i915_gem.c 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  40. bool write);
  41. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  45. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  46. unsigned alignment,
  47. bool map_and_fenceable);
  48. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  49. struct drm_i915_fence_reg *reg);
  50. static int i915_gem_phys_pwrite(struct drm_device *dev,
  51. struct drm_i915_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file);
  54. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  55. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  56. int nr_to_scan,
  57. gfp_t gfp_mask);
  58. /* some bookkeeping */
  59. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  60. size_t size)
  61. {
  62. dev_priv->mm.object_count++;
  63. dev_priv->mm.object_memory += size;
  64. }
  65. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count--;
  69. dev_priv->mm.object_memory -= size;
  70. }
  71. static int
  72. i915_gem_wait_for_error(struct drm_device *dev)
  73. {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct completion *x = &dev_priv->error_completion;
  76. unsigned long flags;
  77. int ret;
  78. if (!atomic_read(&dev_priv->mm.wedged))
  79. return 0;
  80. ret = wait_for_completion_interruptible(x);
  81. if (ret)
  82. return ret;
  83. if (atomic_read(&dev_priv->mm.wedged)) {
  84. /* GPU is hung, bump the completion count to account for
  85. * the token we just consumed so that we never hit zero and
  86. * end up waiting upon a subsequent completion event that
  87. * will never happen.
  88. */
  89. spin_lock_irqsave(&x->wait.lock, flags);
  90. x->done++;
  91. spin_unlock_irqrestore(&x->wait.lock, flags);
  92. }
  93. return 0;
  94. }
  95. int i915_mutex_lock_interruptible(struct drm_device *dev)
  96. {
  97. int ret;
  98. ret = i915_gem_wait_for_error(dev);
  99. if (ret)
  100. return ret;
  101. ret = mutex_lock_interruptible(&dev->struct_mutex);
  102. if (ret)
  103. return ret;
  104. WARN_ON(i915_verify_lists(dev));
  105. return 0;
  106. }
  107. static inline bool
  108. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  109. {
  110. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  111. }
  112. void i915_gem_do_init(struct drm_device *dev,
  113. unsigned long start,
  114. unsigned long mappable_end,
  115. unsigned long end)
  116. {
  117. drm_i915_private_t *dev_priv = dev->dev_private;
  118. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  119. dev_priv->mm.gtt_start = start;
  120. dev_priv->mm.gtt_mappable_end = mappable_end;
  121. dev_priv->mm.gtt_end = end;
  122. dev_priv->mm.gtt_total = end - start;
  123. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  124. /* Take over this portion of the GTT */
  125. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  126. }
  127. int
  128. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  129. struct drm_file *file)
  130. {
  131. struct drm_i915_gem_init *args = data;
  132. if (args->gtt_start >= args->gtt_end ||
  133. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  134. return -EINVAL;
  135. mutex_lock(&dev->struct_mutex);
  136. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  137. mutex_unlock(&dev->struct_mutex);
  138. return 0;
  139. }
  140. int
  141. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  142. struct drm_file *file)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. struct drm_i915_gem_get_aperture *args = data;
  146. struct drm_i915_gem_object *obj;
  147. size_t pinned;
  148. if (!(dev->driver->driver_features & DRIVER_GEM))
  149. return -ENODEV;
  150. pinned = 0;
  151. mutex_lock(&dev->struct_mutex);
  152. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  153. pinned += obj->gtt_space->size;
  154. mutex_unlock(&dev->struct_mutex);
  155. args->aper_size = dev_priv->mm.gtt_total;
  156. args->aper_available_size = args->aper_size -pinned;
  157. return 0;
  158. }
  159. /**
  160. * Creates a new mm object and returns a handle to it.
  161. */
  162. int
  163. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  164. struct drm_file *file)
  165. {
  166. struct drm_i915_gem_create *args = data;
  167. struct drm_i915_gem_object *obj;
  168. int ret;
  169. u32 handle;
  170. args->size = roundup(args->size, PAGE_SIZE);
  171. /* Allocate the new object */
  172. obj = i915_gem_alloc_object(dev, args->size);
  173. if (obj == NULL)
  174. return -ENOMEM;
  175. ret = drm_gem_handle_create(file, &obj->base, &handle);
  176. if (ret) {
  177. drm_gem_object_release(&obj->base);
  178. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  179. kfree(obj);
  180. return ret;
  181. }
  182. /* drop reference from allocate - handle holds it now */
  183. drm_gem_object_unreference(&obj->base);
  184. trace_i915_gem_object_create(obj);
  185. args->handle = handle;
  186. return 0;
  187. }
  188. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  189. {
  190. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  191. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  192. obj->tiling_mode != I915_TILING_NONE;
  193. }
  194. static inline void
  195. slow_shmem_copy(struct page *dst_page,
  196. int dst_offset,
  197. struct page *src_page,
  198. int src_offset,
  199. int length)
  200. {
  201. char *dst_vaddr, *src_vaddr;
  202. dst_vaddr = kmap(dst_page);
  203. src_vaddr = kmap(src_page);
  204. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  205. kunmap(src_page);
  206. kunmap(dst_page);
  207. }
  208. static inline void
  209. slow_shmem_bit17_copy(struct page *gpu_page,
  210. int gpu_offset,
  211. struct page *cpu_page,
  212. int cpu_offset,
  213. int length,
  214. int is_read)
  215. {
  216. char *gpu_vaddr, *cpu_vaddr;
  217. /* Use the unswizzled path if this page isn't affected. */
  218. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  219. if (is_read)
  220. return slow_shmem_copy(cpu_page, cpu_offset,
  221. gpu_page, gpu_offset, length);
  222. else
  223. return slow_shmem_copy(gpu_page, gpu_offset,
  224. cpu_page, cpu_offset, length);
  225. }
  226. gpu_vaddr = kmap(gpu_page);
  227. cpu_vaddr = kmap(cpu_page);
  228. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  229. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  230. */
  231. while (length > 0) {
  232. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  233. int this_length = min(cacheline_end - gpu_offset, length);
  234. int swizzled_gpu_offset = gpu_offset ^ 64;
  235. if (is_read) {
  236. memcpy(cpu_vaddr + cpu_offset,
  237. gpu_vaddr + swizzled_gpu_offset,
  238. this_length);
  239. } else {
  240. memcpy(gpu_vaddr + swizzled_gpu_offset,
  241. cpu_vaddr + cpu_offset,
  242. this_length);
  243. }
  244. cpu_offset += this_length;
  245. gpu_offset += this_length;
  246. length -= this_length;
  247. }
  248. kunmap(cpu_page);
  249. kunmap(gpu_page);
  250. }
  251. /**
  252. * This is the fast shmem pread path, which attempts to copy_from_user directly
  253. * from the backing pages of the object to the user's address space. On a
  254. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  255. */
  256. static int
  257. i915_gem_shmem_pread_fast(struct drm_device *dev,
  258. struct drm_i915_gem_object *obj,
  259. struct drm_i915_gem_pread *args,
  260. struct drm_file *file)
  261. {
  262. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  263. ssize_t remain;
  264. loff_t offset;
  265. char __user *user_data;
  266. int page_offset, page_length;
  267. user_data = (char __user *) (uintptr_t) args->data_ptr;
  268. remain = args->size;
  269. offset = args->offset;
  270. while (remain > 0) {
  271. struct page *page;
  272. char *vaddr;
  273. int ret;
  274. /* Operation in this page
  275. *
  276. * page_offset = offset within page
  277. * page_length = bytes to copy for this page
  278. */
  279. page_offset = offset & (PAGE_SIZE-1);
  280. page_length = remain;
  281. if ((page_offset + remain) > PAGE_SIZE)
  282. page_length = PAGE_SIZE - page_offset;
  283. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  284. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  285. if (IS_ERR(page))
  286. return PTR_ERR(page);
  287. vaddr = kmap_atomic(page);
  288. ret = __copy_to_user_inatomic(user_data,
  289. vaddr + page_offset,
  290. page_length);
  291. kunmap_atomic(vaddr);
  292. mark_page_accessed(page);
  293. page_cache_release(page);
  294. if (ret)
  295. return -EFAULT;
  296. remain -= page_length;
  297. user_data += page_length;
  298. offset += page_length;
  299. }
  300. return 0;
  301. }
  302. /**
  303. * This is the fallback shmem pread path, which allocates temporary storage
  304. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  305. * can copy out of the object's backing pages while holding the struct mutex
  306. * and not take page faults.
