i915_gem.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. static void i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  40. bool write);
  41. static int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  45. static int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  46. unsigned alignment,
  47. bool map_and_fenceable);
  48. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  49. struct drm_i915_fence_reg *reg);
  50. static int i915_gem_phys_pwrite(struct drm_device *dev,
  51. struct drm_i915_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file);
  54. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  55. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  56. int nr_to_scan,
  57. gfp_t gfp_mask);
  58. /* some bookkeeping */
  59. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  60. size_t size)
  61. {
  62. dev_priv->mm.object_count++;
  63. dev_priv->mm.object_memory += size;
  64. }
  65. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count--;
  69. dev_priv->mm.object_memory -= size;
  70. }
  71. int
  72. i915_gem_check_is_wedged(struct drm_device *dev)
  73. {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct completion *x = &dev_priv->error_completion;
  76. unsigned long flags;
  77. int ret;
  78. if (!atomic_read(&dev_priv->mm.wedged))
  79. return 0;
  80. ret = wait_for_completion_interruptible(x);
  81. if (ret)
  82. return ret;
  83. /* Success, we reset the GPU! */
  84. if (!atomic_read(&dev_priv->mm.wedged))
  85. return 0;
  86. /* GPU is hung, bump the completion count to account for
  87. * the token we just consumed so that we never hit zero and
  88. * end up waiting upon a subsequent completion event that
  89. * will never happen.
  90. */
  91. spin_lock_irqsave(&x->wait.lock, flags);
  92. x->done++;
  93. spin_unlock_irqrestore(&x->wait.lock, flags);
  94. return -EIO;
  95. }
  96. int i915_mutex_lock_interruptible(struct drm_device *dev)
  97. {
  98. struct drm_i915_private *dev_priv = dev->dev_private;
  99. int ret;
  100. ret = i915_gem_check_is_wedged(dev);
  101. if (ret)
  102. return ret;
  103. ret = mutex_lock_interruptible(&dev->struct_mutex);
  104. if (ret)
  105. return ret;
  106. if (atomic_read(&dev_priv->mm.wedged)) {
  107. mutex_unlock(&dev->struct_mutex);
  108. return -EAGAIN;
  109. }
  110. WARN_ON(i915_verify_lists(dev));
  111. return 0;
  112. }
  113. static inline bool
  114. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  115. {
  116. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  117. }
  118. void i915_gem_do_init(struct drm_device *dev,
  119. unsigned long start,
  120. unsigned long mappable_end,
  121. unsigned long end)
  122. {
  123. drm_i915_private_t *dev_priv = dev->dev_private;
  124. drm_mm_init(&dev_priv->mm.gtt_space, start,
  125. end - start);
  126. dev_priv->mm.gtt_total = end - start;
  127. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  128. dev_priv->mm.gtt_mappable_end = mappable_end;
  129. }
  130. int
  131. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  132. struct drm_file *file)
  133. {
  134. struct drm_i915_gem_init *args = data;
  135. if (args->gtt_start >= args->gtt_end ||
  136. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  137. return -EINVAL;
  138. mutex_lock(&dev->struct_mutex);
  139. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  140. mutex_unlock(&dev->struct_mutex);
  141. return 0;
  142. }
  143. int
  144. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  145. struct drm_file *file)
  146. {
  147. struct drm_i915_private *dev_priv = dev->dev_private;
  148. struct drm_i915_gem_get_aperture *args = data;
  149. struct drm_i915_gem_object *obj;
  150. size_t pinned;
  151. if (!(dev->driver->driver_features & DRIVER_GEM))
  152. return -ENODEV;
  153. pinned = 0;
  154. mutex_lock(&dev->struct_mutex);
  155. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  156. pinned += obj->gtt_space->size;
  157. mutex_unlock(&dev->struct_mutex);
  158. args->aper_size = dev_priv->mm.gtt_total;
  159. args->aper_available_size = args->aper_size -pinned;
  160. return 0;
  161. }
  162. /**
  163. * Creates a new mm object and returns a handle to it.
  164. */
  165. int
  166. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  167. struct drm_file *file)
  168. {
  169. struct drm_i915_gem_create *args = data;
  170. struct drm_i915_gem_object *obj;
  171. int ret;
  172. u32 handle;
  173. args->size = roundup(args->size, PAGE_SIZE);
  174. /* Allocate the new object */
  175. obj = i915_gem_alloc_object(dev, args->size);
  176. if (obj == NULL)
  177. return -ENOMEM;
  178. ret = drm_gem_handle_create(file, &obj->base, &handle);
  179. if (ret) {
  180. drm_gem_object_release(&obj->base);
  181. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  182. kfree(obj);
  183. return ret;
  184. }
  185. /* drop reference from allocate - handle holds it now */
  186. drm_gem_object_unreference(&obj->base);
  187. trace_i915_gem_object_create(obj);
  188. args->handle = handle;
  189. return 0;
  190. }
  191. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  192. {
  193. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  194. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  195. obj->tiling_mode != I915_TILING_NONE;
  196. }
  197. static inline void
  198. slow_shmem_copy(struct page *dst_page,
  199. int dst_offset,
  200. struct page *src_page,
  201. int src_offset,
  202. int length)
  203. {
  204. char *dst_vaddr, *src_vaddr;
  205. dst_vaddr = kmap(dst_page);
  206. src_vaddr = kmap(src_page);
  207. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  208. kunmap(src_page);
  209. kunmap(dst_page);
  210. }
  211. static inline void
  212. slow_shmem_bit17_copy(struct page *gpu_page,
  213. int gpu_offset,
  214. struct page *cpu_page,
  215. int cpu_offset,
  216. int length,
  217. int is_read)
  218. {
  219. char *gpu_vaddr, *cpu_vaddr;
  220. /* Use the unswizzled path if this page isn't affected. */
  221. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  222. if (is_read)
  223. return slow_shmem_copy(cpu_page, cpu_offset,
  224. gpu_page, gpu_offset, length);
  225. else
  226. return slow_shmem_copy(gpu_page, gpu_offset,
  227. cpu_page, cpu_offset, length);
  228. }
  229. gpu_vaddr = kmap(gpu_page);
  230. cpu_vaddr = kmap(cpu_page);
  231. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  232. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  233. */
  234. while (length > 0) {
  235. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  236. int this_length = min(cacheline_end - gpu_offset, length);
  237. int swizzled_gpu_offset = gpu_offset ^ 64;
  238. if (is_read) {
  239. memcpy(cpu_vaddr + cpu_offset,
  240. gpu_vaddr + swizzled_gpu_offset,
  241. this_length);
  242. } else {
  243. memcpy(gpu_vaddr + swizzled_gpu_offset,
  244. cpu_vaddr + cpu_offset,
  245. this_length);
  246. }
  247. cpu_offset += this_length;
  248. gpu_offset += this_length;
  249. length -= this_length;
  250. }
  251. kunmap(cpu_page);
  252. kunmap(gpu_page);
  253. }
  254. /**
  255. * This is the fast shmem pread path, which attempts to copy_from_user directly
  256. * from the backing pages of the object to the user's address space. On a
  257. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  258. */
  259. static int
  260. i915_gem_shmem_pread_fast(struct drm_device *dev,
  261. struct drm_i915_gem_object *obj,
  262. struct drm_i915_gem_pread *args,
  263. struct drm_file *file)
  264. {
  265. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  266. ssize_t remain;
  267. loff_t offset;
  268. char __user *user_data;
  269. int page_offset, page_length;
  270. user_data = (char __user *) (uintptr_t) args->data_ptr;
  271. remain = args->size;
  272. offset = args->offset;
  273. while (remain > 0) {
  274. struct page *page;
  275. char *vaddr;
  276. int ret;
  277. /* Operation in this page
  278. *
  279. * page_offset = offset within page
  280. * page_length = bytes to copy for this page
  281. */
  282. page_offset = offset & (PAGE_SIZE-1);
  283. page_length = remain;
  284. if ((page_offset + remain) > PAGE_SIZE)
  285. page_length = PAGE_SIZE - page_offset;
  286. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  287. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  288. if (IS_ERR(page))
  289. return PTR_ERR(page);
  290. vaddr = kmap_atomic(page);
  291. ret = __copy_to_user_inatomic(user_data,
  292. vaddr + page_offset,
  293. page_length);
  294. kunmap_atomic(vaddr);
  295. mark_page_accessed(page);
  296. page_cache_release(page);
  297. if (ret)
  298. return -EFAULT;
  299. remain -= page_length;
  300. user_data += page_length;
  301. offset += page_length;
  302. }
  303. return 0;
  304. }
  305. /**
  306. * This is the fallback shmem pread path, which allocates temporary storage
  307. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  308. * can copy out of the object's backing pages while holding the struct mutex
  309. * and not take page faults.
  310. */
  311. static int
  312. i915_gem_shmem_pread_slow(struct drm_device *dev,
  313. struct drm_i915_gem_object *obj,
  314. struct drm_i915_gem_pread *args,
  315. struct drm_file *file)
  316. {
  317. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  318. struct mm_struct *mm = current->mm;
  319. struct page **user_pages;
  320. ssize_t remain;
  321. loff_t offset, pinned_pages, i;
  322. loff_t first_data_page, last_data_page, num_pages;
  323. int shmem_page_offset;
  324. int data_page_index, data_page_offset;
  325. int page_length;
  326. int ret;
  327. uint64_t data_ptr = args->data_ptr;
  328. int do_bit17_swizzling;
  329. remain = args->size;
  330. /* Pin the user pages containing the data. We can't fault while
  331. * holding the struct mutex, yet we want to hold it while
  332. * dereferencing the user data.
  333. */
  334. first_data_page = data_ptr / PAGE_SIZE;
  335. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  336. num_pages = last_data_page - first_data_page + 1;
  337. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  338. if (user_pages == NULL)
  339. return -ENOMEM;
  340. mutex_unlock(&dev->struct_mutex);
  341. down_read(&mm->mmap_sem);
  342. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  343. num_pages, 1, 0, user_pages, NULL);
  344. up_read(&mm->mmap_sem);
  345. mutex_lock(&dev->struct_mutex);
  346. if (pinned_pages < num_pages) {
  347. ret = -EFAULT;
  348. goto out;
  349. }
  350. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  351. args->offset,
  352. args->size);
  353. if (ret)
  354. goto out;
  355. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  356. offset = args->offset;
  357. while (remain > 0) {
  358. struct page *page;
  359. /* Operation in this page
  360. *
  361. * shmem_page_offset = offset within page in shmem file
  362. * data_page_index = page number in get_user_pages return
  363. * data_page_offset = offset with data_page_index page.
  364. * page_length = bytes to copy for this page
  365. */
  366. shmem_page_offset = offset & ~PAGE_MASK;
  367. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  368. data_page_offset = data_ptr & ~PAGE_MASK;
  369. page_length = remain;
  370. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  371. page_length = PAGE_SIZE - shmem_page_offset;
  372. if ((data_page_offset + page_length) > PAGE_SIZE)
  373. page_length = PAGE_SIZE - data_page_offset;
  374. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  375. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  376. if (IS_ERR(page))
  377. return PTR_ERR(page);
  378. if (do_bit17_swizzling) {
  379. slow_shmem_bit17_copy(page,
  380. shmem_page_offset,
  381. user_pages[data_page_index],
  382. data_page_offset,
  383. page_length,
  384. 1);
  385. } else {
  386. slow_shmem_copy(user_pages[data_page_index],
  387. data_page_offset,
  388. page,
  389. shmem_page_offset,
  390. page_length);
  391. }
  392. mark_page_accessed(page);
  393. page_cache_release(page);
  394. remain -= page_length;
  395. data_ptr += page_length;
  396. offset += page_length;
  397. }
  398. out:
  399. for (i = 0; i < pinned_pages; i++) {
  400. SetPageDirty(user_pages[i]);
  401. mark_page_accessed(user_pages[i]);
  402. page_cache_release(user_pages[i]);
  403. }
  404. drm_free_large(user_pages);
  405. return ret;
  406. }
  407. /**
  408. * Reads data from the object referenced by handle.
  409. *
  410. * On error, the contents of *data are undefined.
  411. */
  412. int
  413. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  414. struct drm_file *file)
  415. {
  416. struct drm_i915_gem_pread *args = data;
  417. struct drm_i915_gem_object *obj;
  418. int ret = 0;
  419. if (args->size == 0)
  420. return 0;
  421. if (!access_ok(VERIFY_WRITE,
  422. (char __user *)(uintptr_t)args->data_ptr,
  423. args->size))
  424. return -EFAULT;
  425. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  426. args->size);
  427. if (ret)
  428. return -EFAULT;
  429. ret = i915_mutex_lock_interruptible(dev);
  430. if (ret)
  431. return ret;
  432. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  433. if (obj == NULL) {
  434. ret = -ENOENT;
  435. goto unlock;
  436. }
  437. /* Bounds check source. */
  438. if (args->offset > obj->base.size ||
  439. args->size > obj->base.size - args->offset) {
  440. ret = -EINVAL;
  441. goto out;
  442. }
  443. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  444. args->offset,
  445. args->size);
  446. if (ret)
  447. goto out;
  448. ret = -EFAULT;
  449. if (!i915_gem_object_needs_bit17_swizzle(obj))
  450. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  451. if (ret == -EFAULT)
  452. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  453. out:
  454. drm_gem_object_unreference(&obj->base);
  455. unlock:
  456. mutex_unlock(&dev->struct_mutex);
  457. return ret;
  458. }
  459. /* This is the fast write path which cannot handle
  460. * page faults in the source data
  461. */
  462. static inline int
  463. fast_user_write(struct io_mapping *mapping,
  464. loff_t page_base, int page_offset,
  465. char __user *user_data,
  466. int length)
  467. {
  468. char *vaddr_atomic;
  469. unsigned long unwritten;
  470. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  471. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  472. user_data, length);
  473. io_mapping_unmap_atomic(vaddr_atomic);
  474. return unwritten;
  475. }
  476. /* Here's the write path which can sleep for
  477. * page faults
  478. */
  479. static inline void
  480. slow_kernel_write(struct io_mapping *mapping,
  481. loff_t gtt_base, int gtt_offset,
  482. struct page *user_page, int user_offset,
  483. int length)
  484. {
  485. char __iomem *dst_vaddr;
  486. char *src_vaddr;
  487. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  488. src_vaddr = kmap(user_page);
  489. memcpy_toio(dst_vaddr + gtt_offset,
  490. src_vaddr + user_offset,
  491. length);
  492. kunmap(user_page);
  493. io_mapping_unmap(dst_vaddr);
  494. }
  495. /**
  496. * This is the fast pwrite path, where we copy the data directly from the
  497. * user into the GTT, uncached.
