
  1370. elapsed = now - sd->last_update;
  1371. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1372. sd->last_update = now;
  1373. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1374. }
  1375. }
  1376. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1377. {
  1378. if (root_task_group_empty())
  1379. return;
  1380. spin_unlock(&rq->lock);
  1381. update_shares(sd);
  1382. spin_lock(&rq->lock);
  1383. }
  1384. static void update_h_load(long cpu)
  1385. {
  1386. if (root_task_group_empty())
  1387. return;
  1388. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1389. }
  1390. #else
  1391. static inline void update_shares(struct sched_domain *sd)
  1392. {
  1393. }
  1394. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1395. {
  1396. }
  1397. #endif
  1398. #ifdef CONFIG_PREEMPT
  1399. /*
  1400. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1401. * way at the expense of forcing extra atomic operations in all
  1402. * invocations. This assures that the double_lock is acquired using the
  1403. * same underlying policy as the spinlock_t on this architecture, which
  1404. * reduces latency compared to the unfair variant below. However, it
  1405. * also adds more overhead and therefore may reduce throughput.
  1406. */
  1407. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1408. __releases(this_rq->lock)
  1409. __acquires(busiest->lock)
  1410. __acquires(this_rq->lock)
  1411. {
  1412. spin_unlock(&this_rq->lock);
  1413. double_rq_lock(this_rq, busiest);
  1414. return 1;
  1415. }
  1416. #else
  1417. /*
  1418. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1419. * latency by eliminating extra atomic operations when the locks are
  1420. * already in proper order on entry. This favors lower cpu-ids and will
  1421. * grant the double lock to lower cpus over higher ids under contention,
  1422. * regardless of entry order into the function.
  1423. */
  1424. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1425. __releases(this_rq->lock)
  1426. __acquires(busiest->lock)
  1427. __acquires(this_rq->lock)
  1428. {
  1429. int ret = 0;
  1430. if (unlikely(!spin_trylock(&busiest->lock))) {
  1431. if (busiest < this_rq) {
  1432. spin_unlock(&this_rq->lock);
  1433. spin_lock(&busiest->lock);
  1434. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1435. ret = 1;
  1436. } else
  1437. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1438. }
  1439. return ret;
  1440. }
  1441. #endif /* CONFIG_PREEMPT */
  1442. /*
  1443. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1444. */
  1445. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1446. {
  1447. if (unlikely(!irqs_disabled())) {
  1448. /* printk() doesn't work good under rq->lock */
  1449. spin_unlock(&this_rq->lock);
  1450. BUG_ON(1);
  1451. }
  1452. return _double_lock_balance(this_rq, busiest);
  1453. }
  1454. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1455. __releases(busiest->lock)
  1456. {
  1457. spin_unlock(&busiest->lock);
  1458. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1459. }
  1460. #endif
  1461. #ifdef CONFIG_FAIR_GROUP_SCHED
  1462. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1463. {
  1464. #ifdef CONFIG_SMP
  1465. cfs_rq->shares = shares;
  1466. #endif
  1467. }
  1468. #endif
  1469. static void calc_load_account_active(struct rq *this_rq);
  1470. #include "sched_stats.h"
  1471. #include "sched_idletask.c"
  1472. #include "sched_fair.c"
  1473. #include "sched_rt.c"
  1474. #ifdef CONFIG_SCHED_DEBUG
  1475. # include "sched_debug.c"
  1476. #endif
  1477. #define sched_class_highest (&rt_sched_class)
  1478. #define for_each_class(class) \
  1479. for (class = sched_class_highest; class; class = class->next)
  1480. static void inc_nr_running(struct rq *rq)
  1481. {
  1482. rq->nr_running++;
  1483. }
  1484. static void dec_nr_running(struct rq *rq)
  1485. {
  1486. rq->nr_running--;
  1487. }
  1488. static void set_load_weight(struct task_struct *p)
  1489. {
  1490. if (task_has_rt_policy(p)) {
  1491. p->se.load.weight = prio_to_weight[0] * 2;
  1492. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1493. return;
  1494. }
  1495. /*
  1496. * SCHED_IDLE tasks get minimal weight:
  1497. */
  1498. if (p->policy == SCHED_IDLE) {
  1499. p->se.load.weight = WEIGHT_IDLEPRIO;
  1500. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1501. return;
  1502. }
  1503. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1504. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1505. }
  1506. static void update_avg(u64 *avg, u64 sample)
  1507. {
  1508. s64 diff = sample - *avg;
  1509. *avg += diff >> 3;
  1510. }
  1511. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1512. {
  1513. if (wakeup)
  1514. p->se.start_runtime = p->se.sum_exec_runtime;
  1515. sched_info_queued(p);
  1516. p->sched_class->enqueue_task(rq, p, wakeup);
  1517. p->se.on_rq = 1;
  1518. }
  1519. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1520. {
  1521. if (sleep) {
  1522. if (p->se.last_wakeup) {
  1523. update_avg(&p->se.avg_overlap,
  1524. p->se.sum_exec_runtime - p->se.last_wakeup);
  1525. p->se.last_wakeup = 0;
  1526. } else {
  1527. update_avg(&p->se.avg_wakeup,
  1528. sysctl_sched_wakeup_granularity);
  1529. }
  1530. }
  1531. sched_info_dequeued(p);
  1532. p->sched_class->dequeue_task(rq, p, sleep);
  1533. p->se.on_rq = 0;
  1534. }
  1535. /*
  1536. * __normal_prio - return the priority that is based on the static prio
  1537. */
  1538. static inline int __normal_prio(struct task_struct *p)
  1539. {
  1540. return p->static_prio;
  1541. }
  1542. /*
  1543. * Calculate the expected normal priority: i.e. priority
  1544. * without taking RT-inheritance into account. Might be
  1545. * boosted by interactivity modifiers. Changes upon fork,
  1546. * setprio syscalls, and whenever the interactivity
  1547. * estimator recalculates.
  1548. */
  1549. static inline int normal_prio(struct task_struct *p)
  1550. {
  1551. int prio;
  1552. if (task_has_rt_policy(p))
  1553. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1554. else
  1555. prio = __normal_prio(p);
  1556. return prio;
  1557. }
  1558. /*
  1559. * Calculate the current priority, i.e. the priority
  1560. * taken into account by the scheduler. This value might
  1561. * be boosted by RT tasks, or might be boosted by
  1562. * interactivity modifiers. Will be RT if the task got
  1563. * RT-boosted. If not then it returns p->normal_prio.
  1564. */
  1565. static int effective_prio(struct task_struct *p)
  1566. {
  1567. p->normal_prio = normal_prio(p);
  1568. /*
  1569. * If we are RT tasks or we were boosted to RT priority,
  1570. * keep the priority unchanged. Otherwise, update priority
  1571. * to the normal priority:
  1572. */
  1573. if (!rt_prio(p->prio))
  1574. return p->normal_prio;
  1575. return p->prio;
  1576. }
  1577. /*
  1578. * activate_task - move a task to the runqueue.
  1579. */
  1580. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1581. {
  1582. if (task_contributes_to_load(p))
  1583. rq->nr_uninterruptible--;
  1584. enqueue_task(rq, p, wakeup);
  1585. inc_nr_running(rq);
  1586. }
  1587. /*
  1588. * deactivate_task - remove a task from the runqueue.
  1589. */
  1590. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1591. {
  1592. if (task_contributes_to_load(p))
  1593. rq->nr_uninterruptible++;
  1594. dequeue_task(rq, p, sleep);
  1595. dec_nr_running(rq);
  1596. }
  1597. /**
  1598. * task_curr - is this task currently executing on a CPU?
  1599. * @p: the task in question.
  1600. */
  1601. inline int task_curr(const struct task_struct *p)
  1602. {
  1603. return cpu_curr(task_cpu(p)) == p;
  1604. }
  1605. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1606. {
  1607. set_task_rq(p, cpu);
  1608. #ifdef CONFIG_SMP
  1609. /*
  1610. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1611. * successfuly executed on another CPU. We must ensure that updates of
  1612. * per-task data have been completed by this moment.
  1613. */
  1614. smp_wmb();
  1615. task_thread_info(p)->cpu = cpu;
  1616. #endif
  1617. }
  1618. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1619. const struct sched_class *prev_class,
  1620. int oldprio, int running)
  1621. {
  1622. if (prev_class != p->sched_class) {
  1623. if (prev_class->switched_from)
  1624. prev_class->switched_from(rq, p, running);
  1625. p->sched_class->switched_to(rq, p, running);
  1626. } else
  1627. p->sched_class->prio_changed(rq, p, oldprio, running);
  1628. }
  1629. #ifdef CONFIG_SMP
  1630. /* Used instead of source_load when we know the type == 0 */
  1631. static unsigned long weighted_cpuload(const int cpu)
  1632. {
  1633. return cpu_rq(cpu)->load.weight;
  1634. }
  1635. /*
  1636. * Is this task likely cache-hot:
  1637. */
  1638. static int
  1639. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1640. {
  1641. s64 delta;
  1642. /*
  1643. * Buddy candidates are cache hot:
  1644. */
  1645. if (sched_feat(CACHE_HOT_BUDDY) &&
  1646. (&p->se == cfs_rq_of(&p->se)->next ||
  1647. &p->se == cfs_rq_of(&p->se)->last))
  1648. return 1;
  1649. if (p->sched_class != &fair_sched_class)
  1650. return 0;
  1651. if (sysctl_sched_migration_cost == -1)
  1652. return 1;
  1653. if (sysctl_sched_migration_cost == 0)
  1654. return 0;
  1655. delta = now - p->se.exec_start;
  1656. return delta < (s64)sysctl_sched_migration_cost;
  1657. }
  1658. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1659. {
  1660. int old_cpu = task_cpu(p);
  1661. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1662. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1663. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1664. u64 clock_offset;
  1665. clock_offset = old_rq->clock - new_rq->clock;
  1666. trace_sched_migrate_task(p, new_cpu);
  1667. #ifdef CONFIG_SCHEDSTATS
  1668. if (p->se.wait_start)
  1669. p->se.wait_start -= clock_offset;
  1670. if (p->se.sleep_start)
  1671. p->se.sleep_start -= clock_offset;
  1672. if (p->se.block_start)
  1673. p->se.block_start -= clock_offset;
  1674. #endif
  1675. if (old_cpu != new_cpu) {
  1676. p->se.nr_migrations++;
  1677. new_rq->nr_migrations_in++;
  1678. #ifdef CONFIG_SCHEDSTATS
  1679. if (task_hot(p, old_rq->clock, NULL))
  1680. schedstat_inc(p, se.nr_forced2_migrations);
  1681. #endif
  1682. perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1683. 1, 1, NULL, 0);
  1684. }
  1685. p->se.vruntime -= old_cfsrq->min_vruntime -
  1686. new_cfsrq->min_vruntime;
  1687. __set_task_cpu(p, new_cpu);
  1688. }
  1689. struct migration_req {
  1690. struct list_head list;
  1691. struct task_struct *task;
  1692. int dest_cpu;
  1693. struct completion done;
  1694. };
  1695. /*
  1696. * The task's runqueue lock must be held.
  1697. * Returns true if you have to wait for migration thread.
  1698. */
  1699. static int
  1700. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1701. {
  1702. struct rq *rq = task_rq(p);
  1703. /*
  1704. * If the task is not on a runqueue (and not running), then
  1705. * it is sufficient to simply update the task's cpu field.
  1706. */
  1707. if (!p->se.on_rq && !task_running(rq, p)) {
  1708. set_task_cpu(p, dest_cpu);
  1709. return 0;
  1710. }
  1711. init_completion(&req->done);
  1712. req->task = p;
  1713. req->dest_cpu = dest_cpu;
  1714. list_add(&req->list, &rq->migration_queue);
  1715. return 1;
  1716. }
  1717. /*
  1718. * wait_task_context_switch - wait for a thread to complete at least one
  1719. * context switch.
  1720. *
  1721. * @p must not be current.
  1722. */
  1723. void wait_task_context_switch(struct task_struct *p)
  1724. {
  1725. unsigned long nvcsw, nivcsw, flags;
  1726. int running;
  1727. struct rq *rq;
  1728. nvcsw = p->nvcsw;
  1729. nivcsw = p->nivcsw;
  1730. for (;;) {
  1731. /*
  1732. * The runqueue is assigned before the actual context
  1733. * switch. We need to take the runqueue lock.
  1734. *
  1735. * We could check initially without the lock but it is
  1736. * very likely that we need to take the lock in every
  1737. * iteration.
  1738. */
  1739. rq = task_rq_lock(p, &flags);
  1740. running = task_running(rq, p);
  1741. task_rq_unlock(rq, &flags);
  1742. if (likely(!running))
  1743. break;
  1744. /*
  1745. * The switch count is incremented before the actual
  1746. * context switch. We thus wait for two switches to be
  1747. * sure at least one completed.
  1748. */
  1749. if ((p->nvcsw - nvcsw) > 1)
  1750. break;
  1751. if ((p->nivcsw - nivcsw) > 1)
  1752. break;
  1753. cpu_relax();
  1754. }
  1755. }
  1756. /*
  1757. * wait_task_inactive - wait for a thread to unschedule.
  1758. *
  1759. * If @match_state is nonzero, it's the @p->state value just checked and
  1760. * not expected to change. If it changes, i.e. @p might have woken up,
  1761. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1762. * we return a positive number (its total switch count). If a second call
  1763. * a short while later returns the same number, the caller can be sure that
  1764. * @p has remained unscheduled the whole time.
  1765. *
  1766. * The caller must ensure that the task *will* unschedule sometime soon,
  1767. * else this function might spin for a *long* time. This function can't
  1768. * be called with interrupts off, or it may introduce deadlock with
  1769. * smp_call_function() if an IPI is sent by the same process we are
  1770. * waiting to become inactive.
  1771. */
  1772. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1773. {
  1774. unsigned long flags;
  1775. int running, on_rq;
  1776. unsigned long ncsw;
  1777. struct rq *rq;
  1778. for (;;) {
  1779. /*
  1780. * We do the initial early heuristics without holding
  1781. * any task-queue locks at all. We'll only try to get
  1782. * the runqueue lock when things look like they will
  1783. * work out!
  1784. */
  1785. rq = task_rq(p);
  1786. /*
  1787. * If the task is actively running on another CPU
  1788. * still, just relax and busy-wait without holding
  1789. * any locks.
  1790. *
  1791. * NOTE! Since we don't hold any locks, it's not
  1792. * even sure that "rq" stays as the right runqueue!
  1793. * But we don't care, since "task_running()" will
  1794. * return false if the runqueue has changed and p
  1795. * is actually now running somewhere else!
  1796. */
  1797. while (task_running(rq, p)) {
  1798. if (match_state && unlikely(p->state != match_state))
  1799. return 0;
  1800. cpu_relax();
  1801. }
  1802. /*
  1803. * Ok, time to look more closely! We need the rq
  1804. * lock now, to be *sure*. If we're wrong, we'll
  1805. * just go back and repeat.
  1806. */
  1807. rq = task_rq_lock(p, &flags);
  1808. trace_sched_wait_task(rq, p);
  1809. running = task_running(rq, p);
  1810. on_rq = p->se.on_rq;
  1811. ncsw = 0;
  1812. if (!match_state || p->state == match_state)
  1813. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1814. task_rq_unlock(rq, &flags);
  1815. /*
  1816. * If it changed from the expected state, bail out now.
  1817. */
  1818. if (unlikely(!ncsw))
  1819. break;
  1820. /*
  1821. * Was it really running after all now that we
  1822. * checked with the proper locks actually held?
  1823. *
  1824. * Oops. Go back and try again..
  1825. */
  1826. if (unlikely(running)) {
  1827. cpu_relax();
  1828. continue;
  1829. }
  1830. /*
  1831. * It's not enough that it's not actively running,
  1832. * it must be off the runqueue _entirely_, and not
  1833. * preempted!
  1834. *
  1835. * So if it was still runnable (but just not actively
  1836. * running right now), it's preempted, and we should
  1837. * yield - it could be a while.
  1838. */
  1839. if (unlikely(on_rq)) {
  1840. schedule_timeout_uninterruptible(1);
  1841. continue;
  1842. }
  1843. /*
  1844. * Ahh, all good. It wasn't running, and it wasn't
  1845. * runnable, which means that it will never become
  1846. * running in the future either. We're all done!
  1847. */
  1848. break;
  1849. }
  1850. return ncsw;
  1851. }
  1852. /***
  1853. * kick_process - kick a running thread to enter/exit the kernel
  1854. * @p: the to-be-kicked thread
  1855. *
  1856. * Cause a process which is running on another CPU to enter
  1857. * kernel-mode, without any delay. (to get signals handled.)
  1858. *
  1859. * NOTE: this function doesnt have to take the runqueue lock,
  1860. * because all it wants to ensure is that the remote task enters
  1861. * the kernel. If the IPI races and the task has been migrated
  1862. * to another CPU then no harm is done and the purpose has been
  1863. * achieved as well.
  1864. */
  1865. void kick_process(struct task_struct *p)
  1866. {
  1867. int cpu;
  1868. preempt_disable();
  1869. cpu = task_cpu(p);
  1870. if ((cpu != smp_processor_id()) && task_curr(p))
  1871. smp_send_reschedule(cpu);
  1872. preempt_enable();
  1873. }
  1874. EXPORT_SYMBOL_GPL(kick_process);
  1875. /*
  1876. * Return a low guess at the load of a migration-source cpu weighted
  1877. * according to the scheduling class and "nice" value.
  1878. *
  1879. * We want to under-estimate the load of migration sources, to
  1880. * balance conservatively.
  1881. */
  1882. static unsigned long source_load(int cpu, int type)
  1883. {
  1884. struct rq *rq = cpu_rq(cpu);
  1885. unsigned long total = weighted_cpuload(cpu);
  1886. if (type == 0 || !sched_feat(LB_BIAS))
  1887. return total;
  1888. return min(rq->cpu_load[type-1], total);
  1889. }
  1890. /*
  1891. * Return a high guess at the load of a migration-target cpu weighted
  1892. * according to the scheduling class and "nice" value.
  1893. */
  1894. static unsigned long target_load(int cpu, int type)
  1895. {
  1896. struct rq *rq = cpu_rq(cpu);
  1897. unsigned long total = weighted_cpuload(cpu);
  1898. if (type == 0 || !sched_feat(LB_BIAS))
  1899. return total;
  1900. return max(rq->cpu_load[type-1], total);
  1901. }
  1902. /*
  1903. * find_idlest_group finds and returns the least busy CPU group within the
  1904. * domain.
  1905. */
  1906. static struct sched_group *
  1907. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1908. {
  1909. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1910. unsigned long min_load = ULONG_MAX, this_load = 0;
  1911. int load_idx = sd->forkexec_idx;
  1912. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1913. do {
  1914. unsigned long load, avg_load;
  1915. int local_group;
  1916. int i;
  1917. /* Skip over this group if it has no CPUs allowed */
  1918. if (!cpumask_intersects(sched_group_cpus(group),
  1919. &p->cpus_allowed))
  1920. continue;
  1921. local_group = cpumask_test_cpu(this_cpu,
  1922. sched_group_cpus(group));
  1923. /* Tally up the load of all CPUs in the group */
  1924. avg_load = 0;
  1925. for_each_cpu(i, sched_group_cpus(group)) {
  1926. /* Bias balancing toward cpus of our domain */
  1927. if (local_group)
  1928. load = source_load(i, load_idx);
  1929. else
  1930. load = target_load(i, load_idx);
  1931. avg_load += load;
  1932. }
  1933. /* Adjust by relative CPU power of the group */
  1934. avg_load = sg_div_cpu_power(group,
  1935. avg_load * SCHED_LOAD_SCALE);
  1936. if (local_group) {
  1937. this_load = avg_load;
  1938. this = group;
  1939. } else if (avg_load < min_load) {
  1940. min_load = avg_load;
  1941. idlest = group;
  1942. }
  1943. } while (group = group->next, group != sd->groups);
  1944. if (!idlest || 100*this_load < imbalance*min_load)
  1945. return NULL;
  1946. return idlest;
  1947. }
  1948. /*
  1949. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1950. */
  1951. static int
  1952. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1953. {
  1954. unsigned long load, min_load = ULONG_MAX;
  1955. int idlest = -1;
  1956. int i;
  1957. /* Traverse only the allowed CPUs */
  1958. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1959. load = weighted_cpuload(i);
  1960. if (load < min_load || (load == min_load && i == this_cpu)) {
  1961. min_load = load;
  1962. idlest = i;
  1963. }
  1964. }
  1965. return idlest;
  1966. }
  1967. /*
  1968. * sched_balance_self: balance the current task (running on cpu) in domains
  1969. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1970. * SD_BALANCE_EXEC.
  1971. *
  1972. * Balance, ie. select the least loaded group.
  1973. *
  1974. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1975. *
  1976. * preempt must be disabled.
  1977. */
  1978. static int sched_balance_self(int cpu, int flag)
  1979. {
  1980. struct task_struct *t = current;
  1981. struct sched_domain *tmp, *sd = NULL;
  1982. for_each_domain(cpu, tmp) {
  1983. /*
  1984. * If power savings logic is enabled for a domain, stop there.
  1985. */
  1986. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1987. break;
  1988. if (tmp->flags & flag)
  1989. sd = tmp;
  1990. }
  1991. if (sd)
  1992. update_shares(sd);
  1993. while (sd) {
  1994. struct sched_group *group;
  1995. int new_cpu, weight;
  1996. if (!(sd->flags & flag)) {
  1997. sd = sd->child;
  1998. continue;
  1999. }
  2000. group = find_idlest_group(sd, t, cpu);
  2001. if (!group) {
  2002. sd = sd->child;
  2003. continue;
  2004. }
  2005. new_cpu = find_idlest_cpu(group, t, cpu);
  2006. if (new_cpu == -1 || new_cpu == cpu) {
  2007. /* Now try balancing at a lower domain level of cpu */
  2008. sd = sd->child;
  2009. continue;
  2010. }
  2011. /* Now try balancing at a lower domain level of new_cpu */
  2012. cpu = new_cpu;
  2013. weight = cpumask_weight(sched_domain_span(sd));
  2014. sd = NULL;
  2015. for_each_domain(cpu, tmp) {
  2016. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  2017. break;
  2018. if (tmp->flags & flag)
  2019. sd = tmp;
  2020. }
  2021. /* while loop will break here if sd == NULL */
  2022. }
  2023. return cpu;
  2024. }
  2025. #endif /* CONFIG_SMP */
  2026. /**
  2027. * task_oncpu_function_call - call a function on the cpu on which a task runs
  2028. * @p: the task to evaluate
  2029. * @func: the function to be called
  2030. * @info: the function call argument
  2031. *
  2032. * Calls the function @func when the task is currently running. This might
  2033. * be on the current CPU, which just calls the function directly
  2034. */
  2035. void task_oncpu_function_call(struct task_struct *p,
  2036. void (*func) (void *info), void *info)
  2037. {
  2038. int cpu;
  2039. preempt_disable();
  2040. cpu = task_cpu(p);
  2041. if (task_curr(p))
  2042. smp_call_function_single(cpu, func, info, 1);
  2043. preempt_enable();
  2044. }
  2045. /***
  2046. * try_to_wake_up - wake up a thread
  2047. * @p: the to-be-woken-up thread
  2048. * @state: the mask of task states that can be woken
  2049. * @sync: do a synchronous wakeup?
  2050. *
  2051. * Put it on the run-queue if it's not already there. The "current"
  2052. * thread is always on the run-queue (except when the actual
  2053. * re-schedule is in progress), and as such you're allowed to do
  2054. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2055. * runnable without the overhead of this.
  2056. *
  2057. * returns failure only if the task is already active.
  2058. */
  2059. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2060. {
  2061. int cpu, orig_cpu, this_cpu, success = 0;
  2062. unsigned long flags;
  2063. long old_state;
  2064. struct rq *rq;
  2065. if (!sched_feat(SYNC_WAKEUPS))
  2066. sync = 0;
  2067. #ifdef CONFIG_SMP
  2068. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  2069. struct sched_domain *sd;
  2070. this_cpu = raw_smp_processor_id();
  2071. cpu = task_cpu(p);
  2072. for_each_domain(this_cpu, sd) {
  2073. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2074. update_shares(sd);
  2075. break;
  2076. }
  2077. }
  2078. }
  2079. #endif
  2080. smp_wmb();
  2081. rq = task_rq_lock(p, &flags);
  2082. update_rq_clock(rq);
  2083. old_state = p->state;
  2084. if (!(old_state & state))
  2085. goto out;
  2086. if (p->se.on_rq)
  2087. goto out_running;
  2088. cpu = task_cpu(p);
  2089. orig_cpu = cpu;
  2090. this_cpu = smp_processor_id();
  2091. #ifdef CONFIG_SMP
  2092. if (unlikely(task_running(rq, p)))
  2093. goto out_activate;
  2094. cpu = p->sched_class->select_task_rq(p, sync);
  2095. if (cpu != orig_cpu) {
  2096. set_task_cpu(p, cpu);
  2097. task_rq_unlock(rq, &flags);
  2098. /* might preempt at this point */
  2099. rq = task_rq_lock(p, &flags);
  2100. old_state = p->state;
  2101. if (!(old_state & state))
  2102. goto out;
  2103. if (p->se.on_rq)
  2104. goto out_running;
  2105. this_cpu = smp_processor_id();
  2106. cpu = task_cpu(p);
  2107. }
  2108. #ifdef CONFIG_SCHEDSTATS
  2109. schedstat_inc(rq, ttwu_count);
  2110. if (cpu == this_cpu)
  2111. schedstat_inc(rq, ttwu_local);
  2112. else {
  2113. struct sched_domain *sd;
  2114. for_each_domain(this_cpu, sd) {
  2115. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2116. schedstat_inc(sd, ttwu_wake_remote);
  2117. break;
  2118. }
  2119. }
  2120. }
  2121. #endif /* CONFIG_SCHEDSTATS */
  2122. out_activate:
  2123. #endif /* CONFIG_SMP */
  2124. schedstat_inc(p, se.nr_wakeups);
  2125. if (sync)
  2126. schedstat_inc(p, se.nr_wakeups_sync);
  2127. if (orig_cpu != cpu)
  2128. schedstat_inc(p, se.nr_wakeups_migrate);
  2129. if (cpu == this_cpu)
  2130. schedstat_inc(p, se.nr_wakeups_local);
  2131. else
  2132. schedstat_inc(p, se.nr_wakeups_remote);
  2133. activate_task(rq, p, 1);
  2134. success = 1;
  2135. /*
  2136. * Only attribute actual wakeups done by this task.
  2137. */
  2138. if (!in_interrupt()) {
  2139. struct sched_entity *se = &current->se;
  2140. u64 sample = se->sum_exec_runtime;
  2141. if (se->last_wakeup)
  2142. sample -= se->last_wakeup;
  2143. else
  2144. sample -= se->start_runtime;
  2145. update_avg(&se->avg_wakeup, sample);
  2146. se->last_wakeup = se->sum_exec_runtime;
  2147. }
  2148. out_running:
  2149. trace_sched_wakeup(rq, p, success);
  2150. check_preempt_curr(rq, p, sync);
  2151. p->state = TASK_RUNNING;
  2152. #ifdef CONFIG_SMP
  2153. if (p->sched_class->task_wake_up)
  2154. p->sched_class->task_wake_up(rq, p);
  2155. #endif
  2156. out:
  2157. task_rq_unlock(rq, &flags);
  2158. return success;
  2159. }
  2160. /**
  2161. * wake_up_process - Wake up a specific process
  2162. * @p: The process to be woken up.
  2163. *
  2164. * Attempt to wake up the nominated process and move it to the set of runnable
  2165. * processes. Returns 1 if the process was woken up, 0 if it was already
  2166. * running.
  2167. *
  2168. * It may be assumed that this function implies a write memory barrier before
  2169. * changing the task state if and only if any tasks are woken up.
  2170. */
  2171. int wake_up_process(struct task_struct *p)
  2172. {
  2173. return try_to_wake_up(p, TASK_ALL, 0);
  2174. }
  2175. EXPORT_SYMBOL(wake_up_process);
  2176. int wake_up_state(struct task_struct *p, unsigned int state)
  2177. {
  2178. return try_to_wake_up(p, state, 0);
  2179. }
  2180. /*
  2181. * Perform scheduler related setup for a newly forked process p.
  2182. * p is forked by current.
  2183. *
  2184. * __sched_fork() is basic setup used by init_idle() too:
  2185. */
  2186. static void __sched_fork(struct task_struct *p)
  2187. {
  2188. p->se.exec_start = 0;
  2189. p->se.sum_exec_runtime = 0;
  2190. p->se.prev_sum_exec_runtime = 0;
  2191. p->se.nr_migrations = 0;
  2192. p->se.last_wakeup = 0;
  2193. p->se.avg_overlap = 0;
  2194. p->se.start_runtime = 0;
  2195. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2196. #ifdef CONFIG_SCHEDSTATS
  2197. p->se.wait_start = 0;
  2198. p->se.wait_max = 0;
  2199. p->se.wait_count = 0;
  2200. p->se.wait_sum = 0;
  2201. p->se.sleep_start = 0;
  2202. p->se.sleep_max = 0;
  2203. p->se.sum_sleep_runtime = 0;
  2204. p->se.block_start = 0;
  2205. p->se.block_max = 0;
  2206. p->se.exec_max = 0;
  2207. p->se.slice_max = 0;
  2208. p->se.nr_migrations_cold = 0;
  2209. p->se.nr_failed_migrations_affine = 0;
  2210. p->se.nr_failed_migrations_running = 0;
  2211. p->se.nr_failed_migrations_hot = 0;
  2212. p->se.nr_forced_migrations = 0;
  2213. p->se.nr_forced2_migrations = 0;
  2214. p->se.nr_wakeups = 0;
  2215. p->se.nr_wakeups_sync = 0;
  2216. p->se.nr_wakeups_migrate = 0;
  2217. p->se.nr_wakeups_local = 0;
  2218. p->se.nr_wakeups_remote = 0;
  2219. p->se.nr_wakeups_affine = 0;
  2220. p->se.nr_wakeups_affine_attempts = 0;
  2221. p->se.nr_wakeups_passive = 0;
  2222. p->se.nr_wakeups_idle = 0;
  2223. #endif
  2224. INIT_LIST_HEAD(&p->rt.run_list);
  2225. p->se.on_rq = 0;
  2226. INIT_LIST_HEAD(&p->se.group_node);
  2227. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2228. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2229. #endif
  2230. /*
  2231. * We mark the process as running here, but have not actually
  2232. * inserted it onto the runqueue yet. This guarantees that
  2233. * nobody will actually run it, and a signal or other external
  2234. * event cannot wake it up and insert it on the runqueue either.
  2235. */
  2236. p->state = TASK_RUNNING;
  2237. }
  2238. /*
  2239. * fork()/clone()-time setup:
  2240. */
  2241. void sched_fork(struct task_struct *p, int clone_flags)
  2242. {
  2243. int cpu = get_cpu();
  2244. __sched_fork(p);
  2245. #ifdef CONFIG_SMP
  2246. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2247. #endif
  2248. set_task_cpu(p, cpu);
  2249. /*
  2250. * Make sure we do not leak PI boosting priority to the child.
  2251. */
  2252. p->prio = current->normal_prio;
  2253. /*
  2254. * Revert to default priority/policy on fork if requested.
  2255. */
  2256. if (unlikely(p->sched_reset_on_fork)) {
  2257. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
  2258. p->policy = SCHED_NORMAL;
  2259. if (p->normal_prio < DEFAULT_PRIO)
  2260. p->prio = DEFAULT_PRIO;
  2261. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2262. p->static_prio = NICE_TO_PRIO(0);
  2263. set_load_weight(p);
  2264. }
  2265. /*
  2266. * We don't need the reset flag anymore after the fork. It has
  2267. * fulfilled its duty:
  2268. */
  2269. p->sched_reset_on_fork = 0;
  2270. }
  2271. if (!rt_prio(p->prio))
  2272. p->sched_class = &fair_sched_class;
  2273. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2274. if (likely(sched_info_on()))
  2275. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2276. #endif
  2277. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2278. p->oncpu = 0;
  2279. #endif
  2280. #ifdef CONFIG_PREEMPT
  2281. /* Want to start with kernel preemption disabled. */
  2282. task_thread_info(p)->preempt_count = 1;
  2283. #endif
  2284. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2285. put_cpu();
  2286. }
  2287. /*
  2288. * wake_up_new_task - wake up a newly created task for the first time.
  2289. *
  2290. * This function will do some initial scheduler statistics housekeeping
  2291. * that must be done for every newly created context, then puts the task
  2292. * on the runqueue and wakes it.
  2293. */
  2294. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2295. {
  2296. unsigned long flags;
  2297. struct rq *rq;
  2298. rq = task_rq_lock(p, &flags);
  2299. BUG_ON(p->state != TASK_RUNNING);
  2300. update_rq_clock(rq);
  2301. p->prio = effective_prio(p);
  2302. if (!p->sched_class->task_new || !current->se.on_rq) {
  2303. activate_task(rq, p, 0);
  2304. } else {
  2305. /*
  2306. * Let the scheduling class do new task startup
  2307. * management (if any):
  2308. */
  2309. p->sched_class->task_new(rq, p);
  2310. inc_nr_running(rq);
  2311. }
  2312. trace_sched_wakeup_new(rq, p, 1);
  2313. check_preempt_curr(rq, p, 0);
  2314. #ifdef CONFIG_SMP
  2315. if (p->sched_class->task_wake_up)
  2316. p->sched_class->task_wake_up(rq, p);
  2317. #endif
  2318. task_rq_unlock(rq, &flags);
  2319. }
  2320. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2321. /**
  2322. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2323. * @notifier: notifier struct to register
  2324. */
  2325. void preempt_notifier_register(struct preempt_notifier *notifier)
  2326. {
  2327. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2328. }
  2329. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2330. /**
  2331. * preempt_notifier_unregister - no longer interested in preemption notifications
  2332. * @notifier: notifier struct to unregister
  2333. *
  2334. * This is safe to call from within a preemption notifier.