  307. */
  308. static int
  309. i915_gem_shmem_pread_slow(struct drm_device *dev,
  310. struct drm_i915_gem_object *obj,
  311. struct drm_i915_gem_pread *args,
  312. struct drm_file *file)
  313. {
  314. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  315. struct mm_struct *mm = current->mm;
  316. struct page **user_pages;
  317. ssize_t remain;
  318. loff_t offset, pinned_pages, i;
  319. loff_t first_data_page, last_data_page, num_pages;
  320. int shmem_page_offset;
  321. int data_page_index, data_page_offset;
  322. int page_length;
  323. int ret;
  324. uint64_t data_ptr = args->data_ptr;
  325. int do_bit17_swizzling;
  326. remain = args->size;
  327. /* Pin the user pages containing the data. We can't fault while
  328. * holding the struct mutex, yet we want to hold it while
  329. * dereferencing the user data.
  330. */
  331. first_data_page = data_ptr / PAGE_SIZE;
  332. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  333. num_pages = last_data_page - first_data_page + 1;
  334. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  335. if (user_pages == NULL)
  336. return -ENOMEM;
  337. mutex_unlock(&dev->struct_mutex);
  338. down_read(&mm->mmap_sem);
  339. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  340. num_pages, 1, 0, user_pages, NULL);
  341. up_read(&mm->mmap_sem);
  342. mutex_lock(&dev->struct_mutex);
  343. if (pinned_pages < num_pages) {
  344. ret = -EFAULT;
  345. goto out;
  346. }
  347. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  348. args->offset,
  349. args->size);
  350. if (ret)
  351. goto out;
  352. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  353. offset = args->offset;
  354. while (remain > 0) {
  355. struct page *page;
  356. /* Operation in this page
  357. *
  358. * shmem_page_offset = offset within page in shmem file
  359. * data_page_index = page number in get_user_pages return
  360. * data_page_offset = offset with data_page_index page.
  361. * page_length = bytes to copy for this page
  362. */
  363. shmem_page_offset = offset & ~PAGE_MASK;
  364. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  365. data_page_offset = data_ptr & ~PAGE_MASK;
  366. page_length = remain;
  367. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  368. page_length = PAGE_SIZE - shmem_page_offset;
  369. if ((data_page_offset + page_length) > PAGE_SIZE)
  370. page_length = PAGE_SIZE - data_page_offset;
  371. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  372. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  373. if (IS_ERR(page))
  374. return PTR_ERR(page);
  375. if (do_bit17_swizzling) {
  376. slow_shmem_bit17_copy(page,
  377. shmem_page_offset,
  378. user_pages[data_page_index],
  379. data_page_offset,
  380. page_length,
  381. 1);
  382. } else {
  383. slow_shmem_copy(user_pages[data_page_index],
  384. data_page_offset,
  385. page,
  386. shmem_page_offset,
  387. page_length);
  388. }
  389. mark_page_accessed(page);
  390. page_cache_release(page);
  391. remain -= page_length;
  392. data_ptr += page_length;
  393. offset += page_length;
  394. }
  395. out:
  396. for (i = 0; i < pinned_pages; i++) {
  397. SetPageDirty(user_pages[i]);
  398. mark_page_accessed(user_pages[i]);
  399. page_cache_release(user_pages[i]);
  400. }
  401. drm_free_large(user_pages);
  402. return ret;
  403. }
  404. /**
  405. * Reads data from the object referenced by handle.
  406. *
  407. * On error, the contents of *data are undefined.
  408. */
  409. int
  410. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  411. struct drm_file *file)
  412. {
  413. struct drm_i915_gem_pread *args = data;
  414. struct drm_i915_gem_object *obj;
  415. int ret = 0;
  416. if (args->size == 0)
  417. return 0;
  418. if (!access_ok(VERIFY_WRITE,
  419. (char __user *)(uintptr_t)args->data_ptr,
  420. args->size))
  421. return -EFAULT;
  422. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  423. args->size);
  424. if (ret)
  425. return -EFAULT;
  426. ret = i915_mutex_lock_interruptible(dev);
  427. if (ret)
  428. return ret;
  429. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  430. if (obj == NULL) {
  431. ret = -ENOENT;
  432. goto unlock;
  433. }
  434. /* Bounds check source. */
  435. if (args->offset > obj->base.size ||
  436. args->size > obj->base.size - args->offset) {
  437. ret = -EINVAL;
  438. goto out;
  439. }
  440. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  441. args->offset,
  442. args->size);
  443. if (ret)
  444. goto out;
  445. ret = -EFAULT;
  446. if (!i915_gem_object_needs_bit17_swizzle(obj))
  447. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  448. if (ret == -EFAULT)
  449. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  450. out:
  451. drm_gem_object_unreference(&obj->base);
  452. unlock:
  453. mutex_unlock(&dev->struct_mutex);
  454. return ret;
  455. }
  456. /* This is the fast write path which cannot handle
  457. * page faults in the source data
  458. */
  459. static inline int
  460. fast_user_write(struct io_mapping *mapping,
  461. loff_t page_base, int page_offset,
  462. char __user *user_data,
  463. int length)
  464. {
  465. char *vaddr_atomic;
  466. unsigned long unwritten;
  467. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  468. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  469. user_data, length);
  470. io_mapping_unmap_atomic(vaddr_atomic);
  471. return unwritten;
  472. }
  473. /* Here's the write path which can sleep for
  474. * page faults
  475. */
  476. static inline void
  477. slow_kernel_write(struct io_mapping *mapping,
  478. loff_t gtt_base, int gtt_offset,
  479. struct page *user_page, int user_offset,
  480. int length)
  481. {
  482. char __iomem *dst_vaddr;
  483. char *src_vaddr;
  484. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  485. src_vaddr = kmap(user_page);
  486. memcpy_toio(dst_vaddr + gtt_offset,
  487. src_vaddr + user_offset,
  488. length);
  489. kunmap(user_page);
  490. io_mapping_unmap(dst_vaddr);
  491. }
  492. /**
  493. * This is the fast pwrite path, where we copy the data directly from the
  494. * user into the GTT, uncached.