  498. */
  499. static int
  500. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  501. struct drm_i915_gem_object *obj,
  502. struct drm_i915_gem_pwrite *args,
  503. struct drm_file *file)
  504. {
  505. drm_i915_private_t *dev_priv = dev->dev_private;
  506. ssize_t remain;
  507. loff_t offset, page_base;
  508. char __user *user_data;
  509. int page_offset, page_length;
  510. user_data = (char __user *) (uintptr_t) args->data_ptr;
  511. remain = args->size;
  512. offset = obj->gtt_offset + args->offset;
  513. while (remain > 0) {
  514. /* Operation in this page
  515. *
  516. * page_base = page offset within aperture
  517. * page_offset = offset within page
  518. * page_length = bytes to copy for this page
  519. */
  520. page_base = (offset & ~(PAGE_SIZE-1));
  521. page_offset = offset & (PAGE_SIZE-1);
  522. page_length = remain;
  523. if ((page_offset + remain) > PAGE_SIZE)
  524. page_length = PAGE_SIZE - page_offset;
  525. /* If we get a fault while copying data, then (presumably) our
  526. * source page isn't available. Return the error and we'll
  527. * retry in the slow path.
  528. */
  529. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  530. page_offset, user_data, page_length))
  531. return -EFAULT;
  532. remain -= page_length;
  533. user_data += page_length;
  534. offset += page_length;
  535. }
  536. return 0;
  537. }
  538. /**
  539. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  540. * the memory and maps it using kmap_atomic for copying.
  541. *
  542. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  543. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  544. */
  545. static int
  546. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  547. struct drm_i915_gem_object *obj,
  548. struct drm_i915_gem_pwrite *args,
  549. struct drm_file *file)
  550. {
  551. drm_i915_private_t *dev_priv = dev->dev_private;
  552. ssize_t remain;
  553. loff_t gtt_page_base, offset;
  554. loff_t first_data_page, last_data_page, num_pages;
  555. loff_t pinned_pages, i;
  556. struct page **user_pages;
  557. struct mm_struct *mm = current->mm;
  558. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  559. int ret;
  560. uint64_t data_ptr = args->data_ptr;
  561. remain = args->size;
  562. /* Pin the user pages containing the data. We can't fault while
  563. * holding the struct mutex, and all of the pwrite implementations
  564. * want to hold it while dereferencing the user data.
  565. */
  566. first_data_page = data_ptr / PAGE_SIZE;
  567. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  568. num_pages = last_data_page - first_data_page + 1;
  569. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  570. if (user_pages == NULL)
  571. return -ENOMEM;
  572. mutex_unlock(&dev->struct_mutex);
  573. down_read(&mm->mmap_sem);
  574. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  575. num_pages, 0, 0, user_pages, NULL);
  576. up_read(&mm->mmap_sem);
  577. mutex_lock(&dev->struct_mutex);
  578. if (pinned_pages < num_pages) {
  579. ret = -EFAULT;
  580. goto out_unpin_pages;
  581. }
  582. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  583. if (ret)
  584. goto out_unpin_pages;
  585. ret = i915_gem_object_put_fence(obj);
  586. if (ret)
  587. goto out_unpin_pages;
  588. offset = obj->gtt_offset + args->offset;
  589. while (remain > 0) {
  590. /* Operation in this page
  591. *
  592. * gtt_page_base = page offset within aperture
  593. * gtt_page_offset = offset within page in aperture
  594. * data_page_index = page number in get_user_pages return
  595. * data_page_offset = offset with data_page_index page.
  596. * page_length = bytes to copy for this page
  597. */
  598. gtt_page_base = offset & PAGE_MASK;
  599. gtt_page_offset = offset & ~PAGE_MASK;
  600. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  601. data_page_offset = data_ptr & ~PAGE_MASK;
  602. page_length = remain;
  603. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  604. page_length = PAGE_SIZE - gtt_page_offset;
  605. if ((data_page_offset + page_length) > PAGE_SIZE)
  606. page_length = PAGE_SIZE - data_page_offset;
  607. slow_kernel_write(dev_priv->mm.gtt_mapping,
  608. gtt_page_base, gtt_page_offset,
  609. user_pages[data_page_index],
  610. data_page_offset,
  611. page_length);
  612. remain -= page_length;
  613. offset += page_length;
  614. data_ptr += page_length;
  615. }
  616. out_unpin_pages:
  617. for (i = 0; i < pinned_pages; i++)
  618. page_cache_release(user_pages[i]);
  619. drm_free_large(user_pages);
  620. return ret;
  621. }
  622. /**
  623. * This is the fast shmem pwrite path, which attempts to directly
  624. * copy_from_user into the kmapped pages backing the object.
  625. */
  626. static int
  627. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  628. struct drm_i915_gem_object *obj,
  629. struct drm_i915_gem_pwrite *args,
  630. struct drm_file *file)
  631. {
  632. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  633. ssize_t remain;
  634. loff_t offset;
  635. char __user *user_data;
  636. int page_offset, page_length;
  637. user_data = (char __user *) (uintptr_t) args->data_ptr;
  638. remain = args->size;
  639. offset = args->offset;
  640. obj->dirty = 1;
  641. while (remain > 0) {
  642. struct page *page;
  643. char *vaddr;
  644. int ret;
  645. /* Operation in this page
  646. *
  647. * page_offset = offset within page
  648. * page_length = bytes to copy for this page
  649. */
  650. page_offset = offset & (PAGE_SIZE-1);
  651. page_length = remain;
  652. if ((page_offset + remain) > PAGE_SIZE)
  653. page_length = PAGE_SIZE - page_offset;
  654. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  655. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  656. if (IS_ERR(page))
  657. return PTR_ERR(page);
  658. vaddr = kmap_atomic(page, KM_USER0);
  659. ret = __copy_from_user_inatomic(vaddr + page_offset,
  660. user_data,
  661. page_length);
  662. kunmap_atomic(vaddr, KM_USER0);
  663. set_page_dirty(page);
  664. mark_page_accessed(page);
  665. page_cache_release(page);
  666. /* If we get a fault while copying data, then (presumably) our
  667. * source page isn't available. Return the error and we'll
  668. * retry in the slow path.
  669. */
  670. if (ret)
  671. return -EFAULT;
  672. remain -= page_length;
  673. user_data += page_length;
  674. offset += page_length;
  675. }
  676. return 0;
  677. }
  678. /**
  679. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  680. * the memory and maps it using kmap_atomic for copying.
  681. *
  682. * This avoids taking mmap_sem for faulting on the user's address while the
  683. * struct_mutex is held.
  684. */
  685. static int
  686. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  687. struct drm_i915_gem_object *obj,
  688. struct drm_i915_gem_pwrite *args,
  689. struct drm_file *file)
  690. {
  691. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  692. struct mm_struct *mm = current->mm;
  693. struct page **user_pages;
  694. ssize_t remain;
  695. loff_t offset, pinned_pages, i;
  696. loff_t first_data_page, last_data_page, num_pages;
  697. int shmem_page_offset;
  698. int data_page_index, data_page_offset;
  699. int page_length;
  700. int ret;
  701. uint64_t data_ptr = args->data_ptr;
  702. int do_bit17_swizzling;
  703. remain = args->size;
  704. /* Pin the user pages containing the data. We can't fault while
  705. * holding the struct mutex, and all of the pwrite implementations
  706. * want to hold it while dereferencing the user data.
  707. */
  708. first_data_page = data_ptr / PAGE_SIZE;
  709. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  710. num_pages = last_data_page - first_data_page + 1;
  711. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  712. if (user_pages == NULL)
  713. return -ENOMEM;
  714. mutex_unlock(&dev->struct_mutex);
  715. down_read(&mm->mmap_sem);
  716. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  717. num_pages, 0, 0, user_pages, NULL);
  718. up_read(&mm->mmap_sem);
  719. mutex_lock(&dev->struct_mutex);
  720. if (pinned_pages < num_pages) {
  721. ret = -EFAULT;
  722. goto out;
  723. }
  724. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  725. if (ret)
  726. goto out;
  727. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  728. offset = args->offset;
  729. obj->dirty = 1;
  730. while (remain > 0) {
  731. struct page *page;
  732. /* Operation in this page
  733. *
  734. * shmem_page_offset = offset within page in shmem file
  735. * data_page_index = page number in get_user_pages return
  736. * data_page_offset = offset with data_page_index page.
  737. * page_length = bytes to copy for this page
  738. */
  739. shmem_page_offset = offset & ~PAGE_MASK;
  740. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  741. data_page_offset = data_ptr & ~PAGE_MASK;
  742. page_length = remain;
  743. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  744. page_length = PAGE_SIZE - shmem_page_offset;
  745. if ((data_page_offset + page_length) > PAGE_SIZE)
  746. page_length = PAGE_SIZE - data_page_offset;
  747. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  748. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  749. if (IS_ERR(page)) {
  750. ret = PTR_ERR(page);
  751. goto out;
  752. }
  753. if (do_bit17_swizzling) {
  754. slow_shmem_bit17_copy(page,
  755. shmem_page_offset,
  756. user_pages[data_page_index],
  757. data_page_offset,
  758. page_length,
  759. 0);
  760. } else {
  761. slow_shmem_copy(page,
  762. shmem_page_offset,
  763. user_pages[data_page_index],
  764. data_page_offset,
  765. page_length);
  766. }
  767. set_page_dirty(page);
  768. mark_page_accessed(page);
  769. page_cache_release(page);
  770. remain -= page_length;
  771. data_ptr += page_length;
  772. offset += page_length;
  773. }
  774. out:
  775. for (i = 0; i < pinned_pages; i++)
  776. page_cache_release(user_pages[i]);
  777. drm_free_large(user_pages);
  778. return ret;
  779. }
  780. /**
  781. * Writes data to the object referenced by handle.
  782. *
  783. * On error, the contents of the buffer that were to be modified are undefined.
  784. */
  785. int
  786. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  787. struct drm_file *file)
  788. {
  789. struct drm_i915_gem_pwrite *args = data;
  790. struct drm_i915_gem_object *obj;
  791. int ret;
  792. if (args->size == 0)
  793. return 0;
  794. if (!access_ok(VERIFY_READ,
  795. (char __user *)(uintptr_t)args->data_ptr,
  796. args->size))
  797. return -EFAULT;
  798. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  799. args->size);
  800. if (ret)
  801. return -EFAULT;
  802. ret = i915_mutex_lock_interruptible(dev);
  803. if (ret)
  804. return ret;
  805. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  806. if (obj == NULL) {
  807. ret = -ENOENT;
  808. goto unlock;
  809. }
  810. /* Bounds check destination. */
  811. if (args->offset > obj->base.size ||
  812. args->size > obj->base.size - args->offset) {
  813. ret = -EINVAL;
  814. goto out;
  815. }
  816. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  817. * it would end up going through the fenced access, and we'll get
  818. * different detiling behavior between reading and writing.
  819. * pread/pwrite currently are reading and writing from the CPU
  820. * perspective, requiring manual detiling by the client.
  821. */
  822. if (obj->phys_obj)
  823. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  824. else if (obj->gtt_space &&
  825. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  826. ret = i915_gem_object_pin(obj, 0, true);
  827. if (ret)
  828. goto out;
  829. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  830. if (ret)
  831. goto out_unpin;
  832. ret = i915_gem_object_put_fence(obj);
  833. if (ret)
  834. goto out_unpin;
  835. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  836. if (ret == -EFAULT)
  837. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  838. out_unpin:
  839. i915_gem_object_unpin(obj);
  840. } else {
  841. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  842. if (ret)
  843. goto out;
  844. ret = -EFAULT;
  845. if (!i915_gem_object_needs_bit17_swizzle(obj))
  846. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  847. if (ret == -EFAULT)
  848. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  849. }
  850. out:
  851. drm_gem_object_unreference(&obj->base);
  852. unlock:
  853. mutex_unlock(&dev->struct_mutex);
  854. return ret;
  855. }
  856. /**
  857. * Called when user space prepares to use an object with the CPU, either
  858. * through the mmap ioctl's mapping or a GTT mapping.
  859. */
  860. int
  861. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  862. struct drm_file *file)
  863. {
  864. struct drm_i915_private *dev_priv = dev->dev_private;
  865. struct drm_i915_gem_set_domain *args = data;
  866. struct drm_i915_gem_object *obj;
  867. uint32_t read_domains = args->read_domains;
  868. uint32_t write_domain = args->write_domain;
  869. int ret;
  870. if (!(dev->driver->driver_features & DRIVER_GEM))
  871. return -ENODEV;
  872. /* Only handle setting domains to types used by the CPU. */
  873. if (write_domain & I915_GEM_GPU_DOMAINS)
  874. return -EINVAL;
  875. if (read_domains & I915_GEM_GPU_DOMAINS)
  876. return -EINVAL;
  877. /* Having something in the write domain implies it's in the read
  878. * domain, and only that read domain. Enforce that in the request.
  879. */
  880. if (write_domain != 0 && read_domains != write_domain)
  881. return -EINVAL;
  882. ret = i915_mutex_lock_interruptible(dev);
  883. if (ret)
  884. return ret;
  885. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  886. if (obj == NULL) {
  887. ret = -ENOENT;
  888. goto unlock;
  889. }
  890. intel_mark_busy(dev, obj);
  891. if (read_domains & I915_GEM_DOMAIN_GTT) {
  892. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  893. /* Update the LRU on the fence for the CPU access that's
  894. * about to occur.
  895. */
  896. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  897. struct drm_i915_fence_reg *reg =
  898. &dev_priv->fence_regs[obj->fence_reg];
  899. list_move_tail(&reg->lru_list,
  900. &dev_priv->mm.fence_list);
  901. }
  902. /* Silently promote "you're not bound, there was nothing to do"
  903. * to success, since the client was just asking us to
  904. * make sure everything was done.