  2335. */
  2336. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2337. {
  2338. hlist_del(&notifier->link);
  2339. }
  2340. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2341. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2342. {
  2343. struct preempt_notifier *notifier;
  2344. struct hlist_node *node;
  2345. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2346. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2347. }
  2348. static void
  2349. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2350. struct task_struct *next)
  2351. {
  2352. struct preempt_notifier *notifier;
  2353. struct hlist_node *node;
  2354. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2355. notifier->ops->sched_out(notifier, next);
  2356. }
  2357. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2358. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2359. {
  2360. }
  2361. static void
  2362. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2363. struct task_struct *next)
  2364. {
  2365. }
  2366. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2367. /**
  2368. * prepare_task_switch - prepare to switch tasks
  2369. * @rq: the runqueue preparing to switch
  2370. * @prev: the current task that is being switched out
  2371. * @next: the task we are going to switch to.
  2372. *
  2373. * This is called with the rq lock held and interrupts off. It must
  2374. * be paired with a subsequent finish_task_switch after the context
  2375. * switch.
  2376. *
  2377. * prepare_task_switch sets up locking and calls architecture specific
  2378. * hooks.
  2379. */
  2380. static inline void
  2381. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2382. struct task_struct *next)
  2383. {
  2384. fire_sched_out_preempt_notifiers(prev, next);
  2385. prepare_lock_switch(rq, next);
  2386. prepare_arch_switch(next);
  2387. }
  2388. /**
  2389. * finish_task_switch - clean up after a task-switch
  2390. * @rq: runqueue associated with task-switch
  2391. * @prev: the thread we just switched away from.
  2392. *
  2393. * finish_task_switch must be called after the context switch, paired
  2394. * with a prepare_task_switch call before the context switch.
  2395. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2396. * and do any other architecture-specific cleanup actions.
  2397. *
  2398. * Note that we may have delayed dropping an mm in context_switch(). If
  2399. * so, we finish that here outside of the runqueue lock. (Doing it
  2400. * with the lock held can cause deadlocks; see schedule() for
  2401. * details.)
  2402. */
  2403. static int finish_task_switch(struct rq *rq, struct task_struct *prev)
  2404. __releases(rq->lock)
  2405. {
  2406. struct mm_struct *mm = rq->prev_mm;
  2407. long prev_state;
  2408. int post_schedule = 0;
  2409. #ifdef CONFIG_SMP
  2410. if (current->sched_class->needs_post_schedule)
  2411. post_schedule = current->sched_class->needs_post_schedule(rq);
  2412. #endif
  2413. rq->prev_mm = NULL;
  2414. /*
  2415. * A task struct has one reference for the use as "current".
  2416. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2417. * schedule one last time. The schedule call will never return, and
  2418. * the scheduled task must drop that reference.
  2419. * The test for TASK_DEAD must occur while the runqueue locks are
  2420. * still held, otherwise prev could be scheduled on another cpu, die
  2421. * there before we look at prev->state, and then the reference would
  2422. * be dropped twice.
  2423. * Manfred Spraul <manfred@colorfullife.com>
  2424. */
  2425. prev_state = prev->state;
  2426. finish_arch_switch(prev);
  2427. perf_counter_task_sched_in(current, cpu_of(rq));
  2428. finish_lock_switch(rq, prev);
  2429. fire_sched_in_preempt_notifiers(current);
  2430. if (mm)
  2431. mmdrop(mm);
  2432. if (unlikely(prev_state == TASK_DEAD)) {
  2433. /*
  2434. * Remove function-return probe instances associated with this
  2435. * task and put them back on the free list.
  2436. */
  2437. kprobe_flush_task(prev);
  2438. put_task_struct(prev);
  2439. }
  2440. return post_schedule;
  2441. }
  2442. /**
  2443. * schedule_tail - first thing a freshly forked thread must call.
  2444. * @prev: the thread we just switched away from.
  2445. */
  2446. asmlinkage void schedule_tail(struct task_struct *prev)
  2447. __releases(rq->lock)
  2448. {
  2449. struct rq *rq = this_rq();
  2450. int post_schedule;
  2451. post_schedule = finish_task_switch(rq, prev);
  2452. #ifdef CONFIG_SMP
  2453. if (post_schedule)
  2454. current->sched_class->post_schedule(rq);
  2455. #endif
  2456. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2457. /* In this case, finish_task_switch does not reenable preemption */
  2458. preempt_enable();
  2459. #endif
  2460. if (current->set_child_tid)
  2461. put_user(task_pid_vnr(current), current->set_child_tid);
  2462. }
  2463. /*
  2464. * context_switch - switch to the new MM and the new
  2465. * thread's register state.
  2466. */
  2467. static inline int
  2468. context_switch(struct rq *rq, struct task_struct *prev,
  2469. struct task_struct *next)
  2470. {
  2471. struct mm_struct *mm, *oldmm;
  2472. prepare_task_switch(rq, prev, next);
  2473. trace_sched_switch(rq, prev, next);
  2474. mm = next->mm;
  2475. oldmm = prev->active_mm;
  2476. /*
  2477. * For paravirt, this is coupled with an exit in switch_to to
  2478. * combine the page table reload and the switch backend into
  2479. * one hypercall.
  2480. */
  2481. arch_start_context_switch(prev);
  2482. if (unlikely(!mm)) {
  2483. next->active_mm = oldmm;
  2484. atomic_inc(&oldmm->mm_count);
  2485. enter_lazy_tlb(oldmm, next);
  2486. } else
  2487. switch_mm(oldmm, mm, next);
  2488. if (unlikely(!prev->mm)) {
  2489. prev->active_mm = NULL;
  2490. rq->prev_mm = oldmm;
  2491. }
  2492. /*
  2493. * Since the runqueue lock will be released by the next
  2494. * task (which is an invalid locking op but in the case
  2495. * of the scheduler it's an obvious special-case), so we
  2496. * do an early lockdep release here:
  2497. */
  2498. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2499. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2500. #endif
  2501. /* Here we just switch the register state and the stack. */
  2502. switch_to(prev, next, prev);
  2503. barrier();
  2504. /*
  2505. * this_rq must be evaluated again because prev may have moved
  2506. * CPUs since it called schedule(), thus the 'rq' on its stack
  2507. * frame will be invalid.
  2508. */
  2509. return finish_task_switch(this_rq(), prev);
  2510. }
  2511. /*
  2512. * nr_running, nr_uninterruptible and nr_context_switches:
  2513. *
  2514. * externally visible scheduler statistics: current number of runnable
  2515. * threads, current number of uninterruptible-sleeping threads, total
  2516. * number of context switches performed since bootup.
  2517. */
  2518. unsigned long nr_running(void)
  2519. {
  2520. unsigned long i, sum = 0;
  2521. for_each_online_cpu(i)
  2522. sum += cpu_rq(i)->nr_running;
  2523. return sum;
  2524. }
  2525. unsigned long nr_uninterruptible(void)
  2526. {
  2527. unsigned long i, sum = 0;
  2528. for_each_possible_cpu(i)
  2529. sum += cpu_rq(i)->nr_uninterruptible;
  2530. /*
  2531. * Since we read the counters lockless, it might be slightly
  2532. * inaccurate. Do not allow it to go below zero though:
  2533. */
  2534. if (unlikely((long)sum < 0))
  2535. sum = 0;
  2536. return sum;
  2537. }
  2538. unsigned long long nr_context_switches(void)
  2539. {
  2540. int i;
  2541. unsigned long long sum = 0;
  2542. for_each_possible_cpu(i)
  2543. sum += cpu_rq(i)->nr_switches;
  2544. return sum;
  2545. }
  2546. unsigned long nr_iowait(void)
  2547. {
  2548. unsigned long i, sum = 0;
  2549. for_each_possible_cpu(i)
  2550. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2551. return sum;
  2552. }
  2553. /* Variables and functions for calc_load */
  2554. static atomic_long_t calc_load_tasks;
  2555. static unsigned long calc_load_update;
  2556. unsigned long avenrun[3];
  2557. EXPORT_SYMBOL(avenrun);
  2558. /**
  2559. * get_avenrun - get the load average array
  2560. * @loads: pointer to dest load array
  2561. * @offset: offset to add
  2562. * @shift: shift count to shift the result left
  2563. *
  2564. * These values are estimates at best, so no need for locking.
  2565. */
  2566. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2567. {
  2568. loads[0] = (avenrun[0] + offset) << shift;
  2569. loads[1] = (avenrun[1] + offset) << shift;
  2570. loads[2] = (avenrun[2] + offset) << shift;
  2571. }
  2572. static unsigned long
  2573. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2574. {
  2575. load *= exp;
  2576. load += active * (FIXED_1 - exp);
  2577. return load >> FSHIFT;
  2578. }
  2579. /*
  2580. * calc_load - update the avenrun load estimates 10 ticks after the
  2581. * CPUs have updated calc_load_tasks.
  2582. */
  2583. void calc_global_load(void)
  2584. {
  2585. unsigned long upd = calc_load_update + 10;
  2586. long active;
  2587. if (time_before(jiffies, upd))
  2588. return;
  2589. active = atomic_long_read(&calc_load_tasks);
  2590. active = active > 0 ? active * FIXED_1 : 0;
  2591. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2592. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2593. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2594. calc_load_update += LOAD_FREQ;
  2595. }
  2596. /*
  2597. * Either called from update_cpu_load() or from a cpu going idle
  2598. */
  2599. static void calc_load_account_active(struct rq *this_rq)
  2600. {
  2601. long nr_active, delta;
  2602. nr_active = this_rq->nr_running;
  2603. nr_active += (long) this_rq->nr_uninterruptible;
  2604. if (nr_active != this_rq->calc_load_active) {
  2605. delta = nr_active - this_rq->calc_load_active;
  2606. this_rq->calc_load_active = nr_active;
  2607. atomic_long_add(delta, &calc_load_tasks);
  2608. }
  2609. }
  2610. /*
  2611. * Externally visible per-cpu scheduler statistics:
  2612. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2613. */
  2614. u64 cpu_nr_migrations(int cpu)
  2615. {
  2616. return cpu_rq(cpu)->nr_migrations_in;
  2617. }
  2618. /*
  2619. * Update rq->cpu_load[] statistics. This function is usually called every
  2620. * scheduler tick (TICK_NSEC).
  2621. */
  2622. static void update_cpu_load(struct rq *this_rq)
  2623. {
  2624. unsigned long this_load = this_rq->load.weight;
  2625. int i, scale;
  2626. this_rq->nr_load_updates++;
  2627. /* Update our load: */
  2628. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2629. unsigned long old_load, new_load;
  2630. /* scale is effectively 1 << i now, and >> i divides by scale */
  2631. old_load = this_rq->cpu_load[i];
  2632. new_load = this_load;
  2633. /*
  2634. * Round up the averaging division if load is increasing. This
  2635. * prevents us from getting stuck on 9 if the load is 10, for
  2636. * example.
  2637. */
  2638. if (new_load > old_load)
  2639. new_load += scale-1;
  2640. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2641. }
  2642. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2643. this_rq->calc_load_update += LOAD_FREQ;
  2644. calc_load_account_active(this_rq);
  2645. }
  2646. }
  2647. #ifdef CONFIG_SMP
  2648. /*
  2649. * double_rq_lock - safely lock two runqueues
  2650. *
  2651. * Note this does not disable interrupts like task_rq_lock,
  2652. * you need to do so manually before calling.
  2653. */
  2654. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2655. __acquires(rq1->lock)
  2656. __acquires(rq2->lock)
  2657. {
  2658. BUG_ON(!irqs_disabled());
  2659. if (rq1 == rq2) {
  2660. spin_lock(&rq1->lock);
  2661. __acquire(rq2->lock); /* Fake it out ;) */
  2662. } else {
  2663. if (rq1 < rq2) {
  2664. spin_lock(&rq1->lock);
  2665. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2666. } else {
  2667. spin_lock(&rq2->lock);
  2668. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2669. }
  2670. }
  2671. update_rq_clock(rq1);
  2672. update_rq_clock(rq2);
  2673. }
  2674. /*
  2675. * double_rq_unlock - safely unlock two runqueues
  2676. *
  2677. * Note this does not restore interrupts like task_rq_unlock,
  2678. * you need to do so manually after calling.
  2679. */
  2680. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2681. __releases(rq1->lock)
  2682. __releases(rq2->lock)
  2683. {
  2684. spin_unlock(&rq1->lock);
  2685. if (rq1 != rq2)
  2686. spin_unlock(&rq2->lock);
  2687. else
  2688. __release(rq2->lock);
  2689. }
  2690. /*
  2691. * If dest_cpu is allowed for this process, migrate the task to it.
  2692. * This is accomplished by forcing the cpu_allowed mask to only
  2693. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2694. * the cpu_allowed mask is restored.
  2695. */
  2696. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2697. {
  2698. struct migration_req req;
  2699. unsigned long flags;
  2700. struct rq *rq;
  2701. rq = task_rq_lock(p, &flags);
  2702. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2703. || unlikely(!cpu_active(dest_cpu)))
  2704. goto out;
  2705. /* force the process onto the specified CPU */
  2706. if (migrate_task(p, dest_cpu, &req)) {
  2707. /* Need to wait for migration thread (might exit: take ref). */
  2708. struct task_struct *mt = rq->migration_thread;
  2709. get_task_struct(mt);
  2710. task_rq_unlock(rq, &flags);
  2711. wake_up_process(mt);
  2712. put_task_struct(mt);
  2713. wait_for_completion(&req.done);
  2714. return;
  2715. }
  2716. out:
  2717. task_rq_unlock(rq, &flags);
  2718. }
  2719. /*
  2720. * sched_exec - execve() is a valuable balancing opportunity, because at
  2721. * this point the task has the smallest effective memory and cache footprint.
  2722. */
  2723. void sched_exec(void)
  2724. {
  2725. int new_cpu, this_cpu = get_cpu();
  2726. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2727. put_cpu();
  2728. if (new_cpu != this_cpu)
  2729. sched_migrate_task(current, new_cpu);
  2730. }
  2731. /*
  2732. * pull_task - move a task from a remote runqueue to the local runqueue.
  2733. * Both runqueues must be locked.
  2734. */
  2735. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2736. struct rq *this_rq, int this_cpu)
  2737. {
  2738. deactivate_task(src_rq, p, 0);
  2739. set_task_cpu(p, this_cpu);
  2740. activate_task(this_rq, p, 0);
  2741. /*
  2742. * Note that idle threads have a prio of MAX_PRIO, for this test
  2743. * to be always true for them.
  2744. */
  2745. check_preempt_curr(this_rq, p, 0);
  2746. }
  2747. /*
  2748. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2749. */
  2750. static
  2751. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2752. struct sched_domain *sd, enum cpu_idle_type idle,
  2753. int *all_pinned)
  2754. {
  2755. int tsk_cache_hot = 0;
  2756. /*
  2757. * We do not migrate tasks that are:
  2758. * 1) running (obviously), or
  2759. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2760. * 3) are cache-hot on their current CPU.
  2761. */
  2762. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2763. schedstat_inc(p, se.nr_failed_migrations_affine);
  2764. return 0;
  2765. }
  2766. *all_pinned = 0;
  2767. if (task_running(rq, p)) {
  2768. schedstat_inc(p, se.nr_failed_migrations_running);
  2769. return 0;
  2770. }
  2771. /*
  2772. * Aggressive migration if:
  2773. * 1) task is cache cold, or
  2774. * 2) too many balance attempts have failed.
  2775. */
  2776. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2777. if (!tsk_cache_hot ||
  2778. sd->nr_balance_failed > sd->cache_nice_tries) {
  2779. #ifdef CONFIG_SCHEDSTATS
  2780. if (tsk_cache_hot) {
  2781. schedstat_inc(sd, lb_hot_gained[idle]);
  2782. schedstat_inc(p, se.nr_forced_migrations);
  2783. }
  2784. #endif
  2785. return 1;
  2786. }
  2787. if (tsk_cache_hot) {
  2788. schedstat_inc(p, se.nr_failed_migrations_hot);
  2789. return 0;
  2790. }
  2791. return 1;
  2792. }
  2793. static unsigned long
  2794. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2795. unsigned long max_load_move, struct sched_domain *sd,
  2796. enum cpu_idle_type idle, int *all_pinned,
  2797. int *this_best_prio, struct rq_iterator *iterator)
  2798. {
  2799. int loops = 0, pulled = 0, pinned = 0;
  2800. struct task_struct *p;
  2801. long rem_load_move = max_load_move;
  2802. if (max_load_move == 0)
  2803. goto out;
  2804. pinned = 1;
  2805. /*
  2806. * Start the load-balancing iterator:
  2807. */
  2808. p = iterator->start(iterator->arg);
  2809. next:
  2810. if (!p || loops++ > sysctl_sched_nr_migrate)
  2811. goto out;
  2812. if ((p->se.load.weight >> 1) > rem_load_move ||
  2813. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2814. p = iterator->next(iterator->arg);
  2815. goto next;
  2816. }
  2817. pull_task(busiest, p, this_rq, this_cpu);
  2818. pulled++;
  2819. rem_load_move -= p->se.load.weight;
  2820. #ifdef CONFIG_PREEMPT
  2821. /*
  2822. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2823. * will stop after the first task is pulled to minimize the critical
  2824. * section.
  2825. */
  2826. if (idle == CPU_NEWLY_IDLE)
  2827. goto out;
  2828. #endif
  2829. /*
  2830. * We only want to steal up to the prescribed amount of weighted load.
  2831. */
  2832. if (rem_load_move > 0) {
  2833. if (p->prio < *this_best_prio)
  2834. *this_best_prio = p->prio;
  2835. p = iterator->next(iterator->arg);
  2836. goto next;
  2837. }
  2838. out:
  2839. /*
  2840. * Right now, this is one of only two places pull_task() is called,
  2841. * so we can safely collect pull_task() stats here rather than
  2842. * inside pull_task().
  2843. */
  2844. schedstat_add(sd, lb_gained[idle], pulled);
  2845. if (all_pinned)
  2846. *all_pinned = pinned;
  2847. return max_load_move - rem_load_move;
  2848. }
  2849. /*
  2850. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2851. * this_rq, as part of a balancing operation within domain "sd".
  2852. * Returns 1 if successful and 0 otherwise.
  2853. *
  2854. * Called with both runqueues locked.
  2855. */
  2856. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2857. unsigned long max_load_move,
  2858. struct sched_domain *sd, enum cpu_idle_type idle,
  2859. int *all_pinned)
  2860. {
  2861. const struct sched_class *class = sched_class_highest;
  2862. unsigned long total_load_moved = 0;
  2863. int this_best_prio = this_rq->curr->prio;
  2864. do {
  2865. total_load_moved +=
  2866. class->load_balance(this_rq, this_cpu, busiest,
  2867. max_load_move - total_load_moved,
  2868. sd, idle, all_pinned, &this_best_prio);
  2869. class = class->next;
  2870. #ifdef CONFIG_PREEMPT
  2871. /*
  2872. * NEWIDLE balancing is a source of latency, so preemptible
  2873. * kernels will stop after the first task is pulled to minimize
  2874. * the critical section.
  2875. */
  2876. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2877. break;
  2878. #endif
  2879. } while (class && max_load_move > total_load_moved);
  2880. return total_load_moved > 0;
  2881. }
  2882. static int
  2883. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2884. struct sched_domain *sd, enum cpu_idle_type idle,
  2885. struct rq_iterator *iterator)
  2886. {
  2887. struct task_struct *p = iterator->start(iterator->arg);
  2888. int pinned = 0;
  2889. while (p) {
  2890. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2891. pull_task(busiest, p, this_rq, this_cpu);
  2892. /*
  2893. * Right now, this is only the second place pull_task()
  2894. * is called, so we can safely collect pull_task()
  2895. * stats here rather than inside pull_task().
  2896. */
  2897. schedstat_inc(sd, lb_gained[idle]);
  2898. return 1;
  2899. }
  2900. p = iterator->next(iterator->arg);
  2901. }
  2902. return 0;
  2903. }
  2904. /*
  2905. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2906. * part of active balancing operations within "domain".
  2907. * Returns 1 if successful and 0 otherwise.
  2908. *
  2909. * Called with both runqueues locked.
  2910. */
  2911. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2912. struct sched_domain *sd, enum cpu_idle_type idle)
  2913. {
  2914. const struct sched_class *class;
  2915. for (class = sched_class_highest; class; class = class->next)
  2916. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2917. return 1;
  2918. return 0;
  2919. }
  2920. /********** Helpers for find_busiest_group ************************/
  2921. /*
  2922. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2923. * during load balancing.
  2924. */
  2925. struct sd_lb_stats {
  2926. struct sched_group *busiest; /* Busiest group in this sd */
  2927. struct sched_group *this; /* Local group in this sd */
  2928. unsigned long total_load; /* Total load of all groups in sd */
  2929. unsigned long total_pwr; /* Total power of all groups in sd */
  2930. unsigned long avg_load; /* Average load across all groups in sd */
  2931. /** Statistics of this group */
  2932. unsigned long this_load;
  2933. unsigned long this_load_per_task;
  2934. unsigned long this_nr_running;
  2935. /* Statistics of the busiest group */
  2936. unsigned long max_load;
  2937. unsigned long busiest_load_per_task;
  2938. unsigned long busiest_nr_running;
  2939. int group_imb; /* Is there imbalance in this sd */
  2940. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2941. int power_savings_balance; /* Is powersave balance needed for this sd */
  2942. struct sched_group *group_min; /* Least loaded group in sd */
  2943. struct sched_group *group_leader; /* Group which relieves group_min */
  2944. unsigned long min_load_per_task; /* load_per_task in group_min */
  2945. unsigned long leader_nr_running; /* Nr running of group_leader */
  2946. unsigned long min_nr_running; /* Nr running of group_min */
  2947. #endif
  2948. };
  2949. /*
  2950. * sg_lb_stats - stats of a sched_group required for load_balancing
  2951. */
  2952. struct sg_lb_stats {
  2953. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2954. unsigned long group_load; /* Total load over the CPUs of the group */
  2955. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2956. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2957. unsigned long group_capacity;
  2958. int group_imb; /* Is there an imbalance in the group ? */
  2959. };
  2960. /**
  2961. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2962. * @group: The group whose first cpu is to be returned.
  2963. */
  2964. static inline unsigned int group_first_cpu(struct sched_group *group)
  2965. {
  2966. return cpumask_first(sched_group_cpus(group));
  2967. }
  2968. /**
  2969. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2970. * @sd: The sched_domain whose load_idx is to be obtained.
  2971. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2972. */
  2973. static inline int get_sd_load_idx(struct sched_domain *sd,
  2974. enum cpu_idle_type idle)
  2975. {
  2976. int load_idx;
  2977. switch (idle) {
  2978. case CPU_NOT_IDLE:
  2979. load_idx = sd->busy_idx;
  2980. break;
  2981. case CPU_NEWLY_IDLE:
  2982. load_idx = sd->newidle_idx;
  2983. break;
  2984. default:
  2985. load_idx = sd->idle_idx;
  2986. break;
  2987. }
  2988. return load_idx;
  2989. }
  2990. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2991. /**
  2992. * init_sd_power_savings_stats - Initialize power savings statistics for
  2993. * the given sched_domain, during load balancing.
  2994. *
  2995. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2996. * @sds: Variable containing the statistics for sd.
  2997. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2998. */
  2999. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3000. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3001. {
  3002. /*
  3003. * Busy processors will not participate in power savings
  3004. * balance.
  3005. */
  3006. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  3007. sds->power_savings_balance = 0;
  3008. else {
  3009. sds->power_savings_balance = 1;
  3010. sds->min_nr_running = ULONG_MAX;
  3011. sds->leader_nr_running = 0;
  3012. }
  3013. }
  3014. /**
  3015. * update_sd_power_savings_stats - Update the power saving stats for a
  3016. * sched_domain while performing load balancing.
  3017. *
  3018. * @group: sched_group belonging to the sched_domain under consideration.
  3019. * @sds: Variable containing the statistics of the sched_domain
  3020. * @local_group: Does group contain the CPU for which we're performing
  3021. * load balancing ?
  3022. * @sgs: Variable containing the statistics of the group.
  3023. */
  3024. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3025. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3026. {
  3027. if (!sds->power_savings_balance)
  3028. return;
  3029. /*
  3030. * If the local group is idle or completely loaded
  3031. * no need to do power savings balance at this domain
  3032. */
  3033. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  3034. !sds->this_nr_running))
  3035. sds->power_savings_balance = 0;
  3036. /*
  3037. * If a group is already running at full capacity or idle,
  3038. * don't include that group in power savings calculations
  3039. */
  3040. if (!sds->power_savings_balance ||
  3041. sgs->sum_nr_running >= sgs->group_capacity ||
  3042. !sgs->sum_nr_running)
  3043. return;
  3044. /*
  3045. * Calculate the group which has the least non-idle load.
  3046. * This is the group from where we need to pick up the load
  3047. * for saving power
  3048. */
  3049. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3050. (sgs->sum_nr_running == sds->min_nr_running &&
  3051. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3052. sds->group_min = group;
  3053. sds->min_nr_running = sgs->sum_nr_running;
  3054. sds->min_load_per_task = sgs->sum_weighted_load /
  3055. sgs->sum_nr_running;
  3056. }
  3057. /*
  3058. * Calculate the group which is almost near its
  3059. * capacity but still has some space to pick up some load
  3060. * from other group and save more power
  3061. */
  3062. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  3063. return;
  3064. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3065. (sgs->sum_nr_running == sds->leader_nr_running &&
  3066. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3067. sds->group_leader = group;
  3068. sds->leader_nr_running = sgs->sum_nr_running;
  3069. }
  3070. }
  3071. /**
  3072. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3073. * @sds: Variable containing the statistics of the sched_domain
  3074. * under consideration.
  3075. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3076. * @imbalance: Variable to store the imbalance.
  3077. *
  3078. * Description:
  3079. * Check if we have potential to perform some power-savings balance.
  3080. * If yes, set the busiest group to be the least loaded group in the
  3081. * sched_domain, so that it's CPUs can be put to idle.
  3082. *
  3083. * Returns 1 if there is potential to perform power-savings balance.
  3084. * Else returns 0.
  3085. */
  3086. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3087. int this_cpu, unsigned long *imbalance)
  3088. {
  3089. if (!sds->power_savings_balance)
  3090. return 0;
  3091. if (sds->this != sds->group_leader ||
  3092. sds->group_leader == sds->group_min)
  3093. return 0;
  3094. *imbalance = sds->min_load_per_task;
  3095. sds->busiest = sds->group_min;
  3096. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  3097. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  3098. group_first_cpu(sds->group_leader);
  3099. }
  3100. return 1;
  3101. }
  3102. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3103. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3104. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3105. {
  3106. return;
  3107. }
  3108. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3109. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3110. {
  3111. return;
  3112. }
  3113. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3114. int this_cpu, unsigned long *imbalance)
  3115. {
  3116. return 0;
  3117. }
  3118. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3119. /**
  3120. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3121. * @group: sched_group whose statistics are to be updated.
  3122. * @this_cpu: Cpu for which load balance is currently performed.
  3123. * @idle: Idle status of this_cpu
  3124. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3125. * @sd_idle: Idle status of the sched_domain containing group.
  3126. * @local_group: Does group contain this_cpu.
  3127. * @cpus: Set of cpus considered for load balancing.
  3128. * @balance: Should we balance.
  3129. * @sgs: variable to hold the statistics for this group.
  3130. */
  3131. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  3132. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3133. int local_group, const struct cpumask *cpus,
  3134. int *balance, struct sg_lb_stats *sgs)
  3135. {
  3136. unsigned long load, max_cpu_load, min_cpu_load;
  3137. int i;
  3138. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3139. unsigned long sum_avg_load_per_task;
  3140. unsigned long avg_load_per_task;
  3141. if (local_group)
  3142. balance_cpu = group_first_cpu(group);
  3143. /* Tally up the load of all CPUs in the group */
  3144. sum_avg_load_per_task = avg_load_per_task = 0;
  3145. max_cpu_load = 0;
  3146. min_cpu_load = ~0UL;
  3147. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3148. struct rq *rq = cpu_rq(i);
  3149. if (*sd_idle && rq->nr_running)
  3150. *sd_idle = 0;
  3151. /* Bias balancing toward cpus of our domain */
  3152. if (local_group) {
  3153. if (idle_cpu(i) && !first_idle_cpu) {
  3154. first_idle_cpu = 1;
  3155. balance_cpu = i;
  3156. }
  3157. load = target_load(i, load_idx);
  3158. } else {
  3159. load = source_load(i, load_idx);
  3160. if (load > max_cpu_load)
  3161. max_cpu_load = load;
  3162. if (min_cpu_load > load)
  3163. min_cpu_load = load;
  3164. }
  3165. sgs->group_load += load;
  3166. sgs->sum_nr_running += rq->nr_running;
  3167. sgs->sum_weighted_load += weighted_cpuload(i);
  3168. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3169. }
  3170. /*
  3171. * First idle cpu or the first cpu(busiest) in this sched group
  3172. * is eligible for doing load balancing at this and above
  3173. * domains. In the newly idle case, we will allow all the cpu's
  3174. * to do the newly idle load balance.
  3175. */
  3176. if (idle != CPU_NEWLY_IDLE && local_group &&
  3177. balance_cpu != this_cpu && balance) {
  3178. *balance = 0;
  3179. return;
  3180. }
  3181. /* Adjust by relative CPU power of the group */
  3182. sgs->avg_load = sg_div_cpu_power(group,
  3183. sgs->group_load * SCHED_LOAD_SCALE);
  3184. /*
  3185. * Consider the group unbalanced when the imbalance is larger
  3186. * than the average weight of two tasks.
  3187. *
  3188. * APZ: with cgroup the avg task weight can vary wildly and
  3189. * might not be a suitable number - should we keep a
  3190. * normalized nr_running number somewhere that negates
  3191. * the hierarchy?
  3192. */
  3193. avg_load_per_task = sg_div_cpu_power(group,
  3194. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3195. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3196. sgs->group_imb = 1;
  3197. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3198. }
  3199. /**
  3200. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3201. * @sd: sched_domain whose statistics are to be updated.
  3202. * @this_cpu: Cpu for which load balance is currently performed.
  3203. * @idle: Idle status of this_cpu
  3204. * @sd_idle: Idle status of the sched_domain containing group.
  3205. * @cpus: Set of cpus considered for load balancing.
  3206. * @balance: Should we balance.
  3207. * @sds: variable to hold the statistics for this sched_domain.
  3208. */
  3209. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3210. enum cpu_idle_type idle, int *sd_idle,
  3211. const struct cpumask *cpus, int *balance,
  3212. struct sd_lb_stats *sds)
  3213. {
  3214. struct sched_group *group = sd->groups;
  3215. struct sg_lb_stats sgs;
  3216. int load_idx;
  3217. init_sd_power_savings_stats(sd, sds, idle);
  3218. load_idx = get_sd_load_idx(sd, idle);
  3219. do {
  3220. int local_group;
  3221. local_group = cpumask_test_cpu(this_cpu,
  3222. sched_group_cpus(group));
  3223. memset(&sgs, 0, sizeof(sgs));
  3224. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3225. local_group, cpus, balance, &sgs);
  3226. if (local_group && balance && !(*balance))
  3227. return;
  3228. sds->total_load += sgs.group_load;
  3229. sds->total_pwr += group->__cpu_power;
  3230. if (local_group) {
  3231. sds->this_load = sgs.avg_load;
  3232. sds->this = group;
  3233. sds->this_nr_running = sgs.sum_nr_running;
  3234. sds->this_load_per_task = sgs.sum_weighted_load;
  3235. } else if (sgs.avg_load > sds->max_load &&
  3236. (sgs.sum_nr_running > sgs.group_capacity ||
  3237. sgs.group_imb)) {
  3238. sds->max_load = sgs.avg_load;
  3239. sds->busiest = group;
  3240. sds->busiest_nr_running = sgs.sum_nr_running;
  3241. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3242. sds->group_imb = sgs.group_imb;
  3243. }
  3244. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3245. group = group->next;
  3246. } while (group != sd->groups);
  3247. }
  3248. /**
  3249. * fix_small_imbalance - Calculate the minor imbalance that exists
  3250. * amongst the groups of a sched_domain, during
  3251. * load balancing.
  3252. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3253. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3254. * @imbalance: Variable to store the imbalance.
  3255. */
  3256. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3257. int this_cpu, unsigned long *imbalance)
  3258. {
  3259. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3260. unsigned int imbn = 2;
  3261. if (sds->this_nr_running) {
  3262. sds->this_load_per_task /= sds->this_nr_running;
  3263. if (sds->busiest_load_per_task >
  3264. sds->this_load_per_task)
  3265. imbn = 1;
  3266. } else
  3267. sds->this_load_per_task =
  3268. cpu_avg_load_per_task(this_cpu);
  3269. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3270. sds->busiest_load_per_task * imbn) {
  3271. *imbalance = sds->busiest_load_per_task;
  3272. return;
  3273. }
  3274. /*
  3275. * OK, we don't have enough imbalance to justify moving tasks,
  3276. * however we may be able to increase total CPU power used by
  3277. * moving them.