  495. */
  496. static int
  497. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  498. struct drm_i915_gem_object *obj,
  499. struct drm_i915_gem_pwrite *args,
  500. struct drm_file *file)
  501. {
  502. drm_i915_private_t *dev_priv = dev->dev_private;
  503. ssize_t remain;
  504. loff_t offset, page_base;
  505. char __user *user_data;
  506. int page_offset, page_length;
  507. user_data = (char __user *) (uintptr_t) args->data_ptr;
  508. remain = args->size;
  509. offset = obj->gtt_offset + args->offset;
  510. while (remain > 0) {
  511. /* Operation in this page
  512. *
  513. * page_base = page offset within aperture
  514. * page_offset = offset within page
  515. * page_length = bytes to copy for this page
  516. */
  517. page_base = (offset & ~(PAGE_SIZE-1));
  518. page_offset = offset & (PAGE_SIZE-1);
  519. page_length = remain;
  520. if ((page_offset + remain) > PAGE_SIZE)
  521. page_length = PAGE_SIZE - page_offset;
  522. /* If we get a fault while copying data, then (presumably) our
  523. * source page isn't available. Return the error and we'll
  524. * retry in the slow path.
  525. */
  526. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  527. page_offset, user_data, page_length))
  528. return -EFAULT;
  529. remain -= page_length;
  530. user_data += page_length;
  531. offset += page_length;
  532. }
  533. return 0;
  534. }
  535. /**
  536. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  537. * the memory and maps it using kmap_atomic for copying.
  538. *
  539. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  540. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  541. */
  542. static int
  543. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  544. struct drm_i915_gem_object *obj,
  545. struct drm_i915_gem_pwrite *args,
  546. struct drm_file *file)
  547. {
  548. drm_i915_private_t *dev_priv = dev->dev_private;
  549. ssize_t remain;
  550. loff_t gtt_page_base, offset;
  551. loff_t first_data_page, last_data_page, num_pages;
  552. loff_t pinned_pages, i;
  553. struct page **user_pages;
  554. struct mm_struct *mm = current->mm;
  555. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  556. int ret;
  557. uint64_t data_ptr = args->data_ptr;
  558. remain = args->size;
  559. /* Pin the user pages containing the data. We can't fault while
  560. * holding the struct mutex, and all of the pwrite implementations
  561. * want to hold it while dereferencing the user data.
  562. */
  563. first_data_page = data_ptr / PAGE_SIZE;
  564. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  565. num_pages = last_data_page - first_data_page + 1;
  566. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  567. if (user_pages == NULL)
  568. return -ENOMEM;
  569. mutex_unlock(&dev->struct_mutex);
  570. down_read(&mm->mmap_sem);
  571. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  572. num_pages, 0, 0, user_pages, NULL);
  573. up_read(&mm->mmap_sem);
  574. mutex_lock(&dev->struct_mutex);
  575. if (pinned_pages < num_pages) {
  576. ret = -EFAULT;
  577. goto out_unpin_pages;
  578. }
  579. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  580. if (ret)
  581. goto out_unpin_pages;
  582. ret = i915_gem_object_put_fence(obj);
  583. if (ret)
  584. goto out_unpin_pages;
  585. offset = obj->gtt_offset + args->offset;
  586. while (remain > 0) {
  587. /* Operation in this page
  588. *
  589. * gtt_page_base = page offset within aperture
  590. * gtt_page_offset = offset within page in aperture
  591. * data_page_index = page number in get_user_pages return
  592. * data_page_offset = offset with data_page_index page.
  593. * page_length = bytes to copy for this page
  594. */
  595. gtt_page_base = offset & PAGE_MASK;
  596. gtt_page_offset = offset & ~PAGE_MASK;
  597. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  598. data_page_offset = data_ptr & ~PAGE_MASK;
  599. page_length = remain;
  600. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  601. page_length = PAGE_SIZE - gtt_page_offset;
  602. if ((data_page_offset + page_length) > PAGE_SIZE)
  603. page_length = PAGE_SIZE - data_page_offset;
  604. slow_kernel_write(dev_priv->mm.gtt_mapping,
  605. gtt_page_base, gtt_page_offset,
  606. user_pages[data_page_index],
  607. data_page_offset,
  608. page_length);
  609. remain -= page_length;
  610. offset += page_length;
  611. data_ptr += page_length;
  612. }
  613. out_unpin_pages:
  614. for (i = 0; i < pinned_pages; i++)
  615. page_cache_release(user_pages[i]);
  616. drm_free_large(user_pages);
  617. return ret;
  618. }
  619. /**
  620. * This is the fast shmem pwrite path, which attempts to directly
  621. * copy_from_user into the kmapped pages backing the object.
  622. */
  623. static int
  624. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  625. struct drm_i915_gem_object *obj,
  626. struct drm_i915_gem_pwrite *args,
  627. struct drm_file *file)
  628. {
  629. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  630. ssize_t remain;
  631. loff_t offset;
  632. char __user *user_data;
  633. int page_offset, page_length;
  634. user_data = (char __user *) (uintptr_t) args->data_ptr;
  635. remain = args->size;
  636. offset = args->offset;
  637. obj->dirty = 1;
  638. while (remain > 0) {
  639. struct page *page;
  640. char *vaddr;
  641. int ret;
  642. /* Operation in this page
  643. *
  644. * page_offset = offset within page
  645. * page_length = bytes to copy for this page
  646. */
  647. page_offset = offset & (PAGE_SIZE-1);
  648. page_length = remain;
  649. if ((page_offset + remain) > PAGE_SIZE)
  650. page_length = PAGE_SIZE - page_offset;
  651. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  652. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  653. if (IS_ERR(page))
  654. return PTR_ERR(page);
  655. vaddr = kmap_atomic(page, KM_USER0);
  656. ret = __copy_from_user_inatomic(vaddr + page_offset,
  657. user_data,
  658. page_length);
  659. kunmap_atomic(vaddr, KM_USER0);
  660. set_page_dirty(page);
  661. mark_page_accessed(page);
  662. page_cache_release(page);
  663. /* If we get a fault while copying data, then (presumably) our
  664. * source page isn't available. Return the error and we'll
  665. * retry in the slow path.