  905. */
  906. if (ret == -EINVAL)
  907. ret = 0;
  908. } else {
  909. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  910. }
  911. /* Maintain LRU order of "inactive" objects */
  912. if (ret == 0 && i915_gem_object_is_inactive(obj))
  913. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  914. drm_gem_object_unreference(&obj->base);
  915. unlock:
  916. mutex_unlock(&dev->struct_mutex);
  917. return ret;
  918. }
  919. /**
  920. * Called when user space has done writes to this buffer
  921. */
  922. int
  923. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  924. struct drm_file *file)
  925. {
  926. struct drm_i915_gem_sw_finish *args = data;
  927. struct drm_i915_gem_object *obj;
  928. int ret = 0;
  929. if (!(dev->driver->driver_features & DRIVER_GEM))
  930. return -ENODEV;
  931. ret = i915_mutex_lock_interruptible(dev);
  932. if (ret)
  933. return ret;
  934. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  935. if (obj == NULL) {
  936. ret = -ENOENT;
  937. goto unlock;
  938. }
  939. /* Pinned buffers may be scanout, so flush the cache */
  940. if (obj->pin_count)
  941. i915_gem_object_flush_cpu_write_domain(obj);
  942. drm_gem_object_unreference(&obj->base);
  943. unlock:
  944. mutex_unlock(&dev->struct_mutex);
  945. return ret;
  946. }
  947. /**
  948. * Maps the contents of an object, returning the address it is mapped
  949. * into.
  950. *
  951. * While the mapping holds a reference on the contents of the object, it doesn't
  952. * imply a ref on the object itself.
  953. */
  954. int
  955. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  956. struct drm_file *file)
  957. {
  958. struct drm_i915_private *dev_priv = dev->dev_private;
  959. struct drm_i915_gem_mmap *args = data;
  960. struct drm_gem_object *obj;
  961. loff_t offset;
  962. unsigned long addr;
  963. if (!(dev->driver->driver_features & DRIVER_GEM))
  964. return -ENODEV;
  965. obj = drm_gem_object_lookup(dev, file, args->handle);
  966. if (obj == NULL)
  967. return -ENOENT;
  968. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  969. drm_gem_object_unreference_unlocked(obj);
  970. return -E2BIG;
  971. }
  972. offset = args->offset;
  973. down_write(&current->mm->mmap_sem);
  974. addr = do_mmap(obj->filp, 0, args->size,
  975. PROT_READ | PROT_WRITE, MAP_SHARED,
  976. args->offset);
  977. up_write(&current->mm->mmap_sem);
  978. drm_gem_object_unreference_unlocked(obj);
  979. if (IS_ERR((void *)addr))
  980. return addr;
  981. args->addr_ptr = (uint64_t) addr;
  982. return 0;
  983. }
  984. /**
  985. * i915_gem_fault - fault a page into the GTT
  986. * vma: VMA in question
  987. * vmf: fault info
  988. *
  989. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  990. * from userspace. The fault handler takes care of binding the object to
  991. * the GTT (if needed), allocating and programming a fence register (again,
  992. * only if needed based on whether the old reg is still valid or the object
  993. * is tiled) and inserting a new PTE into the faulting process.
  994. *
  995. * Note that the faulting process may involve evicting existing objects
  996. * from the GTT and/or fence registers to make room. So performance may
  997. * suffer if the GTT working set is large or there are few fence registers
  998. * left.
  999. */
  1000. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1001. {
  1002. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1003. struct drm_device *dev = obj->base.dev;
  1004. drm_i915_private_t *dev_priv = dev->dev_private;
  1005. pgoff_t page_offset;
  1006. unsigned long pfn;
  1007. int ret = 0;
  1008. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1009. /* We don't use vmf->pgoff since that has the fake offset */
  1010. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1011. PAGE_SHIFT;
  1012. /* Now bind it into the GTT if needed */
  1013. mutex_lock(&dev->struct_mutex);
  1014. if (!obj->map_and_fenceable) {
  1015. ret = i915_gem_object_unbind(obj);
  1016. if (ret)
  1017. goto unlock;
  1018. }
  1019. if (!obj->gtt_space) {
  1020. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1021. if (ret)
  1022. goto unlock;
  1023. }
  1024. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1025. if (ret)
  1026. goto unlock;
  1027. if (obj->tiling_mode == I915_TILING_NONE)
  1028. ret = i915_gem_object_put_fence(obj);
  1029. else
  1030. ret = i915_gem_object_get_fence(obj, NULL, true);
  1031. if (ret)
  1032. goto unlock;
  1033. if (i915_gem_object_is_inactive(obj))
  1034. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1035. obj->fault_mappable = true;
  1036. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1037. page_offset;
  1038. /* Finally, remap it using the new GTT offset */
  1039. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1040. unlock:
  1041. mutex_unlock(&dev->struct_mutex);
  1042. switch (ret) {
  1043. case -EAGAIN:
  1044. set_need_resched();
  1045. case 0:
  1046. case -ERESTARTSYS:
  1047. return VM_FAULT_NOPAGE;
  1048. case -ENOMEM:
  1049. return VM_FAULT_OOM;
  1050. default:
  1051. return VM_FAULT_SIGBUS;
  1052. }
  1053. }
  1054. /**
  1055. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1056. * @obj: obj in question
  1057. *
  1058. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1059. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1060. * up the object based on the offset and sets up the various memory mapping
  1061. * structures.
  1062. *
  1063. * This routine allocates and attaches a fake offset for @obj.
  1064. */
  1065. static int
  1066. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1067. {
  1068. struct drm_device *dev = obj->base.dev;
  1069. struct drm_gem_mm *mm = dev->mm_private;
  1070. struct drm_map_list *list;
  1071. struct drm_local_map *map;
  1072. int ret = 0;
  1073. /* Set the object up for mmap'ing */
  1074. list = &obj->base.map_list;
  1075. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1076. if (!list->map)
  1077. return -ENOMEM;
  1078. map = list->map;
  1079. map->type = _DRM_GEM;
  1080. map->size = obj->base.size;
  1081. map->handle = obj;
  1082. /* Get a DRM GEM mmap offset allocated... */
  1083. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1084. obj->base.size / PAGE_SIZE,
  1085. 0, 0);
  1086. if (!list->file_offset_node) {
  1087. DRM_ERROR("failed to allocate offset for bo %d\n",
  1088. obj->base.name);
  1089. ret = -ENOSPC;
  1090. goto out_free_list;
  1091. }
  1092. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1093. obj->base.size / PAGE_SIZE,
  1094. 0);
  1095. if (!list->file_offset_node) {
  1096. ret = -ENOMEM;
  1097. goto out_free_list;
  1098. }
  1099. list->hash.key = list->file_offset_node->start;
  1100. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1101. if (ret) {
  1102. DRM_ERROR("failed to add to map hash\n");
  1103. goto out_free_mm;
  1104. }
  1105. return 0;
  1106. out_free_mm:
  1107. drm_mm_put_block(list->file_offset_node);
  1108. out_free_list:
  1109. kfree(list->map);
  1110. list->map = NULL;
  1111. return ret;
  1112. }
  1113. /**
  1114. * i915_gem_release_mmap - remove physical page mappings
  1115. * @obj: obj in question
  1116. *
  1117. * Preserve the reservation of the mmapping with the DRM core code, but
  1118. * relinquish ownership of the pages back to the system.
  1119. *
  1120. * It is vital that we remove the page mapping if we have mapped a tiled
  1121. * object through the GTT and then lose the fence register due to
  1122. * resource pressure. Similarly if the object has been moved out of the
  1123. * aperture, than pages mapped into userspace must be revoked. Removing the
  1124. * mapping will then trigger a page fault on the next user access, allowing
  1125. * fixup by i915_gem_fault().
  1126. */
  1127. void
  1128. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1129. {
  1130. if (!obj->fault_mappable)
  1131. return;
  1132. unmap_mapping_range(obj->base.dev->dev_mapping,
  1133. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1134. obj->base.size, 1);
  1135. obj->fault_mappable = false;
  1136. }
  1137. static void
  1138. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1139. {
  1140. struct drm_device *dev = obj->base.dev;
  1141. struct drm_gem_mm *mm = dev->mm_private;
  1142. struct drm_map_list *list = &obj->base.map_list;
  1143. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1144. drm_mm_put_block(list->file_offset_node);
  1145. kfree(list->map);
  1146. list->map = NULL;
  1147. }
  1148. static uint32_t
  1149. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1150. {
  1151. struct drm_device *dev = obj->base.dev;
  1152. uint32_t size;
  1153. if (INTEL_INFO(dev)->gen >= 4 ||
  1154. obj->tiling_mode == I915_TILING_NONE)
  1155. return obj->base.size;
  1156. /* Previous chips need a power-of-two fence region when tiling */
  1157. if (INTEL_INFO(dev)->gen == 3)
  1158. size = 1024*1024;
  1159. else
  1160. size = 512*1024;
  1161. while (size < obj->base.size)
  1162. size <<= 1;
  1163. return size;
  1164. }
  1165. /**
  1166. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1167. * @obj: object to check
  1168. *
  1169. * Return the required GTT alignment for an object, taking into account
  1170. * potential fence register mapping.
  1171. */
  1172. static uint32_t
  1173. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1174. {
  1175. struct drm_device *dev = obj->base.dev;
  1176. /*
  1177. * Minimum alignment is 4k (GTT page size), but might be greater
  1178. * if a fence register is needed for the object.
  1179. */
  1180. if (INTEL_INFO(dev)->gen >= 4 ||
  1181. obj->tiling_mode == I915_TILING_NONE)
  1182. return 4096;
  1183. /*
  1184. * Previous chips need to be aligned to the size of the smallest
  1185. * fence register that can contain the object.
  1186. */
  1187. return i915_gem_get_gtt_size(obj);
  1188. }
  1189. /**
  1190. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1191. * unfenced object
  1192. * @obj: object to check
  1193. *
  1194. * Return the required GTT alignment for an object, only taking into account
  1195. * unfenced tiled surface requirements.
  1196. */
  1197. static uint32_t
  1198. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1199. {
  1200. struct drm_device *dev = obj->base.dev;
  1201. int tile_height;
  1202. /*
  1203. * Minimum alignment is 4k (GTT page size) for sane hw.
  1204. */
  1205. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1206. obj->tiling_mode == I915_TILING_NONE)
  1207. return 4096;
  1208. /*
  1209. * Older chips need unfenced tiled buffers to be aligned to the left
  1210. * edge of an even tile row (where tile rows are counted as if the bo is
  1211. * placed in a fenced gtt region).
  1212. */
  1213. if (IS_GEN2(dev) ||
  1214. (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
  1215. tile_height = 32;
  1216. else
  1217. tile_height = 8;
  1218. return tile_height * obj->stride * 2;
  1219. }
  1220. /**
  1221. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1222. * @dev: DRM device
  1223. * @data: GTT mapping ioctl data
  1224. * @file: GEM object info
  1225. *
  1226. * Simply returns the fake offset to userspace so it can mmap it.
  1227. * The mmap call will end up in drm_gem_mmap(), which will set things
  1228. * up so we can get faults in the handler above.
  1229. *
  1230. * The fault handler will take care of binding the object into the GTT
  1231. * (since it may have been evicted to make room for something), allocating
  1232. * a fence register, and mapping the appropriate aperture address into
  1233. * userspace.
  1234. */
  1235. int
  1236. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1237. struct drm_file *file)
  1238. {
  1239. struct drm_i915_private *dev_priv = dev->dev_private;
  1240. struct drm_i915_gem_mmap_gtt *args = data;
  1241. struct drm_i915_gem_object *obj;
  1242. int ret;
  1243. if (!(dev->driver->driver_features & DRIVER_GEM))
  1244. return -ENODEV;
  1245. ret = i915_mutex_lock_interruptible(dev);
  1246. if (ret)
  1247. return ret;
  1248. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1249. if (obj == NULL) {
  1250. ret = -ENOENT;
  1251. goto unlock;
  1252. }
  1253. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1254. ret = -E2BIG;
  1255. goto unlock;
  1256. }
  1257. if (obj->madv != I915_MADV_WILLNEED) {
  1258. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1259. ret = -EINVAL;
  1260. goto out;
  1261. }
  1262. if (!obj->base.map_list.map) {
  1263. ret = i915_gem_create_mmap_offset(obj);
  1264. if (ret)
  1265. goto out;
  1266. }
  1267. args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1268. out:
  1269. drm_gem_object_unreference(&obj->base);
  1270. unlock:
  1271. mutex_unlock(&dev->struct_mutex);
  1272. return ret;
  1273. }
  1274. static int
  1275. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1276. gfp_t gfpmask)
  1277. {
  1278. int page_count, i;
  1279. struct address_space *mapping;
  1280. struct inode *inode;
  1281. struct page *page;
  1282. /* Get the list of pages out of our struct file. They'll be pinned
  1283. * at this point until we release them.