  3278. */
  3279. pwr_now += sds->busiest->__cpu_power *
  3280. min(sds->busiest_load_per_task, sds->max_load);
  3281. pwr_now += sds->this->__cpu_power *
  3282. min(sds->this_load_per_task, sds->this_load);
  3283. pwr_now /= SCHED_LOAD_SCALE;
  3284. /* Amount of load we'd subtract */
  3285. tmp = sg_div_cpu_power(sds->busiest,
  3286. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3287. if (sds->max_load > tmp)
  3288. pwr_move += sds->busiest->__cpu_power *
  3289. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3290. /* Amount of load we'd add */
  3291. if (sds->max_load * sds->busiest->__cpu_power <
  3292. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3293. tmp = sg_div_cpu_power(sds->this,
  3294. sds->max_load * sds->busiest->__cpu_power);
  3295. else
  3296. tmp = sg_div_cpu_power(sds->this,
  3297. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3298. pwr_move += sds->this->__cpu_power *
  3299. min(sds->this_load_per_task, sds->this_load + tmp);
  3300. pwr_move /= SCHED_LOAD_SCALE;
  3301. /* Move if we gain throughput */
  3302. if (pwr_move > pwr_now)
  3303. *imbalance = sds->busiest_load_per_task;
  3304. }
  3305. /**
  3306. * calculate_imbalance - Calculate the amount of imbalance present within the
  3307. * groups of a given sched_domain during load balance.
  3308. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3309. * @this_cpu: Cpu for which currently load balance is being performed.
  3310. * @imbalance: The variable to store the imbalance.
  3311. */
  3312. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3313. unsigned long *imbalance)
  3314. {
  3315. unsigned long max_pull;
  3316. /*
  3317. * In the presence of smp nice balancing, certain scenarios can have
  3318. * max load less than avg load(as we skip the groups at or below
  3319. * its cpu_power, while calculating max_load..)
  3320. */
  3321. if (sds->max_load < sds->avg_load) {
  3322. *imbalance = 0;
  3323. return fix_small_imbalance(sds, this_cpu, imbalance);
  3324. }
  3325. /* Don't want to pull so many tasks that a group would go idle */
  3326. max_pull = min(sds->max_load - sds->avg_load,
  3327. sds->max_load - sds->busiest_load_per_task);
  3328. /* How much load to actually move to equalise the imbalance */
  3329. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3330. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3331. / SCHED_LOAD_SCALE;
  3332. /*
  3333. * if *imbalance is less than the average load per runnable task
  3334. * there is no gaurantee that any tasks will be moved so we'll have
  3335. * a think about bumping its value to force at least one task to be
  3336. * moved
  3337. */
  3338. if (*imbalance < sds->busiest_load_per_task)
  3339. return fix_small_imbalance(sds, this_cpu, imbalance);
  3340. }
  3341. /******* find_busiest_group() helpers end here *********************/
  3342. /**
  3343. * find_busiest_group - Returns the busiest group within the sched_domain
  3344. * if there is an imbalance. If there isn't an imbalance, and
  3345. * the user has opted for power-savings, it returns a group whose
  3346. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3347. * such a group exists.
  3348. *
  3349. * Also calculates the amount of weighted load which should be moved
  3350. * to restore balance.
  3351. *
  3352. * @sd: The sched_domain whose busiest group is to be returned.
  3353. * @this_cpu: The cpu for which load balancing is currently being performed.
  3354. * @imbalance: Variable which stores amount of weighted load which should
  3355. * be moved to restore balance/put a group to idle.
  3356. * @idle: The idle status of this_cpu.
  3357. * @sd_idle: The idleness of sd
  3358. * @cpus: The set of CPUs under consideration for load-balancing.
  3359. * @balance: Pointer to a variable indicating if this_cpu
  3360. * is the appropriate cpu to perform load balancing at this_level.
  3361. *
  3362. * Returns: - the busiest group if imbalance exists.
  3363. * - If no imbalance and user has opted for power-savings balance,
  3364. * return the least loaded group whose CPUs can be
  3365. * put to idle by rebalancing its tasks onto our group.
  3366. */
  3367. static struct sched_group *
  3368. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3369. unsigned long *imbalance, enum cpu_idle_type idle,
  3370. int *sd_idle, const struct cpumask *cpus, int *balance)
  3371. {
  3372. struct sd_lb_stats sds;
  3373. memset(&sds, 0, sizeof(sds));
  3374. /*
  3375. * Compute the various statistics relavent for load balancing at
  3376. * this level.
  3377. */
  3378. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3379. balance, &sds);
  3380. /* Cases where imbalance does not exist from POV of this_cpu */
  3381. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3382. * at this level.
  3383. * 2) There is no busy sibling group to pull from.
  3384. * 3) This group is the busiest group.
  3385. * 4) This group is more busy than the avg busieness at this
  3386. * sched_domain.
  3387. * 5) The imbalance is within the specified limit.
  3388. * 6) Any rebalance would lead to ping-pong
  3389. */
  3390. if (balance && !(*balance))
  3391. goto ret;
  3392. if (!sds.busiest || sds.busiest_nr_running == 0)
  3393. goto out_balanced;
  3394. if (sds.this_load >= sds.max_load)
  3395. goto out_balanced;
  3396. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3397. if (sds.this_load >= sds.avg_load)
  3398. goto out_balanced;
  3399. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3400. goto out_balanced;
  3401. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3402. if (sds.group_imb)
  3403. sds.busiest_load_per_task =
  3404. min(sds.busiest_load_per_task, sds.avg_load);
  3405. /*
  3406. * We're trying to get all the cpus to the average_load, so we don't
  3407. * want to push ourselves above the average load, nor do we wish to
  3408. * reduce the max loaded cpu below the average load, as either of these
  3409. * actions would just result in more rebalancing later, and ping-pong
  3410. * tasks around. Thus we look for the minimum possible imbalance.
  3411. * Negative imbalances (*we* are more loaded than anyone else) will
  3412. * be counted as no imbalance for these purposes -- we can't fix that
  3413. * by pulling tasks to us. Be careful of negative numbers as they'll
  3414. * appear as very large values with unsigned longs.
  3415. */
  3416. if (sds.max_load <= sds.busiest_load_per_task)
  3417. goto out_balanced;
  3418. /* Looks like there is an imbalance. Compute it */
  3419. calculate_imbalance(&sds, this_cpu, imbalance);
  3420. return sds.busiest;
  3421. out_balanced:
  3422. /*
  3423. * There is no obvious imbalance. But check if we can do some balancing
  3424. * to save power.
  3425. */
  3426. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3427. return sds.busiest;
  3428. ret:
  3429. *imbalance = 0;
  3430. return NULL;
  3431. }
  3432. /*
  3433. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3434. */
  3435. static struct rq *
  3436. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3437. unsigned long imbalance, const struct cpumask *cpus)
  3438. {
  3439. struct rq *busiest = NULL, *rq;
  3440. unsigned long max_load = 0;
  3441. int i;
  3442. for_each_cpu(i, sched_group_cpus(group)) {
  3443. unsigned long wl;
  3444. if (!cpumask_test_cpu(i, cpus))
  3445. continue;
  3446. rq = cpu_rq(i);
  3447. wl = weighted_cpuload(i);
  3448. if (rq->nr_running == 1 && wl > imbalance)
  3449. continue;
  3450. if (wl > max_load) {
  3451. max_load = wl;
  3452. busiest = rq;
  3453. }
  3454. }
  3455. return busiest;
  3456. }
  3457. /*
  3458. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3459. * so long as it is large enough.
  3460. */
  3461. #define MAX_PINNED_INTERVAL 512
  3462. /* Working cpumask for load_balance and load_balance_newidle. */
  3463. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3464. /*
  3465. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3466. * tasks if there is an imbalance.
  3467. */
  3468. static int load_balance(int this_cpu, struct rq *this_rq,
  3469. struct sched_domain *sd, enum cpu_idle_type idle,
  3470. int *balance)
  3471. {
  3472. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3473. struct sched_group *group;
  3474. unsigned long imbalance;
  3475. struct rq *busiest;
  3476. unsigned long flags;
  3477. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3478. cpumask_setall(cpus);
  3479. /*
  3480. * When power savings policy is enabled for the parent domain, idle
  3481. * sibling can pick up load irrespective of busy siblings. In this case,
  3482. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3483. * portraying it as CPU_NOT_IDLE.
  3484. */
  3485. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3486. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3487. sd_idle = 1;
  3488. schedstat_inc(sd, lb_count[idle]);
  3489. redo:
  3490. update_shares(sd);
  3491. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3492. cpus, balance);
  3493. if (*balance == 0)
  3494. goto out_balanced;
  3495. if (!group) {
  3496. schedstat_inc(sd, lb_nobusyg[idle]);
  3497. goto out_balanced;
  3498. }
  3499. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3500. if (!busiest) {
  3501. schedstat_inc(sd, lb_nobusyq[idle]);
  3502. goto out_balanced;
  3503. }
  3504. BUG_ON(busiest == this_rq);
  3505. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3506. ld_moved = 0;
  3507. if (busiest->nr_running > 1) {
  3508. /*
  3509. * Attempt to move tasks. If find_busiest_group has found
  3510. * an imbalance but busiest->nr_running <= 1, the group is
  3511. * still unbalanced. ld_moved simply stays zero, so it is
  3512. * correctly treated as an imbalance.
  3513. */
  3514. local_irq_save(flags);
  3515. double_rq_lock(this_rq, busiest);
  3516. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3517. imbalance, sd, idle, &all_pinned);
  3518. double_rq_unlock(this_rq, busiest);
  3519. local_irq_restore(flags);
  3520. /*
  3521. * some other cpu did the load balance for us.
  3522. */
  3523. if (ld_moved && this_cpu != smp_processor_id())
  3524. resched_cpu(this_cpu);
  3525. /* All tasks on this runqueue were pinned by CPU affinity */
  3526. if (unlikely(all_pinned)) {
  3527. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3528. if (!cpumask_empty(cpus))
  3529. goto redo;
  3530. goto out_balanced;
  3531. }
  3532. }
  3533. if (!ld_moved) {
  3534. schedstat_inc(sd, lb_failed[idle]);
  3535. sd->nr_balance_failed++;
  3536. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3537. spin_lock_irqsave(&busiest->lock, flags);
  3538. /* don't kick the migration_thread, if the curr
  3539. * task on busiest cpu can't be moved to this_cpu
  3540. */
  3541. if (!cpumask_test_cpu(this_cpu,
  3542. &busiest->curr->cpus_allowed)) {
  3543. spin_unlock_irqrestore(&busiest->lock, flags);
  3544. all_pinned = 1;
  3545. goto out_one_pinned;
  3546. }
  3547. if (!busiest->active_balance) {
  3548. busiest->active_balance = 1;
  3549. busiest->push_cpu = this_cpu;
  3550. active_balance = 1;
  3551. }
  3552. spin_unlock_irqrestore(&busiest->lock, flags);
  3553. if (active_balance)
  3554. wake_up_process(busiest->migration_thread);
  3555. /*
  3556. * We've kicked active balancing, reset the failure
  3557. * counter.
  3558. */
  3559. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3560. }
  3561. } else
  3562. sd->nr_balance_failed = 0;
  3563. if (likely(!active_balance)) {
  3564. /* We were unbalanced, so reset the balancing interval */
  3565. sd->balance_interval = sd->min_interval;
  3566. } else {
  3567. /*
  3568. * If we've begun active balancing, start to back off. This
  3569. * case may not be covered by the all_pinned logic if there
  3570. * is only 1 task on the busy runqueue (because we don't call
  3571. * move_tasks).
  3572. */
  3573. if (sd->balance_interval < sd->max_interval)
  3574. sd->balance_interval *= 2;
  3575. }
  3576. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3577. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3578. ld_moved = -1;
  3579. goto out;
  3580. out_balanced:
  3581. schedstat_inc(sd, lb_balanced[idle]);
  3582. sd->nr_balance_failed = 0;
  3583. out_one_pinned:
  3584. /* tune up the balancing interval */
  3585. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3586. (sd->balance_interval < sd->max_interval))
  3587. sd->balance_interval *= 2;
  3588. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3589. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3590. ld_moved = -1;
  3591. else
  3592. ld_moved = 0;
  3593. out:
  3594. if (ld_moved)
  3595. update_shares(sd);
  3596. return ld_moved;
  3597. }
  3598. /*
  3599. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3600. * tasks if there is an imbalance.
  3601. *
  3602. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3603. * this_rq is locked.
  3604. */
  3605. static int
  3606. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3607. {
  3608. struct sched_group *group;
  3609. struct rq *busiest = NULL;
  3610. unsigned long imbalance;
  3611. int ld_moved = 0;
  3612. int sd_idle = 0;
  3613. int all_pinned = 0;
  3614. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3615. cpumask_setall(cpus);
  3616. /*
  3617. * When power savings policy is enabled for the parent domain, idle
  3618. * sibling can pick up load irrespective of busy siblings. In this case,
  3619. * let the state of idle sibling percolate up as IDLE, instead of
  3620. * portraying it as CPU_NOT_IDLE.
  3621. */
  3622. if (sd->flags & SD_SHARE_CPUPOWER &&
  3623. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3624. sd_idle = 1;
  3625. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3626. redo:
  3627. update_shares_locked(this_rq, sd);
  3628. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3629. &sd_idle, cpus, NULL);
  3630. if (!group) {
  3631. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3632. goto out_balanced;
  3633. }
  3634. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3635. if (!busiest) {
  3636. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3637. goto out_balanced;
  3638. }
  3639. BUG_ON(busiest == this_rq);
  3640. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3641. ld_moved = 0;
  3642. if (busiest->nr_running > 1) {
  3643. /* Attempt to move tasks */
  3644. double_lock_balance(this_rq, busiest);
  3645. /* this_rq->clock is already updated */
  3646. update_rq_clock(busiest);
  3647. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3648. imbalance, sd, CPU_NEWLY_IDLE,
  3649. &all_pinned);
  3650. double_unlock_balance(this_rq, busiest);
  3651. if (unlikely(all_pinned)) {
  3652. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3653. if (!cpumask_empty(cpus))
  3654. goto redo;
  3655. }
  3656. }
  3657. if (!ld_moved) {
  3658. int active_balance = 0;
  3659. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3660. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3661. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3662. return -1;
  3663. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3664. return -1;
  3665. if (sd->nr_balance_failed++ < 2)
  3666. return -1;
  3667. /*
  3668. * The only task running in a non-idle cpu can be moved to this
  3669. * cpu in an attempt to completely freeup the other CPU
  3670. * package. The same method used to move task in load_balance()
  3671. * have been extended for load_balance_newidle() to speedup
  3672. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3673. *
  3674. * The package power saving logic comes from
  3675. * find_busiest_group(). If there are no imbalance, then
  3676. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3677. * f_b_g() will select a group from which a running task may be
  3678. * pulled to this cpu in order to make the other package idle.
  3679. * If there is no opportunity to make a package idle and if
  3680. * there are no imbalance, then f_b_g() will return NULL and no
  3681. * action will be taken in load_balance_newidle().
  3682. *
  3683. * Under normal task pull operation due to imbalance, there
  3684. * will be more than one task in the source run queue and
  3685. * move_tasks() will succeed. ld_moved will be true and this
  3686. * active balance code will not be triggered.
  3687. */
  3688. /* Lock busiest in correct order while this_rq is held */
  3689. double_lock_balance(this_rq, busiest);
  3690. /*
  3691. * don't kick the migration_thread, if the curr
  3692. * task on busiest cpu can't be moved to this_cpu
  3693. */
  3694. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3695. double_unlock_balance(this_rq, busiest);
  3696. all_pinned = 1;
  3697. return ld_moved;
  3698. }
  3699. if (!busiest->active_balance) {
  3700. busiest->active_balance = 1;
  3701. busiest->push_cpu = this_cpu;
  3702. active_balance = 1;
  3703. }
  3704. double_unlock_balance(this_rq, busiest);
  3705. /*
  3706. * Should not call ttwu while holding a rq->lock
  3707. */
  3708. spin_unlock(&this_rq->lock);
  3709. if (active_balance)
  3710. wake_up_process(busiest->migration_thread);
  3711. spin_lock(&this_rq->lock);
  3712. } else
  3713. sd->nr_balance_failed = 0;
  3714. update_shares_locked(this_rq, sd);
  3715. return ld_moved;
  3716. out_balanced:
  3717. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3718. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3719. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3720. return -1;
  3721. sd->nr_balance_failed = 0;
  3722. return 0;
  3723. }
  3724. /*
  3725. * idle_balance is called by schedule() if this_cpu is about to become
  3726. * idle. Attempts to pull tasks from other CPUs.
  3727. */
  3728. static void idle_balance(int this_cpu, struct rq *this_rq)
  3729. {
  3730. struct sched_domain *sd;
  3731. int pulled_task = 0;
  3732. unsigned long next_balance = jiffies + HZ;
  3733. for_each_domain(this_cpu, sd) {
  3734. unsigned long interval;
  3735. if (!(sd->flags & SD_LOAD_BALANCE))
  3736. continue;
  3737. if (sd->flags & SD_BALANCE_NEWIDLE)
  3738. /* If we've pulled tasks over stop searching: */
  3739. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3740. sd);
  3741. interval = msecs_to_jiffies(sd->balance_interval);
  3742. if (time_after(next_balance, sd->last_balance + interval))
  3743. next_balance = sd->last_balance + interval;
  3744. if (pulled_task)
  3745. break;
  3746. }
  3747. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3748. /*
  3749. * We are going idle. next_balance may be set based on
  3750. * a busy processor. So reset next_balance.
  3751. */
  3752. this_rq->next_balance = next_balance;
  3753. }
  3754. }
  3755. /*
  3756. * active_load_balance is run by migration threads. It pushes running tasks
  3757. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3758. * running on each physical CPU where possible, and avoids physical /
  3759. * logical imbalances.
  3760. *
  3761. * Called with busiest_rq locked.
  3762. */
  3763. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3764. {
  3765. int target_cpu = busiest_rq->push_cpu;
  3766. struct sched_domain *sd;
  3767. struct rq *target_rq;
  3768. /* Is there any task to move? */
  3769. if (busiest_rq->nr_running <= 1)
  3770. return;
  3771. target_rq = cpu_rq(target_cpu);
  3772. /*
  3773. * This condition is "impossible", if it occurs
  3774. * we need to fix it. Originally reported by
  3775. * Bjorn Helgaas on a 128-cpu setup.
  3776. */
  3777. BUG_ON(busiest_rq == target_rq);
  3778. /* move a task from busiest_rq to target_rq */
  3779. double_lock_balance(busiest_rq, target_rq);
  3780. update_rq_clock(busiest_rq);
  3781. update_rq_clock(target_rq);
  3782. /* Search for an sd spanning us and the target CPU. */
  3783. for_each_domain(target_cpu, sd) {
  3784. if ((sd->flags & SD_LOAD_BALANCE) &&
  3785. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3786. break;
  3787. }
  3788. if (likely(sd)) {
  3789. schedstat_inc(sd, alb_count);
  3790. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3791. sd, CPU_IDLE))
  3792. schedstat_inc(sd, alb_pushed);
  3793. else
  3794. schedstat_inc(sd, alb_failed);
  3795. }
  3796. double_unlock_balance(busiest_rq, target_rq);
  3797. }
  3798. #ifdef CONFIG_NO_HZ
  3799. static struct {
  3800. atomic_t load_balancer;
  3801. cpumask_var_t cpu_mask;
  3802. cpumask_var_t ilb_grp_nohz_mask;
  3803. } nohz ____cacheline_aligned = {
  3804. .load_balancer = ATOMIC_INIT(-1),
  3805. };
  3806. int get_nohz_load_balancer(void)
  3807. {
  3808. return atomic_read(&nohz.load_balancer);
  3809. }
  3810. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3811. /**
  3812. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3813. * @cpu: The cpu whose lowest level of sched domain is to
  3814. * be returned.
  3815. * @flag: The flag to check for the lowest sched_domain
  3816. * for the given cpu.
  3817. *
  3818. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3819. */
  3820. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3821. {
  3822. struct sched_domain *sd;
  3823. for_each_domain(cpu, sd)
  3824. if (sd && (sd->flags & flag))
  3825. break;
  3826. return sd;
  3827. }
  3828. /**
  3829. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3830. * @cpu: The cpu whose domains we're iterating over.
  3831. * @sd: variable holding the value of the power_savings_sd
  3832. * for cpu.
  3833. * @flag: The flag to filter the sched_domains to be iterated.
  3834. *
  3835. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3836. * set, starting from the lowest sched_domain to the highest.
  3837. */
  3838. #define for_each_flag_domain(cpu, sd, flag) \
  3839. for (sd = lowest_flag_domain(cpu, flag); \
  3840. (sd && (sd->flags & flag)); sd = sd->parent)
  3841. /**
  3842. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3843. * @ilb_group: group to be checked for semi-idleness
  3844. *
  3845. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3846. *
  3847. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3848. * and atleast one non-idle CPU. This helper function checks if the given
  3849. * sched_group is semi-idle or not.
  3850. */
  3851. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3852. {
  3853. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3854. sched_group_cpus(ilb_group));
  3855. /*
  3856. * A sched_group is semi-idle when it has atleast one busy cpu
  3857. * and atleast one idle cpu.
  3858. */
  3859. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3860. return 0;
  3861. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3862. return 0;
  3863. return 1;
  3864. }
  3865. /**
  3866. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3867. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3868. *
  3869. * Returns: Returns the id of the idle load balancer if it exists,
  3870. * Else, returns >= nr_cpu_ids.
  3871. *
  3872. * This algorithm picks the idle load balancer such that it belongs to a
  3873. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3874. * completely idle packages/cores just for the purpose of idle load balancing
  3875. * when there are other idle cpu's which are better suited for that job.
  3876. */
  3877. static int find_new_ilb(int cpu)
  3878. {
  3879. struct sched_domain *sd;
  3880. struct sched_group *ilb_group;
  3881. /*
  3882. * Have idle load balancer selection from semi-idle packages only
  3883. * when power-aware load balancing is enabled
  3884. */
  3885. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3886. goto out_done;
  3887. /*
  3888. * Optimize for the case when we have no idle CPUs or only one
  3889. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3890. */
  3891. if (cpumask_weight(nohz.cpu_mask) < 2)
  3892. goto out_done;
  3893. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3894. ilb_group = sd->groups;
  3895. do {
  3896. if (is_semi_idle_group(ilb_group))
  3897. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3898. ilb_group = ilb_group->next;
  3899. } while (ilb_group != sd->groups);
  3900. }
  3901. out_done:
  3902. return cpumask_first(nohz.cpu_mask);
  3903. }
  3904. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3905. static inline int find_new_ilb(int call_cpu)
  3906. {
  3907. return cpumask_first(nohz.cpu_mask);
  3908. }
  3909. #endif
  3910. /*
  3911. * This routine will try to nominate the ilb (idle load balancing)
  3912. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3913. * load balancing on behalf of all those cpus. If all the cpus in the system
  3914. * go into this tickless mode, then there will be no ilb owner (as there is
  3915. * no need for one) and all the cpus will sleep till the next wakeup event
  3916. * arrives...
  3917. *
  3918. * For the ilb owner, tick is not stopped. And this tick will be used
  3919. * for idle load balancing. ilb owner will still be part of
  3920. * nohz.cpu_mask..
  3921. *
  3922. * While stopping the tick, this cpu will become the ilb owner if there
  3923. * is no other owner. And will be the owner till that cpu becomes busy
  3924. * or if all cpus in the system stop their ticks at which point
  3925. * there is no need for ilb owner.
  3926. *
  3927. * When the ilb owner becomes busy, it nominates another owner, during the
  3928. * next busy scheduler_tick()
  3929. */
  3930. int select_nohz_load_balancer(int stop_tick)
  3931. {
  3932. int cpu = smp_processor_id();
  3933. if (stop_tick) {
  3934. cpu_rq(cpu)->in_nohz_recently = 1;
  3935. if (!cpu_active(cpu)) {
  3936. if (atomic_read(&nohz.load_balancer) != cpu)
  3937. return 0;
  3938. /*
  3939. * If we are going offline and still the leader,
  3940. * give up!
  3941. */
  3942. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3943. BUG();
  3944. return 0;
  3945. }
  3946. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3947. /* time for ilb owner also to sleep */
  3948. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3949. if (atomic_read(&nohz.load_balancer) == cpu)
  3950. atomic_set(&nohz.load_balancer, -1);
  3951. return 0;
  3952. }
  3953. if (atomic_read(&nohz.load_balancer) == -1) {
  3954. /* make me the ilb owner */
  3955. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3956. return 1;
  3957. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3958. int new_ilb;
  3959. if (!(sched_smt_power_savings ||
  3960. sched_mc_power_savings))
  3961. return 1;
  3962. /*
  3963. * Check to see if there is a more power-efficient
  3964. * ilb.
  3965. */
  3966. new_ilb = find_new_ilb(cpu);
  3967. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3968. atomic_set(&nohz.load_balancer, -1);
  3969. resched_cpu(new_ilb);
  3970. return 0;
  3971. }
  3972. return 1;
  3973. }
  3974. } else {
  3975. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3976. return 0;
  3977. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3978. if (atomic_read(&nohz.load_balancer) == cpu)
  3979. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3980. BUG();
  3981. }
  3982. return 0;
  3983. }
  3984. #endif
  3985. static DEFINE_SPINLOCK(balancing);
  3986. /*
  3987. * It checks each scheduling domain to see if it is due to be balanced,
  3988. * and initiates a balancing operation if so.
  3989. *
  3990. * Balancing parameters are set up in arch_init_sched_domains.
  3991. */
  3992. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3993. {
  3994. int balance = 1;
  3995. struct rq *rq = cpu_rq(cpu);
  3996. unsigned long interval;
  3997. struct sched_domain *sd;
  3998. /* Earliest time when we have to do rebalance again */
  3999. unsigned long next_balance = jiffies + 60*HZ;
  4000. int update_next_balance = 0;
  4001. int need_serialize;
  4002. for_each_domain(cpu, sd) {
  4003. if (!(sd->flags & SD_LOAD_BALANCE))
  4004. continue;
  4005. interval = sd->balance_interval;
  4006. if (idle != CPU_IDLE)
  4007. interval *= sd->busy_factor;
  4008. /* scale ms to jiffies */
  4009. interval = msecs_to_jiffies(interval);
  4010. if (unlikely(!interval))
  4011. interval = 1;
  4012. if (interval > HZ*NR_CPUS/10)
  4013. interval = HZ*NR_CPUS/10;
  4014. need_serialize = sd->flags & SD_SERIALIZE;
  4015. if (need_serialize) {
  4016. if (!spin_trylock(&balancing))
  4017. goto out;
  4018. }
  4019. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4020. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4021. /*
  4022. * We've pulled tasks over so either we're no
  4023. * longer idle, or one of our SMT siblings is
  4024. * not idle.
  4025. */
  4026. idle = CPU_NOT_IDLE;
  4027. }
  4028. sd->last_balance = jiffies;
  4029. }
  4030. if (need_serialize)
  4031. spin_unlock(&balancing);
  4032. out:
  4033. if (time_after(next_balance, sd->last_balance + interval)) {
  4034. next_balance = sd->last_balance + interval;
  4035. update_next_balance = 1;
  4036. }
  4037. /*
  4038. * Stop the load balance at this level. There is another
  4039. * CPU in our sched group which is doing load balancing more
  4040. * actively.
  4041. */
  4042. if (!balance)
  4043. break;
  4044. }
  4045. /*
  4046. * next_balance will be updated only when there is a need.
  4047. * When the cpu is attached to null domain for ex, it will not be
  4048. * updated.
  4049. */
  4050. if (likely(update_next_balance))
  4051. rq->next_balance = next_balance;
  4052. }
  4053. /*
  4054. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4055. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4056. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4057. */
  4058. static void run_rebalance_domains(struct softirq_action *h)
  4059. {
  4060. int this_cpu = smp_processor_id();
  4061. struct rq *this_rq = cpu_rq(this_cpu);
  4062. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4063. CPU_IDLE : CPU_NOT_IDLE;
  4064. rebalance_domains(this_cpu, idle);
  4065. #ifdef CONFIG_NO_HZ
  4066. /*
  4067. * If this cpu is the owner for idle load balancing, then do the
  4068. * balancing on behalf of the other idle cpus whose ticks are
  4069. * stopped.
  4070. */
  4071. if (this_rq->idle_at_tick &&
  4072. atomic_read(&nohz.load_balancer) == this_cpu) {
  4073. struct rq *rq;
  4074. int balance_cpu;
  4075. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4076. if (balance_cpu == this_cpu)
  4077. continue;
  4078. /*
  4079. * If this cpu gets work to do, stop the load balancing
  4080. * work being done for other cpus. Next load
  4081. * balancing owner will pick it up.
  4082. */
  4083. if (need_resched())
  4084. break;
  4085. rebalance_domains(balance_cpu, CPU_IDLE);
  4086. rq = cpu_rq(balance_cpu);
  4087. if (time_after(this_rq->next_balance, rq->next_balance))
  4088. this_rq->next_balance = rq->next_balance;
  4089. }
  4090. }
  4091. #endif
  4092. }
  4093. static inline int on_null_domain(int cpu)
  4094. {
  4095. return !rcu_dereference(cpu_rq(cpu)->sd);
  4096. }
  4097. /*
  4098. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4099. *
  4100. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4101. * idle load balancing owner or decide to stop the periodic load balancing,
  4102. * if the whole system is idle.
  4103. */
  4104. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4105. {
  4106. #ifdef CONFIG_NO_HZ
  4107. /*
  4108. * If we were in the nohz mode recently and busy at the current
  4109. * scheduler tick, then check if we need to nominate new idle
  4110. * load balancer.
  4111. */
  4112. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4113. rq->in_nohz_recently = 0;
  4114. if (atomic_read(&nohz.load_balancer) == cpu) {
  4115. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4116. atomic_set(&nohz.load_balancer, -1);
  4117. }
  4118. if (atomic_read(&nohz.load_balancer) == -1) {
  4119. int ilb = find_new_ilb(cpu);
  4120. if (ilb < nr_cpu_ids)
  4121. resched_cpu(ilb);
  4122. }
  4123. }
  4124. /*
  4125. * If this cpu is idle and doing idle load balancing for all the
  4126. * cpus with ticks stopped, is it time for that to stop?
  4127. */
  4128. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4129. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4130. resched_cpu(cpu);
  4131. return;
  4132. }
  4133. /*
  4134. * If this cpu is idle and the idle load balancing is done by
  4135. * someone else, then no need raise the SCHED_SOFTIRQ
  4136. */
  4137. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4138. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4139. return;
  4140. #endif
  4141. /* Don't need to rebalance while attached to NULL domain */
  4142. if (time_after_eq(jiffies, rq->next_balance) &&
  4143. likely(!on_null_domain(cpu)))
  4144. raise_softirq(SCHED_SOFTIRQ);
  4145. }
  4146. #else /* CONFIG_SMP */
  4147. /*
  4148. * on UP we do not need to balance between CPUs:
  4149. */
  4150. static inline void idle_balance(int cpu, struct rq *rq)
  4151. {
  4152. }
  4153. #endif
  4154. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4155. EXPORT_PER_CPU_SYMBOL(kstat);
  4156. /*
  4157. * Return any ns on the sched_clock that have not yet been accounted in
  4158. * @p in case that task is currently running.
  4159. *
  4160. * Called with task_rq_lock() held on @rq.
  4161. */
  4162. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4163. {
  4164. u64 ns = 0;
  4165. if (task_current(rq, p)) {
  4166. update_rq_clock(rq);
  4167. ns = rq->clock - p->se.exec_start;
  4168. if ((s64)ns < 0)
  4169. ns = 0;
  4170. }
  4171. return ns;
  4172. }
  4173. unsigned long long task_delta_exec(struct task_struct *p)
  4174. {
  4175. unsigned long flags;
  4176. struct rq *rq;
  4177. u64 ns = 0;
  4178. rq = task_rq_lock(p, &flags);
  4179. ns = do_task_delta_exec(p, rq);
  4180. task_rq_unlock(rq, &flags);
  4181. return ns;
  4182. }
  4183. /*
  4184. * Return accounted runtime for the task.
  4185. * In case the task is currently running, return the runtime plus current's
  4186. * pending runtime that have not been accounted yet.
  4187. */
  4188. unsigned long long task_sched_runtime(struct task_struct *p)
  4189. {
  4190. unsigned long flags;
  4191. struct rq *rq;
  4192. u64 ns = 0;
  4193. rq = task_rq_lock(p, &flags);
  4194. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4195. task_rq_unlock(rq, &flags);
  4196. return ns;
  4197. }
  4198. /*
  4199. * Return sum_exec_runtime for the thread group.
  4200. * In case the task is currently running, return the sum plus current's
  4201. * pending runtime that have not been accounted yet.
  4202. *
  4203. * Note that the thread group might have other running tasks as well,
  4204. * so the return value not includes other pending runtime that other
  4205. * running tasks might have.