  666. */
  667. if (ret)
  668. return -EFAULT;
  669. remain -= page_length;
  670. user_data += page_length;
  671. offset += page_length;
  672. }
  673. return 0;
  674. }
  675. /**
  676. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  677. * the memory and maps it using kmap_atomic for copying.
  678. *
  679. * This avoids taking mmap_sem for faulting on the user's address while the
  680. * struct_mutex is held.
  681. */
  682. static int
  683. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  684. struct drm_i915_gem_object *obj,
  685. struct drm_i915_gem_pwrite *args,
  686. struct drm_file *file)
  687. {
  688. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  689. struct mm_struct *mm = current->mm;
  690. struct page **user_pages;
  691. ssize_t remain;
  692. loff_t offset, pinned_pages, i;
  693. loff_t first_data_page, last_data_page, num_pages;
  694. int shmem_page_offset;
  695. int data_page_index, data_page_offset;
  696. int page_length;
  697. int ret;
  698. uint64_t data_ptr = args->data_ptr;
  699. int do_bit17_swizzling;
  700. remain = args->size;
  701. /* Pin the user pages containing the data. We can't fault while
  702. * holding the struct mutex, and all of the pwrite implementations
  703. * want to hold it while dereferencing the user data.
  704. */
  705. first_data_page = data_ptr / PAGE_SIZE;
  706. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  707. num_pages = last_data_page - first_data_page + 1;
  708. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  709. if (user_pages == NULL)
  710. return -ENOMEM;
  711. mutex_unlock(&dev->struct_mutex);
  712. down_read(&mm->mmap_sem);
  713. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  714. num_pages, 0, 0, user_pages, NULL);
  715. up_read(&mm->mmap_sem);
  716. mutex_lock(&dev->struct_mutex);
  717. if (pinned_pages < num_pages) {
  718. ret = -EFAULT;
  719. goto out;
  720. }
  721. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  722. if (ret)
  723. goto out;
  724. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  725. offset = args->offset;
  726. obj->dirty = 1;
  727. while (remain > 0) {
  728. struct page *page;
  729. /* Operation in this page
  730. *
  731. * shmem_page_offset = offset within page in shmem file
  732. * data_page_index = page number in get_user_pages return
  733. * data_page_offset = offset with data_page_index page.
  734. * page_length = bytes to copy for this page
  735. */
  736. shmem_page_offset = offset & ~PAGE_MASK;
  737. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  738. data_page_offset = data_ptr & ~PAGE_MASK;
  739. page_length = remain;
  740. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  741. page_length = PAGE_SIZE - shmem_page_offset;
  742. if ((data_page_offset + page_length) > PAGE_SIZE)
  743. page_length = PAGE_SIZE - data_page_offset;
  744. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  745. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  746. if (IS_ERR(page)) {
  747. ret = PTR_ERR(page);
  748. goto out;
  749. }
  750. if (do_bit17_swizzling) {
  751. slow_shmem_bit17_copy(page,
  752. shmem_page_offset,
  753. user_pages[data_page_index],
  754. data_page_offset,
  755. page_length,
  756. 0);
  757. } else {
  758. slow_shmem_copy(page,
  759. shmem_page_offset,
  760. user_pages[data_page_index],
  761. data_page_offset,
  762. page_length);
  763. }
  764. set_page_dirty(page);
  765. mark_page_accessed(page);
  766. page_cache_release(page);
  767. remain -= page_length;
  768. data_ptr += page_length;
  769. offset += page_length;
  770. }
  771. out:
  772. for (i = 0; i < pinned_pages; i++)
  773. page_cache_release(user_pages[i]);
  774. drm_free_large(user_pages);
  775. return ret;
  776. }
  777. /**
  778. * Writes data to the object referenced by handle.
  779. *
  780. * On error, the contents of the buffer that were to be modified are undefined.
  781. */
  782. int
  783. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  784. struct drm_file *file)
  785. {
  786. struct drm_i915_gem_pwrite *args = data;
  787. struct drm_i915_gem_object *obj;
  788. int ret;
  789. if (args->size == 0)
  790. return 0;
  791. if (!access_ok(VERIFY_READ,
  792. (char __user *)(uintptr_t)args->data_ptr,
  793. args->size))
  794. return -EFAULT;
  795. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  796. args->size);
  797. if (ret)
  798. return -EFAULT;
  799. ret = i915_mutex_lock_interruptible(dev);
  800. if (ret)
  801. return ret;
  802. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  803. if (obj == NULL) {
  804. ret = -ENOENT;
  805. goto unlock;
  806. }
  807. /* Bounds check destination. */
  808. if (args->offset > obj->base.size ||
  809. args->size > obj->base.size - args->offset) {
  810. ret = -EINVAL;
  811. goto out;
  812. }
  813. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  814. * it would end up going through the fenced access, and we'll get
  815. * different detiling behavior between reading and writing.
  816. * pread/pwrite currently are reading and writing from the CPU
  817. * perspective, requiring manual detiling by the client.
  818. */
  819. if (obj->phys_obj)
  820. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  821. else if (obj->gtt_space &&
  822. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  823. ret = i915_gem_object_pin(obj, 0, true);
  824. if (ret)
  825. goto out;
  826. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  827. if (ret)
  828. goto out_unpin;
  829. ret = i915_gem_object_put_fence(obj);
  830. if (ret)
  831. goto out_unpin;
  832. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  833. if (ret == -EFAULT)
  834. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  835. out_unpin:
  836. i915_gem_object_unpin(obj);
  837. } else {
  838. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  839. if (ret)
  840. goto out;
  841. ret = -EFAULT;
  842. if (!i915_gem_object_needs_bit17_swizzle(obj))
  843. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  844. if (ret == -EFAULT)
  845. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  846. }
  847. out:
  848. drm_gem_object_unreference(&obj->base);
  849. unlock:
  850. mutex_unlock(&dev->struct_mutex);
  851. return ret;
  852. }
  853. /**
  854. * Called when user space prepares to use an object with the CPU, either
  855. * through the mmap ioctl's mapping or a GTT mapping.
  856. */
  857. int
  858. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  859. struct drm_file *file)
  860. {
  861. struct drm_i915_gem_set_domain *args = data;
  862. struct drm_i915_gem_object *obj;
  863. uint32_t read_domains = args->read_domains;
  864. uint32_t write_domain = args->write_domain;
  865. int ret;
  866. if (!(dev->driver->driver_features & DRIVER_GEM))
  867. return -ENODEV;
  868. /* Only handle setting domains to types used by the CPU. */
  869. if (write_domain & I915_GEM_GPU_DOMAINS)
  870. return -EINVAL;
  871. if (read_domains & I915_GEM_GPU_DOMAINS)
  872. return -EINVAL;
  873. /* Having something in the write domain implies it's in the read
  874. * domain, and only that read domain. Enforce that in the request.