  1284. */
  1285. page_count = obj->base.size / PAGE_SIZE;
  1286. BUG_ON(obj->pages != NULL);
  1287. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1288. if (obj->pages == NULL)
  1289. return -ENOMEM;
  1290. inode = obj->base.filp->f_path.dentry->d_inode;
  1291. mapping = inode->i_mapping;
  1292. for (i = 0; i < page_count; i++) {
  1293. page = read_cache_page_gfp(mapping, i,
  1294. GFP_HIGHUSER |
  1295. __GFP_COLD |
  1296. __GFP_RECLAIMABLE |
  1297. gfpmask);
  1298. if (IS_ERR(page))
  1299. goto err_pages;
  1300. obj->pages[i] = page;
  1301. }
  1302. if (obj->tiling_mode != I915_TILING_NONE)
  1303. i915_gem_object_do_bit_17_swizzle(obj);
  1304. return 0;
  1305. err_pages:
  1306. while (i--)
  1307. page_cache_release(obj->pages[i]);
  1308. drm_free_large(obj->pages);
  1309. obj->pages = NULL;
  1310. return PTR_ERR(page);
  1311. }
  1312. static void
  1313. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1314. {
  1315. int page_count = obj->base.size / PAGE_SIZE;
  1316. int i;
  1317. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1318. if (obj->tiling_mode != I915_TILING_NONE)
  1319. i915_gem_object_save_bit_17_swizzle(obj);
  1320. if (obj->madv == I915_MADV_DONTNEED)
  1321. obj->dirty = 0;
  1322. for (i = 0; i < page_count; i++) {
  1323. if (obj->dirty)
  1324. set_page_dirty(obj->pages[i]);
  1325. if (obj->madv == I915_MADV_WILLNEED)
  1326. mark_page_accessed(obj->pages[i]);
  1327. page_cache_release(obj->pages[i]);
  1328. }
  1329. obj->dirty = 0;
  1330. drm_free_large(obj->pages);
  1331. obj->pages = NULL;
  1332. }
  1333. void
  1334. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1335. struct intel_ring_buffer *ring)
  1336. {
  1337. struct drm_device *dev = obj->base.dev;
  1338. struct drm_i915_private *dev_priv = dev->dev_private;
  1339. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1340. BUG_ON(ring == NULL);
  1341. obj->ring = ring;
  1342. /* Add a reference if we're newly entering the active list. */
  1343. if (!obj->active) {
  1344. drm_gem_object_reference(&obj->base);
  1345. obj->active = 1;
  1346. }
  1347. /* Move from whatever list we were on to the tail of execution. */
  1348. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1349. list_move_tail(&obj->ring_list, &ring->active_list);
  1350. obj->last_rendering_seqno = seqno;
  1351. if (obj->fenced_gpu_access) {
  1352. struct drm_i915_fence_reg *reg;
  1353. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1354. obj->last_fenced_seqno = seqno;
  1355. obj->last_fenced_ring = ring;
  1356. reg = &dev_priv->fence_regs[obj->fence_reg];
  1357. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1358. }
  1359. }
  1360. static void
  1361. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1362. {
  1363. list_del_init(&obj->ring_list);
  1364. obj->last_rendering_seqno = 0;
  1365. }
  1366. static void
  1367. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1368. {
  1369. struct drm_device *dev = obj->base.dev;
  1370. drm_i915_private_t *dev_priv = dev->dev_private;
  1371. BUG_ON(!obj->active);
  1372. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1373. i915_gem_object_move_off_active(obj);
  1374. }
  1375. static void
  1376. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1377. {
  1378. struct drm_device *dev = obj->base.dev;
  1379. struct drm_i915_private *dev_priv = dev->dev_private;
  1380. if (obj->pin_count != 0)
  1381. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1382. else
  1383. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1384. BUG_ON(!list_empty(&obj->gpu_write_list));
  1385. BUG_ON(!obj->active);
  1386. obj->ring = NULL;
  1387. i915_gem_object_move_off_active(obj);
  1388. obj->fenced_gpu_access = false;
  1389. obj->active = 0;
  1390. obj->pending_gpu_write = false;
  1391. drm_gem_object_unreference(&obj->base);
  1392. WARN_ON(i915_verify_lists(dev));
  1393. }
  1394. /* Immediately discard the backing storage */
  1395. static void
  1396. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1397. {
  1398. struct inode *inode;
  1399. /* Our goal here is to return as much of the memory as
  1400. * is possible back to the system as we are called from OOM.
  1401. * To do this we must instruct the shmfs to drop all of its
  1402. * backing pages, *now*. Here we mirror the actions taken
  1403. * when by shmem_delete_inode() to release the backing store.
  1404. */
  1405. inode = obj->base.filp->f_path.dentry->d_inode;
  1406. truncate_inode_pages(inode->i_mapping, 0);
  1407. if (inode->i_op->truncate_range)
  1408. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1409. obj->madv = __I915_MADV_PURGED;
  1410. }
  1411. static inline int
  1412. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1413. {
  1414. return obj->madv == I915_MADV_DONTNEED;
  1415. }
  1416. static void
  1417. i915_gem_process_flushing_list(struct drm_device *dev,
  1418. uint32_t flush_domains,
  1419. struct intel_ring_buffer *ring)
  1420. {
  1421. struct drm_i915_gem_object *obj, *next;
  1422. list_for_each_entry_safe(obj, next,
  1423. &ring->gpu_write_list,
  1424. gpu_write_list) {
  1425. if (obj->base.write_domain & flush_domains) {
  1426. uint32_t old_write_domain = obj->base.write_domain;
  1427. obj->base.write_domain = 0;
  1428. list_del_init(&obj->gpu_write_list);
  1429. i915_gem_object_move_to_active(obj, ring);
  1430. trace_i915_gem_object_change_domain(obj,
  1431. obj->base.read_domains,
  1432. old_write_domain);
  1433. }
  1434. }
  1435. }
  1436. int
  1437. i915_add_request(struct drm_device *dev,
  1438. struct drm_file *file,
  1439. struct drm_i915_gem_request *request,
  1440. struct intel_ring_buffer *ring)
  1441. {
  1442. drm_i915_private_t *dev_priv = dev->dev_private;
  1443. struct drm_i915_file_private *file_priv = NULL;
  1444. uint32_t seqno;
  1445. int was_empty;
  1446. int ret;
  1447. BUG_ON(request == NULL);
  1448. if (file != NULL)
  1449. file_priv = file->driver_priv;
  1450. ret = ring->add_request(ring, &seqno);
  1451. if (ret)
  1452. return ret;
  1453. ring->outstanding_lazy_request = false;
  1454. request->seqno = seqno;
  1455. request->ring = ring;
  1456. request->emitted_jiffies = jiffies;
  1457. was_empty = list_empty(&ring->request_list);
  1458. list_add_tail(&request->list, &ring->request_list);
  1459. if (file_priv) {
  1460. spin_lock(&file_priv->mm.lock);
  1461. request->file_priv = file_priv;
  1462. list_add_tail(&request->client_list,
  1463. &file_priv->mm.request_list);
  1464. spin_unlock(&file_priv->mm.lock);
  1465. }
  1466. if (!dev_priv->mm.suspended) {
  1467. mod_timer(&dev_priv->hangcheck_timer,
  1468. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1469. if (was_empty)
  1470. queue_delayed_work(dev_priv->wq,
  1471. &dev_priv->mm.retire_work, HZ);
  1472. }
  1473. return 0;
  1474. }
  1475. static inline void
  1476. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1477. {
  1478. struct drm_i915_file_private *file_priv = request->file_priv;
  1479. if (!file_priv)
  1480. return;
  1481. spin_lock(&file_priv->mm.lock);
  1482. list_del(&request->client_list);
  1483. request->file_priv = NULL;
  1484. spin_unlock(&file_priv->mm.lock);
  1485. }
  1486. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1487. struct intel_ring_buffer *ring)
  1488. {
  1489. while (!list_empty(&ring->request_list)) {
  1490. struct drm_i915_gem_request *request;
  1491. request = list_first_entry(&ring->request_list,
  1492. struct drm_i915_gem_request,
  1493. list);
  1494. list_del(&request->list);
  1495. i915_gem_request_remove_from_client(request);
  1496. kfree(request);
  1497. }
  1498. while (!list_empty(&ring->active_list)) {
  1499. struct drm_i915_gem_object *obj;
  1500. obj = list_first_entry(&ring->active_list,
  1501. struct drm_i915_gem_object,
  1502. ring_list);
  1503. obj->base.write_domain = 0;
  1504. list_del_init(&obj->gpu_write_list);
  1505. i915_gem_object_move_to_inactive(obj);
  1506. }
  1507. }
  1508. static void i915_gem_reset_fences(struct drm_device *dev)
  1509. {
  1510. struct drm_i915_private *dev_priv = dev->dev_private;
  1511. int i;
  1512. for (i = 0; i < 16; i++) {
  1513. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1514. struct drm_i915_gem_object *obj = reg->obj;
  1515. if (!obj)
  1516. continue;
  1517. if (obj->tiling_mode)
  1518. i915_gem_release_mmap(obj);
  1519. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1520. reg->obj->fenced_gpu_access = false;
  1521. reg->obj->last_fenced_seqno = 0;
  1522. reg->obj->last_fenced_ring = NULL;
  1523. i915_gem_clear_fence_reg(dev, reg);
  1524. }
  1525. }
  1526. void i915_gem_reset(struct drm_device *dev)
  1527. {
  1528. struct drm_i915_private *dev_priv = dev->dev_private;
  1529. struct drm_i915_gem_object *obj;
  1530. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1531. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1532. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1533. /* Remove anything from the flushing lists. The GPU cache is likely
  1534. * to be lost on reset along with the data, so simply move the
  1535. * lost bo to the inactive list.
  1536. */
  1537. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1538. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1539. struct drm_i915_gem_object,
  1540. mm_list);
  1541. obj->base.write_domain = 0;
  1542. list_del_init(&obj->gpu_write_list);
  1543. i915_gem_object_move_to_inactive(obj);
  1544. }
  1545. /* Move everything out of the GPU domains to ensure we do any
  1546. * necessary invalidation upon reuse.
  1547. */
  1548. list_for_each_entry(obj,
  1549. &dev_priv->mm.inactive_list,
  1550. mm_list)
  1551. {
  1552. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1553. }
  1554. /* The fence registers are invalidated so clear them out */
  1555. i915_gem_reset_fences(dev);
  1556. }
  1557. /**
  1558. * This function clears the request list as sequence numbers are passed.
  1559. */
  1560. static void
  1561. i915_gem_retire_requests_ring(struct drm_device *dev,
  1562. struct intel_ring_buffer *ring)
  1563. {
  1564. drm_i915_private_t *dev_priv = dev->dev_private;
  1565. uint32_t seqno;
  1566. if (!ring->status_page.page_addr ||
  1567. list_empty(&ring->request_list))
  1568. return;
  1569. WARN_ON(i915_verify_lists(dev));
  1570. seqno = ring->get_seqno(ring);
  1571. while (!list_empty(&ring->request_list)) {
  1572. struct drm_i915_gem_request *request;
  1573. request = list_first_entry(&ring->request_list,
  1574. struct drm_i915_gem_request,
  1575. list);
  1576. if (!i915_seqno_passed(seqno, request->seqno))
  1577. break;
  1578. trace_i915_gem_request_retire(dev, request->seqno);
  1579. list_del(&request->list);
  1580. i915_gem_request_remove_from_client(request);
  1581. kfree(request);
  1582. }
  1583. /* Move any buffers on the active list that are no longer referenced
  1584. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1585. */
  1586. while (!list_empty(&ring->active_list)) {
  1587. struct drm_i915_gem_object *obj;
  1588. obj= list_first_entry(&ring->active_list,
  1589. struct drm_i915_gem_object,
  1590. ring_list);
  1591. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1592. break;
  1593. if (obj->base.write_domain != 0)
  1594. i915_gem_object_move_to_flushing(obj);
  1595. else
  1596. i915_gem_object_move_to_inactive(obj);
  1597. }
  1598. if (unlikely (dev_priv->trace_irq_seqno &&
  1599. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1600. ring->user_irq_put(ring);
  1601. dev_priv->trace_irq_seqno = 0;
  1602. }
  1603. WARN_ON(i915_verify_lists(dev));
  1604. }
  1605. void
  1606. i915_gem_retire_requests(struct drm_device *dev)
  1607. {
  1608. drm_i915_private_t *dev_priv = dev->dev_private;
  1609. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1610. struct drm_i915_gem_object *obj, *next;
  1611. /* We must be careful that during unbind() we do not
  1612. * accidentally infinitely recurse into retire requests.
  1613. * Currently:
  1614. * retire -> free -> unbind -> wait -> retire_ring
  1615. */
  1616. list_for_each_entry_safe(obj, next,
  1617. &dev_priv->mm.deferred_free_list,
  1618. mm_list)
  1619. i915_gem_free_object_tail(obj);
  1620. }
  1621. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1622. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1623. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1624. }
  1625. static void
  1626. i915_gem_retire_work_handler(struct work_struct *work)
  1627. {
  1628. drm_i915_private_t *dev_priv;
  1629. struct drm_device *dev;
  1630. dev_priv = container_of(work, drm_i915_private_t,
  1631. mm.retire_work.work);
  1632. dev = dev_priv->dev;
  1633. /* Come back later if the device is busy... */
  1634. if (!mutex_trylock(&dev->struct_mutex)) {
  1635. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1636. return;
  1637. }
  1638. i915_gem_retire_requests(dev);
  1639. if (!dev_priv->mm.suspended &&
  1640. (!list_empty(&dev_priv->render_ring.request_list) ||
  1641. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1642. !list_empty(&dev_priv->blt_ring.request_list)))
  1643. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1644. mutex_unlock(&dev->struct_mutex);
  1645. }
  1646. int
  1647. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1648. bool interruptible, struct intel_ring_buffer *ring)
  1649. {
  1650. drm_i915_private_t *dev_priv = dev->dev_private;
  1651. u32 ier;
  1652. int ret = 0;
  1653. BUG_ON(seqno == 0);
  1654. if (atomic_read(&dev_priv->mm.wedged))
  1655. return -EAGAIN;
  1656. if (seqno == ring->outstanding_lazy_request) {
  1657. struct drm_i915_gem_request *request;
  1658. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1659. if (request == NULL)
  1660. return -ENOMEM;
  1661. ret = i915_add_request(dev, NULL, request, ring);
  1662. if (ret) {
  1663. kfree(request);
  1664. return ret;
  1665. }
  1666. seqno = request->seqno;
  1667. }
  1668. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1669. if (HAS_PCH_SPLIT(dev))
  1670. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1671. else
  1672. ier = I915_READ(IER);
  1673. if (!ier) {
  1674. DRM_ERROR("something (likely vbetool) disabled "
  1675. "interrupts, re-enabling\n");
  1676. i915_driver_irq_preinstall(dev);
  1677. i915_driver_irq_postinstall(dev);
  1678. }
  1679. trace_i915_gem_request_wait_begin(dev, seqno);
  1680. ring->waiting_seqno = seqno;
  1681. ring->user_irq_get(ring);
  1682. if (interruptible)
  1683. ret = wait_event_interruptible(ring->irq_queue,
  1684. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1685. || atomic_read(&dev_priv->mm.wedged));
  1686. else
  1687. wait_event(ring->irq_queue,
  1688. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1689. || atomic_read(&dev_priv->mm.wedged));
  1690. ring->user_irq_put(ring);
  1691. ring->waiting_seqno = 0;
  1692. trace_i915_gem_request_wait_end(dev, seqno);
  1693. }
  1694. if (atomic_read(&dev_priv->mm.wedged))
  1695. ret = -EAGAIN;
  1696. if (ret && ret != -ERESTARTSYS)
  1697. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1698. __func__, ret, seqno, ring->get_seqno(ring),
  1699. dev_priv->next_seqno);
  1700. /* Directly dispatch request retiring. While we have the work queue
  1701. * to handle this, the waiter on a request often wants an associated
  1702. * buffer to have made it to the inactive list, and we would need
  1703. * a separate wait queue to handle that.