  4206. */
  4207. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4208. {
  4209. struct task_cputime totals;
  4210. unsigned long flags;
  4211. struct rq *rq;
  4212. u64 ns;
  4213. rq = task_rq_lock(p, &flags);
  4214. thread_group_cputime(p, &totals);
  4215. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4216. task_rq_unlock(rq, &flags);
  4217. return ns;
  4218. }
  4219. /*
  4220. * Account user cpu time to a process.
  4221. * @p: the process that the cpu time gets accounted to
  4222. * @cputime: the cpu time spent in user space since the last update
  4223. * @cputime_scaled: cputime scaled by cpu frequency
  4224. */
  4225. void account_user_time(struct task_struct *p, cputime_t cputime,
  4226. cputime_t cputime_scaled)
  4227. {
  4228. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4229. cputime64_t tmp;
  4230. /* Add user time to process. */
  4231. p->utime = cputime_add(p->utime, cputime);
  4232. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4233. account_group_user_time(p, cputime);
  4234. /* Add user time to cpustat. */
  4235. tmp = cputime_to_cputime64(cputime);
  4236. if (TASK_NICE(p) > 0)
  4237. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4238. else
  4239. cpustat->user = cputime64_add(cpustat->user, tmp);
  4240. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4241. /* Account for user time used */
  4242. acct_update_integrals(p);
  4243. }
  4244. /*
  4245. * Account guest cpu time to a process.
  4246. * @p: the process that the cpu time gets accounted to
  4247. * @cputime: the cpu time spent in virtual machine since the last update
  4248. * @cputime_scaled: cputime scaled by cpu frequency
  4249. */
  4250. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4251. cputime_t cputime_scaled)
  4252. {
  4253. cputime64_t tmp;
  4254. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4255. tmp = cputime_to_cputime64(cputime);
  4256. /* Add guest time to process. */
  4257. p->utime = cputime_add(p->utime, cputime);
  4258. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4259. account_group_user_time(p, cputime);
  4260. p->gtime = cputime_add(p->gtime, cputime);
  4261. /* Add guest time to cpustat. */
  4262. cpustat->user = cputime64_add(cpustat->user, tmp);
  4263. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4264. }
  4265. /*
  4266. * Account system cpu time to a process.
  4267. * @p: the process that the cpu time gets accounted to
  4268. * @hardirq_offset: the offset to subtract from hardirq_count()
  4269. * @cputime: the cpu time spent in kernel space since the last update
  4270. * @cputime_scaled: cputime scaled by cpu frequency
  4271. */
  4272. void account_system_time(struct task_struct *p, int hardirq_offset,
  4273. cputime_t cputime, cputime_t cputime_scaled)
  4274. {
  4275. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4276. cputime64_t tmp;
  4277. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4278. account_guest_time(p, cputime, cputime_scaled);
  4279. return;
  4280. }
  4281. /* Add system time to process. */
  4282. p->stime = cputime_add(p->stime, cputime);
  4283. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4284. account_group_system_time(p, cputime);
  4285. /* Add system time to cpustat. */
  4286. tmp = cputime_to_cputime64(cputime);
  4287. if (hardirq_count() - hardirq_offset)
  4288. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4289. else if (softirq_count())
  4290. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4291. else
  4292. cpustat->system = cputime64_add(cpustat->system, tmp);
  4293. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4294. /* Account for system time used */
  4295. acct_update_integrals(p);
  4296. }
  4297. /*
  4298. * Account for involuntary wait time.
  4299. * @steal: the cpu time spent in involuntary wait
  4300. */
  4301. void account_steal_time(cputime_t cputime)
  4302. {
  4303. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4304. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4305. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4306. }
  4307. /*
  4308. * Account for idle time.
  4309. * @cputime: the cpu time spent in idle wait
  4310. */
  4311. void account_idle_time(cputime_t cputime)
  4312. {
  4313. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4314. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4315. struct rq *rq = this_rq();
  4316. if (atomic_read(&rq->nr_iowait) > 0)
  4317. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4318. else
  4319. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4320. }
  4321. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4322. /*
  4323. * Account a single tick of cpu time.
  4324. * @p: the process that the cpu time gets accounted to
  4325. * @user_tick: indicates if the tick is a user or a system tick
  4326. */
  4327. void account_process_tick(struct task_struct *p, int user_tick)
  4328. {
  4329. cputime_t one_jiffy = jiffies_to_cputime(1);
  4330. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4331. struct rq *rq = this_rq();
  4332. if (user_tick)
  4333. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4334. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4335. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4336. one_jiffy_scaled);
  4337. else
  4338. account_idle_time(one_jiffy);
  4339. }
  4340. /*
  4341. * Account multiple ticks of steal time.
  4342. * @p: the process from which the cpu time has been stolen
  4343. * @ticks: number of stolen ticks
  4344. */
  4345. void account_steal_ticks(unsigned long ticks)
  4346. {
  4347. account_steal_time(jiffies_to_cputime(ticks));
  4348. }
  4349. /*
  4350. * Account multiple ticks of idle time.
  4351. * @ticks: number of stolen ticks
  4352. */
  4353. void account_idle_ticks(unsigned long ticks)
  4354. {
  4355. account_idle_time(jiffies_to_cputime(ticks));
  4356. }
  4357. #endif
  4358. /*
  4359. * Use precise platform statistics if available:
  4360. */
  4361. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4362. cputime_t task_utime(struct task_struct *p)
  4363. {
  4364. return p->utime;
  4365. }
  4366. cputime_t task_stime(struct task_struct *p)
  4367. {
  4368. return p->stime;
  4369. }
  4370. #else
  4371. cputime_t task_utime(struct task_struct *p)
  4372. {
  4373. clock_t utime = cputime_to_clock_t(p->utime),
  4374. total = utime + cputime_to_clock_t(p->stime);
  4375. u64 temp;
  4376. /*
  4377. * Use CFS's precise accounting:
  4378. */
  4379. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4380. if (total) {
  4381. temp *= utime;
  4382. do_div(temp, total);
  4383. }
  4384. utime = (clock_t)temp;
  4385. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4386. return p->prev_utime;
  4387. }
  4388. cputime_t task_stime(struct task_struct *p)
  4389. {
  4390. clock_t stime;
  4391. /*
  4392. * Use CFS's precise accounting. (we subtract utime from
  4393. * the total, to make sure the total observed by userspace
  4394. * grows monotonically - apps rely on that):
  4395. */
  4396. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4397. cputime_to_clock_t(task_utime(p));
  4398. if (stime >= 0)
  4399. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4400. return p->prev_stime;
  4401. }
  4402. #endif
  4403. inline cputime_t task_gtime(struct task_struct *p)
  4404. {
  4405. return p->gtime;
  4406. }
  4407. /*
  4408. * This function gets called by the timer code, with HZ frequency.
  4409. * We call it with interrupts disabled.
  4410. *
  4411. * It also gets called by the fork code, when changing the parent's
  4412. * timeslices.
  4413. */
  4414. void scheduler_tick(void)
  4415. {
  4416. int cpu = smp_processor_id();
  4417. struct rq *rq = cpu_rq(cpu);
  4418. struct task_struct *curr = rq->curr;
  4419. sched_clock_tick();
  4420. spin_lock(&rq->lock);
  4421. update_rq_clock(rq);
  4422. update_cpu_load(rq);
  4423. curr->sched_class->task_tick(rq, curr, 0);
  4424. spin_unlock(&rq->lock);
  4425. perf_counter_task_tick(curr, cpu);
  4426. #ifdef CONFIG_SMP
  4427. rq->idle_at_tick = idle_cpu(cpu);
  4428. trigger_load_balance(rq, cpu);
  4429. #endif
  4430. }
  4431. notrace unsigned long get_parent_ip(unsigned long addr)
  4432. {
  4433. if (in_lock_functions(addr)) {
  4434. addr = CALLER_ADDR2;
  4435. if (in_lock_functions(addr))
  4436. addr = CALLER_ADDR3;
  4437. }
  4438. return addr;
  4439. }
  4440. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4441. defined(CONFIG_PREEMPT_TRACER))
  4442. void __kprobes add_preempt_count(int val)
  4443. {
  4444. #ifdef CONFIG_DEBUG_PREEMPT
  4445. /*
  4446. * Underflow?
  4447. */
  4448. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4449. return;
  4450. #endif
  4451. preempt_count() += val;
  4452. #ifdef CONFIG_DEBUG_PREEMPT
  4453. /*
  4454. * Spinlock count overflowing soon?
  4455. */
  4456. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4457. PREEMPT_MASK - 10);
  4458. #endif
  4459. if (preempt_count() == val)
  4460. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4461. }
  4462. EXPORT_SYMBOL(add_preempt_count);
  4463. void __kprobes sub_preempt_count(int val)
  4464. {
  4465. #ifdef CONFIG_DEBUG_PREEMPT
  4466. /*
  4467. * Underflow?
  4468. */
  4469. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4470. return;
  4471. /*
  4472. * Is the spinlock portion underflowing?
  4473. */
  4474. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4475. !(preempt_count() & PREEMPT_MASK)))
  4476. return;
  4477. #endif
  4478. if (preempt_count() == val)
  4479. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4480. preempt_count() -= val;
  4481. }
  4482. EXPORT_SYMBOL(sub_preempt_count);
  4483. #endif
  4484. /*
  4485. * Print scheduling while atomic bug:
  4486. */
  4487. static noinline void __schedule_bug(struct task_struct *prev)
  4488. {
  4489. struct pt_regs *regs = get_irq_regs();
  4490. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4491. prev->comm, prev->pid, preempt_count());
  4492. debug_show_held_locks(prev);
  4493. print_modules();
  4494. if (irqs_disabled())
  4495. print_irqtrace_events(prev);
  4496. if (regs)
  4497. show_regs(regs);
  4498. else
  4499. dump_stack();
  4500. }
  4501. /*
  4502. * Various schedule()-time debugging checks and statistics:
  4503. */
  4504. static inline void schedule_debug(struct task_struct *prev)
  4505. {
  4506. /*
  4507. * Test if we are atomic. Since do_exit() needs to call into
  4508. * schedule() atomically, we ignore that path for now.
  4509. * Otherwise, whine if we are scheduling when we should not be.
  4510. */
  4511. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4512. __schedule_bug(prev);
  4513. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4514. schedstat_inc(this_rq(), sched_count);
  4515. #ifdef CONFIG_SCHEDSTATS
  4516. if (unlikely(prev->lock_depth >= 0)) {
  4517. schedstat_inc(this_rq(), bkl_count);
  4518. schedstat_inc(prev, sched_info.bkl_count);
  4519. }
  4520. #endif
  4521. }
  4522. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4523. {
  4524. if (prev->state == TASK_RUNNING) {
  4525. u64 runtime = prev->se.sum_exec_runtime;
  4526. runtime -= prev->se.prev_sum_exec_runtime;
  4527. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4528. /*
  4529. * In order to avoid avg_overlap growing stale when we are
  4530. * indeed overlapping and hence not getting put to sleep, grow
  4531. * the avg_overlap on preemption.
  4532. *
  4533. * We use the average preemption runtime because that
  4534. * correlates to the amount of cache footprint a task can
  4535. * build up.
  4536. */
  4537. update_avg(&prev->se.avg_overlap, runtime);
  4538. }
  4539. prev->sched_class->put_prev_task(rq, prev);
  4540. }
  4541. /*
  4542. * Pick up the highest-prio task:
  4543. */
  4544. static inline struct task_struct *
  4545. pick_next_task(struct rq *rq)
  4546. {
  4547. const struct sched_class *class;
  4548. struct task_struct *p;
  4549. /*
  4550. * Optimization: we know that if all tasks are in
  4551. * the fair class we can call that function directly:
  4552. */
  4553. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4554. p = fair_sched_class.pick_next_task(rq);
  4555. if (likely(p))
  4556. return p;
  4557. }
  4558. class = sched_class_highest;
  4559. for ( ; ; ) {
  4560. p = class->pick_next_task(rq);
  4561. if (p)
  4562. return p;
  4563. /*
  4564. * Will never be NULL as the idle class always
  4565. * returns a non-NULL p:
  4566. */
  4567. class = class->next;
  4568. }
  4569. }
  4570. /*
  4571. * schedule() is the main scheduler function.
  4572. */
  4573. asmlinkage void __sched schedule(void)
  4574. {
  4575. struct task_struct *prev, *next;
  4576. unsigned long *switch_count;
  4577. int post_schedule = 0;
  4578. struct rq *rq;
  4579. int cpu;
  4580. need_resched:
  4581. preempt_disable();
  4582. cpu = smp_processor_id();
  4583. rq = cpu_rq(cpu);
  4584. rcu_qsctr_inc(cpu);
  4585. prev = rq->curr;
  4586. switch_count = &prev->nivcsw;
  4587. release_kernel_lock(prev);
  4588. need_resched_nonpreemptible:
  4589. schedule_debug(prev);
  4590. if (sched_feat(HRTICK))
  4591. hrtick_clear(rq);
  4592. spin_lock_irq(&rq->lock);
  4593. update_rq_clock(rq);
  4594. clear_tsk_need_resched(prev);
  4595. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4596. if (unlikely(signal_pending_state(prev->state, prev)))
  4597. prev->state = TASK_RUNNING;
  4598. else
  4599. deactivate_task(rq, prev, 1);
  4600. switch_count = &prev->nvcsw;
  4601. }
  4602. #ifdef CONFIG_SMP
  4603. if (prev->sched_class->pre_schedule)
  4604. prev->sched_class->pre_schedule(rq, prev);
  4605. #endif
  4606. if (unlikely(!rq->nr_running))
  4607. idle_balance(cpu, rq);
  4608. put_prev_task(rq, prev);
  4609. next = pick_next_task(rq);
  4610. if (likely(prev != next)) {
  4611. sched_info_switch(prev, next);
  4612. perf_counter_task_sched_out(prev, next, cpu);
  4613. rq->nr_switches++;
  4614. rq->curr = next;
  4615. ++*switch_count;
  4616. post_schedule = context_switch(rq, prev, next); /* unlocks the rq */
  4617. /*
  4618. * the context switch might have flipped the stack from under
  4619. * us, hence refresh the local variables.
  4620. */
  4621. cpu = smp_processor_id();
  4622. rq = cpu_rq(cpu);
  4623. } else {
  4624. #ifdef CONFIG_SMP
  4625. if (current->sched_class->needs_post_schedule)
  4626. post_schedule = current->sched_class->needs_post_schedule(rq);
  4627. #endif
  4628. spin_unlock_irq(&rq->lock);
  4629. }
  4630. #ifdef CONFIG_SMP
  4631. if (post_schedule)
  4632. current->sched_class->post_schedule(rq);
  4633. #endif
  4634. if (unlikely(reacquire_kernel_lock(current) < 0))
  4635. goto need_resched_nonpreemptible;
  4636. preempt_enable_no_resched();
  4637. if (need_resched())
  4638. goto need_resched;
  4639. }
  4640. EXPORT_SYMBOL(schedule);
  4641. #ifdef CONFIG_SMP
  4642. /*
  4643. * Look out! "owner" is an entirely speculative pointer
  4644. * access and not reliable.
  4645. */
  4646. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4647. {
  4648. unsigned int cpu;
  4649. struct rq *rq;
  4650. if (!sched_feat(OWNER_SPIN))
  4651. return 0;
  4652. #ifdef CONFIG_DEBUG_PAGEALLOC
  4653. /*
  4654. * Need to access the cpu field knowing that
  4655. * DEBUG_PAGEALLOC could have unmapped it if
  4656. * the mutex owner just released it and exited.
  4657. */
  4658. if (probe_kernel_address(&owner->cpu, cpu))
  4659. goto out;
  4660. #else
  4661. cpu = owner->cpu;
  4662. #endif
  4663. /*
  4664. * Even if the access succeeded (likely case),
  4665. * the cpu field may no longer be valid.
  4666. */
  4667. if (cpu >= nr_cpumask_bits)
  4668. goto out;
  4669. /*
  4670. * We need to validate that we can do a
  4671. * get_cpu() and that we have the percpu area.
  4672. */
  4673. if (!cpu_online(cpu))
  4674. goto out;
  4675. rq = cpu_rq(cpu);
  4676. for (;;) {
  4677. /*
  4678. * Owner changed, break to re-assess state.
  4679. */
  4680. if (lock->owner != owner)
  4681. break;
  4682. /*
  4683. * Is that owner really running on that cpu?
  4684. */
  4685. if (task_thread_info(rq->curr) != owner || need_resched())
  4686. return 0;
  4687. cpu_relax();
  4688. }
  4689. out:
  4690. return 1;
  4691. }
  4692. #endif
  4693. #ifdef CONFIG_PREEMPT
  4694. /*
  4695. * this is the entry point to schedule() from in-kernel preemption
  4696. * off of preempt_enable. Kernel preemptions off return from interrupt
  4697. * occur there and call schedule directly.
  4698. */
  4699. asmlinkage void __sched preempt_schedule(void)
  4700. {
  4701. struct thread_info *ti = current_thread_info();
  4702. /*
  4703. * If there is a non-zero preempt_count or interrupts are disabled,
  4704. * we do not want to preempt the current task. Just return..
  4705. */
  4706. if (likely(ti->preempt_count || irqs_disabled()))
  4707. return;
  4708. do {
  4709. add_preempt_count(PREEMPT_ACTIVE);
  4710. schedule();
  4711. sub_preempt_count(PREEMPT_ACTIVE);
  4712. /*
  4713. * Check again in case we missed a preemption opportunity
  4714. * between schedule and now.
  4715. */
  4716. barrier();
  4717. } while (need_resched());
  4718. }
  4719. EXPORT_SYMBOL(preempt_schedule);
  4720. /*
  4721. * this is the entry point to schedule() from kernel preemption
  4722. * off of irq context.
  4723. * Note, that this is called and return with irqs disabled. This will
  4724. * protect us against recursive calling from irq.
  4725. */
  4726. asmlinkage void __sched preempt_schedule_irq(void)
  4727. {
  4728. struct thread_info *ti = current_thread_info();
  4729. /* Catch callers which need to be fixed */
  4730. BUG_ON(ti->preempt_count || !irqs_disabled());
  4731. do {
  4732. add_preempt_count(PREEMPT_ACTIVE);
  4733. local_irq_enable();
  4734. schedule();
  4735. local_irq_disable();
  4736. sub_preempt_count(PREEMPT_ACTIVE);
  4737. /*
  4738. * Check again in case we missed a preemption opportunity
  4739. * between schedule and now.
  4740. */
  4741. barrier();
  4742. } while (need_resched());
  4743. }
  4744. #endif /* CONFIG_PREEMPT */
  4745. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4746. void *key)
  4747. {
  4748. return try_to_wake_up(curr->private, mode, sync);
  4749. }
  4750. EXPORT_SYMBOL(default_wake_function);
  4751. /*
  4752. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4753. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4754. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4755. *
  4756. * There are circumstances in which we can try to wake a task which has already
  4757. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4758. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4759. */
  4760. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4761. int nr_exclusive, int sync, void *key)
  4762. {
  4763. wait_queue_t *curr, *next;
  4764. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4765. unsigned flags = curr->flags;
  4766. if (curr->func(curr, mode, sync, key) &&
  4767. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4768. break;
  4769. }
  4770. }
  4771. /**
  4772. * __wake_up - wake up threads blocked on a waitqueue.
  4773. * @q: the waitqueue
  4774. * @mode: which threads
  4775. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4776. * @key: is directly passed to the wakeup function
  4777. *
  4778. * It may be assumed that this function implies a write memory barrier before
  4779. * changing the task state if and only if any tasks are woken up.
  4780. */
  4781. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4782. int nr_exclusive, void *key)
  4783. {
  4784. unsigned long flags;
  4785. spin_lock_irqsave(&q->lock, flags);
  4786. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4787. spin_unlock_irqrestore(&q->lock, flags);
  4788. }
  4789. EXPORT_SYMBOL(__wake_up);
  4790. /*
  4791. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4792. */
  4793. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4794. {
  4795. __wake_up_common(q, mode, 1, 0, NULL);
  4796. }
  4797. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4798. {
  4799. __wake_up_common(q, mode, 1, 0, key);
  4800. }
  4801. /**
  4802. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4803. * @q: the waitqueue
  4804. * @mode: which threads
  4805. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4806. * @key: opaque value to be passed to wakeup targets
  4807. *
  4808. * The sync wakeup differs that the waker knows that it will schedule
  4809. * away soon, so while the target thread will be woken up, it will not
  4810. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4811. * with each other. This can prevent needless bouncing between CPUs.
  4812. *
  4813. * On UP it can prevent extra preemption.
  4814. *
  4815. * It may be assumed that this function implies a write memory barrier before
  4816. * changing the task state if and only if any tasks are woken up.
  4817. */
  4818. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4819. int nr_exclusive, void *key)
  4820. {
  4821. unsigned long flags;
  4822. int sync = 1;
  4823. if (unlikely(!q))
  4824. return;
  4825. if (unlikely(!nr_exclusive))
  4826. sync = 0;
  4827. spin_lock_irqsave(&q->lock, flags);
  4828. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4829. spin_unlock_irqrestore(&q->lock, flags);
  4830. }
  4831. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4832. /*
  4833. * __wake_up_sync - see __wake_up_sync_key()
  4834. */
  4835. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4836. {
  4837. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4838. }
  4839. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4840. /**
  4841. * complete: - signals a single thread waiting on this completion
  4842. * @x: holds the state of this particular completion
  4843. *
  4844. * This will wake up a single thread waiting on this completion. Threads will be
  4845. * awakened in the same order in which they were queued.
  4846. *
  4847. * See also complete_all(), wait_for_completion() and related routines.
  4848. *
  4849. * It may be assumed that this function implies a write memory barrier before
  4850. * changing the task state if and only if any tasks are woken up.
  4851. */
  4852. void complete(struct completion *x)
  4853. {
  4854. unsigned long flags;
  4855. spin_lock_irqsave(&x->wait.lock, flags);
  4856. x->done++;
  4857. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4858. spin_unlock_irqrestore(&x->wait.lock, flags);
  4859. }
  4860. EXPORT_SYMBOL(complete);
  4861. /**
  4862. * complete_all: - signals all threads waiting on this completion
  4863. * @x: holds the state of this particular completion
  4864. *
  4865. * This will wake up all threads waiting on this particular completion event.
  4866. *
  4867. * It may be assumed that this function implies a write memory barrier before
  4868. * changing the task state if and only if any tasks are woken up.
  4869. */
  4870. void complete_all(struct completion *x)
  4871. {
  4872. unsigned long flags;
  4873. spin_lock_irqsave(&x->wait.lock, flags);
  4874. x->done += UINT_MAX/2;
  4875. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4876. spin_unlock_irqrestore(&x->wait.lock, flags);
  4877. }
  4878. EXPORT_SYMBOL(complete_all);
  4879. static inline long __sched
  4880. do_wait_for_common(struct completion *x, long timeout, int state)
  4881. {
  4882. if (!x->done) {
  4883. DECLARE_WAITQUEUE(wait, current);
  4884. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4885. __add_wait_queue_tail(&x->wait, &wait);
  4886. do {
  4887. if (signal_pending_state(state, current)) {
  4888. timeout = -ERESTARTSYS;
  4889. break;
  4890. }
  4891. __set_current_state(state);
  4892. spin_unlock_irq(&x->wait.lock);
  4893. timeout = schedule_timeout(timeout);
  4894. spin_lock_irq(&x->wait.lock);
  4895. } while (!x->done && timeout);
  4896. __remove_wait_queue(&x->wait, &wait);
  4897. if (!x->done)
  4898. return timeout;
  4899. }
  4900. x->done--;
  4901. return timeout ?: 1;
  4902. }
  4903. static long __sched
  4904. wait_for_common(struct completion *x, long timeout, int state)
  4905. {
  4906. might_sleep();
  4907. spin_lock_irq(&x->wait.lock);
  4908. timeout = do_wait_for_common(x, timeout, state);
  4909. spin_unlock_irq(&x->wait.lock);
  4910. return timeout;
  4911. }
  4912. /**
  4913. * wait_for_completion: - waits for completion of a task
  4914. * @x: holds the state of this particular completion
  4915. *
  4916. * This waits to be signaled for completion of a specific task. It is NOT
  4917. * interruptible and there is no timeout.
  4918. *
  4919. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4920. * and interrupt capability. Also see complete().
  4921. */
  4922. void __sched wait_for_completion(struct completion *x)
  4923. {
  4924. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4925. }
  4926. EXPORT_SYMBOL(wait_for_completion);
  4927. /**
  4928. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4929. * @x: holds the state of this particular completion
  4930. * @timeout: timeout value in jiffies
  4931. *
  4932. * This waits for either a completion of a specific task to be signaled or for a
  4933. * specified timeout to expire. The timeout is in jiffies. It is not
  4934. * interruptible.
  4935. */
  4936. unsigned long __sched
  4937. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4938. {
  4939. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4940. }
  4941. EXPORT_SYMBOL(wait_for_completion_timeout);
  4942. /**
  4943. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4944. * @x: holds the state of this particular completion
  4945. *
  4946. * This waits for completion of a specific task to be signaled. It is
  4947. * interruptible.
  4948. */
  4949. int __sched wait_for_completion_interruptible(struct completion *x)
  4950. {
  4951. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4952. if (t == -ERESTARTSYS)
  4953. return t;
  4954. return 0;
  4955. }
  4956. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4957. /**
  4958. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4959. * @x: holds the state of this particular completion
  4960. * @timeout: timeout value in jiffies
  4961. *
  4962. * This waits for either a completion of a specific task to be signaled or for a
  4963. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4964. */
  4965. unsigned long __sched
  4966. wait_for_completion_interruptible_timeout(struct completion *x,
  4967. unsigned long timeout)
  4968. {
  4969. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4970. }
  4971. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4972. /**
  4973. * wait_for_completion_killable: - waits for completion of a task (killable)
  4974. * @x: holds the state of this particular completion
  4975. *
  4976. * This waits to be signaled for completion of a specific task. It can be
  4977. * interrupted by a kill signal.
  4978. */
  4979. int __sched wait_for_completion_killable(struct completion *x)
  4980. {
  4981. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4982. if (t == -ERESTARTSYS)
  4983. return t;
  4984. return 0;
  4985. }
  4986. EXPORT_SYMBOL(wait_for_completion_killable);
  4987. /**
  4988. * try_wait_for_completion - try to decrement a completion without blocking
  4989. * @x: completion structure
  4990. *
  4991. * Returns: 0 if a decrement cannot be done without blocking
  4992. * 1 if a decrement succeeded.
  4993. *
  4994. * If a completion is being used as a counting completion,
  4995. * attempt to decrement the counter without blocking. This
  4996. * enables us to avoid waiting if the resource the completion
  4997. * is protecting is not available.
  4998. */
  4999. bool try_wait_for_completion(struct completion *x)
  5000. {
  5001. int ret = 1;
  5002. spin_lock_irq(&x->wait.lock);
  5003. if (!x->done)
  5004. ret = 0;
  5005. else
  5006. x->done--;
  5007. spin_unlock_irq(&x->wait.lock);
  5008. return ret;
  5009. }
  5010. EXPORT_SYMBOL(try_wait_for_completion);
  5011. /**
  5012. * completion_done - Test to see if a completion has any waiters
  5013. * @x: completion structure
  5014. *
  5015. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5016. * 1 if there are no waiters.
  5017. *
  5018. */
  5019. bool completion_done(struct completion *x)
  5020. {
  5021. int ret = 1;
  5022. spin_lock_irq(&x->wait.lock);
  5023. if (!x->done)
  5024. ret = 0;
  5025. spin_unlock_irq(&x->wait.lock);
  5026. return ret;
  5027. }
  5028. EXPORT_SYMBOL(completion_done);
  5029. static long __sched
  5030. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5031. {
  5032. unsigned long flags;
  5033. wait_queue_t wait;
  5034. init_waitqueue_entry(&wait, current);
  5035. __set_current_state(state);
  5036. spin_lock_irqsave(&q->lock, flags);
  5037. __add_wait_queue(q, &wait);
  5038. spin_unlock(&q->lock);
  5039. timeout = schedule_timeout(timeout);
  5040. spin_lock_irq(&q->lock);
  5041. __remove_wait_queue(q, &wait);
  5042. spin_unlock_irqrestore(&q->lock, flags);
  5043. return timeout;
  5044. }
  5045. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5046. {
  5047. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5048. }
  5049. EXPORT_SYMBOL(interruptible_sleep_on);
  5050. long __sched
  5051. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5052. {
  5053. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5054. }
  5055. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5056. void __sched sleep_on(wait_queue_head_t *q)
  5057. {
  5058. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5059. }
  5060. EXPORT_SYMBOL(sleep_on);
  5061. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5062. {
  5063. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5064. }
  5065. EXPORT_SYMBOL(sleep_on_timeout);
  5066. #ifdef CONFIG_RT_MUTEXES
  5067. /*
  5068. * rt_mutex_setprio - set the current priority of a task
  5069. * @p: task
  5070. * @prio: prio value (kernel-internal form)
  5071. *
  5072. * This function changes the 'effective' priority of a task. It does
  5073. * not touch ->normal_prio like __setscheduler().
  5074. *
  5075. * Used by the rt_mutex code to implement priority inheritance logic.
  5076. */
  5077. void rt_mutex_setprio(struct task_struct *p, int prio)
  5078. {
  5079. unsigned long flags;
  5080. int oldprio, on_rq, running;
  5081. struct rq *rq;
  5082. const struct sched_class *prev_class = p->sched_class;
  5083. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5084. rq = task_rq_lock(p, &flags);
  5085. update_rq_clock(rq);
  5086. oldprio = p->prio;
  5087. on_rq = p->se.on_rq;
  5088. running = task_current(rq, p);
  5089. if (on_rq)
  5090. dequeue_task(rq, p, 0);
  5091. if (running)
  5092. p->sched_class->put_prev_task(rq, p);
  5093. if (rt_prio(prio))
  5094. p->sched_class = &rt_sched_class;
  5095. else
  5096. p->sched_class = &fair_sched_class;
  5097. p->prio = prio;
  5098. if (running)
  5099. p->sched_class->set_curr_task(rq);
  5100. if (on_rq) {
  5101. enqueue_task(rq, p, 0);
  5102. check_class_changed(rq, p, prev_class, oldprio, running);
  5103. }
  5104. task_rq_unlock(rq, &flags);
  5105. }
  5106. #endif
  5107. void set_user_nice(struct task_struct *p, long nice)
  5108. {
  5109. int old_prio, delta, on_rq;
  5110. unsigned long flags;
  5111. struct rq *rq;
  5112. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5113. return;
  5114. /*
  5115. * We have to be careful, if called from sys_setpriority(),
  5116. * the task might be in the middle of scheduling on another CPU.
  5117. */
  5118. rq = task_rq_lock(p, &flags);
  5119. update_rq_clock(rq);
  5120. /*
  5121. * The RT priorities are set via sched_setscheduler(), but we still
  5122. * allow the 'normal' nice value to be set - but as expected
  5123. * it wont have any effect on scheduling until the task is
  5124. * SCHED_FIFO/SCHED_RR:
  5125. */
  5126. if (task_has_rt_policy(p)) {
  5127. p->static_prio = NICE_TO_PRIO(nice);
  5128. goto out_unlock;
  5129. }
  5130. on_rq = p->se.on_rq;
  5131. if (on_rq)
  5132. dequeue_task(rq, p, 0);
  5133. p->static_prio = NICE_TO_PRIO(nice);
  5134. set_load_weight(p);
  5135. old_prio = p->prio;
  5136. p->prio = effective_prio(p);
  5137. delta = p->prio - old_prio;
  5138. if (on_rq) {
  5139. enqueue_task(rq, p, 0);
  5140. /*
  5141. * If the task increased its priority or is running and
  5142. * lowered its priority, then reschedule its CPU:
  5143. */
  5144. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5145. resched_task(rq->curr);
  5146. }
  5147. out_unlock:
  5148. task_rq_unlock(rq, &flags);
  5149. }
  5150. EXPORT_SYMBOL(set_user_nice);
  5151. /*
  5152. * can_nice - check if a task can reduce its nice value
  5153. * @p: task
  5154. * @nice: nice value
  5155. */
  5156. int can_nice(const struct task_struct *p, const int nice)
  5157. {
  5158. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5159. int nice_rlim = 20 - nice;
  5160. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5161. capable(CAP_SYS_NICE));
  5162. }
  5163. #ifdef __ARCH_WANT_SYS_NICE
  5164. /*
  5165. * sys_nice - change the priority of the current process.
  5166. * @increment: priority increment
  5167. *
  5168. * sys_setpriority is a more generic, but much slower function that
  5169. * does similar things.
  5170. */
  5171. SYSCALL_DEFINE1(nice, int, increment)
  5172. {
  5173. long nice, retval;
  5174. /*
  5175. * Setpriority might change our priority at the same moment.
  5176. * We don't have to worry. Conceptually one call occurs first
  5177. * and we have a single winner.
  5178. */
  5179. if (increment < -40)
  5180. increment = -40;
  5181. if (increment > 40)
  5182. increment = 40;
  5183. nice = TASK_NICE(current) + increment;
  5184. if (nice < -20)
  5185. nice = -20;
  5186. if (nice > 19)
  5187. nice = 19;
  5188. if (increment < 0 && !can_nice(current, nice))
  5189. return -EPERM;
  5190. retval = security_task_setnice(current, nice);
  5191. if (retval)
  5192. return retval;
  5193. set_user_nice(current, nice);
  5194. return 0;
  5195. }
  5196. #endif
  5197. /**
  5198. * task_prio - return the priority value of a given task.