  875. */
  876. if (write_domain != 0 && read_domains != write_domain)
  877. return -EINVAL;
  878. ret = i915_mutex_lock_interruptible(dev);
  879. if (ret)
  880. return ret;
  881. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  882. if (obj == NULL) {
  883. ret = -ENOENT;
  884. goto unlock;
  885. }
  886. if (read_domains & I915_GEM_DOMAIN_GTT) {
  887. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  888. /* Silently promote "you're not bound, there was nothing to do"
  889. * to success, since the client was just asking us to
  890. * make sure everything was done.
  891. */
  892. if (ret == -EINVAL)
  893. ret = 0;
  894. } else {
  895. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  896. }
  897. drm_gem_object_unreference(&obj->base);
  898. unlock:
  899. mutex_unlock(&dev->struct_mutex);
  900. return ret;
  901. }
  902. /**
  903. * Called when user space has done writes to this buffer
  904. */
  905. int
  906. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  907. struct drm_file *file)
  908. {
  909. struct drm_i915_gem_sw_finish *args = data;
  910. struct drm_i915_gem_object *obj;
  911. int ret = 0;
  912. if (!(dev->driver->driver_features & DRIVER_GEM))
  913. return -ENODEV;
  914. ret = i915_mutex_lock_interruptible(dev);
  915. if (ret)
  916. return ret;
  917. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  918. if (obj == NULL) {
  919. ret = -ENOENT;
  920. goto unlock;
  921. }
  922. /* Pinned buffers may be scanout, so flush the cache */
  923. if (obj->pin_count)
  924. i915_gem_object_flush_cpu_write_domain(obj);
  925. drm_gem_object_unreference(&obj->base);
  926. unlock:
  927. mutex_unlock(&dev->struct_mutex);
  928. return ret;
  929. }
  930. /**
  931. * Maps the contents of an object, returning the address it is mapped
  932. * into.
  933. *
  934. * While the mapping holds a reference on the contents of the object, it doesn't
  935. * imply a ref on the object itself.
  936. */
  937. int
  938. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  939. struct drm_file *file)
  940. {
  941. struct drm_i915_private *dev_priv = dev->dev_private;
  942. struct drm_i915_gem_mmap *args = data;
  943. struct drm_gem_object *obj;
  944. unsigned long addr;
  945. if (!(dev->driver->driver_features & DRIVER_GEM))
  946. return -ENODEV;
  947. obj = drm_gem_object_lookup(dev, file, args->handle);
  948. if (obj == NULL)
  949. return -ENOENT;
  950. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  951. drm_gem_object_unreference_unlocked(obj);
  952. return -E2BIG;
  953. }
  954. down_write(&current->mm->mmap_sem);
  955. addr = do_mmap(obj->filp, 0, args->size,
  956. PROT_READ | PROT_WRITE, MAP_SHARED,
  957. args->offset);
  958. up_write(&current->mm->mmap_sem);
  959. drm_gem_object_unreference_unlocked(obj);
  960. if (IS_ERR((void *)addr))
  961. return addr;
  962. args->addr_ptr = (uint64_t) addr;
  963. return 0;
  964. }
  965. /**
  966. * i915_gem_fault - fault a page into the GTT
  967. * vma: VMA in question
  968. * vmf: fault info
  969. *
  970. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  971. * from userspace. The fault handler takes care of binding the object to
  972. * the GTT (if needed), allocating and programming a fence register (again,
  973. * only if needed based on whether the old reg is still valid or the object
  974. * is tiled) and inserting a new PTE into the faulting process.
  975. *
  976. * Note that the faulting process may involve evicting existing objects
  977. * from the GTT and/or fence registers to make room. So performance may
  978. * suffer if the GTT working set is large or there are few fence registers
  979. * left.
  980. */
  981. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  982. {
  983. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  984. struct drm_device *dev = obj->base.dev;
  985. drm_i915_private_t *dev_priv = dev->dev_private;
  986. pgoff_t page_offset;
  987. unsigned long pfn;
  988. int ret = 0;
  989. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  990. /* We don't use vmf->pgoff since that has the fake offset */
  991. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  992. PAGE_SHIFT;
  993. ret = i915_mutex_lock_interruptible(dev);
  994. if (ret)
  995. goto out;
  996. /* Now bind it into the GTT if needed */
  997. if (!obj->map_and_fenceable) {
  998. ret = i915_gem_object_unbind(obj);
  999. if (ret)
  1000. goto unlock;
  1001. }
  1002. if (!obj->gtt_space) {
  1003. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1004. if (ret)
  1005. goto unlock;
  1006. }
  1007. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1008. if (ret)
  1009. goto unlock;
  1010. if (obj->tiling_mode == I915_TILING_NONE)
  1011. ret = i915_gem_object_put_fence(obj);
  1012. else
  1013. ret = i915_gem_object_get_fence(obj, NULL, true);
  1014. if (ret)
  1015. goto unlock;
  1016. if (i915_gem_object_is_inactive(obj))
  1017. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1018. obj->fault_mappable = true;
  1019. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1020. page_offset;
  1021. /* Finally, remap it using the new GTT offset */
  1022. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1023. unlock:
  1024. mutex_unlock(&dev->struct_mutex);
  1025. out:
  1026. switch (ret) {
  1027. case -EIO:
  1028. case -EAGAIN:
  1029. /* Give the error handler a chance to run and move the
  1030. * objects off the GPU active list. Next time we service the
  1031. * fault, we should be able to transition the page into the
  1032. * GTT without touching the GPU (and so avoid further
  1033. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1034. * with coherency, just lost writes.
  1035. */
  1036. set_need_resched();
  1037. case 0:
  1038. case -ERESTARTSYS:
  1039. return VM_FAULT_NOPAGE;
  1040. case -ENOMEM:
  1041. return VM_FAULT_OOM;
  1042. default:
  1043. return VM_FAULT_SIGBUS;
  1044. }
  1045. }
  1046. /**
  1047. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1048. * @obj: obj in question
  1049. *
  1050. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1051. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1052. * up the object based on the offset and sets up the various memory mapping
  1053. * structures.
  1054. *
  1055. * This routine allocates and attaches a fake offset for @obj.