  1704. */
  1705. if (ret == 0)
  1706. i915_gem_retire_requests_ring(dev, ring);
  1707. return ret;
  1708. }
  1709. /**
  1710. * Waits for a sequence number to be signaled, and cleans up the
  1711. * request and object lists appropriately for that event.
  1712. */
  1713. static int
  1714. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1715. struct intel_ring_buffer *ring)
  1716. {
  1717. return i915_do_wait_request(dev, seqno, 1, ring);
  1718. }
  1719. /**
  1720. * Ensures that all rendering to the object has completed and the object is
  1721. * safe to unbind from the GTT or access from the CPU.
  1722. */
  1723. int
  1724. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  1725. bool interruptible)
  1726. {
  1727. struct drm_device *dev = obj->base.dev;
  1728. int ret;
  1729. /* This function only exists to support waiting for existing rendering,
  1730. * not for emitting required flushes.
  1731. */
  1732. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1733. /* If there is rendering queued on the buffer being evicted, wait for
  1734. * it.
  1735. */
  1736. if (obj->active) {
  1737. ret = i915_do_wait_request(dev,
  1738. obj->last_rendering_seqno,
  1739. interruptible,
  1740. obj->ring);
  1741. if (ret)
  1742. return ret;
  1743. }
  1744. return 0;
  1745. }
  1746. /**
  1747. * Unbinds an object from the GTT aperture.
  1748. */
  1749. int
  1750. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1751. {
  1752. int ret = 0;
  1753. if (obj->gtt_space == NULL)
  1754. return 0;
  1755. if (obj->pin_count != 0) {
  1756. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1757. return -EINVAL;
  1758. }
  1759. /* blow away mappings if mapped through GTT */
  1760. i915_gem_release_mmap(obj);
  1761. /* Move the object to the CPU domain to ensure that
  1762. * any possible CPU writes while it's not in the GTT
  1763. * are flushed when we go to remap it. This will
  1764. * also ensure that all pending GPU writes are finished
  1765. * before we unbind.
  1766. */
  1767. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1768. if (ret == -ERESTARTSYS)
  1769. return ret;
  1770. /* Continue on if we fail due to EIO, the GPU is hung so we
  1771. * should be safe and we need to cleanup or else we might
  1772. * cause memory corruption through use-after-free.
  1773. */
  1774. if (ret) {
  1775. i915_gem_clflush_object(obj);
  1776. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1777. }
  1778. /* release the fence reg _after_ flushing */
  1779. ret = i915_gem_object_put_fence(obj);
  1780. if (ret == -ERESTARTSYS)
  1781. return ret;
  1782. i915_gem_gtt_unbind_object(obj);
  1783. i915_gem_object_put_pages_gtt(obj);
  1784. list_del_init(&obj->gtt_list);
  1785. list_del_init(&obj->mm_list);
  1786. /* Avoid an unnecessary call to unbind on rebind. */
  1787. obj->map_and_fenceable = true;
  1788. drm_mm_put_block(obj->gtt_space);
  1789. obj->gtt_space = NULL;
  1790. obj->gtt_offset = 0;
  1791. if (i915_gem_object_is_purgeable(obj))
  1792. i915_gem_object_truncate(obj);
  1793. trace_i915_gem_object_unbind(obj);
  1794. return ret;
  1795. }
  1796. void
  1797. i915_gem_flush_ring(struct drm_device *dev,
  1798. struct intel_ring_buffer *ring,
  1799. uint32_t invalidate_domains,
  1800. uint32_t flush_domains)
  1801. {
  1802. ring->flush(ring, invalidate_domains, flush_domains);
  1803. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1804. }
  1805. static int i915_ring_idle(struct drm_device *dev,
  1806. struct intel_ring_buffer *ring)
  1807. {
  1808. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1809. return 0;
  1810. i915_gem_flush_ring(dev, ring,
  1811. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1812. return i915_wait_request(dev,
  1813. i915_gem_next_request_seqno(dev, ring),
  1814. ring);
  1815. }
  1816. int
  1817. i915_gpu_idle(struct drm_device *dev)
  1818. {
  1819. drm_i915_private_t *dev_priv = dev->dev_private;
  1820. bool lists_empty;
  1821. int ret;
  1822. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1823. list_empty(&dev_priv->mm.active_list));
  1824. if (lists_empty)
  1825. return 0;
  1826. /* Flush everything onto the inactive list. */
  1827. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1828. if (ret)
  1829. return ret;
  1830. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1831. if (ret)
  1832. return ret;
  1833. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1834. if (ret)
  1835. return ret;
  1836. return 0;
  1837. }
  1838. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1839. struct intel_ring_buffer *pipelined)
  1840. {
  1841. struct drm_device *dev = obj->base.dev;
  1842. drm_i915_private_t *dev_priv = dev->dev_private;
  1843. u32 size = obj->gtt_space->size;
  1844. int regnum = obj->fence_reg;
  1845. uint64_t val;
  1846. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1847. 0xfffff000) << 32;
  1848. val |= obj->gtt_offset & 0xfffff000;
  1849. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1850. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1851. if (obj->tiling_mode == I915_TILING_Y)
  1852. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1853. val |= I965_FENCE_REG_VALID;
  1854. if (pipelined) {
  1855. int ret = intel_ring_begin(pipelined, 6);
  1856. if (ret)
  1857. return ret;
  1858. intel_ring_emit(pipelined, MI_NOOP);
  1859. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1860. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1861. intel_ring_emit(pipelined, (u32)val);
  1862. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1863. intel_ring_emit(pipelined, (u32)(val >> 32));
  1864. intel_ring_advance(pipelined);
  1865. } else
  1866. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1867. return 0;
  1868. }
  1869. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1870. struct intel_ring_buffer *pipelined)
  1871. {
  1872. struct drm_device *dev = obj->base.dev;
  1873. drm_i915_private_t *dev_priv = dev->dev_private;
  1874. u32 size = obj->gtt_space->size;
  1875. int regnum = obj->fence_reg;
  1876. uint64_t val;
  1877. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1878. 0xfffff000) << 32;
  1879. val |= obj->gtt_offset & 0xfffff000;
  1880. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1881. if (obj->tiling_mode == I915_TILING_Y)
  1882. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1883. val |= I965_FENCE_REG_VALID;
  1884. if (pipelined) {
  1885. int ret = intel_ring_begin(pipelined, 6);
  1886. if (ret)
  1887. return ret;
  1888. intel_ring_emit(pipelined, MI_NOOP);
  1889. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1890. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1891. intel_ring_emit(pipelined, (u32)val);
  1892. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1893. intel_ring_emit(pipelined, (u32)(val >> 32));
  1894. intel_ring_advance(pipelined);
  1895. } else
  1896. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1897. return 0;
  1898. }
  1899. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1900. struct intel_ring_buffer *pipelined)
  1901. {
  1902. struct drm_device *dev = obj->base.dev;
  1903. drm_i915_private_t *dev_priv = dev->dev_private;
  1904. u32 size = obj->gtt_space->size;
  1905. u32 fence_reg, val, pitch_val;
  1906. int tile_width;
  1907. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1908. (size & -size) != size ||
  1909. (obj->gtt_offset & (size - 1)),
  1910. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1911. obj->gtt_offset, obj->map_and_fenceable, size))
  1912. return -EINVAL;
  1913. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1914. tile_width = 128;
  1915. else
  1916. tile_width = 512;
  1917. /* Note: pitch better be a power of two tile widths */
  1918. pitch_val = obj->stride / tile_width;
  1919. pitch_val = ffs(pitch_val) - 1;
  1920. val = obj->gtt_offset;
  1921. if (obj->tiling_mode == I915_TILING_Y)
  1922. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1923. val |= I915_FENCE_SIZE_BITS(size);
  1924. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1925. val |= I830_FENCE_REG_VALID;
  1926. fence_reg = obj->fence_reg;
  1927. if (fence_reg < 8)
  1928. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1929. else
  1930. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1931. if (pipelined) {
  1932. int ret = intel_ring_begin(pipelined, 4);
  1933. if (ret)
  1934. return ret;
  1935. intel_ring_emit(pipelined, MI_NOOP);
  1936. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1937. intel_ring_emit(pipelined, fence_reg);
  1938. intel_ring_emit(pipelined, val);
  1939. intel_ring_advance(pipelined);
  1940. } else
  1941. I915_WRITE(fence_reg, val);
  1942. return 0;
  1943. }
  1944. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1945. struct intel_ring_buffer *pipelined)
  1946. {
  1947. struct drm_device *dev = obj->base.dev;
  1948. drm_i915_private_t *dev_priv = dev->dev_private;
  1949. u32 size = obj->gtt_space->size;
  1950. int regnum = obj->fence_reg;
  1951. uint32_t val;
  1952. uint32_t pitch_val;
  1953. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1954. (size & -size) != size ||
  1955. (obj->gtt_offset & (size - 1)),
  1956. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1957. obj->gtt_offset, size))
  1958. return -EINVAL;
  1959. pitch_val = obj->stride / 128;
  1960. pitch_val = ffs(pitch_val) - 1;
  1961. val = obj->gtt_offset;
  1962. if (obj->tiling_mode == I915_TILING_Y)
  1963. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1964. val |= I830_FENCE_SIZE_BITS(size);
  1965. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1966. val |= I830_FENCE_REG_VALID;
  1967. if (pipelined) {
  1968. int ret = intel_ring_begin(pipelined, 4);
  1969. if (ret)
  1970. return ret;
  1971. intel_ring_emit(pipelined, MI_NOOP);
  1972. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1973. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1974. intel_ring_emit(pipelined, val);
  1975. intel_ring_advance(pipelined);
  1976. } else
  1977. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1978. return 0;
  1979. }
  1980. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1981. {
  1982. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1983. }
  1984. static int
  1985. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1986. struct intel_ring_buffer *pipelined,
  1987. bool interruptible)
  1988. {
  1989. int ret;
  1990. if (obj->fenced_gpu_access) {
  1991. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
  1992. i915_gem_flush_ring(obj->base.dev,
  1993. obj->last_fenced_ring,
  1994. 0, obj->base.write_domain);
  1995. obj->fenced_gpu_access = false;
  1996. }
  1997. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1998. if (!ring_passed_seqno(obj->last_fenced_ring,
  1999. obj->last_fenced_seqno)) {
  2000. ret = i915_do_wait_request(obj->base.dev,
  2001. obj->last_fenced_seqno,
  2002. interruptible,
  2003. obj->last_fenced_ring);
  2004. if (ret)
  2005. return ret;
  2006. }
  2007. obj->last_fenced_seqno = 0;
  2008. obj->last_fenced_ring = NULL;
  2009. }
  2010. return 0;
  2011. }
  2012. int
  2013. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2014. {
  2015. int ret;
  2016. if (obj->tiling_mode)
  2017. i915_gem_release_mmap(obj);
  2018. ret = i915_gem_object_flush_fence(obj, NULL, true);
  2019. if (ret)
  2020. return ret;
  2021. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2022. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2023. i915_gem_clear_fence_reg(obj->base.dev,
  2024. &dev_priv->fence_regs[obj->fence_reg]);
  2025. obj->fence_reg = I915_FENCE_REG_NONE;
  2026. }
  2027. return 0;
  2028. }
  2029. static struct drm_i915_fence_reg *
  2030. i915_find_fence_reg(struct drm_device *dev,
  2031. struct intel_ring_buffer *pipelined)
  2032. {
  2033. struct drm_i915_private *dev_priv = dev->dev_private;
  2034. struct drm_i915_fence_reg *reg, *first, *avail;
  2035. int i;
  2036. /* First try to find a free reg */
  2037. avail = NULL;
  2038. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2039. reg = &dev_priv->fence_regs[i];
  2040. if (!reg->obj)
  2041. return reg;
  2042. if (!reg->obj->pin_count)
  2043. avail = reg;
  2044. }
  2045. if (avail == NULL)
  2046. return NULL;
  2047. /* None available, try to steal one or wait for a user to finish */
  2048. avail = first = NULL;
  2049. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2050. if (reg->obj->pin_count)
  2051. continue;
  2052. if (first == NULL)
  2053. first = reg;
  2054. if (!pipelined ||
  2055. !reg->obj->last_fenced_ring ||
  2056. reg->obj->last_fenced_ring == pipelined) {
  2057. avail = reg;
  2058. break;
  2059. }
  2060. }
  2061. if (avail == NULL)
  2062. avail = first;
  2063. return avail;
  2064. }
  2065. /**
  2066. * i915_gem_object_get_fence - set up a fence reg for an object
  2067. * @obj: object to map through a fence reg
  2068. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2069. * @interruptible: must we wait uninterruptibly for the register to retire?
  2070. *
  2071. * When mapping objects through the GTT, userspace wants to be able to write
  2072. * to them without having to worry about swizzling if the object is tiled.
  2073. *
  2074. * This function walks the fence regs looking for a free one for @obj,
  2075. * stealing one if it can't find any.
  2076. *
  2077. * It then sets up the reg based on the object's properties: address, pitch
  2078. * and tiling format.