  5199. * @p: the task in question.
  5200. *
  5201. * This is the priority value as seen by users in /proc.
  5202. * RT tasks are offset by -200. Normal tasks are centered
  5203. * around 0, value goes from -16 to +15.
  5204. */
  5205. int task_prio(const struct task_struct *p)
  5206. {
  5207. return p->prio - MAX_RT_PRIO;
  5208. }
  5209. /**
  5210. * task_nice - return the nice value of a given task.
  5211. * @p: the task in question.
  5212. */
  5213. int task_nice(const struct task_struct *p)
  5214. {
  5215. return TASK_NICE(p);
  5216. }
  5217. EXPORT_SYMBOL(task_nice);
  5218. /**
  5219. * idle_cpu - is a given cpu idle currently?
  5220. * @cpu: the processor in question.
  5221. */
  5222. int idle_cpu(int cpu)
  5223. {
  5224. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5225. }
  5226. /**
  5227. * idle_task - return the idle task for a given cpu.
  5228. * @cpu: the processor in question.
  5229. */
  5230. struct task_struct *idle_task(int cpu)
  5231. {
  5232. return cpu_rq(cpu)->idle;
  5233. }
  5234. /**
  5235. * find_process_by_pid - find a process with a matching PID value.
  5236. * @pid: the pid in question.
  5237. */
  5238. static struct task_struct *find_process_by_pid(pid_t pid)
  5239. {
  5240. return pid ? find_task_by_vpid(pid) : current;
  5241. }
  5242. /* Actually do priority change: must hold rq lock. */
  5243. static void
  5244. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5245. {
  5246. BUG_ON(p->se.on_rq);
  5247. p->policy = policy;
  5248. switch (p->policy) {
  5249. case SCHED_NORMAL:
  5250. case SCHED_BATCH:
  5251. case SCHED_IDLE:
  5252. p->sched_class = &fair_sched_class;
  5253. break;
  5254. case SCHED_FIFO:
  5255. case SCHED_RR:
  5256. p->sched_class = &rt_sched_class;
  5257. break;
  5258. }
  5259. p->rt_priority = prio;
  5260. p->normal_prio = normal_prio(p);
  5261. /* we are holding p->pi_lock already */
  5262. p->prio = rt_mutex_getprio(p);
  5263. set_load_weight(p);
  5264. }
  5265. /*
  5266. * check the target process has a UID that matches the current process's
  5267. */
  5268. static bool check_same_owner(struct task_struct *p)
  5269. {
  5270. const struct cred *cred = current_cred(), *pcred;
  5271. bool match;
  5272. rcu_read_lock();
  5273. pcred = __task_cred(p);
  5274. match = (cred->euid == pcred->euid ||
  5275. cred->euid == pcred->uid);
  5276. rcu_read_unlock();
  5277. return match;
  5278. }
  5279. static int __sched_setscheduler(struct task_struct *p, int policy,
  5280. struct sched_param *param, bool user)
  5281. {
  5282. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5283. unsigned long flags;
  5284. const struct sched_class *prev_class = p->sched_class;
  5285. struct rq *rq;
  5286. int reset_on_fork;
  5287. /* may grab non-irq protected spin_locks */
  5288. BUG_ON(in_interrupt());
  5289. recheck:
  5290. /* double check policy once rq lock held */
  5291. if (policy < 0) {
  5292. reset_on_fork = p->sched_reset_on_fork;
  5293. policy = oldpolicy = p->policy;
  5294. } else {
  5295. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5296. policy &= ~SCHED_RESET_ON_FORK;
  5297. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5298. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5299. policy != SCHED_IDLE)
  5300. return -EINVAL;
  5301. }
  5302. /*
  5303. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5304. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5305. * SCHED_BATCH and SCHED_IDLE is 0.
  5306. */
  5307. if (param->sched_priority < 0 ||
  5308. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5309. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5310. return -EINVAL;
  5311. if (rt_policy(policy) != (param->sched_priority != 0))
  5312. return -EINVAL;
  5313. /*
  5314. * Allow unprivileged RT tasks to decrease priority:
  5315. */
  5316. if (user && !capable(CAP_SYS_NICE)) {
  5317. if (rt_policy(policy)) {
  5318. unsigned long rlim_rtprio;
  5319. if (!lock_task_sighand(p, &flags))
  5320. return -ESRCH;
  5321. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5322. unlock_task_sighand(p, &flags);
  5323. /* can't set/change the rt policy */
  5324. if (policy != p->policy && !rlim_rtprio)
  5325. return -EPERM;
  5326. /* can't increase priority */
  5327. if (param->sched_priority > p->rt_priority &&
  5328. param->sched_priority > rlim_rtprio)
  5329. return -EPERM;
  5330. }
  5331. /*
  5332. * Like positive nice levels, dont allow tasks to
  5333. * move out of SCHED_IDLE either:
  5334. */
  5335. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5336. return -EPERM;
  5337. /* can't change other user's priorities */
  5338. if (!check_same_owner(p))
  5339. return -EPERM;
  5340. /* Normal users shall not reset the sched_reset_on_fork flag */
  5341. if (p->sched_reset_on_fork && !reset_on_fork)
  5342. return -EPERM;
  5343. }
  5344. if (user) {
  5345. #ifdef CONFIG_RT_GROUP_SCHED
  5346. /*
  5347. * Do not allow realtime tasks into groups that have no runtime
  5348. * assigned.
  5349. */
  5350. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5351. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5352. return -EPERM;
  5353. #endif
  5354. retval = security_task_setscheduler(p, policy, param);
  5355. if (retval)
  5356. return retval;
  5357. }
  5358. /*
  5359. * make sure no PI-waiters arrive (or leave) while we are
  5360. * changing the priority of the task:
  5361. */
  5362. spin_lock_irqsave(&p->pi_lock, flags);
  5363. /*
  5364. * To be able to change p->policy safely, the apropriate
  5365. * runqueue lock must be held.
  5366. */
  5367. rq = __task_rq_lock(p);
  5368. /* recheck policy now with rq lock held */
  5369. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5370. policy = oldpolicy = -1;
  5371. __task_rq_unlock(rq);
  5372. spin_unlock_irqrestore(&p->pi_lock, flags);
  5373. goto recheck;
  5374. }
  5375. update_rq_clock(rq);
  5376. on_rq = p->se.on_rq;
  5377. running = task_current(rq, p);
  5378. if (on_rq)
  5379. deactivate_task(rq, p, 0);
  5380. if (running)
  5381. p->sched_class->put_prev_task(rq, p);
  5382. p->sched_reset_on_fork = reset_on_fork;
  5383. oldprio = p->prio;
  5384. __setscheduler(rq, p, policy, param->sched_priority);
  5385. if (running)
  5386. p->sched_class->set_curr_task(rq);
  5387. if (on_rq) {
  5388. activate_task(rq, p, 0);
  5389. check_class_changed(rq, p, prev_class, oldprio, running);
  5390. }
  5391. __task_rq_unlock(rq);
  5392. spin_unlock_irqrestore(&p->pi_lock, flags);
  5393. rt_mutex_adjust_pi(p);
  5394. return 0;
  5395. }
  5396. /**
  5397. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5398. * @p: the task in question.
  5399. * @policy: new policy.
  5400. * @param: structure containing the new RT priority.
  5401. *
  5402. * NOTE that the task may be already dead.
  5403. */
  5404. int sched_setscheduler(struct task_struct *p, int policy,
  5405. struct sched_param *param)
  5406. {
  5407. return __sched_setscheduler(p, policy, param, true);
  5408. }
  5409. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5410. /**
  5411. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5412. * @p: the task in question.
  5413. * @policy: new policy.
  5414. * @param: structure containing the new RT priority.
  5415. *
  5416. * Just like sched_setscheduler, only don't bother checking if the
  5417. * current context has permission. For example, this is needed in
  5418. * stop_machine(): we create temporary high priority worker threads,
  5419. * but our caller might not have that capability.
  5420. */
  5421. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5422. struct sched_param *param)
  5423. {
  5424. return __sched_setscheduler(p, policy, param, false);
  5425. }
  5426. static int
  5427. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5428. {
  5429. struct sched_param lparam;
  5430. struct task_struct *p;
  5431. int retval;
  5432. if (!param || pid < 0)
  5433. return -EINVAL;
  5434. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5435. return -EFAULT;
  5436. rcu_read_lock();
  5437. retval = -ESRCH;
  5438. p = find_process_by_pid(pid);
  5439. if (p != NULL)
  5440. retval = sched_setscheduler(p, policy, &lparam);
  5441. rcu_read_unlock();
  5442. return retval;
  5443. }
  5444. /**
  5445. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5446. * @pid: the pid in question.
  5447. * @policy: new policy.
  5448. * @param: structure containing the new RT priority.
  5449. */
  5450. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5451. struct sched_param __user *, param)
  5452. {
  5453. /* negative values for policy are not valid */
  5454. if (policy < 0)
  5455. return -EINVAL;
  5456. return do_sched_setscheduler(pid, policy, param);
  5457. }
  5458. /**
  5459. * sys_sched_setparam - set/change the RT priority of a thread
  5460. * @pid: the pid in question.
  5461. * @param: structure containing the new RT priority.
  5462. */
  5463. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5464. {
  5465. return do_sched_setscheduler(pid, -1, param);
  5466. }
  5467. /**
  5468. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5469. * @pid: the pid in question.
  5470. */
  5471. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5472. {
  5473. struct task_struct *p;
  5474. int retval;
  5475. if (pid < 0)
  5476. return -EINVAL;
  5477. retval = -ESRCH;
  5478. read_lock(&tasklist_lock);
  5479. p = find_process_by_pid(pid);
  5480. if (p) {
  5481. retval = security_task_getscheduler(p);
  5482. if (!retval)
  5483. retval = p->policy
  5484. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5485. }
  5486. read_unlock(&tasklist_lock);
  5487. return retval;
  5488. }
  5489. /**
  5490. * sys_sched_getparam - get the RT priority of a thread
  5491. * @pid: the pid in question.
  5492. * @param: structure containing the RT priority.
  5493. */
  5494. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5495. {
  5496. struct sched_param lp;
  5497. struct task_struct *p;
  5498. int retval;
  5499. if (!param || pid < 0)
  5500. return -EINVAL;
  5501. read_lock(&tasklist_lock);
  5502. p = find_process_by_pid(pid);
  5503. retval = -ESRCH;
  5504. if (!p)
  5505. goto out_unlock;
  5506. retval = security_task_getscheduler(p);
  5507. if (retval)
  5508. goto out_unlock;
  5509. lp.sched_priority = p->rt_priority;
  5510. read_unlock(&tasklist_lock);
  5511. /*
  5512. * This one might sleep, we cannot do it with a spinlock held ...
  5513. */
  5514. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5515. return retval;
  5516. out_unlock:
  5517. read_unlock(&tasklist_lock);
  5518. return retval;
  5519. }
  5520. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5521. {
  5522. cpumask_var_t cpus_allowed, new_mask;
  5523. struct task_struct *p;
  5524. int retval;
  5525. get_online_cpus();
  5526. read_lock(&tasklist_lock);
  5527. p = find_process_by_pid(pid);
  5528. if (!p) {
  5529. read_unlock(&tasklist_lock);
  5530. put_online_cpus();
  5531. return -ESRCH;
  5532. }
  5533. /*
  5534. * It is not safe to call set_cpus_allowed with the
  5535. * tasklist_lock held. We will bump the task_struct's
  5536. * usage count and then drop tasklist_lock.
  5537. */
  5538. get_task_struct(p);
  5539. read_unlock(&tasklist_lock);
  5540. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5541. retval = -ENOMEM;
  5542. goto out_put_task;
  5543. }
  5544. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5545. retval = -ENOMEM;
  5546. goto out_free_cpus_allowed;
  5547. }
  5548. retval = -EPERM;
  5549. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5550. goto out_unlock;
  5551. retval = security_task_setscheduler(p, 0, NULL);
  5552. if (retval)
  5553. goto out_unlock;
  5554. cpuset_cpus_allowed(p, cpus_allowed);
  5555. cpumask_and(new_mask, in_mask, cpus_allowed);
  5556. again:
  5557. retval = set_cpus_allowed_ptr(p, new_mask);
  5558. if (!retval) {
  5559. cpuset_cpus_allowed(p, cpus_allowed);
  5560. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5561. /*
  5562. * We must have raced with a concurrent cpuset
  5563. * update. Just reset the cpus_allowed to the
  5564. * cpuset's cpus_allowed
  5565. */
  5566. cpumask_copy(new_mask, cpus_allowed);
  5567. goto again;
  5568. }
  5569. }
  5570. out_unlock:
  5571. free_cpumask_var(new_mask);
  5572. out_free_cpus_allowed:
  5573. free_cpumask_var(cpus_allowed);
  5574. out_put_task:
  5575. put_task_struct(p);
  5576. put_online_cpus();
  5577. return retval;
  5578. }
  5579. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5580. struct cpumask *new_mask)
  5581. {
  5582. if (len < cpumask_size())
  5583. cpumask_clear(new_mask);
  5584. else if (len > cpumask_size())
  5585. len = cpumask_size();
  5586. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5587. }
  5588. /**
  5589. * sys_sched_setaffinity - set the cpu affinity of a process
  5590. * @pid: pid of the process
  5591. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5592. * @user_mask_ptr: user-space pointer to the new cpu mask
  5593. */
  5594. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5595. unsigned long __user *, user_mask_ptr)
  5596. {
  5597. cpumask_var_t new_mask;
  5598. int retval;
  5599. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5600. return -ENOMEM;
  5601. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5602. if (retval == 0)
  5603. retval = sched_setaffinity(pid, new_mask);
  5604. free_cpumask_var(new_mask);
  5605. return retval;
  5606. }
  5607. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5608. {
  5609. struct task_struct *p;
  5610. int retval;
  5611. get_online_cpus();
  5612. read_lock(&tasklist_lock);
  5613. retval = -ESRCH;
  5614. p = find_process_by_pid(pid);
  5615. if (!p)
  5616. goto out_unlock;
  5617. retval = security_task_getscheduler(p);
  5618. if (retval)
  5619. goto out_unlock;
  5620. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5621. out_unlock:
  5622. read_unlock(&tasklist_lock);
  5623. put_online_cpus();
  5624. return retval;
  5625. }
  5626. /**
  5627. * sys_sched_getaffinity - get the cpu affinity of a process
  5628. * @pid: pid of the process
  5629. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5630. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5631. */
  5632. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5633. unsigned long __user *, user_mask_ptr)
  5634. {
  5635. int ret;
  5636. cpumask_var_t mask;
  5637. if (len < cpumask_size())
  5638. return -EINVAL;
  5639. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5640. return -ENOMEM;
  5641. ret = sched_getaffinity(pid, mask);
  5642. if (ret == 0) {
  5643. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5644. ret = -EFAULT;
  5645. else
  5646. ret = cpumask_size();
  5647. }
  5648. free_cpumask_var(mask);
  5649. return ret;
  5650. }
  5651. /**
  5652. * sys_sched_yield - yield the current processor to other threads.
  5653. *
  5654. * This function yields the current CPU to other tasks. If there are no
  5655. * other threads running on this CPU then this function will return.
  5656. */
  5657. SYSCALL_DEFINE0(sched_yield)
  5658. {
  5659. struct rq *rq = this_rq_lock();
  5660. schedstat_inc(rq, yld_count);
  5661. current->sched_class->yield_task(rq);
  5662. /*
  5663. * Since we are going to call schedule() anyway, there's
  5664. * no need to preempt or enable interrupts:
  5665. */
  5666. __release(rq->lock);
  5667. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5668. _raw_spin_unlock(&rq->lock);
  5669. preempt_enable_no_resched();
  5670. schedule();
  5671. return 0;
  5672. }
  5673. static inline int should_resched(void)
  5674. {
  5675. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5676. }
  5677. static void __cond_resched(void)
  5678. {
  5679. add_preempt_count(PREEMPT_ACTIVE);
  5680. schedule();
  5681. sub_preempt_count(PREEMPT_ACTIVE);
  5682. }
  5683. int __sched _cond_resched(void)
  5684. {
  5685. if (should_resched()) {
  5686. __cond_resched();
  5687. return 1;
  5688. }
  5689. return 0;
  5690. }
  5691. EXPORT_SYMBOL(_cond_resched);
  5692. /*
  5693. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5694. * call schedule, and on return reacquire the lock.
  5695. *
  5696. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5697. * operations here to prevent schedule() from being called twice (once via
  5698. * spin_unlock(), once by hand).
  5699. */
  5700. int __cond_resched_lock(spinlock_t *lock)
  5701. {
  5702. int resched = should_resched();
  5703. int ret = 0;
  5704. if (spin_needbreak(lock) || resched) {
  5705. spin_unlock(lock);
  5706. if (resched)
  5707. __cond_resched();
  5708. else
  5709. cpu_relax();
  5710. ret = 1;
  5711. spin_lock(lock);
  5712. }
  5713. return ret;
  5714. }
  5715. EXPORT_SYMBOL(__cond_resched_lock);
  5716. int __sched __cond_resched_softirq(void)
  5717. {
  5718. BUG_ON(!in_softirq());
  5719. if (should_resched()) {
  5720. local_bh_enable();
  5721. __cond_resched();
  5722. local_bh_disable();
  5723. return 1;
  5724. }
  5725. return 0;
  5726. }
  5727. EXPORT_SYMBOL(__cond_resched_softirq);
  5728. /**
  5729. * yield - yield the current processor to other threads.
  5730. *
  5731. * This is a shortcut for kernel-space yielding - it marks the
  5732. * thread runnable and calls sys_sched_yield().
  5733. */
  5734. void __sched yield(void)
  5735. {
  5736. set_current_state(TASK_RUNNING);
  5737. sys_sched_yield();
  5738. }
  5739. EXPORT_SYMBOL(yield);
  5740. /*
  5741. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5742. * that process accounting knows that this is a task in IO wait state.
  5743. *
  5744. * But don't do that if it is a deliberate, throttling IO wait (this task
  5745. * has set its backing_dev_info: the queue against which it should throttle)
  5746. */
  5747. void __sched io_schedule(void)
  5748. {
  5749. struct rq *rq = raw_rq();
  5750. delayacct_blkio_start();
  5751. atomic_inc(&rq->nr_iowait);
  5752. schedule();
  5753. atomic_dec(&rq->nr_iowait);
  5754. delayacct_blkio_end();
  5755. }
  5756. EXPORT_SYMBOL(io_schedule);
  5757. long __sched io_schedule_timeout(long timeout)
  5758. {
  5759. struct rq *rq = raw_rq();
  5760. long ret;
  5761. delayacct_blkio_start();
  5762. atomic_inc(&rq->nr_iowait);
  5763. ret = schedule_timeout(timeout);
  5764. atomic_dec(&rq->nr_iowait);
  5765. delayacct_blkio_end();
  5766. return ret;
  5767. }
  5768. /**
  5769. * sys_sched_get_priority_max - return maximum RT priority.
  5770. * @policy: scheduling class.
  5771. *
  5772. * this syscall returns the maximum rt_priority that can be used
  5773. * by a given scheduling class.
  5774. */
  5775. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5776. {
  5777. int ret = -EINVAL;
  5778. switch (policy) {
  5779. case SCHED_FIFO:
  5780. case SCHED_RR:
  5781. ret = MAX_USER_RT_PRIO-1;
  5782. break;
  5783. case SCHED_NORMAL:
  5784. case SCHED_BATCH:
  5785. case SCHED_IDLE:
  5786. ret = 0;
  5787. break;
  5788. }
  5789. return ret;
  5790. }
  5791. /**
  5792. * sys_sched_get_priority_min - return minimum RT priority.
  5793. * @policy: scheduling class.
  5794. *
  5795. * this syscall returns the minimum rt_priority that can be used
  5796. * by a given scheduling class.
  5797. */
  5798. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5799. {
  5800. int ret = -EINVAL;
  5801. switch (policy) {
  5802. case SCHED_FIFO:
  5803. case SCHED_RR:
  5804. ret = 1;
  5805. break;
  5806. case SCHED_NORMAL:
  5807. case SCHED_BATCH:
  5808. case SCHED_IDLE:
  5809. ret = 0;
  5810. }
  5811. return ret;
  5812. }
  5813. /**
  5814. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5815. * @pid: pid of the process.
  5816. * @interval: userspace pointer to the timeslice value.
  5817. *
  5818. * this syscall writes the default timeslice value of a given process
  5819. * into the user-space timespec buffer. A value of '0' means infinity.
  5820. */
  5821. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5822. struct timespec __user *, interval)
  5823. {
  5824. struct task_struct *p;
  5825. unsigned int time_slice;
  5826. int retval;
  5827. struct timespec t;
  5828. if (pid < 0)
  5829. return -EINVAL;
  5830. retval = -ESRCH;
  5831. read_lock(&tasklist_lock);
  5832. p = find_process_by_pid(pid);
  5833. if (!p)
  5834. goto out_unlock;
  5835. retval = security_task_getscheduler(p);
  5836. if (retval)
  5837. goto out_unlock;
  5838. /*
  5839. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5840. * tasks that are on an otherwise idle runqueue:
  5841. */
  5842. time_slice = 0;
  5843. if (p->policy == SCHED_RR) {
  5844. time_slice = DEF_TIMESLICE;
  5845. } else if (p->policy != SCHED_FIFO) {
  5846. struct sched_entity *se = &p->se;
  5847. unsigned long flags;
  5848. struct rq *rq;
  5849. rq = task_rq_lock(p, &flags);
  5850. if (rq->cfs.load.weight)
  5851. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5852. task_rq_unlock(rq, &flags);
  5853. }
  5854. read_unlock(&tasklist_lock);
  5855. jiffies_to_timespec(time_slice, &t);
  5856. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5857. return retval;
  5858. out_unlock:
  5859. read_unlock(&tasklist_lock);
  5860. return retval;
  5861. }
  5862. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5863. void sched_show_task(struct task_struct *p)
  5864. {
  5865. unsigned long free = 0;
  5866. unsigned state;
  5867. state = p->state ? __ffs(p->state) + 1 : 0;
  5868. printk(KERN_INFO "%-13.13s %c", p->comm,
  5869. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5870. #if BITS_PER_LONG == 32
  5871. if (state == TASK_RUNNING)
  5872. printk(KERN_CONT " running ");
  5873. else
  5874. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5875. #else
  5876. if (state == TASK_RUNNING)
  5877. printk(KERN_CONT " running task ");
  5878. else
  5879. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5880. #endif
  5881. #ifdef CONFIG_DEBUG_STACK_USAGE
  5882. free = stack_not_used(p);
  5883. #endif
  5884. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5885. task_pid_nr(p), task_pid_nr(p->real_parent),
  5886. (unsigned long)task_thread_info(p)->flags);
  5887. show_stack(p, NULL);
  5888. }
  5889. void show_state_filter(unsigned long state_filter)
  5890. {
  5891. struct task_struct *g, *p;
  5892. #if BITS_PER_LONG == 32
  5893. printk(KERN_INFO
  5894. " task PC stack pid father\n");
  5895. #else
  5896. printk(KERN_INFO
  5897. " task PC stack pid father\n");
  5898. #endif
  5899. read_lock(&tasklist_lock);
  5900. do_each_thread(g, p) {
  5901. /*
  5902. * reset the NMI-timeout, listing all files on a slow
  5903. * console might take alot of time:
  5904. */
  5905. touch_nmi_watchdog();
  5906. if (!state_filter || (p->state & state_filter))
  5907. sched_show_task(p);
  5908. } while_each_thread(g, p);
  5909. touch_all_softlockup_watchdogs();
  5910. #ifdef CONFIG_SCHED_DEBUG
  5911. sysrq_sched_debug_show();
  5912. #endif
  5913. read_unlock(&tasklist_lock);
  5914. /*
  5915. * Only show locks if all tasks are dumped:
  5916. */
  5917. if (state_filter == -1)
  5918. debug_show_all_locks();
  5919. }
  5920. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5921. {
  5922. idle->sched_class = &idle_sched_class;
  5923. }
  5924. /**
  5925. * init_idle - set up an idle thread for a given CPU
  5926. * @idle: task in question
  5927. * @cpu: cpu the idle task belongs to
  5928. *
  5929. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5930. * flag, to make booting more robust.
  5931. */
  5932. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5933. {
  5934. struct rq *rq = cpu_rq(cpu);
  5935. unsigned long flags;
  5936. spin_lock_irqsave(&rq->lock, flags);
  5937. __sched_fork(idle);
  5938. idle->se.exec_start = sched_clock();
  5939. idle->prio = idle->normal_prio = MAX_PRIO;
  5940. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5941. __set_task_cpu(idle, cpu);
  5942. rq->curr = rq->idle = idle;
  5943. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5944. idle->oncpu = 1;
  5945. #endif
  5946. spin_unlock_irqrestore(&rq->lock, flags);
  5947. /* Set the preempt count _outside_ the spinlocks! */
  5948. #if defined(CONFIG_PREEMPT)
  5949. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5950. #else
  5951. task_thread_info(idle)->preempt_count = 0;
  5952. #endif
  5953. /*
  5954. * The idle tasks have their own, simple scheduling class:
  5955. */
  5956. idle->sched_class = &idle_sched_class;
  5957. ftrace_graph_init_task(idle);
  5958. }
  5959. /*
  5960. * In a system that switches off the HZ timer nohz_cpu_mask
  5961. * indicates which cpus entered this state. This is used
  5962. * in the rcu update to wait only for active cpus. For system
  5963. * which do not switch off the HZ timer nohz_cpu_mask should
  5964. * always be CPU_BITS_NONE.
  5965. */
  5966. cpumask_var_t nohz_cpu_mask;
  5967. /*
  5968. * Increase the granularity value when there are more CPUs,
  5969. * because with more CPUs the 'effective latency' as visible
  5970. * to users decreases. But the relationship is not linear,
  5971. * so pick a second-best guess by going with the log2 of the
  5972. * number of CPUs.
  5973. *
  5974. * This idea comes from the SD scheduler of Con Kolivas:
  5975. */
  5976. static inline void sched_init_granularity(void)
  5977. {
  5978. unsigned int factor = 1 + ilog2(num_online_cpus());
  5979. const unsigned long limit = 200000000;
  5980. sysctl_sched_min_granularity *= factor;
  5981. if (sysctl_sched_min_granularity > limit)
  5982. sysctl_sched_min_granularity = limit;
  5983. sysctl_sched_latency *= factor;
  5984. if (sysctl_sched_latency > limit)
  5985. sysctl_sched_latency = limit;
  5986. sysctl_sched_wakeup_granularity *= factor;
  5987. sysctl_sched_shares_ratelimit *= factor;
  5988. }
  5989. #ifdef CONFIG_SMP
  5990. /*
  5991. * This is how migration works:
  5992. *
  5993. * 1) we queue a struct migration_req structure in the source CPU's
  5994. * runqueue and wake up that CPU's migration thread.
  5995. * 2) we down() the locked semaphore => thread blocks.
  5996. * 3) migration thread wakes up (implicitly it forces the migrated
  5997. * thread off the CPU)
  5998. * 4) it gets the migration request and checks whether the migrated
  5999. * task is still in the wrong runqueue.
  6000. * 5) if it's in the wrong runqueue then the migration thread removes
  6001. * it and puts it into the right queue.
  6002. * 6) migration thread up()s the semaphore.
  6003. * 7) we wake up and the migration is done.
  6004. */
  6005. /*
  6006. * Change a given task's CPU affinity. Migrate the thread to a
  6007. * proper CPU and schedule it away if the CPU it's executing on
  6008. * is removed from the allowed bitmask.
  6009. *
  6010. * NOTE: the caller must have a valid reference to the task, the
  6011. * task must not exit() & deallocate itself prematurely. The
  6012. * call is not atomic; no spinlocks may be held.
  6013. */
  6014. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6015. {
  6016. struct migration_req req;
  6017. unsigned long flags;
  6018. struct rq *rq;
  6019. int ret = 0;
  6020. rq = task_rq_lock(p, &flags);
  6021. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  6022. ret = -EINVAL;
  6023. goto out;
  6024. }
  6025. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6026. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6027. ret = -EINVAL;
  6028. goto out;
  6029. }
  6030. if (p->sched_class->set_cpus_allowed)
  6031. p->sched_class->set_cpus_allowed(p, new_mask);
  6032. else {
  6033. cpumask_copy(&p->cpus_allowed, new_mask);
  6034. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6035. }
  6036. /* Can the task run on the task's current CPU? If so, we're done */
  6037. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6038. goto out;
  6039. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  6040. /* Need help from migration thread: drop lock and wait. */
  6041. task_rq_unlock(rq, &flags);
  6042. wake_up_process(rq->migration_thread);
  6043. wait_for_completion(&req.done);
  6044. tlb_migrate_finish(p->mm);
  6045. return 0;
  6046. }
  6047. out:
  6048. task_rq_unlock(rq, &flags);
  6049. return ret;
  6050. }
  6051. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6052. /*
  6053. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6054. * this because either it can't run here any more (set_cpus_allowed()
  6055. * away from this CPU, or CPU going down), or because we're
  6056. * attempting to rebalance this task on exec (sched_exec).
  6057. *
  6058. * So we race with normal scheduler movements, but that's OK, as long
  6059. * as the task is no longer on this CPU.
  6060. *
  6061. * Returns non-zero if task was successfully migrated.
  6062. */
  6063. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6064. {
  6065. struct rq *rq_dest, *rq_src;
  6066. int ret = 0, on_rq;
  6067. if (unlikely(!cpu_active(dest_cpu)))
  6068. return ret;
  6069. rq_src = cpu_rq(src_cpu);
  6070. rq_dest = cpu_rq(dest_cpu);
  6071. double_rq_lock(rq_src, rq_dest);
  6072. /* Already moved. */
  6073. if (task_cpu(p) != src_cpu)
  6074. goto done;
  6075. /* Affinity changed (again). */
  6076. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6077. goto fail;
  6078. on_rq = p->se.on_rq;
  6079. if (on_rq)
  6080. deactivate_task(rq_src, p, 0);
  6081. set_task_cpu(p, dest_cpu);
  6082. if (on_rq) {
  6083. activate_task(rq_dest, p, 0);
  6084. check_preempt_curr(rq_dest, p, 0);
  6085. }
  6086. done:
  6087. ret = 1;
  6088. fail:
  6089. double_rq_unlock(rq_src, rq_dest);
  6090. return ret;
  6091. }
  6092. /*
  6093. * migration_thread - this is a highprio system thread that performs
  6094. * thread migration by bumping thread off CPU then 'pushing' onto
  6095. * another runqueue.
  6096. */
  6097. static int migration_thread(void *data)
  6098. {
  6099. int cpu = (long)data;
  6100. struct rq *rq;
  6101. rq = cpu_rq(cpu);
  6102. BUG_ON(rq->migration_thread != current);
  6103. set_current_state(TASK_INTERRUPTIBLE);
  6104. while (!kthread_should_stop()) {
  6105. struct migration_req *req;
  6106. struct list_head *head;
  6107. spin_lock_irq(&rq->lock);
  6108. if (cpu_is_offline(cpu)) {
  6109. spin_unlock_irq(&rq->lock);
  6110. break;
  6111. }
  6112. if (rq->active_balance) {
  6113. active_load_balance(rq, cpu);
  6114. rq->active_balance = 0;
  6115. }
  6116. head = &rq->migration_queue;
  6117. if (list_empty(head)) {
  6118. spin_unlock_irq(&rq->lock);
  6119. schedule();
  6120. set_current_state(TASK_INTERRUPTIBLE);
  6121. continue;
  6122. }
  6123. req = list_entry(head->next, struct migration_req, list);
  6124. list_del_init(head->next);
  6125. spin_unlock(&rq->lock);
  6126. __migrate_task(req->task, cpu, req->dest_cpu);
  6127. local_irq_enable();
  6128. complete(&req->done);
  6129. }
  6130. __set_current_state(TASK_RUNNING);
  6131. return 0;
  6132. }
  6133. #ifdef CONFIG_HOTPLUG_CPU
  6134. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6135. {
  6136. int ret;
  6137. local_irq_disable();
  6138. ret = __migrate_task(p, src_cpu, dest_cpu);
  6139. local_irq_enable();
  6140. return ret;
  6141. }
  6142. /*
  6143. * Figure out where task on dead CPU should go, use force if necessary.
  6144. */
  6145. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6146. {
  6147. int dest_cpu;
  6148. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6149. again:
  6150. /* Look for allowed, online CPU in same node. */
  6151. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6152. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6153. goto move;
  6154. /* Any allowed, online CPU? */
  6155. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6156. if (dest_cpu < nr_cpu_ids)
  6157. goto move;
  6158. /* No more Mr. Nice Guy. */
  6159. if (dest_cpu >= nr_cpu_ids) {
  6160. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6161. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6162. /*
  6163. * Don't tell them about moving exiting tasks or
  6164. * kernel threads (both mm NULL), since they never
  6165. * leave kernel.