  1056. */
  1057. static int
  1058. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1059. {
  1060. struct drm_device *dev = obj->base.dev;
  1061. struct drm_gem_mm *mm = dev->mm_private;
  1062. struct drm_map_list *list;
  1063. struct drm_local_map *map;
  1064. int ret = 0;
  1065. /* Set the object up for mmap'ing */
  1066. list = &obj->base.map_list;
  1067. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1068. if (!list->map)
  1069. return -ENOMEM;
  1070. map = list->map;
  1071. map->type = _DRM_GEM;
  1072. map->size = obj->base.size;
  1073. map->handle = obj;
  1074. /* Get a DRM GEM mmap offset allocated... */
  1075. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1076. obj->base.size / PAGE_SIZE,
  1077. 0, 0);
  1078. if (!list->file_offset_node) {
  1079. DRM_ERROR("failed to allocate offset for bo %d\n",
  1080. obj->base.name);
  1081. ret = -ENOSPC;
  1082. goto out_free_list;
  1083. }
  1084. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1085. obj->base.size / PAGE_SIZE,
  1086. 0);
  1087. if (!list->file_offset_node) {
  1088. ret = -ENOMEM;
  1089. goto out_free_list;
  1090. }
  1091. list->hash.key = list->file_offset_node->start;
  1092. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1093. if (ret) {
  1094. DRM_ERROR("failed to add to map hash\n");
  1095. goto out_free_mm;
  1096. }
  1097. return 0;
  1098. out_free_mm:
  1099. drm_mm_put_block(list->file_offset_node);
  1100. out_free_list:
  1101. kfree(list->map);
  1102. list->map = NULL;
  1103. return ret;
  1104. }
  1105. /**
  1106. * i915_gem_release_mmap - remove physical page mappings
  1107. * @obj: obj in question
  1108. *
  1109. * Preserve the reservation of the mmapping with the DRM core code, but
  1110. * relinquish ownership of the pages back to the system.
  1111. *
  1112. * It is vital that we remove the page mapping if we have mapped a tiled
  1113. * object through the GTT and then lose the fence register due to
  1114. * resource pressure. Similarly if the object has been moved out of the
  1115. * aperture, than pages mapped into userspace must be revoked. Removing the
  1116. * mapping will then trigger a page fault on the next user access, allowing
  1117. * fixup by i915_gem_fault().
  1118. */
  1119. void
  1120. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1121. {
  1122. if (!obj->fault_mappable)
  1123. return;
  1124. unmap_mapping_range(obj->base.dev->dev_mapping,
  1125. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1126. obj->base.size, 1);
  1127. obj->fault_mappable = false;
  1128. }
  1129. static void
  1130. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1131. {
  1132. struct drm_device *dev = obj->base.dev;
  1133. struct drm_gem_mm *mm = dev->mm_private;
  1134. struct drm_map_list *list = &obj->base.map_list;
  1135. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1136. drm_mm_put_block(list->file_offset_node);
  1137. kfree(list->map);
  1138. list->map = NULL;
  1139. }
  1140. static uint32_t
  1141. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1142. {
  1143. struct drm_device *dev = obj->base.dev;
  1144. uint32_t size;
  1145. if (INTEL_INFO(dev)->gen >= 4 ||
  1146. obj->tiling_mode == I915_TILING_NONE)
  1147. return obj->base.size;
  1148. /* Previous chips need a power-of-two fence region when tiling */
  1149. if (INTEL_INFO(dev)->gen == 3)
  1150. size = 1024*1024;
  1151. else
  1152. size = 512*1024;
  1153. while (size < obj->base.size)
  1154. size <<= 1;
  1155. return size;
  1156. }
  1157. /**
  1158. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1159. * @obj: object to check
  1160. *
  1161. * Return the required GTT alignment for an object, taking into account
  1162. * potential fence register mapping.
  1163. */
  1164. static uint32_t
  1165. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1166. {
  1167. struct drm_device *dev = obj->base.dev;
  1168. /*
  1169. * Minimum alignment is 4k (GTT page size), but might be greater
  1170. * if a fence register is needed for the object.
  1171. */
  1172. if (INTEL_INFO(dev)->gen >= 4 ||
  1173. obj->tiling_mode == I915_TILING_NONE)
  1174. return 4096;
  1175. /*
  1176. * Previous chips need to be aligned to the size of the smallest
  1177. * fence register that can contain the object.
  1178. */
  1179. return i915_gem_get_gtt_size(obj);
  1180. }
  1181. /**
  1182. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1183. * unfenced object
  1184. * @obj: object to check
  1185. *
  1186. * Return the required GTT alignment for an object, only taking into account
  1187. * unfenced tiled surface requirements.
  1188. */
  1189. static uint32_t
  1190. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1191. {
  1192. struct drm_device *dev = obj->base.dev;
  1193. int tile_height;
  1194. /*
  1195. * Minimum alignment is 4k (GTT page size) for sane hw.
  1196. */
  1197. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1198. obj->tiling_mode == I915_TILING_NONE)
  1199. return 4096;
  1200. /*
  1201. * Older chips need unfenced tiled buffers to be aligned to the left
  1202. * edge of an even tile row (where tile rows are counted as if the bo is
  1203. * placed in a fenced gtt region).
  1204. */
  1205. if (IS_GEN2(dev) ||
  1206. (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
  1207. tile_height = 32;
  1208. else
  1209. tile_height = 8;
  1210. return tile_height * obj->stride * 2;
  1211. }
  1212. /**
  1213. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1214. * @dev: DRM device
  1215. * @data: GTT mapping ioctl data
  1216. * @file: GEM object info
  1217. *
  1218. * Simply returns the fake offset to userspace so it can mmap it.
  1219. * The mmap call will end up in drm_gem_mmap(), which will set things
  1220. * up so we can get faults in the handler above.
  1221. *
  1222. * The fault handler will take care of binding the object into the GTT
  1223. * (since it may have been evicted to make room for something), allocating
  1224. * a fence register, and mapping the appropriate aperture address into
  1225. * userspace.
  1226. */
  1227. int
  1228. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1229. struct drm_file *file)
  1230. {
  1231. struct drm_i915_private *dev_priv = dev->dev_private;
  1232. struct drm_i915_gem_mmap_gtt *args = data;
  1233. struct drm_i915_gem_object *obj;
  1234. int ret;
  1235. if (!(dev->driver->driver_features & DRIVER_GEM))
  1236. return -ENODEV;
  1237. ret = i915_mutex_lock_interruptible(dev);
  1238. if (ret)
  1239. return ret;
  1240. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1241. if (obj == NULL) {
  1242. ret = -ENOENT;
  1243. goto unlock;
  1244. }
  1245. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1246. ret = -E2BIG;
  1247. goto unlock;
  1248. }
  1249. if (obj->madv != I915_MADV_WILLNEED) {
  1250. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1251. ret = -EINVAL;
  1252. goto out;
  1253. }
  1254. if (!obj->base.map_list.map) {
  1255. ret = i915_gem_create_mmap_offset(obj);
  1256. if (ret)
  1257. goto out;
  1258. }
  1259. args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1260. out:
  1261. drm_gem_object_unreference(&obj->base);
  1262. unlock:
  1263. mutex_unlock(&dev->struct_mutex);
  1264. return ret;
  1265. }
  1266. static int
  1267. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1268. gfp_t gfpmask)
  1269. {
  1270. int page_count, i;
  1271. struct address_space *mapping;
  1272. struct inode *inode;
  1273. struct page *page;
  1274. /* Get the list of pages out of our struct file. They'll be pinned
  1275. * at this point until we release them.