  2079. */
  2080. int
  2081. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2082. struct intel_ring_buffer *pipelined,
  2083. bool interruptible)
  2084. {
  2085. struct drm_device *dev = obj->base.dev;
  2086. struct drm_i915_private *dev_priv = dev->dev_private;
  2087. struct drm_i915_fence_reg *reg;
  2088. int ret;
  2089. /* Just update our place in the LRU if our fence is getting reused. */
  2090. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2091. reg = &dev_priv->fence_regs[obj->fence_reg];
  2092. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2093. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2094. pipelined = NULL;
  2095. if (!pipelined) {
  2096. if (reg->setup_seqno) {
  2097. if (!ring_passed_seqno(obj->last_fenced_ring,
  2098. reg->setup_seqno)) {
  2099. ret = i915_do_wait_request(obj->base.dev,
  2100. reg->setup_seqno,
  2101. interruptible,
  2102. obj->last_fenced_ring);
  2103. if (ret)
  2104. return ret;
  2105. }
  2106. reg->setup_seqno = 0;
  2107. }
  2108. } else if (obj->last_fenced_ring &&
  2109. obj->last_fenced_ring != pipelined) {
  2110. ret = i915_gem_object_flush_fence(obj,
  2111. pipelined,
  2112. interruptible);
  2113. if (ret)
  2114. return ret;
  2115. } else if (obj->tiling_changed) {
  2116. if (obj->fenced_gpu_access) {
  2117. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
  2118. i915_gem_flush_ring(obj->base.dev, obj->ring,
  2119. 0, obj->base.write_domain);
  2120. obj->fenced_gpu_access = false;
  2121. }
  2122. }
  2123. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2124. pipelined = NULL;
  2125. BUG_ON(!pipelined && reg->setup_seqno);
  2126. if (obj->tiling_changed) {
  2127. if (pipelined) {
  2128. reg->setup_seqno =
  2129. i915_gem_next_request_seqno(dev, pipelined);
  2130. obj->last_fenced_seqno = reg->setup_seqno;
  2131. obj->last_fenced_ring = pipelined;
  2132. }
  2133. goto update;
  2134. }
  2135. return 0;
  2136. }
  2137. reg = i915_find_fence_reg(dev, pipelined);
  2138. if (reg == NULL)
  2139. return -ENOSPC;
  2140. ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
  2141. if (ret)
  2142. return ret;
  2143. if (reg->obj) {
  2144. struct drm_i915_gem_object *old = reg->obj;
  2145. drm_gem_object_reference(&old->base);
  2146. if (old->tiling_mode)
  2147. i915_gem_release_mmap(old);
  2148. /* XXX The pipelined change over appears to be incoherent. */
  2149. ret = i915_gem_object_flush_fence(old,
  2150. NULL, //pipelined,
  2151. interruptible);
  2152. if (ret) {
  2153. drm_gem_object_unreference(&old->base);
  2154. return ret;
  2155. }
  2156. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2157. pipelined = NULL;
  2158. old->fence_reg = I915_FENCE_REG_NONE;
  2159. old->last_fenced_ring = pipelined;
  2160. old->last_fenced_seqno =
  2161. pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
  2162. drm_gem_object_unreference(&old->base);
  2163. } else if (obj->last_fenced_seqno == 0)
  2164. pipelined = NULL;
  2165. reg->obj = obj;
  2166. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2167. obj->fence_reg = reg - dev_priv->fence_regs;
  2168. obj->last_fenced_ring = pipelined;
  2169. reg->setup_seqno =
  2170. pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
  2171. obj->last_fenced_seqno = reg->setup_seqno;
  2172. update:
  2173. obj->tiling_changed = false;
  2174. switch (INTEL_INFO(dev)->gen) {
  2175. case 6:
  2176. ret = sandybridge_write_fence_reg(obj, pipelined);
  2177. break;
  2178. case 5:
  2179. case 4:
  2180. ret = i965_write_fence_reg(obj, pipelined);
  2181. break;
  2182. case 3:
  2183. ret = i915_write_fence_reg(obj, pipelined);
  2184. break;
  2185. case 2:
  2186. ret = i830_write_fence_reg(obj, pipelined);
  2187. break;
  2188. }
  2189. trace_i915_gem_object_get_fence(obj,
  2190. obj->fence_reg,
  2191. obj->tiling_mode);
  2192. return ret;
  2193. }
  2194. /**
  2195. * i915_gem_clear_fence_reg - clear out fence register info
  2196. * @obj: object to clear
  2197. *
  2198. * Zeroes out the fence register itself and clears out the associated
  2199. * data structures in dev_priv and obj.
  2200. */
  2201. static void
  2202. i915_gem_clear_fence_reg(struct drm_device *dev,
  2203. struct drm_i915_fence_reg *reg)
  2204. {
  2205. drm_i915_private_t *dev_priv = dev->dev_private;
  2206. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2207. switch (INTEL_INFO(dev)->gen) {
  2208. case 6:
  2209. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2210. break;
  2211. case 5:
  2212. case 4:
  2213. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2214. break;
  2215. case 3:
  2216. if (fence_reg >= 8)
  2217. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2218. else
  2219. case 2:
  2220. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2221. I915_WRITE(fence_reg, 0);
  2222. break;
  2223. }
  2224. list_del_init(&reg->lru_list);
  2225. reg->obj = NULL;
  2226. reg->setup_seqno = 0;
  2227. }
  2228. /**
  2229. * Finds free space in the GTT aperture and binds the object there.
  2230. */
  2231. static int
  2232. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2233. unsigned alignment,
  2234. bool map_and_fenceable)
  2235. {
  2236. struct drm_device *dev = obj->base.dev;
  2237. drm_i915_private_t *dev_priv = dev->dev_private;
  2238. struct drm_mm_node *free_space;
  2239. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2240. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2241. bool mappable, fenceable;
  2242. int ret;
  2243. if (obj->madv != I915_MADV_WILLNEED) {
  2244. DRM_ERROR("Attempting to bind a purgeable object\n");
  2245. return -EINVAL;
  2246. }
  2247. fence_size = i915_gem_get_gtt_size(obj);
  2248. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2249. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2250. if (alignment == 0)
  2251. alignment = map_and_fenceable ? fence_alignment :
  2252. unfenced_alignment;
  2253. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2254. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2255. return -EINVAL;
  2256. }
  2257. size = map_and_fenceable ? fence_size : obj->base.size;
  2258. /* If the object is bigger than the entire aperture, reject it early
  2259. * before evicting everything in a vain attempt to find space.
  2260. */
  2261. if (obj->base.size >
  2262. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2263. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2264. return -E2BIG;
  2265. }
  2266. search_free:
  2267. if (map_and_fenceable)
  2268. free_space =
  2269. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2270. size, alignment, 0,
  2271. dev_priv->mm.gtt_mappable_end,
  2272. 0);
  2273. else
  2274. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2275. size, alignment, 0);
  2276. if (free_space != NULL) {
  2277. if (map_and_fenceable)
  2278. obj->gtt_space =
  2279. drm_mm_get_block_range_generic(free_space,
  2280. size, alignment, 0,
  2281. dev_priv->mm.gtt_mappable_end,
  2282. 0);
  2283. else
  2284. obj->gtt_space =
  2285. drm_mm_get_block(free_space, size, alignment);
  2286. }
  2287. if (obj->gtt_space == NULL) {
  2288. /* If the gtt is empty and we're still having trouble
  2289. * fitting our object in, we're out of memory.
  2290. */
  2291. ret = i915_gem_evict_something(dev, size, alignment,
  2292. map_and_fenceable);
  2293. if (ret)
  2294. return ret;
  2295. goto search_free;
  2296. }
  2297. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2298. if (ret) {
  2299. drm_mm_put_block(obj->gtt_space);
  2300. obj->gtt_space = NULL;
  2301. if (ret == -ENOMEM) {
  2302. /* first try to clear up some space from the GTT */
  2303. ret = i915_gem_evict_something(dev, size,
  2304. alignment,
  2305. map_and_fenceable);
  2306. if (ret) {
  2307. /* now try to shrink everyone else */
  2308. if (gfpmask) {
  2309. gfpmask = 0;
  2310. goto search_free;
  2311. }
  2312. return ret;
  2313. }
  2314. goto search_free;
  2315. }
  2316. return ret;
  2317. }
  2318. ret = i915_gem_gtt_bind_object(obj);
  2319. if (ret) {
  2320. i915_gem_object_put_pages_gtt(obj);
  2321. drm_mm_put_block(obj->gtt_space);
  2322. obj->gtt_space = NULL;
  2323. ret = i915_gem_evict_something(dev, size,
  2324. alignment, map_and_fenceable);
  2325. if (ret)
  2326. return ret;
  2327. goto search_free;
  2328. }
  2329. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2330. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2331. /* Assert that the object is not currently in any GPU domain. As it
  2332. * wasn't in the GTT, there shouldn't be any way it could have been in
  2333. * a GPU cache
  2334. */
  2335. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2336. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2337. obj->gtt_offset = obj->gtt_space->start;
  2338. fenceable =
  2339. obj->gtt_space->size == fence_size &&
  2340. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2341. mappable =
  2342. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2343. obj->map_and_fenceable = mappable && fenceable;
  2344. trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
  2345. return 0;
  2346. }
  2347. void
  2348. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2349. {
  2350. /* If we don't have a page list set up, then we're not pinned
  2351. * to GPU, and we can ignore the cache flush because it'll happen
  2352. * again at bind time.
  2353. */
  2354. if (obj->pages == NULL)
  2355. return;
  2356. trace_i915_gem_object_clflush(obj);
  2357. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2358. }
  2359. /** Flushes any GPU write domain for the object if it's dirty. */
  2360. static void
  2361. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2362. {
  2363. struct drm_device *dev = obj->base.dev;
  2364. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2365. return;
  2366. /* Queue the GPU write cache flushing we need. */
  2367. i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
  2368. BUG_ON(obj->base.write_domain);
  2369. }
  2370. /** Flushes the GTT write domain for the object if it's dirty. */
  2371. static void
  2372. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2373. {
  2374. uint32_t old_write_domain;
  2375. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2376. return;
  2377. /* No actual flushing is required for the GTT write domain. Writes
  2378. * to it immediately go to main memory as far as we know, so there's
  2379. * no chipset flush. It also doesn't land in render cache.
  2380. */
  2381. i915_gem_release_mmap(obj);
  2382. old_write_domain = obj->base.write_domain;
  2383. obj->base.write_domain = 0;
  2384. trace_i915_gem_object_change_domain(obj,
  2385. obj->base.read_domains,
  2386. old_write_domain);
  2387. }
  2388. /** Flushes the CPU write domain for the object if it's dirty. */
  2389. static void
  2390. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2391. {
  2392. uint32_t old_write_domain;
  2393. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2394. return;
  2395. i915_gem_clflush_object(obj);
  2396. intel_gtt_chipset_flush();
  2397. old_write_domain = obj->base.write_domain;
  2398. obj->base.write_domain = 0;
  2399. trace_i915_gem_object_change_domain(obj,
  2400. obj->base.read_domains,
  2401. old_write_domain);
  2402. }
  2403. /**
  2404. * Moves a single object to the GTT read, and possibly write domain.
  2405. *
  2406. * This function returns when the move is complete, including waiting on
  2407. * flushes to occur.
  2408. */
  2409. int
  2410. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2411. {
  2412. uint32_t old_write_domain, old_read_domains;
  2413. int ret;
  2414. /* Not valid to be called on unbound objects. */
  2415. if (obj->gtt_space == NULL)
  2416. return -EINVAL;
  2417. i915_gem_object_flush_gpu_write_domain(obj);
  2418. if (obj->pending_gpu_write || write) {
  2419. ret = i915_gem_object_wait_rendering(obj, true);
  2420. if (ret)
  2421. return ret;
  2422. }
  2423. i915_gem_object_flush_cpu_write_domain(obj);
  2424. old_write_domain = obj->base.write_domain;
  2425. old_read_domains = obj->base.read_domains;
  2426. /* It should now be out of any other write domains, and we can update
  2427. * the domain values for our changes.
  2428. */
  2429. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2430. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2431. if (write) {
  2432. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2433. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2434. obj->dirty = 1;
  2435. }
  2436. trace_i915_gem_object_change_domain(obj,
  2437. old_read_domains,
  2438. old_write_domain);
  2439. return 0;
  2440. }
  2441. /*
  2442. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2443. * wait, as in modesetting process we're not supposed to be interrupted.
  2444. */
  2445. int
  2446. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2447. struct intel_ring_buffer *pipelined)
  2448. {
  2449. uint32_t old_read_domains;
  2450. int ret;
  2451. /* Not valid to be called on unbound objects. */
  2452. if (obj->gtt_space == NULL)
  2453. return -EINVAL;
  2454. i915_gem_object_flush_gpu_write_domain(obj);
  2455. /* Currently, we are always called from an non-interruptible context. */
  2456. if (!pipelined) {
  2457. ret = i915_gem_object_wait_rendering(obj, false);
  2458. if (ret)
  2459. return ret;
  2460. }
  2461. i915_gem_object_flush_cpu_write_domain(obj);
  2462. old_read_domains = obj->base.read_domains;
  2463. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2464. trace_i915_gem_object_change_domain(obj,
  2465. old_read_domains,
  2466. obj->base.write_domain);
  2467. return 0;
  2468. }
  2469. int
  2470. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
  2471. bool interruptible)
  2472. {
  2473. if (!obj->active)
  2474. return 0;
  2475. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
  2476. i915_gem_flush_ring(obj->base.dev, obj->ring,
  2477. 0, obj->base.write_domain);
  2478. return i915_gem_object_wait_rendering(obj, interruptible);
  2479. }
  2480. /**
  2481. * Moves a single object to the CPU read, and possibly write domain.
  2482. *
  2483. * This function returns when the move is complete, including waiting on
  2484. * flushes to occur.
  2485. */
  2486. static int
  2487. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2488. {
  2489. uint32_t old_write_domain, old_read_domains;
  2490. int ret;
  2491. i915_gem_object_flush_gpu_write_domain(obj);
  2492. ret = i915_gem_object_wait_rendering(obj, true);
  2493. if (ret)
  2494. return ret;
  2495. i915_gem_object_flush_gtt_write_domain(obj);
  2496. /* If we have a partially-valid cache of the object in the CPU,
  2497. * finish invalidating it and free the per-page flags.
  2498. */
  2499. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2500. old_write_domain = obj->base.write_domain;
  2501. old_read_domains = obj->base.read_domains;
  2502. /* Flush the CPU cache if it's still invalid. */
  2503. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2504. i915_gem_clflush_object(obj);
  2505. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2506. }
  2507. /* It should now be out of any other write domains, and we can update
  2508. * the domain values for our changes.
  2509. */
  2510. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2511. /* If we're writing through the CPU, then the GPU read domains will
  2512. * need to be invalidated at next use.
  2513. */
  2514. if (write) {
  2515. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2516. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2517. }
  2518. trace_i915_gem_object_change_domain(obj,
  2519. old_read_domains,
  2520. old_write_domain);
  2521. return 0;
  2522. }
  2523. /**
  2524. * Moves the object from a partially CPU read to a full one.
  2525. *
  2526. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2527. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2528. */
  2529. static void
  2530. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2531. {
  2532. if (!obj->page_cpu_valid)
  2533. return;
  2534. /* If we're partially in the CPU read domain, finish moving it in.
  2535. */
  2536. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2537. int i;
  2538. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2539. if (obj->page_cpu_valid[i])
  2540. continue;
  2541. drm_clflush_pages(obj->pages + i, 1);
  2542. }
  2543. }
  2544. /* Free the page_cpu_valid mappings which are now stale, whether
  2545. * or not we've got I915_GEM_DOMAIN_CPU.