  6166. */
  6167. if (p->mm && printk_ratelimit()) {
  6168. printk(KERN_INFO "process %d (%s) no "
  6169. "longer affine to cpu%d\n",
  6170. task_pid_nr(p), p->comm, dead_cpu);
  6171. }
  6172. }
  6173. move:
  6174. /* It can have affinity changed while we were choosing. */
  6175. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6176. goto again;
  6177. }
  6178. /*
  6179. * While a dead CPU has no uninterruptible tasks queued at this point,
  6180. * it might still have a nonzero ->nr_uninterruptible counter, because
  6181. * for performance reasons the counter is not stricly tracking tasks to
  6182. * their home CPUs. So we just add the counter to another CPU's counter,
  6183. * to keep the global sum constant after CPU-down:
  6184. */
  6185. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6186. {
  6187. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6188. unsigned long flags;
  6189. local_irq_save(flags);
  6190. double_rq_lock(rq_src, rq_dest);
  6191. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6192. rq_src->nr_uninterruptible = 0;
  6193. double_rq_unlock(rq_src, rq_dest);
  6194. local_irq_restore(flags);
  6195. }
  6196. /* Run through task list and migrate tasks from the dead cpu. */
  6197. static void migrate_live_tasks(int src_cpu)
  6198. {
  6199. struct task_struct *p, *t;
  6200. read_lock(&tasklist_lock);
  6201. do_each_thread(t, p) {
  6202. if (p == current)
  6203. continue;
  6204. if (task_cpu(p) == src_cpu)
  6205. move_task_off_dead_cpu(src_cpu, p);
  6206. } while_each_thread(t, p);
  6207. read_unlock(&tasklist_lock);
  6208. }
  6209. /*
  6210. * Schedules idle task to be the next runnable task on current CPU.
  6211. * It does so by boosting its priority to highest possible.
  6212. * Used by CPU offline code.
  6213. */
  6214. void sched_idle_next(void)
  6215. {
  6216. int this_cpu = smp_processor_id();
  6217. struct rq *rq = cpu_rq(this_cpu);
  6218. struct task_struct *p = rq->idle;
  6219. unsigned long flags;
  6220. /* cpu has to be offline */
  6221. BUG_ON(cpu_online(this_cpu));
  6222. /*
  6223. * Strictly not necessary since rest of the CPUs are stopped by now
  6224. * and interrupts disabled on the current cpu.
  6225. */
  6226. spin_lock_irqsave(&rq->lock, flags);
  6227. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6228. update_rq_clock(rq);
  6229. activate_task(rq, p, 0);
  6230. spin_unlock_irqrestore(&rq->lock, flags);
  6231. }
  6232. /*
  6233. * Ensures that the idle task is using init_mm right before its cpu goes
  6234. * offline.
  6235. */
  6236. void idle_task_exit(void)
  6237. {
  6238. struct mm_struct *mm = current->active_mm;
  6239. BUG_ON(cpu_online(smp_processor_id()));
  6240. if (mm != &init_mm)
  6241. switch_mm(mm, &init_mm, current);
  6242. mmdrop(mm);
  6243. }
  6244. /* called under rq->lock with disabled interrupts */
  6245. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6246. {
  6247. struct rq *rq = cpu_rq(dead_cpu);
  6248. /* Must be exiting, otherwise would be on tasklist. */
  6249. BUG_ON(!p->exit_state);
  6250. /* Cannot have done final schedule yet: would have vanished. */
  6251. BUG_ON(p->state == TASK_DEAD);
  6252. get_task_struct(p);
  6253. /*
  6254. * Drop lock around migration; if someone else moves it,
  6255. * that's OK. No task can be added to this CPU, so iteration is
  6256. * fine.
  6257. */
  6258. spin_unlock_irq(&rq->lock);
  6259. move_task_off_dead_cpu(dead_cpu, p);
  6260. spin_lock_irq(&rq->lock);
  6261. put_task_struct(p);
  6262. }
  6263. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6264. static void migrate_dead_tasks(unsigned int dead_cpu)
  6265. {
  6266. struct rq *rq = cpu_rq(dead_cpu);
  6267. struct task_struct *next;
  6268. for ( ; ; ) {
  6269. if (!rq->nr_running)
  6270. break;
  6271. update_rq_clock(rq);
  6272. next = pick_next_task(rq);
  6273. if (!next)
  6274. break;
  6275. next->sched_class->put_prev_task(rq, next);
  6276. migrate_dead(dead_cpu, next);
  6277. }
  6278. }
  6279. /*
  6280. * remove the tasks which were accounted by rq from calc_load_tasks.
  6281. */
  6282. static void calc_global_load_remove(struct rq *rq)
  6283. {
  6284. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6285. rq->calc_load_active = 0;
  6286. }
  6287. #endif /* CONFIG_HOTPLUG_CPU */
  6288. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6289. static struct ctl_table sd_ctl_dir[] = {
  6290. {
  6291. .procname = "sched_domain",
  6292. .mode = 0555,
  6293. },
  6294. {0, },
  6295. };
  6296. static struct ctl_table sd_ctl_root[] = {
  6297. {
  6298. .ctl_name = CTL_KERN,
  6299. .procname = "kernel",
  6300. .mode = 0555,
  6301. .child = sd_ctl_dir,
  6302. },
  6303. {0, },
  6304. };
  6305. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6306. {
  6307. struct ctl_table *entry =
  6308. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6309. return entry;
  6310. }
  6311. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6312. {
  6313. struct ctl_table *entry;
  6314. /*
  6315. * In the intermediate directories, both the child directory and
  6316. * procname are dynamically allocated and could fail but the mode
  6317. * will always be set. In the lowest directory the names are
  6318. * static strings and all have proc handlers.
  6319. */
  6320. for (entry = *tablep; entry->mode; entry++) {
  6321. if (entry->child)
  6322. sd_free_ctl_entry(&entry->child);
  6323. if (entry->proc_handler == NULL)
  6324. kfree(entry->procname);
  6325. }
  6326. kfree(*tablep);
  6327. *tablep = NULL;
  6328. }
  6329. static void
  6330. set_table_entry(struct ctl_table *entry,
  6331. const char *procname, void *data, int maxlen,
  6332. mode_t mode, proc_handler *proc_handler)
  6333. {
  6334. entry->procname = procname;
  6335. entry->data = data;
  6336. entry->maxlen = maxlen;
  6337. entry->mode = mode;
  6338. entry->proc_handler = proc_handler;
  6339. }
  6340. static struct ctl_table *
  6341. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6342. {
  6343. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6344. if (table == NULL)
  6345. return NULL;
  6346. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6347. sizeof(long), 0644, proc_doulongvec_minmax);
  6348. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6349. sizeof(long), 0644, proc_doulongvec_minmax);
  6350. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6351. sizeof(int), 0644, proc_dointvec_minmax);
  6352. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6353. sizeof(int), 0644, proc_dointvec_minmax);
  6354. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6355. sizeof(int), 0644, proc_dointvec_minmax);
  6356. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6357. sizeof(int), 0644, proc_dointvec_minmax);
  6358. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6359. sizeof(int), 0644, proc_dointvec_minmax);
  6360. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6361. sizeof(int), 0644, proc_dointvec_minmax);
  6362. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6363. sizeof(int), 0644, proc_dointvec_minmax);
  6364. set_table_entry(&table[9], "cache_nice_tries",
  6365. &sd->cache_nice_tries,
  6366. sizeof(int), 0644, proc_dointvec_minmax);
  6367. set_table_entry(&table[10], "flags", &sd->flags,
  6368. sizeof(int), 0644, proc_dointvec_minmax);
  6369. set_table_entry(&table[11], "name", sd->name,
  6370. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6371. /* &table[12] is terminator */
  6372. return table;
  6373. }
  6374. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6375. {
  6376. struct ctl_table *entry, *table;
  6377. struct sched_domain *sd;
  6378. int domain_num = 0, i;
  6379. char buf[32];
  6380. for_each_domain(cpu, sd)
  6381. domain_num++;
  6382. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6383. if (table == NULL)
  6384. return NULL;
  6385. i = 0;
  6386. for_each_domain(cpu, sd) {
  6387. snprintf(buf, 32, "domain%d", i);
  6388. entry->procname = kstrdup(buf, GFP_KERNEL);
  6389. entry->mode = 0555;
  6390. entry->child = sd_alloc_ctl_domain_table(sd);
  6391. entry++;
  6392. i++;
  6393. }
  6394. return table;
  6395. }
  6396. static struct ctl_table_header *sd_sysctl_header;
  6397. static void register_sched_domain_sysctl(void)
  6398. {
  6399. int i, cpu_num = num_online_cpus();
  6400. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6401. char buf[32];
  6402. WARN_ON(sd_ctl_dir[0].child);
  6403. sd_ctl_dir[0].child = entry;
  6404. if (entry == NULL)
  6405. return;
  6406. for_each_online_cpu(i) {
  6407. snprintf(buf, 32, "cpu%d", i);
  6408. entry->procname = kstrdup(buf, GFP_KERNEL);
  6409. entry->mode = 0555;
  6410. entry->child = sd_alloc_ctl_cpu_table(i);
  6411. entry++;
  6412. }
  6413. WARN_ON(sd_sysctl_header);
  6414. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6415. }
  6416. /* may be called multiple times per register */
  6417. static void unregister_sched_domain_sysctl(void)
  6418. {
  6419. if (sd_sysctl_header)
  6420. unregister_sysctl_table(sd_sysctl_header);
  6421. sd_sysctl_header = NULL;
  6422. if (sd_ctl_dir[0].child)
  6423. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6424. }
  6425. #else
  6426. static void register_sched_domain_sysctl(void)
  6427. {
  6428. }
  6429. static void unregister_sched_domain_sysctl(void)
  6430. {
  6431. }
  6432. #endif
  6433. static void set_rq_online(struct rq *rq)
  6434. {
  6435. if (!rq->online) {
  6436. const struct sched_class *class;
  6437. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6438. rq->online = 1;
  6439. for_each_class(class) {
  6440. if (class->rq_online)
  6441. class->rq_online(rq);
  6442. }
  6443. }
  6444. }
  6445. static void set_rq_offline(struct rq *rq)
  6446. {
  6447. if (rq->online) {
  6448. const struct sched_class *class;
  6449. for_each_class(class) {
  6450. if (class->rq_offline)
  6451. class->rq_offline(rq);
  6452. }
  6453. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6454. rq->online = 0;
  6455. }
  6456. }
  6457. /*
  6458. * migration_call - callback that gets triggered when a CPU is added.
  6459. * Here we can start up the necessary migration thread for the new CPU.
  6460. */
  6461. static int __cpuinit
  6462. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6463. {
  6464. struct task_struct *p;
  6465. int cpu = (long)hcpu;
  6466. unsigned long flags;
  6467. struct rq *rq;
  6468. switch (action) {
  6469. case CPU_UP_PREPARE:
  6470. case CPU_UP_PREPARE_FROZEN:
  6471. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6472. if (IS_ERR(p))
  6473. return NOTIFY_BAD;
  6474. kthread_bind(p, cpu);
  6475. /* Must be high prio: stop_machine expects to yield to it. */
  6476. rq = task_rq_lock(p, &flags);
  6477. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6478. task_rq_unlock(rq, &flags);
  6479. get_task_struct(p);
  6480. cpu_rq(cpu)->migration_thread = p;
  6481. rq->calc_load_update = calc_load_update;
  6482. break;
  6483. case CPU_ONLINE:
  6484. case CPU_ONLINE_FROZEN:
  6485. /* Strictly unnecessary, as first user will wake it. */
  6486. wake_up_process(cpu_rq(cpu)->migration_thread);
  6487. /* Update our root-domain */
  6488. rq = cpu_rq(cpu);
  6489. spin_lock_irqsave(&rq->lock, flags);
  6490. if (rq->rd) {
  6491. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6492. set_rq_online(rq);
  6493. }
  6494. spin_unlock_irqrestore(&rq->lock, flags);
  6495. break;
  6496. #ifdef CONFIG_HOTPLUG_CPU
  6497. case CPU_UP_CANCELED:
  6498. case CPU_UP_CANCELED_FROZEN:
  6499. if (!cpu_rq(cpu)->migration_thread)
  6500. break;
  6501. /* Unbind it from offline cpu so it can run. Fall thru. */
  6502. kthread_bind(cpu_rq(cpu)->migration_thread,
  6503. cpumask_any(cpu_online_mask));
  6504. kthread_stop(cpu_rq(cpu)->migration_thread);
  6505. put_task_struct(cpu_rq(cpu)->migration_thread);
  6506. cpu_rq(cpu)->migration_thread = NULL;
  6507. break;
  6508. case CPU_DEAD:
  6509. case CPU_DEAD_FROZEN:
  6510. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6511. migrate_live_tasks(cpu);
  6512. rq = cpu_rq(cpu);
  6513. kthread_stop(rq->migration_thread);
  6514. put_task_struct(rq->migration_thread);
  6515. rq->migration_thread = NULL;
  6516. /* Idle task back to normal (off runqueue, low prio) */
  6517. spin_lock_irq(&rq->lock);
  6518. update_rq_clock(rq);
  6519. deactivate_task(rq, rq->idle, 0);
  6520. rq->idle->static_prio = MAX_PRIO;
  6521. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6522. rq->idle->sched_class = &idle_sched_class;
  6523. migrate_dead_tasks(cpu);
  6524. spin_unlock_irq(&rq->lock);
  6525. cpuset_unlock();
  6526. migrate_nr_uninterruptible(rq);
  6527. BUG_ON(rq->nr_running != 0);
  6528. calc_global_load_remove(rq);
  6529. /*
  6530. * No need to migrate the tasks: it was best-effort if
  6531. * they didn't take sched_hotcpu_mutex. Just wake up
  6532. * the requestors.
  6533. */
  6534. spin_lock_irq(&rq->lock);
  6535. while (!list_empty(&rq->migration_queue)) {
  6536. struct migration_req *req;
  6537. req = list_entry(rq->migration_queue.next,
  6538. struct migration_req, list);
  6539. list_del_init(&req->list);
  6540. spin_unlock_irq(&rq->lock);
  6541. complete(&req->done);
  6542. spin_lock_irq(&rq->lock);
  6543. }
  6544. spin_unlock_irq(&rq->lock);
  6545. break;
  6546. case CPU_DYING:
  6547. case CPU_DYING_FROZEN:
  6548. /* Update our root-domain */
  6549. rq = cpu_rq(cpu);
  6550. spin_lock_irqsave(&rq->lock, flags);
  6551. if (rq->rd) {
  6552. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6553. set_rq_offline(rq);
  6554. }
  6555. spin_unlock_irqrestore(&rq->lock, flags);
  6556. break;
  6557. #endif
  6558. }
  6559. return NOTIFY_OK;
  6560. }
  6561. /*
  6562. * Register at high priority so that task migration (migrate_all_tasks)
  6563. * happens before everything else. This has to be lower priority than
  6564. * the notifier in the perf_counter subsystem, though.
  6565. */
  6566. static struct notifier_block __cpuinitdata migration_notifier = {
  6567. .notifier_call = migration_call,
  6568. .priority = 10
  6569. };
  6570. static int __init migration_init(void)
  6571. {
  6572. void *cpu = (void *)(long)smp_processor_id();
  6573. int err;
  6574. /* Start one for the boot CPU: */
  6575. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6576. BUG_ON(err == NOTIFY_BAD);
  6577. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6578. register_cpu_notifier(&migration_notifier);
  6579. return 0;
  6580. }
  6581. early_initcall(migration_init);
  6582. #endif
  6583. #ifdef CONFIG_SMP
  6584. #ifdef CONFIG_SCHED_DEBUG
  6585. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6586. struct cpumask *groupmask)
  6587. {
  6588. struct sched_group *group = sd->groups;
  6589. char str[256];
  6590. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6591. cpumask_clear(groupmask);
  6592. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6593. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6594. printk("does not load-balance\n");
  6595. if (sd->parent)
  6596. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6597. " has parent");
  6598. return -1;
  6599. }
  6600. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6601. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6602. printk(KERN_ERR "ERROR: domain->span does not contain "
  6603. "CPU%d\n", cpu);
  6604. }
  6605. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6606. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6607. " CPU%d\n", cpu);
  6608. }
  6609. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6610. do {
  6611. if (!group) {
  6612. printk("\n");
  6613. printk(KERN_ERR "ERROR: group is NULL\n");
  6614. break;
  6615. }
  6616. if (!group->__cpu_power) {
  6617. printk(KERN_CONT "\n");
  6618. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6619. "set\n");
  6620. break;
  6621. }
  6622. if (!cpumask_weight(sched_group_cpus(group))) {
  6623. printk(KERN_CONT "\n");
  6624. printk(KERN_ERR "ERROR: empty group\n");
  6625. break;
  6626. }
  6627. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6628. printk(KERN_CONT "\n");
  6629. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6630. break;
  6631. }
  6632. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6633. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6634. printk(KERN_CONT " %s", str);
  6635. if (group->__cpu_power != SCHED_LOAD_SCALE) {
  6636. printk(KERN_CONT " (__cpu_power = %d)",
  6637. group->__cpu_power);
  6638. }
  6639. group = group->next;
  6640. } while (group != sd->groups);
  6641. printk(KERN_CONT "\n");
  6642. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6643. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6644. if (sd->parent &&
  6645. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6646. printk(KERN_ERR "ERROR: parent span is not a superset "
  6647. "of domain->span\n");
  6648. return 0;
  6649. }
  6650. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6651. {
  6652. cpumask_var_t groupmask;
  6653. int level = 0;
  6654. if (!sd) {
  6655. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6656. return;
  6657. }
  6658. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6659. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6660. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6661. return;
  6662. }
  6663. for (;;) {
  6664. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6665. break;
  6666. level++;
  6667. sd = sd->parent;
  6668. if (!sd)
  6669. break;
  6670. }
  6671. free_cpumask_var(groupmask);
  6672. }
  6673. #else /* !CONFIG_SCHED_DEBUG */
  6674. # define sched_domain_debug(sd, cpu) do { } while (0)
  6675. #endif /* CONFIG_SCHED_DEBUG */
  6676. static int sd_degenerate(struct sched_domain *sd)
  6677. {
  6678. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6679. return 1;
  6680. /* Following flags need at least 2 groups */
  6681. if (sd->flags & (SD_LOAD_BALANCE |
  6682. SD_BALANCE_NEWIDLE |
  6683. SD_BALANCE_FORK |
  6684. SD_BALANCE_EXEC |
  6685. SD_SHARE_CPUPOWER |
  6686. SD_SHARE_PKG_RESOURCES)) {
  6687. if (sd->groups != sd->groups->next)
  6688. return 0;
  6689. }
  6690. /* Following flags don't use groups */
  6691. if (sd->flags & (SD_WAKE_IDLE |
  6692. SD_WAKE_AFFINE |
  6693. SD_WAKE_BALANCE))
  6694. return 0;
  6695. return 1;
  6696. }
  6697. static int
  6698. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6699. {
  6700. unsigned long cflags = sd->flags, pflags = parent->flags;
  6701. if (sd_degenerate(parent))
  6702. return 1;
  6703. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6704. return 0;
  6705. /* Does parent contain flags not in child? */
  6706. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6707. if (cflags & SD_WAKE_AFFINE)
  6708. pflags &= ~SD_WAKE_BALANCE;
  6709. /* Flags needing groups don't count if only 1 group in parent */
  6710. if (parent->groups == parent->groups->next) {
  6711. pflags &= ~(SD_LOAD_BALANCE |
  6712. SD_BALANCE_NEWIDLE |
  6713. SD_BALANCE_FORK |
  6714. SD_BALANCE_EXEC |
  6715. SD_SHARE_CPUPOWER |
  6716. SD_SHARE_PKG_RESOURCES);
  6717. if (nr_node_ids == 1)
  6718. pflags &= ~SD_SERIALIZE;
  6719. }
  6720. if (~cflags & pflags)
  6721. return 0;
  6722. return 1;
  6723. }
  6724. static void free_rootdomain(struct root_domain *rd)
  6725. {
  6726. cpupri_cleanup(&rd->cpupri);
  6727. free_cpumask_var(rd->rto_mask);
  6728. free_cpumask_var(rd->online);
  6729. free_cpumask_var(rd->span);
  6730. kfree(rd);
  6731. }
  6732. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6733. {
  6734. struct root_domain *old_rd = NULL;
  6735. unsigned long flags;
  6736. spin_lock_irqsave(&rq->lock, flags);
  6737. if (rq->rd) {
  6738. old_rd = rq->rd;
  6739. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6740. set_rq_offline(rq);
  6741. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6742. /*
  6743. * If we dont want to free the old_rt yet then
  6744. * set old_rd to NULL to skip the freeing later
  6745. * in this function:
  6746. */
  6747. if (!atomic_dec_and_test(&old_rd->refcount))
  6748. old_rd = NULL;
  6749. }
  6750. atomic_inc(&rd->refcount);
  6751. rq->rd = rd;
  6752. cpumask_set_cpu(rq->cpu, rd->span);
  6753. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6754. set_rq_online(rq);
  6755. spin_unlock_irqrestore(&rq->lock, flags);
  6756. if (old_rd)
  6757. free_rootdomain(old_rd);
  6758. }
  6759. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6760. {
  6761. gfp_t gfp = GFP_KERNEL;
  6762. memset(rd, 0, sizeof(*rd));
  6763. if (bootmem)
  6764. gfp = GFP_NOWAIT;
  6765. if (!alloc_cpumask_var(&rd->span, gfp))
  6766. goto out;
  6767. if (!alloc_cpumask_var(&rd->online, gfp))
  6768. goto free_span;
  6769. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6770. goto free_online;
  6771. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6772. goto free_rto_mask;
  6773. return 0;
  6774. free_rto_mask:
  6775. free_cpumask_var(rd->rto_mask);
  6776. free_online:
  6777. free_cpumask_var(rd->online);
  6778. free_span:
  6779. free_cpumask_var(rd->span);
  6780. out:
  6781. return -ENOMEM;
  6782. }
  6783. static void init_defrootdomain(void)
  6784. {
  6785. init_rootdomain(&def_root_domain, true);
  6786. atomic_set(&def_root_domain.refcount, 1);
  6787. }
  6788. static struct root_domain *alloc_rootdomain(void)
  6789. {
  6790. struct root_domain *rd;
  6791. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6792. if (!rd)
  6793. return NULL;
  6794. if (init_rootdomain(rd, false) != 0) {
  6795. kfree(rd);
  6796. return NULL;
  6797. }
  6798. return rd;
  6799. }
  6800. /*
  6801. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6802. * hold the hotplug lock.
  6803. */
  6804. static void
  6805. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6806. {
  6807. struct rq *rq = cpu_rq(cpu);
  6808. struct sched_domain *tmp;
  6809. /* Remove the sched domains which do not contribute to scheduling. */
  6810. for (tmp = sd; tmp; ) {
  6811. struct sched_domain *parent = tmp->parent;
  6812. if (!parent)
  6813. break;
  6814. if (sd_parent_degenerate(tmp, parent)) {
  6815. tmp->parent = parent->parent;
  6816. if (parent->parent)
  6817. parent->parent->child = tmp;
  6818. } else
  6819. tmp = tmp->parent;
  6820. }
  6821. if (sd && sd_degenerate(sd)) {
  6822. sd = sd->parent;
  6823. if (sd)
  6824. sd->child = NULL;
  6825. }
  6826. sched_domain_debug(sd, cpu);
  6827. rq_attach_root(rq, rd);
  6828. rcu_assign_pointer(rq->sd, sd);
  6829. }
  6830. /* cpus with isolated domains */
  6831. static cpumask_var_t cpu_isolated_map;
  6832. /* Setup the mask of cpus configured for isolated domains */
  6833. static int __init isolated_cpu_setup(char *str)
  6834. {
  6835. cpulist_parse(str, cpu_isolated_map);
  6836. return 1;
  6837. }
  6838. __setup("isolcpus=", isolated_cpu_setup);
  6839. /*
  6840. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6841. * to a function which identifies what group(along with sched group) a CPU
  6842. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6843. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6844. *
  6845. * init_sched_build_groups will build a circular linked list of the groups
  6846. * covered by the given span, and will set each group's ->cpumask correctly,
  6847. * and ->cpu_power to 0.
  6848. */
  6849. static void
  6850. init_sched_build_groups(const struct cpumask *span,
  6851. const struct cpumask *cpu_map,
  6852. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6853. struct sched_group **sg,
  6854. struct cpumask *tmpmask),
  6855. struct cpumask *covered, struct cpumask *tmpmask)
  6856. {
  6857. struct sched_group *first = NULL, *last = NULL;
  6858. int i;
  6859. cpumask_clear(covered);
  6860. for_each_cpu(i, span) {
  6861. struct sched_group *sg;
  6862. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6863. int j;
  6864. if (cpumask_test_cpu(i, covered))
  6865. continue;
  6866. cpumask_clear(sched_group_cpus(sg));
  6867. sg->__cpu_power = 0;
  6868. for_each_cpu(j, span) {
  6869. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6870. continue;
  6871. cpumask_set_cpu(j, covered);
  6872. cpumask_set_cpu(j, sched_group_cpus(sg));
  6873. }
  6874. if (!first)
  6875. first = sg;
  6876. if (last)
  6877. last->next = sg;
  6878. last = sg;
  6879. }
  6880. last->next = first;
  6881. }
  6882. #define SD_NODES_PER_DOMAIN 16
  6883. #ifdef CONFIG_NUMA
  6884. /**
  6885. * find_next_best_node - find the next node to include in a sched_domain
  6886. * @node: node whose sched_domain we're building
  6887. * @used_nodes: nodes already in the sched_domain
  6888. *
  6889. * Find the next node to include in a given scheduling domain. Simply
  6890. * finds the closest node not already in the @used_nodes map.
  6891. *
  6892. * Should use nodemask_t.
  6893. */
  6894. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6895. {
  6896. int i, n, val, min_val, best_node = 0;
  6897. min_val = INT_MAX;
  6898. for (i = 0; i < nr_node_ids; i++) {
  6899. /* Start at @node */
  6900. n = (node + i) % nr_node_ids;
  6901. if (!nr_cpus_node(n))
  6902. continue;
  6903. /* Skip already used nodes */
  6904. if (node_isset(n, *used_nodes))
  6905. continue;
  6906. /* Simple min distance search */
  6907. val = node_distance(node, n);
  6908. if (val < min_val) {
  6909. min_val = val;
  6910. best_node = n;
  6911. }
  6912. }
  6913. node_set(best_node, *used_nodes);
  6914. return best_node;
  6915. }
  6916. /**
  6917. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6918. * @node: node whose cpumask we're constructing
  6919. * @span: resulting cpumask
  6920. *
  6921. * Given a node, construct a good cpumask for its sched_domain to span. It
  6922. * should be one that prevents unnecessary balancing, but also spreads tasks
  6923. * out optimally.
  6924. */
  6925. static void sched_domain_node_span(int node, struct cpumask *span)
  6926. {
  6927. nodemask_t used_nodes;
  6928. int i;
  6929. cpumask_clear(span);
  6930. nodes_clear(used_nodes);
  6931. cpumask_or(span, span, cpumask_of_node(node));
  6932. node_set(node, used_nodes);
  6933. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6934. int next_node = find_next_best_node(node, &used_nodes);
  6935. cpumask_or(span, span, cpumask_of_node(next_node));
  6936. }
  6937. }
  6938. #endif /* CONFIG_NUMA */
  6939. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6940. /*
  6941. * The cpus mask in sched_group and sched_domain hangs off the end.
  6942. *
  6943. * ( See the the comments in include/linux/sched.h:struct sched_group
  6944. * and struct sched_domain. )
  6945. */
  6946. struct static_sched_group {
  6947. struct sched_group sg;
  6948. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6949. };
  6950. struct static_sched_domain {
  6951. struct sched_domain sd;
  6952. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6953. };
  6954. /*
  6955. * SMT sched-domains:
  6956. */
  6957. #ifdef CONFIG_SCHED_SMT
  6958. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6959. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6960. static int
  6961. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6962. struct sched_group **sg, struct cpumask *unused)
  6963. {
  6964. if (sg)
  6965. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6966. return cpu;
  6967. }
  6968. #endif /* CONFIG_SCHED_SMT */
  6969. /*
  6970. * multi-core sched-domains:
  6971. */
  6972. #ifdef CONFIG_SCHED_MC
  6973. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6974. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6975. #endif /* CONFIG_SCHED_MC */
  6976. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6977. static int
  6978. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6979. struct sched_group **sg, struct cpumask *mask)
  6980. {
  6981. int group;
  6982. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6983. group = cpumask_first(mask);
  6984. if (sg)
  6985. *sg = &per_cpu(sched_group_core, group).sg;
  6986. return group;
  6987. }
  6988. #elif defined(CONFIG_SCHED_MC)
  6989. static int
  6990. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6991. struct sched_group **sg, struct cpumask *unused)
  6992. {
  6993. if (sg)
  6994. *sg = &per_cpu(sched_group_core, cpu).sg;
  6995. return cpu;
  6996. }
  6997. #endif
  6998. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6999. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7000. static int
  7001. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7002. struct sched_group **sg, struct cpumask *mask)
  7003. {
  7004. int group;
  7005. #ifdef CONFIG_SCHED_MC
  7006. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7007. group = cpumask_first(mask);
  7008. #elif defined(CONFIG_SCHED_SMT)
  7009. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7010. group = cpumask_first(mask);
  7011. #else
  7012. group = cpu;
  7013. #endif
  7014. if (sg)
  7015. *sg = &per_cpu(sched_group_phys, group).sg;
  7016. return group;
  7017. }
  7018. #ifdef CONFIG_NUMA
  7019. /*
  7020. * The init_sched_build_groups can't handle what we want to do with node
  7021. * groups, so roll our own. Now each node has its own list of groups which
  7022. * gets dynamically allocated.
  7023. */
  7024. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7025. static struct sched_group ***sched_group_nodes_bycpu;
  7026. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7027. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7028. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7029. struct sched_group **sg,
  7030. struct cpumask *nodemask)
  7031. {
  7032. int group;
  7033. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7034. group = cpumask_first(nodemask);
  7035. if (sg)
  7036. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7037. return group;
  7038. }
  7039. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7040. {
  7041. struct sched_group *sg = group_head;
  7042. int j;
  7043. if (!sg)
  7044. return;
  7045. do {
  7046. for_each_cpu(j, sched_group_cpus(sg)) {
  7047. struct sched_domain *sd;
  7048. sd = &per_cpu(phys_domains, j).sd;
  7049. if (j != group_first_cpu(sd->groups)) {
  7050. /*
  7051. * Only add "power" once for each
  7052. * physical package.
  7053. */
  7054. continue;
  7055. }
  7056. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  7057. }
  7058. sg = sg->next;
  7059. } while (sg != group_head);
  7060. }
  7061. #endif /* CONFIG_NUMA */
  7062. #ifdef CONFIG_NUMA
  7063. /* Free memory allocated for various sched_group structures */
  7064. static void free_sched_groups(const struct cpumask *cpu_map,
  7065. struct cpumask *nodemask)
  7066. {
  7067. int cpu, i;
  7068. for_each_cpu(cpu, cpu_map) {
  7069. struct sched_group **sched_group_nodes
  7070. = sched_group_nodes_bycpu[cpu];
  7071. if (!sched_group_nodes)
  7072. continue;
  7073. for (i = 0; i < nr_node_ids; i++) {
  7074. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7075. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7076. if (cpumask_empty(nodemask))
  7077. continue;
  7078. if (sg == NULL)
  7079. continue;
  7080. sg = sg->next;
  7081. next_sg:
  7082. oldsg = sg;
  7083. sg = sg->next;
  7084. kfree(oldsg);
  7085. if (oldsg != sched_group_nodes[i])
  7086. goto next_sg;
  7087. }
  7088. kfree(sched_group_nodes);
  7089. sched_group_nodes_bycpu[cpu] = NULL;
  7090. }
  7091. }
  7092. #else /* !CONFIG_NUMA */
  7093. static void free_sched_groups(const struct cpumask *cpu_map,
  7094. struct cpumask *nodemask)
  7095. {
  7096. }
  7097. #endif /* CONFIG_NUMA */
  7098. /*
  7099. * Initialize sched groups cpu_power.
  7100. *
  7101. * cpu_power indicates the capacity of sched group, which is used while
  7102. * distributing the load between different sched groups in a sched domain.
  7103. * Typically cpu_power for all the groups in a sched domain will be same unless
  7104. * there are asymmetries in the topology. If there are asymmetries, group
  7105. * having more cpu_power will pickup more load compared to the group having
  7106. * less cpu_power.
  7107. *
  7108. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  7109. * the maximum number of tasks a group can handle in the presence of other idle
  7110. * or lightly loaded groups in the same sched domain.
  7111. */
  7112. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7113. {
  7114. struct sched_domain *child;
  7115. struct sched_group *group;
  7116. WARN_ON(!sd || !sd->groups);
  7117. if (cpu != group_first_cpu(sd->groups))
  7118. return;
  7119. child = sd->child;
  7120. sd->groups->__cpu_power = 0;
  7121. /*
  7122. * For perf policy, if the groups in child domain share resources
  7123. * (for example cores sharing some portions of the cache hierarchy
  7124. * or SMT), then set this domain groups cpu_power such that each group
  7125. * can handle only one task, when there are other idle groups in the
  7126. * same sched domain.