  1276. */
  1277. page_count = obj->base.size / PAGE_SIZE;
  1278. BUG_ON(obj->pages != NULL);
  1279. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1280. if (obj->pages == NULL)
  1281. return -ENOMEM;
  1282. inode = obj->base.filp->f_path.dentry->d_inode;
  1283. mapping = inode->i_mapping;
  1284. for (i = 0; i < page_count; i++) {
  1285. page = read_cache_page_gfp(mapping, i,
  1286. GFP_HIGHUSER |
  1287. __GFP_COLD |
  1288. __GFP_RECLAIMABLE |
  1289. gfpmask);
  1290. if (IS_ERR(page))
  1291. goto err_pages;
  1292. obj->pages[i] = page;
  1293. }
  1294. if (obj->tiling_mode != I915_TILING_NONE)
  1295. i915_gem_object_do_bit_17_swizzle(obj);
  1296. return 0;
  1297. err_pages:
  1298. while (i--)
  1299. page_cache_release(obj->pages[i]);
  1300. drm_free_large(obj->pages);
  1301. obj->pages = NULL;
  1302. return PTR_ERR(page);
  1303. }
  1304. static void
  1305. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1306. {
  1307. int page_count = obj->base.size / PAGE_SIZE;
  1308. int i;
  1309. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1310. if (obj->tiling_mode != I915_TILING_NONE)
  1311. i915_gem_object_save_bit_17_swizzle(obj);
  1312. if (obj->madv == I915_MADV_DONTNEED)
  1313. obj->dirty = 0;
  1314. for (i = 0; i < page_count; i++) {
  1315. if (obj->dirty)
  1316. set_page_dirty(obj->pages[i]);
  1317. if (obj->madv == I915_MADV_WILLNEED)
  1318. mark_page_accessed(obj->pages[i]);
  1319. page_cache_release(obj->pages[i]);
  1320. }
  1321. obj->dirty = 0;
  1322. drm_free_large(obj->pages);
  1323. obj->pages = NULL;
  1324. }
  1325. void
  1326. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1327. struct intel_ring_buffer *ring,
  1328. u32 seqno)
  1329. {
  1330. struct drm_device *dev = obj->base.dev;
  1331. struct drm_i915_private *dev_priv = dev->dev_private;
  1332. BUG_ON(ring == NULL);
  1333. obj->ring = ring;
  1334. /* Add a reference if we're newly entering the active list. */
  1335. if (!obj->active) {
  1336. drm_gem_object_reference(&obj->base);
  1337. obj->active = 1;
  1338. }
  1339. /* Move from whatever list we were on to the tail of execution. */
  1340. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1341. list_move_tail(&obj->ring_list, &ring->active_list);
  1342. obj->last_rendering_seqno = seqno;
  1343. if (obj->fenced_gpu_access) {
  1344. struct drm_i915_fence_reg *reg;
  1345. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1346. obj->last_fenced_seqno = seqno;
  1347. obj->last_fenced_ring = ring;
  1348. reg = &dev_priv->fence_regs[obj->fence_reg];
  1349. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1350. }
  1351. }
  1352. static void
  1353. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1354. {
  1355. list_del_init(&obj->ring_list);
  1356. obj->last_rendering_seqno = 0;
  1357. }
  1358. static void
  1359. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1360. {
  1361. struct drm_device *dev = obj->base.dev;
  1362. drm_i915_private_t *dev_priv = dev->dev_private;
  1363. BUG_ON(!obj->active);
  1364. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1365. i915_gem_object_move_off_active(obj);
  1366. }
  1367. static void
  1368. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1369. {
  1370. struct drm_device *dev = obj->base.dev;
  1371. struct drm_i915_private *dev_priv = dev->dev_private;
  1372. if (obj->pin_count != 0)
  1373. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1374. else
  1375. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1376. BUG_ON(!list_empty(&obj->gpu_write_list));
  1377. BUG_ON(!obj->active);
  1378. obj->ring = NULL;
  1379. i915_gem_object_move_off_active(obj);
  1380. obj->fenced_gpu_access = false;
  1381. obj->active = 0;
  1382. obj->pending_gpu_write = false;
  1383. drm_gem_object_unreference(&obj->base);
  1384. WARN_ON(i915_verify_lists(dev));
  1385. }
  1386. /* Immediately discard the backing storage */
  1387. static void
  1388. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1389. {
  1390. struct inode *inode;
  1391. /* Our goal here is to return as much of the memory as
  1392. * is possible back to the system as we are called from OOM.
  1393. * To do this we must instruct the shmfs to drop all of its
  1394. * backing pages, *now*. Here we mirror the actions taken
  1395. * when by shmem_delete_inode() to release the backing store.
  1396. */
  1397. inode = obj->base.filp->f_path.dentry->d_inode;
  1398. truncate_inode_pages(inode->i_mapping, 0);
  1399. if (inode->i_op->truncate_range)
  1400. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1401. obj->madv = __I915_MADV_PURGED;
  1402. }
  1403. static inline int
  1404. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1405. {
  1406. return obj->madv == I915_MADV_DONTNEED;
  1407. }
  1408. static void
  1409. i915_gem_process_flushing_list(struct drm_device *dev,
  1410. uint32_t flush_domains,
  1411. struct intel_ring_buffer *ring)
  1412. {
  1413. struct drm_i915_gem_object *obj, *next;
  1414. list_for_each_entry_safe(obj, next,
  1415. &ring->gpu_write_list,
  1416. gpu_write_list) {
  1417. if (obj->base.write_domain & flush_domains) {
  1418. uint32_t old_write_domain = obj->base.write_domain;
  1419. obj->base.write_domain = 0;
  1420. list_del_init(&obj->gpu_write_list);
  1421. i915_gem_object_move_to_active(obj, ring,
  1422. i915_gem_next_request_seqno(dev, ring));
  1423. trace_i915_gem_object_change_domain(obj,
  1424. obj->base.read_domains,
  1425. old_write_domain);
  1426. }
  1427. }
  1428. }
  1429. int
  1430. i915_add_request(struct drm_device *dev,
  1431. struct drm_file *file,
  1432. struct drm_i915_gem_request *request,
  1433. struct intel_ring_buffer *ring)
  1434. {
  1435. drm_i915_private_t *dev_priv = dev->dev_private;
  1436. struct drm_i915_file_private *file_priv = NULL;
  1437. uint32_t seqno;
  1438. int was_empty;
  1439. int ret;
  1440. BUG_ON(request == NULL);
  1441. if (file != NULL)
  1442. file_priv = file->driver_priv;
  1443. ret = ring->add_request(ring, &seqno);
  1444. if (ret)
  1445. return ret;
  1446. ring->outstanding_lazy_request = false;
  1447. request->seqno = seqno;
  1448. request->ring = ring;
  1449. request->emitted_jiffies = jiffies;
  1450. was_empty = list_empty(&ring->request_list);
  1451. list_add_tail(&request->list, &ring->request_list);
  1452. if (file_priv) {
  1453. spin_lock(&file_priv->mm.lock);
  1454. request->file_priv = file_priv;
  1455. list_add_tail(&request->client_list,