  2546. */
  2547. kfree(obj->page_cpu_valid);
  2548. obj->page_cpu_valid = NULL;
  2549. }
  2550. /**
  2551. * Set the CPU read domain on a range of the object.
  2552. *
  2553. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2554. * not entirely valid. The page_cpu_valid member of the object flags which
  2555. * pages have been flushed, and will be respected by
  2556. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2557. * of the whole object.
  2558. *
  2559. * This function returns when the move is complete, including waiting on
  2560. * flushes to occur.
  2561. */
  2562. static int
  2563. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2564. uint64_t offset, uint64_t size)
  2565. {
  2566. uint32_t old_read_domains;
  2567. int i, ret;
  2568. if (offset == 0 && size == obj->base.size)
  2569. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2570. i915_gem_object_flush_gpu_write_domain(obj);
  2571. ret = i915_gem_object_wait_rendering(obj, true);
  2572. if (ret)
  2573. return ret;
  2574. i915_gem_object_flush_gtt_write_domain(obj);
  2575. /* If we're already fully in the CPU read domain, we're done. */
  2576. if (obj->page_cpu_valid == NULL &&
  2577. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2578. return 0;
  2579. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2580. * newly adding I915_GEM_DOMAIN_CPU
  2581. */
  2582. if (obj->page_cpu_valid == NULL) {
  2583. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2584. GFP_KERNEL);
  2585. if (obj->page_cpu_valid == NULL)
  2586. return -ENOMEM;
  2587. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2588. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2589. /* Flush the cache on any pages that are still invalid from the CPU's
  2590. * perspective.
  2591. */
  2592. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2593. i++) {
  2594. if (obj->page_cpu_valid[i])
  2595. continue;
  2596. drm_clflush_pages(obj->pages + i, 1);
  2597. obj->page_cpu_valid[i] = 1;
  2598. }
  2599. /* It should now be out of any other write domains, and we can update
  2600. * the domain values for our changes.
  2601. */
  2602. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2603. old_read_domains = obj->base.read_domains;
  2604. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2605. trace_i915_gem_object_change_domain(obj,
  2606. old_read_domains,
  2607. obj->base.write_domain);
  2608. return 0;
  2609. }
  2610. /* Throttle our rendering by waiting until the ring has completed our requests
  2611. * emitted over 20 msec ago.
  2612. *
  2613. * Note that if we were to use the current jiffies each time around the loop,
  2614. * we wouldn't escape the function with any frames outstanding if the time to
  2615. * render a frame was over 20ms.
  2616. *
  2617. * This should get us reasonable parallelism between CPU and GPU but also
  2618. * relatively low latency when blocking on a particular request to finish.
  2619. */
  2620. static int
  2621. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2622. {
  2623. struct drm_i915_private *dev_priv = dev->dev_private;
  2624. struct drm_i915_file_private *file_priv = file->driver_priv;
  2625. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2626. struct drm_i915_gem_request *request;
  2627. struct intel_ring_buffer *ring = NULL;
  2628. u32 seqno = 0;
  2629. int ret;
  2630. spin_lock(&file_priv->mm.lock);
  2631. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2632. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2633. break;
  2634. ring = request->ring;
  2635. seqno = request->seqno;
  2636. }
  2637. spin_unlock(&file_priv->mm.lock);
  2638. if (seqno == 0)
  2639. return 0;
  2640. ret = 0;
  2641. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2642. /* And wait for the seqno passing without holding any locks and
  2643. * causing extra latency for others. This is safe as the irq
  2644. * generation is designed to be run atomically and so is
  2645. * lockless.
  2646. */
  2647. ring->user_irq_get(ring);
  2648. ret = wait_event_interruptible(ring->irq_queue,
  2649. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2650. || atomic_read(&dev_priv->mm.wedged));
  2651. ring->user_irq_put(ring);
  2652. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2653. ret = -EIO;
  2654. }
  2655. if (ret == 0)
  2656. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2657. return ret;
  2658. }
  2659. int
  2660. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2661. uint32_t alignment,
  2662. bool map_and_fenceable)
  2663. {
  2664. struct drm_device *dev = obj->base.dev;
  2665. struct drm_i915_private *dev_priv = dev->dev_private;
  2666. int ret;
  2667. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2668. WARN_ON(i915_verify_lists(dev));
  2669. if (obj->gtt_space != NULL) {
  2670. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2671. (map_and_fenceable && !obj->map_and_fenceable)) {
  2672. WARN(obj->pin_count,
  2673. "bo is already pinned with incorrect alignment:"
  2674. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2675. " obj->map_and_fenceable=%d\n",
  2676. obj->gtt_offset, alignment,
  2677. map_and_fenceable,
  2678. obj->map_and_fenceable);
  2679. ret = i915_gem_object_unbind(obj);
  2680. if (ret)
  2681. return ret;
  2682. }
  2683. }
  2684. if (obj->gtt_space == NULL) {
  2685. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2686. map_and_fenceable);
  2687. if (ret)
  2688. return ret;
  2689. }
  2690. if (obj->pin_count++ == 0) {
  2691. if (!obj->active)
  2692. list_move_tail(&obj->mm_list,
  2693. &dev_priv->mm.pinned_list);
  2694. }
  2695. obj->pin_mappable |= map_and_fenceable;
  2696. WARN_ON(i915_verify_lists(dev));
  2697. return 0;
  2698. }
  2699. void
  2700. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2701. {
  2702. struct drm_device *dev = obj->base.dev;
  2703. drm_i915_private_t *dev_priv = dev->dev_private;
  2704. WARN_ON(i915_verify_lists(dev));
  2705. BUG_ON(obj->pin_count == 0);
  2706. BUG_ON(obj->gtt_space == NULL);
  2707. if (--obj->pin_count == 0) {
  2708. if (!obj->active)
  2709. list_move_tail(&obj->mm_list,
  2710. &dev_priv->mm.inactive_list);
  2711. obj->pin_mappable = false;
  2712. }
  2713. WARN_ON(i915_verify_lists(dev));
  2714. }
  2715. int
  2716. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2717. struct drm_file *file)
  2718. {
  2719. struct drm_i915_gem_pin *args = data;
  2720. struct drm_i915_gem_object *obj;
  2721. int ret;
  2722. ret = i915_mutex_lock_interruptible(dev);
  2723. if (ret)
  2724. return ret;
  2725. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2726. if (obj == NULL) {
  2727. ret = -ENOENT;
  2728. goto unlock;
  2729. }
  2730. if (obj->madv != I915_MADV_WILLNEED) {
  2731. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2732. ret = -EINVAL;
  2733. goto out;
  2734. }
  2735. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2736. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2737. args->handle);
  2738. ret = -EINVAL;
  2739. goto out;
  2740. }
  2741. obj->user_pin_count++;
  2742. obj->pin_filp = file;
  2743. if (obj->user_pin_count == 1) {
  2744. ret = i915_gem_object_pin(obj, args->alignment, true);
  2745. if (ret)
  2746. goto out;
  2747. }
  2748. /* XXX - flush the CPU caches for pinned objects
  2749. * as the X server doesn't manage domains yet
  2750. */
  2751. i915_gem_object_flush_cpu_write_domain(obj);
  2752. args->offset = obj->gtt_offset;
  2753. out:
  2754. drm_gem_object_unreference(&obj->base);
  2755. unlock:
  2756. mutex_unlock(&dev->struct_mutex);
  2757. return ret;
  2758. }
  2759. int
  2760. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2761. struct drm_file *file)
  2762. {
  2763. struct drm_i915_gem_pin *args = data;
  2764. struct drm_i915_gem_object *obj;
  2765. int ret;
  2766. ret = i915_mutex_lock_interruptible(dev);
  2767. if (ret)
  2768. return ret;
  2769. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2770. if (obj == NULL) {
  2771. ret = -ENOENT;
  2772. goto unlock;
  2773. }
  2774. if (obj->pin_filp != file) {
  2775. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2776. args->handle);
  2777. ret = -EINVAL;
  2778. goto out;
  2779. }
  2780. obj->user_pin_count--;
  2781. if (obj->user_pin_count == 0) {
  2782. obj->pin_filp = NULL;
  2783. i915_gem_object_unpin(obj);
  2784. }
  2785. out:
  2786. drm_gem_object_unreference(&obj->base);
  2787. unlock:
  2788. mutex_unlock(&dev->struct_mutex);
  2789. return ret;
  2790. }
  2791. int
  2792. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2793. struct drm_file *file)
  2794. {
  2795. struct drm_i915_gem_busy *args = data;
  2796. struct drm_i915_gem_object *obj;
  2797. int ret;
  2798. ret = i915_mutex_lock_interruptible(dev);
  2799. if (ret)
  2800. return ret;
  2801. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2802. if (obj == NULL) {
  2803. ret = -ENOENT;
  2804. goto unlock;
  2805. }
  2806. /* Count all active objects as busy, even if they are currently not used
  2807. * by the gpu. Users of this interface expect objects to eventually
  2808. * become non-busy without any further actions, therefore emit any
  2809. * necessary flushes here.
  2810. */
  2811. args->busy = obj->active;
  2812. if (args->busy) {
  2813. /* Unconditionally flush objects, even when the gpu still uses this
  2814. * object. Userspace calling this function indicates that it wants to
  2815. * use this buffer rather sooner than later, so issuing the required
  2816. * flush earlier is beneficial.
  2817. */
  2818. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
  2819. i915_gem_flush_ring(dev, obj->ring,
  2820. 0, obj->base.write_domain);
  2821. /* Update the active list for the hardware's current position.
  2822. * Otherwise this only updates on a delayed timer or when irqs
  2823. * are actually unmasked, and our working set ends up being
  2824. * larger than required.
  2825. */
  2826. i915_gem_retire_requests_ring(dev, obj->ring);
  2827. args->busy = obj->active;
  2828. }
  2829. drm_gem_object_unreference(&obj->base);
  2830. unlock:
  2831. mutex_unlock(&dev->struct_mutex);
  2832. return ret;
  2833. }
  2834. int
  2835. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2836. struct drm_file *file_priv)
  2837. {
  2838. return i915_gem_ring_throttle(dev, file_priv);
  2839. }
  2840. int
  2841. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2842. struct drm_file *file_priv)
  2843. {
  2844. struct drm_i915_gem_madvise *args = data;
  2845. struct drm_i915_gem_object *obj;
  2846. int ret;
  2847. switch (args->madv) {
  2848. case I915_MADV_DONTNEED:
  2849. case I915_MADV_WILLNEED:
  2850. break;
  2851. default:
  2852. return -EINVAL;
  2853. }
  2854. ret = i915_mutex_lock_interruptible(dev);
  2855. if (ret)
  2856. return ret;
  2857. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2858. if (obj == NULL) {
  2859. ret = -ENOENT;
  2860. goto unlock;
  2861. }
  2862. if (obj->pin_count) {
  2863. ret = -EINVAL;
  2864. goto out;
  2865. }
  2866. if (obj->madv != __I915_MADV_PURGED)
  2867. obj->madv = args->madv;
  2868. /* if the object is no longer bound, discard its backing storage */
  2869. if (i915_gem_object_is_purgeable(obj) &&
  2870. obj->gtt_space == NULL)
  2871. i915_gem_object_truncate(obj);
  2872. args->retained = obj->madv != __I915_MADV_PURGED;
  2873. out:
  2874. drm_gem_object_unreference(&obj->base);
  2875. unlock:
  2876. mutex_unlock(&dev->struct_mutex);
  2877. return ret;
  2878. }
  2879. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2880. size_t size)
  2881. {
  2882. struct drm_i915_private *dev_priv = dev->dev_private;
  2883. struct drm_i915_gem_object *obj;
  2884. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2885. if (obj == NULL)
  2886. return NULL;
  2887. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2888. kfree(obj);
  2889. return NULL;
  2890. }
  2891. i915_gem_info_add_obj(dev_priv, size);
  2892. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2893. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2894. obj->agp_type = AGP_USER_MEMORY;
  2895. obj->base.driver_private = NULL;
  2896. obj->fence_reg = I915_FENCE_REG_NONE;
  2897. INIT_LIST_HEAD(&obj->mm_list);
  2898. INIT_LIST_HEAD(&obj->gtt_list);
  2899. INIT_LIST_HEAD(&obj->ring_list);
  2900. INIT_LIST_HEAD(&obj->exec_list);
  2901. INIT_LIST_HEAD(&obj->gpu_write_list);
  2902. obj->madv = I915_MADV_WILLNEED;
  2903. /* Avoid an unnecessary call to unbind on the first bind. */
  2904. obj->map_and_fenceable = true;
  2905. return obj;
  2906. }
  2907. int i915_gem_init_object(struct drm_gem_object *obj)
  2908. {
  2909. BUG();
  2910. return 0;
  2911. }
  2912. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2913. {
  2914. struct drm_device *dev = obj->base.dev;
  2915. drm_i915_private_t *dev_priv = dev->dev_private;
  2916. int ret;
  2917. ret = i915_gem_object_unbind(obj);
  2918. if (ret == -ERESTARTSYS) {
  2919. list_move(&obj->mm_list,
  2920. &dev_priv->mm.deferred_free_list);
  2921. return;
  2922. }
  2923. if (obj->base.map_list.map)
  2924. i915_gem_free_mmap_offset(obj);
  2925. drm_gem_object_release(&obj->base);
  2926. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2927. kfree(obj->page_cpu_valid);
  2928. kfree(obj->bit_17);
  2929. kfree(obj);
  2930. }
  2931. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2932. {
  2933. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2934. struct drm_device *dev = obj->base.dev;
  2935. trace_i915_gem_object_destroy(obj);
  2936. while (obj->pin_count > 0)
  2937. i915_gem_object_unpin(obj);
  2938. if (obj->phys_obj)
  2939. i915_gem_detach_phys_object(dev, obj);
  2940. i915_gem_free_object_tail(obj);
  2941. }
  2942. int
  2943. i915_gem_idle(struct drm_device *dev)
  2944. {
  2945. drm_i915_private_t *dev_priv = dev->dev_private;
  2946. int ret;
  2947. mutex_lock(&dev->struct_mutex);
  2948. if (dev_priv->mm.suspended) {
  2949. mutex_unlock(&dev->struct_mutex);
  2950. return 0;
  2951. }
  2952. ret = i915_gpu_idle(dev);
  2953. if (ret) {
  2954. mutex_unlock(&dev->struct_mutex);
  2955. return ret;
  2956. }
  2957. /* Under UMS, be paranoid and evict. */
  2958. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  2959. ret = i915_gem_evict_inactive(dev, false);
  2960. if (ret) {
  2961. mutex_unlock(&dev->struct_mutex);
  2962. return ret;
  2963. }
  2964. }
  2965. i915_gem_reset_fences(dev);
  2966. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2967. * We need to replace this with a semaphore, or something.