  7127. */
  7128. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  7129. (child->flags &
  7130. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  7131. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  7132. return;
  7133. }
  7134. /*
  7135. * add cpu_power of each child group to this groups cpu_power
  7136. */
  7137. group = child->groups;
  7138. do {
  7139. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  7140. group = group->next;
  7141. } while (group != child->groups);
  7142. }
  7143. /*
  7144. * Initializers for schedule domains
  7145. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7146. */
  7147. #ifdef CONFIG_SCHED_DEBUG
  7148. # define SD_INIT_NAME(sd, type) sd->name = #type
  7149. #else
  7150. # define SD_INIT_NAME(sd, type) do { } while (0)
  7151. #endif
  7152. #define SD_INIT(sd, type) sd_init_##type(sd)
  7153. #define SD_INIT_FUNC(type) \
  7154. static noinline void sd_init_##type(struct sched_domain *sd) \
  7155. { \
  7156. memset(sd, 0, sizeof(*sd)); \
  7157. *sd = SD_##type##_INIT; \
  7158. sd->level = SD_LV_##type; \
  7159. SD_INIT_NAME(sd, type); \
  7160. }
  7161. SD_INIT_FUNC(CPU)
  7162. #ifdef CONFIG_NUMA
  7163. SD_INIT_FUNC(ALLNODES)
  7164. SD_INIT_FUNC(NODE)
  7165. #endif
  7166. #ifdef CONFIG_SCHED_SMT
  7167. SD_INIT_FUNC(SIBLING)
  7168. #endif
  7169. #ifdef CONFIG_SCHED_MC
  7170. SD_INIT_FUNC(MC)
  7171. #endif
  7172. static int default_relax_domain_level = -1;
  7173. static int __init setup_relax_domain_level(char *str)
  7174. {
  7175. unsigned long val;
  7176. val = simple_strtoul(str, NULL, 0);
  7177. if (val < SD_LV_MAX)
  7178. default_relax_domain_level = val;
  7179. return 1;
  7180. }
  7181. __setup("relax_domain_level=", setup_relax_domain_level);
  7182. static void set_domain_attribute(struct sched_domain *sd,
  7183. struct sched_domain_attr *attr)
  7184. {
  7185. int request;
  7186. if (!attr || attr->relax_domain_level < 0) {
  7187. if (default_relax_domain_level < 0)
  7188. return;
  7189. else
  7190. request = default_relax_domain_level;
  7191. } else
  7192. request = attr->relax_domain_level;
  7193. if (request < sd->level) {
  7194. /* turn off idle balance on this domain */
  7195. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  7196. } else {
  7197. /* turn on idle balance on this domain */
  7198. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  7199. }
  7200. }
  7201. /*
  7202. * Build sched domains for a given set of cpus and attach the sched domains
  7203. * to the individual cpus
  7204. */
  7205. static int __build_sched_domains(const struct cpumask *cpu_map,
  7206. struct sched_domain_attr *attr)
  7207. {
  7208. int i, err = -ENOMEM;
  7209. struct root_domain *rd;
  7210. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  7211. tmpmask;
  7212. #ifdef CONFIG_NUMA
  7213. cpumask_var_t domainspan, covered, notcovered;
  7214. struct sched_group **sched_group_nodes = NULL;
  7215. int sd_allnodes = 0;
  7216. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  7217. goto out;
  7218. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  7219. goto free_domainspan;
  7220. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  7221. goto free_covered;
  7222. #endif
  7223. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  7224. goto free_notcovered;
  7225. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  7226. goto free_nodemask;
  7227. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  7228. goto free_this_sibling_map;
  7229. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  7230. goto free_this_core_map;
  7231. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  7232. goto free_send_covered;
  7233. #ifdef CONFIG_NUMA
  7234. /*
  7235. * Allocate the per-node list of sched groups
  7236. */
  7237. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  7238. GFP_KERNEL);
  7239. if (!sched_group_nodes) {
  7240. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7241. goto free_tmpmask;
  7242. }
  7243. #endif
  7244. rd = alloc_rootdomain();
  7245. if (!rd) {
  7246. printk(KERN_WARNING "Cannot alloc root domain\n");
  7247. goto free_sched_groups;
  7248. }
  7249. #ifdef CONFIG_NUMA
  7250. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  7251. #endif
  7252. /*
  7253. * Set up domains for cpus specified by the cpu_map.
  7254. */
  7255. for_each_cpu(i, cpu_map) {
  7256. struct sched_domain *sd = NULL, *p;
  7257. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  7258. #ifdef CONFIG_NUMA
  7259. if (cpumask_weight(cpu_map) >
  7260. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  7261. sd = &per_cpu(allnodes_domains, i).sd;
  7262. SD_INIT(sd, ALLNODES);
  7263. set_domain_attribute(sd, attr);
  7264. cpumask_copy(sched_domain_span(sd), cpu_map);
  7265. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  7266. p = sd;
  7267. sd_allnodes = 1;
  7268. } else
  7269. p = NULL;
  7270. sd = &per_cpu(node_domains, i).sd;
  7271. SD_INIT(sd, NODE);
  7272. set_domain_attribute(sd, attr);
  7273. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7274. sd->parent = p;
  7275. if (p)
  7276. p->child = sd;
  7277. cpumask_and(sched_domain_span(sd),
  7278. sched_domain_span(sd), cpu_map);
  7279. #endif
  7280. p = sd;
  7281. sd = &per_cpu(phys_domains, i).sd;
  7282. SD_INIT(sd, CPU);
  7283. set_domain_attribute(sd, attr);
  7284. cpumask_copy(sched_domain_span(sd), nodemask);
  7285. sd->parent = p;
  7286. if (p)
  7287. p->child = sd;
  7288. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  7289. #ifdef CONFIG_SCHED_MC
  7290. p = sd;
  7291. sd = &per_cpu(core_domains, i).sd;
  7292. SD_INIT(sd, MC);
  7293. set_domain_attribute(sd, attr);
  7294. cpumask_and(sched_domain_span(sd), cpu_map,
  7295. cpu_coregroup_mask(i));
  7296. sd->parent = p;
  7297. p->child = sd;
  7298. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  7299. #endif
  7300. #ifdef CONFIG_SCHED_SMT
  7301. p = sd;
  7302. sd = &per_cpu(cpu_domains, i).sd;
  7303. SD_INIT(sd, SIBLING);
  7304. set_domain_attribute(sd, attr);
  7305. cpumask_and(sched_domain_span(sd),
  7306. topology_thread_cpumask(i), cpu_map);
  7307. sd->parent = p;
  7308. p->child = sd;
  7309. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  7310. #endif
  7311. }
  7312. #ifdef CONFIG_SCHED_SMT
  7313. /* Set up CPU (sibling) groups */
  7314. for_each_cpu(i, cpu_map) {
  7315. cpumask_and(this_sibling_map,
  7316. topology_thread_cpumask(i), cpu_map);
  7317. if (i != cpumask_first(this_sibling_map))
  7318. continue;
  7319. init_sched_build_groups(this_sibling_map, cpu_map,
  7320. &cpu_to_cpu_group,
  7321. send_covered, tmpmask);
  7322. }
  7323. #endif
  7324. #ifdef CONFIG_SCHED_MC
  7325. /* Set up multi-core groups */
  7326. for_each_cpu(i, cpu_map) {
  7327. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  7328. if (i != cpumask_first(this_core_map))
  7329. continue;
  7330. init_sched_build_groups(this_core_map, cpu_map,
  7331. &cpu_to_core_group,
  7332. send_covered, tmpmask);
  7333. }
  7334. #endif
  7335. /* Set up physical groups */
  7336. for (i = 0; i < nr_node_ids; i++) {
  7337. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7338. if (cpumask_empty(nodemask))
  7339. continue;
  7340. init_sched_build_groups(nodemask, cpu_map,
  7341. &cpu_to_phys_group,
  7342. send_covered, tmpmask);
  7343. }
  7344. #ifdef CONFIG_NUMA
  7345. /* Set up node groups */
  7346. if (sd_allnodes) {
  7347. init_sched_build_groups(cpu_map, cpu_map,
  7348. &cpu_to_allnodes_group,
  7349. send_covered, tmpmask);
  7350. }
  7351. for (i = 0; i < nr_node_ids; i++) {
  7352. /* Set up node groups */
  7353. struct sched_group *sg, *prev;
  7354. int j;
  7355. cpumask_clear(covered);
  7356. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7357. if (cpumask_empty(nodemask)) {
  7358. sched_group_nodes[i] = NULL;
  7359. continue;
  7360. }
  7361. sched_domain_node_span(i, domainspan);
  7362. cpumask_and(domainspan, domainspan, cpu_map);
  7363. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7364. GFP_KERNEL, i);
  7365. if (!sg) {
  7366. printk(KERN_WARNING "Can not alloc domain group for "
  7367. "node %d\n", i);
  7368. goto error;
  7369. }
  7370. sched_group_nodes[i] = sg;
  7371. for_each_cpu(j, nodemask) {
  7372. struct sched_domain *sd;
  7373. sd = &per_cpu(node_domains, j).sd;
  7374. sd->groups = sg;
  7375. }
  7376. sg->__cpu_power = 0;
  7377. cpumask_copy(sched_group_cpus(sg), nodemask);
  7378. sg->next = sg;
  7379. cpumask_or(covered, covered, nodemask);
  7380. prev = sg;
  7381. for (j = 0; j < nr_node_ids; j++) {
  7382. int n = (i + j) % nr_node_ids;
  7383. cpumask_complement(notcovered, covered);
  7384. cpumask_and(tmpmask, notcovered, cpu_map);
  7385. cpumask_and(tmpmask, tmpmask, domainspan);
  7386. if (cpumask_empty(tmpmask))
  7387. break;
  7388. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7389. if (cpumask_empty(tmpmask))
  7390. continue;
  7391. sg = kmalloc_node(sizeof(struct sched_group) +
  7392. cpumask_size(),
  7393. GFP_KERNEL, i);
  7394. if (!sg) {
  7395. printk(KERN_WARNING
  7396. "Can not alloc domain group for node %d\n", j);
  7397. goto error;
  7398. }
  7399. sg->__cpu_power = 0;
  7400. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7401. sg->next = prev->next;
  7402. cpumask_or(covered, covered, tmpmask);
  7403. prev->next = sg;
  7404. prev = sg;
  7405. }
  7406. }
  7407. #endif
  7408. /* Calculate CPU power for physical packages and nodes */
  7409. #ifdef CONFIG_SCHED_SMT
  7410. for_each_cpu(i, cpu_map) {
  7411. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7412. init_sched_groups_power(i, sd);
  7413. }
  7414. #endif
  7415. #ifdef CONFIG_SCHED_MC
  7416. for_each_cpu(i, cpu_map) {
  7417. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7418. init_sched_groups_power(i, sd);
  7419. }
  7420. #endif
  7421. for_each_cpu(i, cpu_map) {
  7422. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7423. init_sched_groups_power(i, sd);
  7424. }
  7425. #ifdef CONFIG_NUMA
  7426. for (i = 0; i < nr_node_ids; i++)
  7427. init_numa_sched_groups_power(sched_group_nodes[i]);
  7428. if (sd_allnodes) {
  7429. struct sched_group *sg;
  7430. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7431. tmpmask);
  7432. init_numa_sched_groups_power(sg);
  7433. }
  7434. #endif
  7435. /* Attach the domains */
  7436. for_each_cpu(i, cpu_map) {
  7437. struct sched_domain *sd;
  7438. #ifdef CONFIG_SCHED_SMT
  7439. sd = &per_cpu(cpu_domains, i).sd;
  7440. #elif defined(CONFIG_SCHED_MC)
  7441. sd = &per_cpu(core_domains, i).sd;
  7442. #else
  7443. sd = &per_cpu(phys_domains, i).sd;
  7444. #endif
  7445. cpu_attach_domain(sd, rd, i);
  7446. }
  7447. err = 0;
  7448. free_tmpmask:
  7449. free_cpumask_var(tmpmask);
  7450. free_send_covered:
  7451. free_cpumask_var(send_covered);
  7452. free_this_core_map:
  7453. free_cpumask_var(this_core_map);
  7454. free_this_sibling_map:
  7455. free_cpumask_var(this_sibling_map);
  7456. free_nodemask:
  7457. free_cpumask_var(nodemask);
  7458. free_notcovered:
  7459. #ifdef CONFIG_NUMA
  7460. free_cpumask_var(notcovered);
  7461. free_covered:
  7462. free_cpumask_var(covered);
  7463. free_domainspan:
  7464. free_cpumask_var(domainspan);
  7465. out:
  7466. #endif
  7467. return err;
  7468. free_sched_groups:
  7469. #ifdef CONFIG_NUMA
  7470. kfree(sched_group_nodes);
  7471. #endif
  7472. goto free_tmpmask;
  7473. #ifdef CONFIG_NUMA
  7474. error:
  7475. free_sched_groups(cpu_map, tmpmask);
  7476. free_rootdomain(rd);
  7477. goto free_tmpmask;
  7478. #endif
  7479. }
  7480. static int build_sched_domains(const struct cpumask *cpu_map)
  7481. {
  7482. return __build_sched_domains(cpu_map, NULL);
  7483. }
  7484. static struct cpumask *doms_cur; /* current sched domains */
  7485. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7486. static struct sched_domain_attr *dattr_cur;
  7487. /* attribues of custom domains in 'doms_cur' */
  7488. /*
  7489. * Special case: If a kmalloc of a doms_cur partition (array of
  7490. * cpumask) fails, then fallback to a single sched domain,
  7491. * as determined by the single cpumask fallback_doms.
  7492. */
  7493. static cpumask_var_t fallback_doms;
  7494. /*
  7495. * arch_update_cpu_topology lets virtualized architectures update the
  7496. * cpu core maps. It is supposed to return 1 if the topology changed
  7497. * or 0 if it stayed the same.
  7498. */
  7499. int __attribute__((weak)) arch_update_cpu_topology(void)
  7500. {
  7501. return 0;
  7502. }
  7503. /*
  7504. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7505. * For now this just excludes isolated cpus, but could be used to
  7506. * exclude other special cases in the future.
  7507. */
  7508. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7509. {
  7510. int err;
  7511. arch_update_cpu_topology();
  7512. ndoms_cur = 1;
  7513. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7514. if (!doms_cur)
  7515. doms_cur = fallback_doms;
  7516. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7517. dattr_cur = NULL;
  7518. err = build_sched_domains(doms_cur);
  7519. register_sched_domain_sysctl();
  7520. return err;
  7521. }
  7522. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7523. struct cpumask *tmpmask)
  7524. {
  7525. free_sched_groups(cpu_map, tmpmask);
  7526. }
  7527. /*
  7528. * Detach sched domains from a group of cpus specified in cpu_map
  7529. * These cpus will now be attached to the NULL domain
  7530. */
  7531. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7532. {
  7533. /* Save because hotplug lock held. */
  7534. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7535. int i;
  7536. for_each_cpu(i, cpu_map)
  7537. cpu_attach_domain(NULL, &def_root_domain, i);
  7538. synchronize_sched();
  7539. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7540. }
  7541. /* handle null as "default" */
  7542. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7543. struct sched_domain_attr *new, int idx_new)
  7544. {
  7545. struct sched_domain_attr tmp;
  7546. /* fast path */
  7547. if (!new && !cur)
  7548. return 1;
  7549. tmp = SD_ATTR_INIT;
  7550. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7551. new ? (new + idx_new) : &tmp,
  7552. sizeof(struct sched_domain_attr));
  7553. }
  7554. /*
  7555. * Partition sched domains as specified by the 'ndoms_new'
  7556. * cpumasks in the array doms_new[] of cpumasks. This compares
  7557. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7558. * It destroys each deleted domain and builds each new domain.
  7559. *
  7560. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7561. * The masks don't intersect (don't overlap.) We should setup one
  7562. * sched domain for each mask. CPUs not in any of the cpumasks will
  7563. * not be load balanced. If the same cpumask appears both in the
  7564. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7565. * it as it is.
  7566. *
  7567. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7568. * ownership of it and will kfree it when done with it. If the caller
  7569. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7570. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7571. * the single partition 'fallback_doms', it also forces the domains
  7572. * to be rebuilt.
  7573. *
  7574. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7575. * ndoms_new == 0 is a special case for destroying existing domains,
  7576. * and it will not create the default domain.
  7577. *
  7578. * Call with hotplug lock held
  7579. */
  7580. /* FIXME: Change to struct cpumask *doms_new[] */
  7581. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7582. struct sched_domain_attr *dattr_new)
  7583. {
  7584. int i, j, n;
  7585. int new_topology;
  7586. mutex_lock(&sched_domains_mutex);
  7587. /* always unregister in case we don't destroy any domains */
  7588. unregister_sched_domain_sysctl();
  7589. /* Let architecture update cpu core mappings. */
  7590. new_topology = arch_update_cpu_topology();
  7591. n = doms_new ? ndoms_new : 0;
  7592. /* Destroy deleted domains */
  7593. for (i = 0; i < ndoms_cur; i++) {
  7594. for (j = 0; j < n && !new_topology; j++) {
  7595. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7596. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7597. goto match1;
  7598. }
  7599. /* no match - a current sched domain not in new doms_new[] */
  7600. detach_destroy_domains(doms_cur + i);
  7601. match1:
  7602. ;
  7603. }
  7604. if (doms_new == NULL) {
  7605. ndoms_cur = 0;
  7606. doms_new = fallback_doms;
  7607. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7608. WARN_ON_ONCE(dattr_new);
  7609. }
  7610. /* Build new domains */
  7611. for (i = 0; i < ndoms_new; i++) {
  7612. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7613. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7614. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7615. goto match2;
  7616. }
  7617. /* no match - add a new doms_new */
  7618. __build_sched_domains(doms_new + i,
  7619. dattr_new ? dattr_new + i : NULL);
  7620. match2:
  7621. ;
  7622. }
  7623. /* Remember the new sched domains */
  7624. if (doms_cur != fallback_doms)
  7625. kfree(doms_cur);
  7626. kfree(dattr_cur); /* kfree(NULL) is safe */
  7627. doms_cur = doms_new;
  7628. dattr_cur = dattr_new;
  7629. ndoms_cur = ndoms_new;
  7630. register_sched_domain_sysctl();
  7631. mutex_unlock(&sched_domains_mutex);
  7632. }
  7633. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7634. static void arch_reinit_sched_domains(void)
  7635. {
  7636. get_online_cpus();
  7637. /* Destroy domains first to force the rebuild */
  7638. partition_sched_domains(0, NULL, NULL);
  7639. rebuild_sched_domains();
  7640. put_online_cpus();
  7641. }
  7642. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7643. {
  7644. unsigned int level = 0;
  7645. if (sscanf(buf, "%u", &level) != 1)
  7646. return -EINVAL;
  7647. /*
  7648. * level is always be positive so don't check for
  7649. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7650. * What happens on 0 or 1 byte write,
  7651. * need to check for count as well?
  7652. */
  7653. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7654. return -EINVAL;
  7655. if (smt)
  7656. sched_smt_power_savings = level;
  7657. else
  7658. sched_mc_power_savings = level;
  7659. arch_reinit_sched_domains();
  7660. return count;
  7661. }
  7662. #ifdef CONFIG_SCHED_MC
  7663. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7664. char *page)
  7665. {
  7666. return sprintf(page, "%u\n", sched_mc_power_savings);
  7667. }
  7668. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7669. const char *buf, size_t count)
  7670. {
  7671. return sched_power_savings_store(buf, count, 0);
  7672. }
  7673. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7674. sched_mc_power_savings_show,
  7675. sched_mc_power_savings_store);
  7676. #endif
  7677. #ifdef CONFIG_SCHED_SMT
  7678. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7679. char *page)
  7680. {
  7681. return sprintf(page, "%u\n", sched_smt_power_savings);
  7682. }
  7683. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7684. const char *buf, size_t count)
  7685. {
  7686. return sched_power_savings_store(buf, count, 1);
  7687. }
  7688. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7689. sched_smt_power_savings_show,
  7690. sched_smt_power_savings_store);
  7691. #endif
  7692. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7693. {
  7694. int err = 0;
  7695. #ifdef CONFIG_SCHED_SMT
  7696. if (smt_capable())
  7697. err = sysfs_create_file(&cls->kset.kobj,
  7698. &attr_sched_smt_power_savings.attr);
  7699. #endif
  7700. #ifdef CONFIG_SCHED_MC
  7701. if (!err && mc_capable())
  7702. err = sysfs_create_file(&cls->kset.kobj,
  7703. &attr_sched_mc_power_savings.attr);
  7704. #endif
  7705. return err;
  7706. }
  7707. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7708. #ifndef CONFIG_CPUSETS
  7709. /*
  7710. * Add online and remove offline CPUs from the scheduler domains.
  7711. * When cpusets are enabled they take over this function.
  7712. */
  7713. static int update_sched_domains(struct notifier_block *nfb,
  7714. unsigned long action, void *hcpu)
  7715. {
  7716. switch (action) {
  7717. case CPU_ONLINE:
  7718. case CPU_ONLINE_FROZEN:
  7719. case CPU_DEAD:
  7720. case CPU_DEAD_FROZEN:
  7721. partition_sched_domains(1, NULL, NULL);
  7722. return NOTIFY_OK;
  7723. default:
  7724. return NOTIFY_DONE;
  7725. }
  7726. }
  7727. #endif
  7728. static int update_runtime(struct notifier_block *nfb,
  7729. unsigned long action, void *hcpu)
  7730. {
  7731. int cpu = (int)(long)hcpu;
  7732. switch (action) {
  7733. case CPU_DOWN_PREPARE:
  7734. case CPU_DOWN_PREPARE_FROZEN:
  7735. disable_runtime(cpu_rq(cpu));
  7736. return NOTIFY_OK;
  7737. case CPU_DOWN_FAILED:
  7738. case CPU_DOWN_FAILED_FROZEN:
  7739. case CPU_ONLINE:
  7740. case CPU_ONLINE_FROZEN:
  7741. enable_runtime(cpu_rq(cpu));
  7742. return NOTIFY_OK;
  7743. default:
  7744. return NOTIFY_DONE;
  7745. }
  7746. }
  7747. void __init sched_init_smp(void)
  7748. {
  7749. cpumask_var_t non_isolated_cpus;
  7750. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7751. #if defined(CONFIG_NUMA)
  7752. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7753. GFP_KERNEL);
  7754. BUG_ON(sched_group_nodes_bycpu == NULL);
  7755. #endif
  7756. get_online_cpus();
  7757. mutex_lock(&sched_domains_mutex);
  7758. arch_init_sched_domains(cpu_online_mask);
  7759. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7760. if (cpumask_empty(non_isolated_cpus))
  7761. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7762. mutex_unlock(&sched_domains_mutex);
  7763. put_online_cpus();
  7764. #ifndef CONFIG_CPUSETS
  7765. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7766. hotcpu_notifier(update_sched_domains, 0);
  7767. #endif
  7768. /* RT runtime code needs to handle some hotplug events */
  7769. hotcpu_notifier(update_runtime, 0);
  7770. init_hrtick();
  7771. /* Move init over to a non-isolated CPU */
  7772. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7773. BUG();
  7774. sched_init_granularity();
  7775. free_cpumask_var(non_isolated_cpus);
  7776. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7777. init_sched_rt_class();
  7778. }
  7779. #else
  7780. void __init sched_init_smp(void)
  7781. {
  7782. sched_init_granularity();
  7783. }
  7784. #endif /* CONFIG_SMP */
  7785. const_debug unsigned int sysctl_timer_migration = 1;
  7786. int in_sched_functions(unsigned long addr)
  7787. {
  7788. return in_lock_functions(addr) ||
  7789. (addr >= (unsigned long)__sched_text_start
  7790. && addr < (unsigned long)__sched_text_end);
  7791. }
  7792. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7793. {
  7794. cfs_rq->tasks_timeline = RB_ROOT;
  7795. INIT_LIST_HEAD(&cfs_rq->tasks);
  7796. #ifdef CONFIG_FAIR_GROUP_SCHED
  7797. cfs_rq->rq = rq;
  7798. #endif
  7799. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7800. }
  7801. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7802. {
  7803. struct rt_prio_array *array;
  7804. int i;
  7805. array = &rt_rq->active;
  7806. for (i = 0; i < MAX_RT_PRIO; i++) {
  7807. INIT_LIST_HEAD(array->queue + i);
  7808. __clear_bit(i, array->bitmap);
  7809. }
  7810. /* delimiter for bitsearch: */
  7811. __set_bit(MAX_RT_PRIO, array->bitmap);
  7812. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7813. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7814. #ifdef CONFIG_SMP
  7815. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7816. #endif
  7817. #endif
  7818. #ifdef CONFIG_SMP
  7819. rt_rq->rt_nr_migratory = 0;
  7820. rt_rq->overloaded = 0;
  7821. plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
  7822. #endif
  7823. rt_rq->rt_time = 0;
  7824. rt_rq->rt_throttled = 0;
  7825. rt_rq->rt_runtime = 0;
  7826. spin_lock_init(&rt_rq->rt_runtime_lock);
  7827. #ifdef CONFIG_RT_GROUP_SCHED
  7828. rt_rq->rt_nr_boosted = 0;
  7829. rt_rq->rq = rq;
  7830. #endif
  7831. }
  7832. #ifdef CONFIG_FAIR_GROUP_SCHED
  7833. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7834. struct sched_entity *se, int cpu, int add,
  7835. struct sched_entity *parent)
  7836. {
  7837. struct rq *rq = cpu_rq(cpu);
  7838. tg->cfs_rq[cpu] = cfs_rq;
  7839. init_cfs_rq(cfs_rq, rq);
  7840. cfs_rq->tg = tg;
  7841. if (add)
  7842. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7843. tg->se[cpu] = se;
  7844. /* se could be NULL for init_task_group */
  7845. if (!se)
  7846. return;
  7847. if (!parent)
  7848. se->cfs_rq = &rq->cfs;
  7849. else
  7850. se->cfs_rq = parent->my_q;
  7851. se->my_q = cfs_rq;
  7852. se->load.weight = tg->shares;
  7853. se->load.inv_weight = 0;
  7854. se->parent = parent;
  7855. }
  7856. #endif
  7857. #ifdef CONFIG_RT_GROUP_SCHED
  7858. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7859. struct sched_rt_entity *rt_se, int cpu, int add,
  7860. struct sched_rt_entity *parent)
  7861. {
  7862. struct rq *rq = cpu_rq(cpu);
  7863. tg->rt_rq[cpu] = rt_rq;
  7864. init_rt_rq(rt_rq, rq);
  7865. rt_rq->tg = tg;
  7866. rt_rq->rt_se = rt_se;
  7867. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7868. if (add)
  7869. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7870. tg->rt_se[cpu] = rt_se;
  7871. if (!rt_se)
  7872. return;
  7873. if (!parent)
  7874. rt_se->rt_rq = &rq->rt;
  7875. else
  7876. rt_se->rt_rq = parent->my_q;
  7877. rt_se->my_q = rt_rq;
  7878. rt_se->parent = parent;
  7879. INIT_LIST_HEAD(&rt_se->run_list);
  7880. }
  7881. #endif
  7882. void __init sched_init(void)
  7883. {
  7884. int i, j;
  7885. unsigned long alloc_size = 0, ptr;
  7886. #ifdef CONFIG_FAIR_GROUP_SCHED
  7887. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7888. #endif
  7889. #ifdef CONFIG_RT_GROUP_SCHED
  7890. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7891. #endif
  7892. #ifdef CONFIG_USER_SCHED
  7893. alloc_size *= 2;
  7894. #endif
  7895. #ifdef CONFIG_CPUMASK_OFFSTACK
  7896. alloc_size += num_possible_cpus() * cpumask_size();
  7897. #endif
  7898. /*
  7899. * As sched_init() is called before page_alloc is setup,
  7900. * we use alloc_bootmem().
  7901. */
  7902. if (alloc_size) {
  7903. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  7904. #ifdef CONFIG_FAIR_GROUP_SCHED
  7905. init_task_group.se = (struct sched_entity **)ptr;
  7906. ptr += nr_cpu_ids * sizeof(void **);
  7907. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7908. ptr += nr_cpu_ids * sizeof(void **);
  7909. #ifdef CONFIG_USER_SCHED
  7910. root_task_group.se = (struct sched_entity **)ptr;
  7911. ptr += nr_cpu_ids * sizeof(void **);
  7912. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7913. ptr += nr_cpu_ids * sizeof(void **);
  7914. #endif /* CONFIG_USER_SCHED */
  7915. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7916. #ifdef CONFIG_RT_GROUP_SCHED
  7917. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7918. ptr += nr_cpu_ids * sizeof(void **);
  7919. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7920. ptr += nr_cpu_ids * sizeof(void **);
  7921. #ifdef CONFIG_USER_SCHED
  7922. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7923. ptr += nr_cpu_ids * sizeof(void **);
  7924. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7925. ptr += nr_cpu_ids * sizeof(void **);
  7926. #endif /* CONFIG_USER_SCHED */
  7927. #endif /* CONFIG_RT_GROUP_SCHED */
  7928. #ifdef CONFIG_CPUMASK_OFFSTACK
  7929. for_each_possible_cpu(i) {
  7930. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7931. ptr += cpumask_size();
  7932. }
  7933. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7934. }
  7935. #ifdef CONFIG_SMP
  7936. init_defrootdomain();
  7937. #endif
  7938. init_rt_bandwidth(&def_rt_bandwidth,
  7939. global_rt_period(), global_rt_runtime());
  7940. #ifdef CONFIG_RT_GROUP_SCHED
  7941. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7942. global_rt_period(), global_rt_runtime());
  7943. #ifdef CONFIG_USER_SCHED
  7944. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7945. global_rt_period(), RUNTIME_INF);
  7946. #endif /* CONFIG_USER_SCHED */
  7947. #endif /* CONFIG_RT_GROUP_SCHED */
  7948. #ifdef CONFIG_GROUP_SCHED
  7949. list_add(&init_task_group.list, &task_groups);
  7950. INIT_LIST_HEAD(&init_task_group.children);
  7951. #ifdef CONFIG_USER_SCHED
  7952. INIT_LIST_HEAD(&root_task_group.children);
  7953. init_task_group.parent = &root_task_group;
  7954. list_add(&init_task_group.siblings, &root_task_group.children);
  7955. #endif /* CONFIG_USER_SCHED */
  7956. #endif /* CONFIG_GROUP_SCHED */
  7957. for_each_possible_cpu(i) {
  7958. struct rq *rq;
  7959. rq = cpu_rq(i);
  7960. spin_lock_init(&rq->lock);
  7961. rq->nr_running = 0;
  7962. rq->calc_load_active = 0;
  7963. rq->calc_load_update = jiffies + LOAD_FREQ;
  7964. init_cfs_rq(&rq->cfs, rq);
  7965. init_rt_rq(&rq->rt, rq);
  7966. #ifdef CONFIG_FAIR_GROUP_SCHED
  7967. init_task_group.shares = init_task_group_load;
  7968. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7969. #ifdef CONFIG_CGROUP_SCHED
  7970. /*
  7971. * How much cpu bandwidth does init_task_group get?
  7972. *
  7973. * In case of task-groups formed thr' the cgroup filesystem, it
  7974. * gets 100% of the cpu resources in the system. This overall
  7975. * system cpu resource is divided among the tasks of
  7976. * init_task_group and its child task-groups in a fair manner,
  7977. * based on each entity's (task or task-group's) weight
  7978. * (se->load.weight).
  7979. *
  7980. * In other words, if init_task_group has 10 tasks of weight
  7981. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7982. * then A0's share of the cpu resource is:
  7983. *
  7984. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7985. *
  7986. * We achieve this by letting init_task_group's tasks sit
  7987. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7988. */
  7989. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7990. #elif defined CONFIG_USER_SCHED
  7991. root_task_group.shares = NICE_0_LOAD;
  7992. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7993. /*
  7994. * In case of task-groups formed thr' the user id of tasks,
  7995. * init_task_group represents tasks belonging to root user.
  7996. * Hence it forms a sibling of all subsequent groups formed.
  7997. * In this case, init_task_group gets only a fraction of overall
  7998. * system cpu resource, based on the weight assigned to root
  7999. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8000. * by letting tasks of init_task_group sit in a separate cfs_rq
  8001. * (init_cfs_rq) and having one entity represent this group of
  8002. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8003. */
  8004. init_tg_cfs_entry(&init_task_group,
  8005. &per_cpu(init_cfs_rq, i),
  8006. &per_cpu(init_sched_entity, i), i, 1,
  8007. root_task_group.se[i]);
  8008. #endif
  8009. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8010. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8011. #ifdef CONFIG_RT_GROUP_SCHED
  8012. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8013. #ifdef CONFIG_CGROUP_SCHED
  8014. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8015. #elif defined CONFIG_USER_SCHED
  8016. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8017. init_tg_rt_entry(&init_task_group,
  8018. &per_cpu(init_rt_rq, i),
  8019. &per_cpu(init_sched_rt_entity, i), i, 1,
  8020. root_task_group.rt_se[i]);
  8021. #endif
  8022. #endif
  8023. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8024. rq->cpu_load[j] = 0;
  8025. #ifdef CONFIG_SMP
  8026. rq->sd = NULL;
  8027. rq->rd = NULL;
  8028. rq->active_balance = 0;
  8029. rq->next_balance = jiffies;
  8030. rq->push_cpu = 0;
  8031. rq->cpu = i;
  8032. rq->online = 0;
  8033. rq->migration_thread = NULL;
  8034. INIT_LIST_HEAD(&rq->migration_queue);
  8035. rq_attach_root(rq, &def_root_domain);
  8036. #endif
  8037. init_rq_hrtick(rq);
  8038. atomic_set(&rq->nr_iowait, 0);
  8039. }
  8040. set_load_weight(&init_task);
  8041. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8042. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8043. #endif
  8044. #ifdef CONFIG_SMP
  8045. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8046. #endif
  8047. #ifdef CONFIG_RT_MUTEXES
  8048. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8049. #endif
  8050. /*
  8051. * The boot idle thread does lazy MMU switching as well:
  8052. */
  8053. atomic_inc(&init_mm.mm_count);
  8054. enter_lazy_tlb(&init_mm, current);
  8055. /*
  8056. * Make us the idle thread. Technically, schedule() should not be
  8057. * called from this thread, however somewhere below it might be,
  8058. * but because we are the idle thread, we just pick up running again
  8059. * when this runqueue becomes "idle".