  2968. * And not confound mm.suspended!
  2969. */
  2970. dev_priv->mm.suspended = 1;
  2971. del_timer_sync(&dev_priv->hangcheck_timer);
  2972. i915_kernel_lost_context(dev);
  2973. i915_gem_cleanup_ringbuffer(dev);
  2974. mutex_unlock(&dev->struct_mutex);
  2975. /* Cancel the retire work handler, which should be idle now. */
  2976. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2977. return 0;
  2978. }
  2979. int
  2980. i915_gem_init_ringbuffer(struct drm_device *dev)
  2981. {
  2982. drm_i915_private_t *dev_priv = dev->dev_private;
  2983. int ret;
  2984. ret = intel_init_render_ring_buffer(dev);
  2985. if (ret)
  2986. return ret;
  2987. if (HAS_BSD(dev)) {
  2988. ret = intel_init_bsd_ring_buffer(dev);
  2989. if (ret)
  2990. goto cleanup_render_ring;
  2991. }
  2992. if (HAS_BLT(dev)) {
  2993. ret = intel_init_blt_ring_buffer(dev);
  2994. if (ret)
  2995. goto cleanup_bsd_ring;
  2996. }
  2997. dev_priv->next_seqno = 1;
  2998. return 0;
  2999. cleanup_bsd_ring:
  3000. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3001. cleanup_render_ring:
  3002. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3003. return ret;
  3004. }
  3005. void
  3006. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3007. {
  3008. drm_i915_private_t *dev_priv = dev->dev_private;
  3009. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3010. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3011. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  3012. }
  3013. int
  3014. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3015. struct drm_file *file_priv)
  3016. {
  3017. drm_i915_private_t *dev_priv = dev->dev_private;
  3018. int ret;
  3019. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3020. return 0;
  3021. if (atomic_read(&dev_priv->mm.wedged)) {
  3022. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3023. atomic_set(&dev_priv->mm.wedged, 0);
  3024. }
  3025. mutex_lock(&dev->struct_mutex);
  3026. dev_priv->mm.suspended = 0;
  3027. ret = i915_gem_init_ringbuffer(dev);
  3028. if (ret != 0) {
  3029. mutex_unlock(&dev->struct_mutex);
  3030. return ret;
  3031. }
  3032. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3033. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3034. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  3035. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  3036. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3037. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3038. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3039. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  3040. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  3041. mutex_unlock(&dev->struct_mutex);
  3042. ret = drm_irq_install(dev);
  3043. if (ret)
  3044. goto cleanup_ringbuffer;
  3045. return 0;
  3046. cleanup_ringbuffer:
  3047. mutex_lock(&dev->struct_mutex);
  3048. i915_gem_cleanup_ringbuffer(dev);
  3049. dev_priv->mm.suspended = 1;
  3050. mutex_unlock(&dev->struct_mutex);
  3051. return ret;
  3052. }
  3053. int
  3054. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3055. struct drm_file *file_priv)
  3056. {
  3057. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3058. return 0;
  3059. drm_irq_uninstall(dev);
  3060. return i915_gem_idle(dev);
  3061. }
  3062. void
  3063. i915_gem_lastclose(struct drm_device *dev)
  3064. {
  3065. int ret;
  3066. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3067. return;
  3068. ret = i915_gem_idle(dev);
  3069. if (ret)
  3070. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3071. }
  3072. static void
  3073. init_ring_lists(struct intel_ring_buffer *ring)
  3074. {
  3075. INIT_LIST_HEAD(&ring->active_list);
  3076. INIT_LIST_HEAD(&ring->request_list);
  3077. INIT_LIST_HEAD(&ring->gpu_write_list);
  3078. }
  3079. void
  3080. i915_gem_load(struct drm_device *dev)
  3081. {
  3082. int i;
  3083. drm_i915_private_t *dev_priv = dev->dev_private;
  3084. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3085. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3086. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3087. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3088. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3089. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3090. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3091. init_ring_lists(&dev_priv->render_ring);
  3092. init_ring_lists(&dev_priv->bsd_ring);
  3093. init_ring_lists(&dev_priv->blt_ring);
  3094. for (i = 0; i < 16; i++)
  3095. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3096. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3097. i915_gem_retire_work_handler);
  3098. init_completion(&dev_priv->error_completion);
  3099. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3100. if (IS_GEN3(dev)) {
  3101. u32 tmp = I915_READ(MI_ARB_STATE);
  3102. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3103. /* arb state is a masked write, so set bit + bit in mask */
  3104. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3105. I915_WRITE(MI_ARB_STATE, tmp);
  3106. }
  3107. }
  3108. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3109. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3110. dev_priv->fence_reg_start = 3;
  3111. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3112. dev_priv->num_fence_regs = 16;
  3113. else
  3114. dev_priv->num_fence_regs = 8;
  3115. /* Initialize fence registers to zero */
  3116. switch (INTEL_INFO(dev)->gen) {
  3117. case 6:
  3118. for (i = 0; i < 16; i++)
  3119. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3120. break;
  3121. case 5:
  3122. case 4:
  3123. for (i = 0; i < 16; i++)
  3124. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3125. break;
  3126. case 3:
  3127. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3128. for (i = 0; i < 8; i++)
  3129. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3130. case 2:
  3131. for (i = 0; i < 8; i++)
  3132. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3133. break;
  3134. }
  3135. i915_gem_detect_bit_6_swizzle(dev);
  3136. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3137. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3138. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3139. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3140. }
  3141. /*
  3142. * Create a physically contiguous memory object for this object
  3143. * e.g. for cursor + overlay regs
  3144. */
  3145. static int i915_gem_init_phys_object(struct drm_device *dev,
  3146. int id, int size, int align)
  3147. {
  3148. drm_i915_private_t *dev_priv = dev->dev_private;
  3149. struct drm_i915_gem_phys_object *phys_obj;
  3150. int ret;
  3151. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3152. return 0;
  3153. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3154. if (!phys_obj)
  3155. return -ENOMEM;
  3156. phys_obj->id = id;
  3157. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3158. if (!phys_obj->handle) {
  3159. ret = -ENOMEM;
  3160. goto kfree_obj;
  3161. }
  3162. #ifdef CONFIG_X86
  3163. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3164. #endif
  3165. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3166. return 0;
  3167. kfree_obj:
  3168. kfree(phys_obj);
  3169. return ret;
  3170. }
  3171. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3172. {
  3173. drm_i915_private_t *dev_priv = dev->dev_private;
  3174. struct drm_i915_gem_phys_object *phys_obj;
  3175. if (!dev_priv->mm.phys_objs[id - 1])
  3176. return;
  3177. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3178. if (phys_obj->cur_obj) {
  3179. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3180. }
  3181. #ifdef CONFIG_X86
  3182. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3183. #endif
  3184. drm_pci_free(dev, phys_obj->handle);
  3185. kfree(phys_obj);
  3186. dev_priv->mm.phys_objs[id - 1] = NULL;
  3187. }
  3188. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3189. {
  3190. int i;
  3191. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3192. i915_gem_free_phys_object(dev, i);
  3193. }
  3194. void i915_gem_detach_phys_object(struct drm_device *dev,
  3195. struct drm_i915_gem_object *obj)
  3196. {
  3197. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3198. char *vaddr;
  3199. int i;
  3200. int page_count;
  3201. if (!obj->phys_obj)
  3202. return;
  3203. vaddr = obj->phys_obj->handle->vaddr;
  3204. page_count = obj->base.size / PAGE_SIZE;
  3205. for (i = 0; i < page_count; i++) {
  3206. struct page *page = read_cache_page_gfp(mapping, i,
  3207. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3208. if (!IS_ERR(page)) {
  3209. char *dst = kmap_atomic(page);
  3210. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3211. kunmap_atomic(dst);
  3212. drm_clflush_pages(&page, 1);
  3213. set_page_dirty(page);
  3214. mark_page_accessed(page);
  3215. page_cache_release(page);
  3216. }
  3217. }
  3218. intel_gtt_chipset_flush();
  3219. obj->phys_obj->cur_obj = NULL;
  3220. obj->phys_obj = NULL;
  3221. }
  3222. int
  3223. i915_gem_attach_phys_object(struct drm_device *dev,
  3224. struct drm_i915_gem_object *obj,
  3225. int id,
  3226. int align)
  3227. {
  3228. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3229. drm_i915_private_t *dev_priv = dev->dev_private;
  3230. int ret = 0;
  3231. int page_count;
  3232. int i;
  3233. if (id > I915_MAX_PHYS_OBJECT)
  3234. return -EINVAL;
  3235. if (obj->phys_obj) {
  3236. if (obj->phys_obj->id == id)
  3237. return 0;
  3238. i915_gem_detach_phys_object(dev, obj);
  3239. }
  3240. /* create a new object */
  3241. if (!dev_priv->mm.phys_objs[id - 1]) {
  3242. ret = i915_gem_init_phys_object(dev, id,
  3243. obj->base.size, align);
  3244. if (ret) {
  3245. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3246. id, obj->base.size);
  3247. return ret;
  3248. }
  3249. }
  3250. /* bind to the object */
  3251. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3252. obj->phys_obj->cur_obj = obj;
  3253. page_count = obj->base.size / PAGE_SIZE;
  3254. for (i = 0; i < page_count; i++) {
  3255. struct page *page;
  3256. char *dst, *src;
  3257. page = read_cache_page_gfp(mapping, i,
  3258. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3259. if (IS_ERR(page))
  3260. return PTR_ERR(page);
  3261. src = kmap_atomic(page);
  3262. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3263. memcpy(dst, src, PAGE_SIZE);
  3264. kunmap_atomic(src);
  3265. mark_page_accessed(page);
  3266. page_cache_release(page);
  3267. }
  3268. return 0;
  3269. }
  3270. static int
  3271. i915_gem_phys_pwrite(struct drm_device *dev,
  3272. struct drm_i915_gem_object *obj,
  3273. struct drm_i915_gem_pwrite *args,
  3274. struct drm_file *file_priv)
  3275. {
  3276. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3277. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3278. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3279. unsigned long unwritten;
  3280. /* The physical object once assigned is fixed for the lifetime
  3281. * of the obj, so we can safely drop the lock and continue
  3282. * to access vaddr.
  3283. */
  3284. mutex_unlock(&dev->struct_mutex);
  3285. unwritten = copy_from_user(vaddr, user_data, args->size);
  3286. mutex_lock(&dev->struct_mutex);
  3287. if (unwritten)
  3288. return -EFAULT;
  3289. }
  3290. intel_gtt_chipset_flush();
  3291. return 0;
  3292. }
  3293. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3294. {
  3295. struct drm_i915_file_private *file_priv = file->driver_priv;
  3296. /* Clean up our request list when the client is going away, so that
  3297. * later retire_requests won't dereference our soon-to-be-gone
  3298. * file_priv.
  3299. */
  3300. spin_lock(&file_priv->mm.lock);
  3301. while (!list_empty(&file_priv->mm.request_list)) {
  3302. struct drm_i915_gem_request *request;
  3303. request = list_first_entry(&file_priv->mm.request_list,
  3304. struct drm_i915_gem_request,
  3305. client_list);
  3306. list_del(&request->client_list);
  3307. request->file_priv = NULL;
  3308. }
  3309. spin_unlock(&file_priv->mm.lock);
  3310. }
  3311. static int
  3312. i915_gpu_is_active(struct drm_device *dev)
  3313. {
  3314. drm_i915_private_t *dev_priv = dev->dev_private;
  3315. int lists_empty;
  3316. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3317. list_empty(&dev_priv->mm.active_list);
  3318. return !lists_empty;
  3319. }
  3320. static int
  3321. i915_gem_inactive_shrink(struct shrinker *shrinker,
  3322. int nr_to_scan,
  3323. gfp_t gfp_mask)
  3324. {
  3325. struct drm_i915_private *dev_priv =
  3326. container_of(shrinker,
  3327. struct drm_i915_private,
  3328. mm.inactive_shrinker);
  3329. struct drm_device *dev = dev_priv->dev;
  3330. struct drm_i915_gem_object *obj, *next;
  3331. int cnt;
  3332. if (!mutex_trylock(&dev->struct_mutex))
  3333. return 0;
  3334. /* "fast-path" to count number of available objects */
  3335. if (nr_to_scan == 0) {
  3336. cnt = 0;
  3337. list_for_each_entry(obj,
  3338. &dev_priv->mm.inactive_list,
  3339. mm_list)
  3340. cnt++;
  3341. mutex_unlock(&dev->struct_mutex);
  3342. return cnt / 100 * sysctl_vfs_cache_pressure;
  3343. }
  3344. rescan:
  3345. /* first scan for clean buffers */
  3346. i915_gem_retire_requests(dev);
  3347. list_for_each_entry_safe(obj, next,
  3348. &dev_priv->mm.inactive_list,
  3349. mm_list) {
  3350. if (i915_gem_object_is_purgeable(obj)) {
  3351. if (i915_gem_object_unbind(obj) == 0 &&
  3352. --nr_to_scan == 0)
  3353. break;
  3354. }
  3355. }
  3356. /* second pass, evict/count anything still on the inactive list */
  3357. cnt = 0;
  3358. list_for_each_entry_safe(obj, next,
  3359. &dev_priv->mm.inactive_list,
  3360. mm_list) {
  3361. if (nr_to_scan &&
  3362. i915_gem_object_unbind(obj) == 0)
  3363. nr_to_scan--;
  3364. else
  3365. cnt++;
  3366. }
  3367. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3368. /*
  3369. * We are desperate for pages, so as a last resort, wait
  3370. * for the GPU to finish and discard whatever we can.
  3371. * This has a dramatic impact to reduce the number of
  3372. * OOM-killer events whilst running the GPU aggressively.
  3373. */
  3374. if (i915_gpu_idle(dev) == 0)
  3375. goto rescan;
  3376. }
  3377. mutex_unlock(&dev->struct_mutex);
  3378. return cnt / 100 * sysctl_vfs_cache_pressure;
  3379. }