  8060. */
  8061. init_idle(current, smp_processor_id());
  8062. calc_load_update = jiffies + LOAD_FREQ;
  8063. /*
  8064. * During early bootup we pretend to be a normal task:
  8065. */
  8066. current->sched_class = &fair_sched_class;
  8067. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8068. alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8069. #ifdef CONFIG_SMP
  8070. #ifdef CONFIG_NO_HZ
  8071. alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8072. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8073. #endif
  8074. alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8075. #endif /* SMP */
  8076. perf_counter_init();
  8077. scheduler_running = 1;
  8078. }
  8079. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8080. static inline int preempt_count_equals(int preempt_offset)
  8081. {
  8082. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8083. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8084. }
  8085. void __might_sleep(char *file, int line, int preempt_offset)
  8086. {
  8087. #ifdef in_atomic
  8088. static unsigned long prev_jiffy; /* ratelimiting */
  8089. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8090. system_state != SYSTEM_RUNNING || oops_in_progress)
  8091. return;
  8092. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8093. return;
  8094. prev_jiffy = jiffies;
  8095. printk(KERN_ERR
  8096. "BUG: sleeping function called from invalid context at %s:%d\n",
  8097. file, line);
  8098. printk(KERN_ERR
  8099. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8100. in_atomic(), irqs_disabled(),
  8101. current->pid, current->comm);
  8102. debug_show_held_locks(current);
  8103. if (irqs_disabled())
  8104. print_irqtrace_events(current);
  8105. dump_stack();
  8106. #endif
  8107. }
  8108. EXPORT_SYMBOL(__might_sleep);
  8109. #endif
  8110. #ifdef CONFIG_MAGIC_SYSRQ
  8111. static void normalize_task(struct rq *rq, struct task_struct *p)
  8112. {
  8113. int on_rq;
  8114. update_rq_clock(rq);
  8115. on_rq = p->se.on_rq;
  8116. if (on_rq)
  8117. deactivate_task(rq, p, 0);
  8118. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8119. if (on_rq) {
  8120. activate_task(rq, p, 0);
  8121. resched_task(rq->curr);
  8122. }
  8123. }
  8124. void normalize_rt_tasks(void)
  8125. {
  8126. struct task_struct *g, *p;
  8127. unsigned long flags;
  8128. struct rq *rq;
  8129. read_lock_irqsave(&tasklist_lock, flags);
  8130. do_each_thread(g, p) {
  8131. /*
  8132. * Only normalize user tasks:
  8133. */
  8134. if (!p->mm)
  8135. continue;
  8136. p->se.exec_start = 0;
  8137. #ifdef CONFIG_SCHEDSTATS
  8138. p->se.wait_start = 0;
  8139. p->se.sleep_start = 0;
  8140. p->se.block_start = 0;
  8141. #endif
  8142. if (!rt_task(p)) {
  8143. /*
  8144. * Renice negative nice level userspace
  8145. * tasks back to 0:
  8146. */
  8147. if (TASK_NICE(p) < 0 && p->mm)
  8148. set_user_nice(p, 0);
  8149. continue;
  8150. }
  8151. spin_lock(&p->pi_lock);
  8152. rq = __task_rq_lock(p);
  8153. normalize_task(rq, p);
  8154. __task_rq_unlock(rq);
  8155. spin_unlock(&p->pi_lock);
  8156. } while_each_thread(g, p);
  8157. read_unlock_irqrestore(&tasklist_lock, flags);
  8158. }
  8159. #endif /* CONFIG_MAGIC_SYSRQ */
  8160. #ifdef CONFIG_IA64
  8161. /*
  8162. * These functions are only useful for the IA64 MCA handling.
  8163. *
  8164. * They can only be called when the whole system has been
  8165. * stopped - every CPU needs to be quiescent, and no scheduling
  8166. * activity can take place. Using them for anything else would
  8167. * be a serious bug, and as a result, they aren't even visible
  8168. * under any other configuration.
  8169. */
  8170. /**
  8171. * curr_task - return the current task for a given cpu.
  8172. * @cpu: the processor in question.
  8173. *
  8174. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8175. */
  8176. struct task_struct *curr_task(int cpu)
  8177. {
  8178. return cpu_curr(cpu);
  8179. }
  8180. /**
  8181. * set_curr_task - set the current task for a given cpu.
  8182. * @cpu: the processor in question.
  8183. * @p: the task pointer to set.
  8184. *
  8185. * Description: This function must only be used when non-maskable interrupts
  8186. * are serviced on a separate stack. It allows the architecture to switch the
  8187. * notion of the current task on a cpu in a non-blocking manner. This function
  8188. * must be called with all CPU's synchronized, and interrupts disabled, the
  8189. * and caller must save the original value of the current task (see
  8190. * curr_task() above) and restore that value before reenabling interrupts and
  8191. * re-starting the system.
  8192. *
  8193. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8194. */
  8195. void set_curr_task(int cpu, struct task_struct *p)
  8196. {
  8197. cpu_curr(cpu) = p;
  8198. }
  8199. #endif
  8200. #ifdef CONFIG_FAIR_GROUP_SCHED
  8201. static void free_fair_sched_group(struct task_group *tg)
  8202. {
  8203. int i;
  8204. for_each_possible_cpu(i) {
  8205. if (tg->cfs_rq)
  8206. kfree(tg->cfs_rq[i]);
  8207. if (tg->se)
  8208. kfree(tg->se[i]);
  8209. }
  8210. kfree(tg->cfs_rq);
  8211. kfree(tg->se);
  8212. }
  8213. static
  8214. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8215. {
  8216. struct cfs_rq *cfs_rq;
  8217. struct sched_entity *se;
  8218. struct rq *rq;
  8219. int i;
  8220. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8221. if (!tg->cfs_rq)
  8222. goto err;
  8223. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8224. if (!tg->se)
  8225. goto err;
  8226. tg->shares = NICE_0_LOAD;
  8227. for_each_possible_cpu(i) {
  8228. rq = cpu_rq(i);
  8229. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8230. GFP_KERNEL, cpu_to_node(i));
  8231. if (!cfs_rq)
  8232. goto err;
  8233. se = kzalloc_node(sizeof(struct sched_entity),
  8234. GFP_KERNEL, cpu_to_node(i));
  8235. if (!se)
  8236. goto err;
  8237. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8238. }
  8239. return 1;
  8240. err:
  8241. return 0;
  8242. }
  8243. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8244. {
  8245. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8246. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8247. }
  8248. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8249. {
  8250. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8251. }
  8252. #else /* !CONFG_FAIR_GROUP_SCHED */
  8253. static inline void free_fair_sched_group(struct task_group *tg)
  8254. {
  8255. }
  8256. static inline
  8257. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8258. {
  8259. return 1;
  8260. }
  8261. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8262. {
  8263. }
  8264. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8265. {
  8266. }
  8267. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8268. #ifdef CONFIG_RT_GROUP_SCHED
  8269. static void free_rt_sched_group(struct task_group *tg)
  8270. {
  8271. int i;
  8272. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8273. for_each_possible_cpu(i) {
  8274. if (tg->rt_rq)
  8275. kfree(tg->rt_rq[i]);
  8276. if (tg->rt_se)
  8277. kfree(tg->rt_se[i]);
  8278. }
  8279. kfree(tg->rt_rq);
  8280. kfree(tg->rt_se);
  8281. }
  8282. static
  8283. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8284. {
  8285. struct rt_rq *rt_rq;
  8286. struct sched_rt_entity *rt_se;
  8287. struct rq *rq;
  8288. int i;
  8289. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8290. if (!tg->rt_rq)
  8291. goto err;
  8292. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8293. if (!tg->rt_se)
  8294. goto err;
  8295. init_rt_bandwidth(&tg->rt_bandwidth,
  8296. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8297. for_each_possible_cpu(i) {
  8298. rq = cpu_rq(i);
  8299. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8300. GFP_KERNEL, cpu_to_node(i));
  8301. if (!rt_rq)
  8302. goto err;
  8303. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8304. GFP_KERNEL, cpu_to_node(i));
  8305. if (!rt_se)
  8306. goto err;
  8307. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8308. }
  8309. return 1;
  8310. err:
  8311. return 0;
  8312. }
  8313. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8314. {
  8315. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8316. &cpu_rq(cpu)->leaf_rt_rq_list);
  8317. }
  8318. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8319. {
  8320. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8321. }
  8322. #else /* !CONFIG_RT_GROUP_SCHED */
  8323. static inline void free_rt_sched_group(struct task_group *tg)
  8324. {
  8325. }
  8326. static inline
  8327. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8328. {
  8329. return 1;
  8330. }
  8331. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8332. {
  8333. }
  8334. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8335. {
  8336. }
  8337. #endif /* CONFIG_RT_GROUP_SCHED */
  8338. #ifdef CONFIG_GROUP_SCHED
  8339. static void free_sched_group(struct task_group *tg)
  8340. {
  8341. free_fair_sched_group(tg);
  8342. free_rt_sched_group(tg);
  8343. kfree(tg);
  8344. }
  8345. /* allocate runqueue etc for a new task group */
  8346. struct task_group *sched_create_group(struct task_group *parent)
  8347. {
  8348. struct task_group *tg;
  8349. unsigned long flags;
  8350. int i;
  8351. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8352. if (!tg)
  8353. return ERR_PTR(-ENOMEM);
  8354. if (!alloc_fair_sched_group(tg, parent))
  8355. goto err;
  8356. if (!alloc_rt_sched_group(tg, parent))
  8357. goto err;
  8358. spin_lock_irqsave(&task_group_lock, flags);
  8359. for_each_possible_cpu(i) {
  8360. register_fair_sched_group(tg, i);
  8361. register_rt_sched_group(tg, i);
  8362. }
  8363. list_add_rcu(&tg->list, &task_groups);
  8364. WARN_ON(!parent); /* root should already exist */
  8365. tg->parent = parent;
  8366. INIT_LIST_HEAD(&tg->children);
  8367. list_add_rcu(&tg->siblings, &parent->children);
  8368. spin_unlock_irqrestore(&task_group_lock, flags);
  8369. return tg;
  8370. err:
  8371. free_sched_group(tg);
  8372. return ERR_PTR(-ENOMEM);
  8373. }
  8374. /* rcu callback to free various structures associated with a task group */
  8375. static void free_sched_group_rcu(struct rcu_head *rhp)
  8376. {
  8377. /* now it should be safe to free those cfs_rqs */
  8378. free_sched_group(container_of(rhp, struct task_group, rcu));
  8379. }
  8380. /* Destroy runqueue etc associated with a task group */
  8381. void sched_destroy_group(struct task_group *tg)
  8382. {
  8383. unsigned long flags;
  8384. int i;
  8385. spin_lock_irqsave(&task_group_lock, flags);
  8386. for_each_possible_cpu(i) {
  8387. unregister_fair_sched_group(tg, i);
  8388. unregister_rt_sched_group(tg, i);
  8389. }
  8390. list_del_rcu(&tg->list);
  8391. list_del_rcu(&tg->siblings);
  8392. spin_unlock_irqrestore(&task_group_lock, flags);
  8393. /* wait for possible concurrent references to cfs_rqs complete */
  8394. call_rcu(&tg->rcu, free_sched_group_rcu);
  8395. }
  8396. /* change task's runqueue when it moves between groups.
  8397. * The caller of this function should have put the task in its new group
  8398. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8399. * reflect its new group.
  8400. */
  8401. void sched_move_task(struct task_struct *tsk)
  8402. {
  8403. int on_rq, running;
  8404. unsigned long flags;
  8405. struct rq *rq;
  8406. rq = task_rq_lock(tsk, &flags);
  8407. update_rq_clock(rq);
  8408. running = task_current(rq, tsk);
  8409. on_rq = tsk->se.on_rq;
  8410. if (on_rq)
  8411. dequeue_task(rq, tsk, 0);
  8412. if (unlikely(running))
  8413. tsk->sched_class->put_prev_task(rq, tsk);
  8414. set_task_rq(tsk, task_cpu(tsk));
  8415. #ifdef CONFIG_FAIR_GROUP_SCHED
  8416. if (tsk->sched_class->moved_group)
  8417. tsk->sched_class->moved_group(tsk);
  8418. #endif
  8419. if (unlikely(running))
  8420. tsk->sched_class->set_curr_task(rq);
  8421. if (on_rq)
  8422. enqueue_task(rq, tsk, 0);
  8423. task_rq_unlock(rq, &flags);
  8424. }
  8425. #endif /* CONFIG_GROUP_SCHED */
  8426. #ifdef CONFIG_FAIR_GROUP_SCHED
  8427. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8428. {
  8429. struct cfs_rq *cfs_rq = se->cfs_rq;
  8430. int on_rq;
  8431. on_rq = se->on_rq;
  8432. if (on_rq)
  8433. dequeue_entity(cfs_rq, se, 0);
  8434. se->load.weight = shares;
  8435. se->load.inv_weight = 0;
  8436. if (on_rq)
  8437. enqueue_entity(cfs_rq, se, 0);
  8438. }
  8439. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8440. {
  8441. struct cfs_rq *cfs_rq = se->cfs_rq;
  8442. struct rq *rq = cfs_rq->rq;
  8443. unsigned long flags;
  8444. spin_lock_irqsave(&rq->lock, flags);
  8445. __set_se_shares(se, shares);
  8446. spin_unlock_irqrestore(&rq->lock, flags);
  8447. }
  8448. static DEFINE_MUTEX(shares_mutex);
  8449. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8450. {
  8451. int i;
  8452. unsigned long flags;
  8453. /*
  8454. * We can't change the weight of the root cgroup.
  8455. */
  8456. if (!tg->se[0])
  8457. return -EINVAL;
  8458. if (shares < MIN_SHARES)
  8459. shares = MIN_SHARES;
  8460. else if (shares > MAX_SHARES)
  8461. shares = MAX_SHARES;
  8462. mutex_lock(&shares_mutex);
  8463. if (tg->shares == shares)
  8464. goto done;
  8465. spin_lock_irqsave(&task_group_lock, flags);
  8466. for_each_possible_cpu(i)
  8467. unregister_fair_sched_group(tg, i);
  8468. list_del_rcu(&tg->siblings);
  8469. spin_unlock_irqrestore(&task_group_lock, flags);
  8470. /* wait for any ongoing reference to this group to finish */
  8471. synchronize_sched();
  8472. /*
  8473. * Now we are free to modify the group's share on each cpu
  8474. * w/o tripping rebalance_share or load_balance_fair.
  8475. */
  8476. tg->shares = shares;
  8477. for_each_possible_cpu(i) {
  8478. /*
  8479. * force a rebalance
  8480. */
  8481. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8482. set_se_shares(tg->se[i], shares);
  8483. }
  8484. /*
  8485. * Enable load balance activity on this group, by inserting it back on
  8486. * each cpu's rq->leaf_cfs_rq_list.
  8487. */
  8488. spin_lock_irqsave(&task_group_lock, flags);
  8489. for_each_possible_cpu(i)
  8490. register_fair_sched_group(tg, i);
  8491. list_add_rcu(&tg->siblings, &tg->parent->children);
  8492. spin_unlock_irqrestore(&task_group_lock, flags);
  8493. done:
  8494. mutex_unlock(&shares_mutex);
  8495. return 0;
  8496. }
  8497. unsigned long sched_group_shares(struct task_group *tg)
  8498. {
  8499. return tg->shares;
  8500. }
  8501. #endif
  8502. #ifdef CONFIG_RT_GROUP_SCHED
  8503. /*
  8504. * Ensure that the real time constraints are schedulable.
  8505. */
  8506. static DEFINE_MUTEX(rt_constraints_mutex);
  8507. static unsigned long to_ratio(u64 period, u64 runtime)
  8508. {
  8509. if (runtime == RUNTIME_INF)
  8510. return 1ULL << 20;
  8511. return div64_u64(runtime << 20, period);
  8512. }
  8513. /* Must be called with tasklist_lock held */
  8514. static inline int tg_has_rt_tasks(struct task_group *tg)
  8515. {
  8516. struct task_struct *g, *p;
  8517. do_each_thread(g, p) {
  8518. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8519. return 1;
  8520. } while_each_thread(g, p);
  8521. return 0;
  8522. }
  8523. struct rt_schedulable_data {
  8524. struct task_group *tg;
  8525. u64 rt_period;
  8526. u64 rt_runtime;
  8527. };
  8528. static int tg_schedulable(struct task_group *tg, void *data)
  8529. {
  8530. struct rt_schedulable_data *d = data;
  8531. struct task_group *child;
  8532. unsigned long total, sum = 0;
  8533. u64 period, runtime;
  8534. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8535. runtime = tg->rt_bandwidth.rt_runtime;
  8536. if (tg == d->tg) {
  8537. period = d->rt_period;
  8538. runtime = d->rt_runtime;
  8539. }
  8540. #ifdef CONFIG_USER_SCHED
  8541. if (tg == &root_task_group) {
  8542. period = global_rt_period();
  8543. runtime = global_rt_runtime();
  8544. }
  8545. #endif
  8546. /*
  8547. * Cannot have more runtime than the period.
  8548. */
  8549. if (runtime > period && runtime != RUNTIME_INF)
  8550. return -EINVAL;
  8551. /*
  8552. * Ensure we don't starve existing RT tasks.
  8553. */
  8554. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8555. return -EBUSY;
  8556. total = to_ratio(period, runtime);
  8557. /*
  8558. * Nobody can have more than the global setting allows.
  8559. */
  8560. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8561. return -EINVAL;
  8562. /*
  8563. * The sum of our children's runtime should not exceed our own.
  8564. */
  8565. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8566. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8567. runtime = child->rt_bandwidth.rt_runtime;
  8568. if (child == d->tg) {
  8569. period = d->rt_period;
  8570. runtime = d->rt_runtime;
  8571. }
  8572. sum += to_ratio(period, runtime);
  8573. }
  8574. if (sum > total)
  8575. return -EINVAL;
  8576. return 0;
  8577. }
  8578. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8579. {
  8580. struct rt_schedulable_data data = {
  8581. .tg = tg,
  8582. .rt_period = period,
  8583. .rt_runtime = runtime,
  8584. };
  8585. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8586. }
  8587. static int tg_set_bandwidth(struct task_group *tg,
  8588. u64 rt_period, u64 rt_runtime)
  8589. {
  8590. int i, err = 0;
  8591. mutex_lock(&rt_constraints_mutex);
  8592. read_lock(&tasklist_lock);
  8593. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8594. if (err)
  8595. goto unlock;
  8596. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8597. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8598. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8599. for_each_possible_cpu(i) {
  8600. struct rt_rq *rt_rq = tg->rt_rq[i];
  8601. spin_lock(&rt_rq->rt_runtime_lock);
  8602. rt_rq->rt_runtime = rt_runtime;
  8603. spin_unlock(&rt_rq->rt_runtime_lock);
  8604. }
  8605. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8606. unlock:
  8607. read_unlock(&tasklist_lock);
  8608. mutex_unlock(&rt_constraints_mutex);
  8609. return err;
  8610. }
  8611. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8612. {
  8613. u64 rt_runtime, rt_period;
  8614. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8615. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8616. if (rt_runtime_us < 0)
  8617. rt_runtime = RUNTIME_INF;
  8618. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8619. }
  8620. long sched_group_rt_runtime(struct task_group *tg)
  8621. {
  8622. u64 rt_runtime_us;
  8623. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8624. return -1;
  8625. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8626. do_div(rt_runtime_us, NSEC_PER_USEC);
  8627. return rt_runtime_us;
  8628. }
  8629. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8630. {
  8631. u64 rt_runtime, rt_period;
  8632. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8633. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8634. if (rt_period == 0)
  8635. return -EINVAL;
  8636. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8637. }
  8638. long sched_group_rt_period(struct task_group *tg)
  8639. {
  8640. u64 rt_period_us;
  8641. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8642. do_div(rt_period_us, NSEC_PER_USEC);
  8643. return rt_period_us;
  8644. }
  8645. static int sched_rt_global_constraints(void)
  8646. {
  8647. u64 runtime, period;
  8648. int ret = 0;
  8649. if (sysctl_sched_rt_period <= 0)
  8650. return -EINVAL;
  8651. runtime = global_rt_runtime();
  8652. period = global_rt_period();
  8653. /*
  8654. * Sanity check on the sysctl variables.
  8655. */
  8656. if (runtime > period && runtime != RUNTIME_INF)
  8657. return -EINVAL;
  8658. mutex_lock(&rt_constraints_mutex);
  8659. read_lock(&tasklist_lock);
  8660. ret = __rt_schedulable(NULL, 0, 0);
  8661. read_unlock(&tasklist_lock);
  8662. mutex_unlock(&rt_constraints_mutex);
  8663. return ret;
  8664. }
  8665. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8666. {
  8667. /* Don't accept realtime tasks when there is no way for them to run */
  8668. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8669. return 0;
  8670. return 1;
  8671. }
  8672. #else /* !CONFIG_RT_GROUP_SCHED */
  8673. static int sched_rt_global_constraints(void)
  8674. {
  8675. unsigned long flags;
  8676. int i;
  8677. if (sysctl_sched_rt_period <= 0)
  8678. return -EINVAL;
  8679. /*
  8680. * There's always some RT tasks in the root group
  8681. * -- migration, kstopmachine etc..
  8682. */
  8683. if (sysctl_sched_rt_runtime == 0)
  8684. return -EBUSY;
  8685. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8686. for_each_possible_cpu(i) {
  8687. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8688. spin_lock(&rt_rq->rt_runtime_lock);
  8689. rt_rq->rt_runtime = global_rt_runtime();
  8690. spin_unlock(&rt_rq->rt_runtime_lock);
  8691. }
  8692. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8693. return 0;
  8694. }
  8695. #endif /* CONFIG_RT_GROUP_SCHED */
  8696. int sched_rt_handler(struct ctl_table *table, int write,
  8697. struct file *filp, void __user *buffer, size_t *lenp,
  8698. loff_t *ppos)
  8699. {
  8700. int ret;
  8701. int old_period, old_runtime;
  8702. static DEFINE_MUTEX(mutex);
  8703. mutex_lock(&mutex);
  8704. old_period = sysctl_sched_rt_period;
  8705. old_runtime = sysctl_sched_rt_runtime;
  8706. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8707. if (!ret && write) {
  8708. ret = sched_rt_global_constraints();
  8709. if (ret) {
  8710. sysctl_sched_rt_period = old_period;
  8711. sysctl_sched_rt_runtime = old_runtime;
  8712. } else {
  8713. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8714. def_rt_bandwidth.rt_period =
  8715. ns_to_ktime(global_rt_period());
  8716. }
  8717. }
  8718. mutex_unlock(&mutex);
  8719. return ret;
  8720. }
  8721. #ifdef CONFIG_CGROUP_SCHED
  8722. /* return corresponding task_group object of a cgroup */
  8723. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8724. {
  8725. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8726. struct task_group, css);
  8727. }
  8728. static struct cgroup_subsys_state *
  8729. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8730. {
  8731. struct task_group *tg, *parent;
  8732. if (!cgrp->parent) {
  8733. /* This is early initialization for the top cgroup */
  8734. return &init_task_group.css;
  8735. }
  8736. parent = cgroup_tg(cgrp->parent);
  8737. tg = sched_create_group(parent);
  8738. if (IS_ERR(tg))
  8739. return ERR_PTR(-ENOMEM);
  8740. return &tg->css;
  8741. }
  8742. static void
  8743. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8744. {
  8745. struct task_group *tg = cgroup_tg(cgrp);
  8746. sched_destroy_group(tg);
  8747. }
  8748. static int
  8749. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8750. struct task_struct *tsk)
  8751. {
  8752. #ifdef CONFIG_RT_GROUP_SCHED
  8753. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8754. return -EINVAL;
  8755. #else
  8756. /* We don't support RT-tasks being in separate groups */
  8757. if (tsk->sched_class != &fair_sched_class)
  8758. return -EINVAL;
  8759. #endif
  8760. return 0;
  8761. }
  8762. static void
  8763. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8764. struct cgroup *old_cont, struct task_struct *tsk)
  8765. {
  8766. sched_move_task(tsk);
  8767. }
  8768. #ifdef CONFIG_FAIR_GROUP_SCHED
  8769. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8770. u64 shareval)
  8771. {
  8772. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8773. }
  8774. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8775. {
  8776. struct task_group *tg = cgroup_tg(cgrp);
  8777. return (u64) tg->shares;
  8778. }
  8779. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8780. #ifdef CONFIG_RT_GROUP_SCHED
  8781. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8782. s64 val)
  8783. {
  8784. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8785. }
  8786. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8787. {
  8788. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8789. }
  8790. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8791. u64 rt_period_us)
  8792. {
  8793. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8794. }
  8795. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8796. {
  8797. return sched_group_rt_period(cgroup_tg(cgrp));
  8798. }
  8799. #endif /* CONFIG_RT_GROUP_SCHED */
  8800. static struct cftype cpu_files[] = {
  8801. #ifdef CONFIG_FAIR_GROUP_SCHED
  8802. {
  8803. .name = "shares",
  8804. .read_u64 = cpu_shares_read_u64,
  8805. .write_u64 = cpu_shares_write_u64,
  8806. },
  8807. #endif
  8808. #ifdef CONFIG_RT_GROUP_SCHED
  8809. {
  8810. .name = "rt_runtime_us",
  8811. .read_s64 = cpu_rt_runtime_read,
  8812. .write_s64 = cpu_rt_runtime_write,
  8813. },
  8814. {
  8815. .name = "rt_period_us",
  8816. .read_u64 = cpu_rt_period_read_uint,
  8817. .write_u64 = cpu_rt_period_write_uint,
  8818. },
  8819. #endif
  8820. };
  8821. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8822. {
  8823. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8824. }
  8825. struct cgroup_subsys cpu_cgroup_subsys = {
  8826. .name = "cpu",
  8827. .create = cpu_cgroup_create,
  8828. .destroy = cpu_cgroup_destroy,
  8829. .can_attach = cpu_cgroup_can_attach,
  8830. .attach = cpu_cgroup_attach,
  8831. .populate = cpu_cgroup_populate,
  8832. .subsys_id = cpu_cgroup_subsys_id,
  8833. .early_init = 1,
  8834. };
  8835. #endif /* CONFIG_CGROUP_SCHED */
  8836. #ifdef CONFIG_CGROUP_CPUACCT
  8837. /*
  8838. * CPU accounting code for task groups.
  8839. *
  8840. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8841. * (balbir@in.ibm.com).
  8842. */
  8843. /* track cpu usage of a group of tasks and its child groups */
  8844. struct cpuacct {
  8845. struct cgroup_subsys_state css;
  8846. /* cpuusage holds pointer to a u64-type object on every cpu */
  8847. u64 *cpuusage;
  8848. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8849. struct cpuacct *parent;
  8850. };
  8851. struct cgroup_subsys cpuacct_subsys;
  8852. /* return cpu accounting group corresponding to this container */
  8853. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8854. {
  8855. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8856. struct cpuacct, css);
  8857. }
  8858. /* return cpu accounting group to which this task belongs */
  8859. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8860. {
  8861. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8862. struct cpuacct, css);
  8863. }
  8864. /* create a new cpu accounting group */
  8865. static struct cgroup_subsys_state *cpuacct_create(
  8866. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8867. {
  8868. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8869. int i;
  8870. if (!ca)
  8871. goto out;
  8872. ca->cpuusage = alloc_percpu(u64);
  8873. if (!ca->cpuusage)
  8874. goto out_free_ca;
  8875. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8876. if (percpu_counter_init(&ca->cpustat[i], 0))
  8877. goto out_free_counters;
  8878. if (cgrp->parent)
  8879. ca->parent = cgroup_ca(cgrp->parent);
  8880. return &ca->css;
  8881. out_free_counters:
  8882. while (--i >= 0)
  8883. percpu_counter_destroy(&ca->cpustat[i]);
  8884. free_percpu(ca->cpuusage);
  8885. out_free_ca:
  8886. kfree(ca);
  8887. out:
  8888. return ERR_PTR(-ENOMEM);
  8889. }
  8890. /* destroy an existing cpu accounting group */
  8891. static void
  8892. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8893. {
  8894. struct cpuacct *ca = cgroup_ca(cgrp);
  8895. int i;
  8896. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8897. percpu_counter_destroy(&ca->cpustat[i]);
  8898. free_percpu(ca->cpuusage);
  8899. kfree(ca);
  8900. }
  8901. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8902. {
  8903. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8904. u64 data;
  8905. #ifndef CONFIG_64BIT
  8906. /*
  8907. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8908. */
  8909. spin_lock_irq(&cpu_rq(cpu)->lock);
  8910. data = *cpuusage;
  8911. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8912. #else
  8913. data = *cpuusage;
  8914. #endif
  8915. return data;
  8916. }
  8917. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8918. {
  8919. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8920. #ifndef CONFIG_64BIT
  8921. /*
  8922. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8923. */
  8924. spin_lock_irq(&cpu_rq(cpu)->lock);
  8925. *cpuusage = val;
  8926. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8927. #else
  8928. *cpuusage = val;
  8929. #endif
  8930. }
  8931. /* return total cpu usage (in nanoseconds) of a group */
  8932. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8933. {
  8934. struct cpuacct *ca = cgroup_ca(cgrp);
  8935. u64 totalcpuusage = 0;
  8936. int i;
  8937. for_each_present_cpu(i)
  8938. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8939. return totalcpuusage;
  8940. }
  8941. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8942. u64 reset)
  8943. {
  8944. struct cpuacct *ca = cgroup_ca(cgrp);
  8945. int err = 0;
  8946. int i;
  8947. if (reset) {
  8948. err = -EINVAL;
  8949. goto out;
  8950. }
  8951. for_each_present_cpu(i)
  8952. cpuacct_cpuusage_write(ca, i, 0);
  8953. out:
  8954. return err;
  8955. }
  8956. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8957. struct seq_file *m)
  8958. {
  8959. struct cpuacct *ca = cgroup_ca(cgroup);
  8960. u64 percpu;
  8961. int i;
  8962. for_each_present_cpu(i) {
  8963. percpu = cpuacct_cpuusage_read(ca, i);
  8964. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8965. }
  8966. seq_printf(m, "\n");
  8967. return 0;
  8968. }
  8969. static const char *cpuacct_stat_desc[] = {
  8970. [CPUACCT_STAT_USER] = "user",
  8971. [CPUACCT_STAT_SYSTEM] = "system",
  8972. };
  8973. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8974. struct cgroup_map_cb *cb)
  8975. {
  8976. struct cpuacct *ca = cgroup_ca(cgrp);
  8977. int i;
  8978. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8979. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8980. val = cputime64_to_clock_t(val);
  8981. cb->fill(cb, cpuacct_stat_desc[i], val);
  8982. }
  8983. return 0;
  8984. }
  8985. static struct cftype files[] = {
  8986. {
  8987. .name = "usage",
  8988. .read_u64 = cpuusage_read,
  8989. .write_u64 = cpuusage_write,
  8990. },
  8991. {
  8992. .name = "usage_percpu",
  8993. .read_seq_string = cpuacct_percpu_seq_read,
  8994. },
  8995. {
  8996. .name = "stat",
  8997. .read_map = cpuacct_stats_show,
  8998. },
  8999. };
  9000. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9001. {
  9002. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9003. }
  9004. /*
  9005. * charge this task's execution time to its accounting group.
  9006. *
  9007. * called with rq->lock held.
  9008. */
  9009. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9010. {
  9011. struct cpuacct *ca;
  9012. int cpu;
  9013. if (unlikely(!cpuacct_subsys.active))
  9014. return;
  9015. cpu = task_cpu(tsk);
  9016. rcu_read_lock();
  9017. ca = task_ca(tsk);
  9018. for (; ca; ca = ca->parent) {
  9019. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9020. *cpuusage += cputime;
  9021. }
  9022. rcu_read_unlock();
  9023. }
  9024. /*
  9025. * Charge the system/user time to the task's accounting group.
  9026. */
  9027. static void cpuacct_update_stats(struct task_struct *tsk,
  9028. enum cpuacct_stat_index idx, cputime_t val)
  9029. {
  9030. struct cpuacct *ca;
  9031. if (unlikely(!cpuacct_subsys.active))
  9032. return;
  9033. rcu_read_lock();
  9034. ca = task_ca(tsk);
  9035. do {
  9036. percpu_counter_add(&ca->cpustat[idx], val);
  9037. ca = ca->parent;
  9038. } while (ca);
  9039. rcu_read_unlock();
  9040. }
  9041. struct cgroup_subsys cpuacct_subsys = {
  9042. .name = "cpuacct",
  9043. .create = cpuacct_create,
  9044. .destroy = cpuacct_destroy,
  9045. .populate = cpuacct_populate,
  9046. .subsys_id = cpuacct_subsys_id,
  9047. };
  9048. #endif /* CONFIG_CGROUP_CPUACCT */