  1456. &file_priv->mm.request_list);
  1457. spin_unlock(&file_priv->mm.lock);
  1458. }
  1459. if (!dev_priv->mm.suspended) {
  1460. mod_timer(&dev_priv->hangcheck_timer,
  1461. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1462. if (was_empty)
  1463. queue_delayed_work(dev_priv->wq,
  1464. &dev_priv->mm.retire_work, HZ);
  1465. }
  1466. return 0;
  1467. }
  1468. static inline void
  1469. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1470. {
  1471. struct drm_i915_file_private *file_priv = request->file_priv;
  1472. if (!file_priv)
  1473. return;
  1474. spin_lock(&file_priv->mm.lock);
  1475. list_del(&request->client_list);
  1476. request->file_priv = NULL;
  1477. spin_unlock(&file_priv->mm.lock);
  1478. }
  1479. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1480. struct intel_ring_buffer *ring)
  1481. {
  1482. while (!list_empty(&ring->request_list)) {
  1483. struct drm_i915_gem_request *request;
  1484. request = list_first_entry(&ring->request_list,
  1485. struct drm_i915_gem_request,
  1486. list);
  1487. list_del(&request->list);
  1488. i915_gem_request_remove_from_client(request);
  1489. kfree(request);
  1490. }
  1491. while (!list_empty(&ring->active_list)) {
  1492. struct drm_i915_gem_object *obj;
  1493. obj = list_first_entry(&ring->active_list,
  1494. struct drm_i915_gem_object,
  1495. ring_list);
  1496. obj->base.write_domain = 0;
  1497. list_del_init(&obj->gpu_write_list);
  1498. i915_gem_object_move_to_inactive(obj);
  1499. }
  1500. }
  1501. static void i915_gem_reset_fences(struct drm_device *dev)
  1502. {
  1503. struct drm_i915_private *dev_priv = dev->dev_private;
  1504. int i;
  1505. for (i = 0; i < 16; i++) {
  1506. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1507. struct drm_i915_gem_object *obj = reg->obj;
  1508. if (!obj)
  1509. continue;
  1510. if (obj->tiling_mode)
  1511. i915_gem_release_mmap(obj);
  1512. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1513. reg->obj->fenced_gpu_access = false;
  1514. reg->obj->last_fenced_seqno = 0;
  1515. reg->obj->last_fenced_ring = NULL;
  1516. i915_gem_clear_fence_reg(dev, reg);
  1517. }
  1518. }
  1519. void i915_gem_reset(struct drm_device *dev)
  1520. {
  1521. struct drm_i915_private *dev_priv = dev->dev_private;
  1522. struct drm_i915_gem_object *obj;
  1523. int i;
  1524. for (i = 0; i < I915_NUM_RINGS; i++)
  1525. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1526. /* Remove anything from the flushing lists. The GPU cache is likely
  1527. * to be lost on reset along with the data, so simply move the
  1528. * lost bo to the inactive list.
  1529. */
  1530. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1531. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1532. struct drm_i915_gem_object,
  1533. mm_list);
  1534. obj->base.write_domain = 0;
  1535. list_del_init(&obj->gpu_write_list);
  1536. i915_gem_object_move_to_inactive(obj);
  1537. }
  1538. /* Move everything out of the GPU domains to ensure we do any
  1539. * necessary invalidation upon reuse.
  1540. */
  1541. list_for_each_entry(obj,
  1542. &dev_priv->mm.inactive_list,
  1543. mm_list)
  1544. {
  1545. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1546. }
  1547. /* The fence registers are invalidated so clear them out */
  1548. i915_gem_reset_fences(dev);
  1549. }
  1550. /**
  1551. * This function clears the request list as sequence numbers are passed.
  1552. */
  1553. static void
  1554. i915_gem_retire_requests_ring(struct drm_device *dev,
  1555. struct intel_ring_buffer *ring)
  1556. {
  1557. drm_i915_private_t *dev_priv = dev->dev_private;
  1558. uint32_t seqno;
  1559. int i;
  1560. if (!ring->status_page.page_addr ||
  1561. list_empty(&ring->request_list))
  1562. return;
  1563. WARN_ON(i915_verify_lists(dev));
  1564. seqno = ring->get_seqno(ring);
  1565. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1566. if (seqno >= ring->sync_seqno[i])
  1567. ring->sync_seqno[i] = 0;
  1568. while (!list_empty(&ring->request_list)) {
  1569. struct drm_i915_gem_request *request;
  1570. request = list_first_entry(&ring->request_list,
  1571. struct drm_i915_gem_request,
  1572. list);
  1573. if (!i915_seqno_passed(seqno, request->seqno))
  1574. break;
  1575. trace_i915_gem_request_retire(dev, request->seqno);
  1576. list_del(&request->list);
  1577. i915_gem_request_remove_from_client(request);
  1578. kfree(request);
  1579. }
  1580. /* Move any buffers on the active list that are no longer referenced
  1581. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1582. */
  1583. while (!list_empty(&ring->active_list)) {
  1584. struct drm_i915_gem_object *obj;
  1585. obj= list_first_entry(&ring->active_list,
  1586. struct drm_i915_gem_object,
  1587. ring_list);
  1588. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1589. break;
  1590. if (obj->base.write_domain != 0)
  1591. i915_gem_object_move_to_flushing(obj);
  1592. else
  1593. i915_gem_object_move_to_inactive(obj);
  1594. }
  1595. if (unlikely (dev_priv->trace_irq_seqno &&
  1596. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1597. ring->irq_put(ring);
  1598. dev_priv->trace_irq_seqno = 0;
  1599. }
  1600. WARN_ON(i915_verify_lists(dev));
  1601. }
  1602. void
  1603. i915_gem_retire_requests(struct drm_device *dev)
  1604. {
  1605. drm_i915_private_t *dev_priv = dev->dev_private;
  1606. int i;
  1607. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1608. struct drm_i915_gem_object *obj, *next;
  1609. /* We must be careful that during unbind() we do not
  1610. * accidentally infinitely recurse into retire requests.
  1611. * Currently:
  1612. * retire -> free -> unbind -> wait -> retire_ring
  1613. */
  1614. list_for_each_entry_safe(obj, next,
  1615. &dev_priv->mm.deferred_free_list,
  1616. mm_list)
  1617. i915_gem_free_object_tail(obj);
  1618. }
  1619. for (i = 0; i < I915_NUM_RINGS; i++)
  1620. i915_gem_retire_requests_ring(dev, &dev_priv->ring[i]);
  1621. }
  1622. static void
  1623. i915_gem_retire_work_handler(struct work_struct *work)
  1624. {
  1625. drm_i915_private_t *dev_priv;
  1626. struct drm_device *dev;
  1627. bool idle;
  1628. int i;
  1629. dev_priv = container_of(work, drm_i915_private_t,
  1630. mm.retire_work.work);
  1631. dev = dev_priv->dev;
  1632. /* Come back later if the device is busy... */
  1633. if (!mutex_trylock(&dev->struct_mutex)) {
  1634. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1635. return;
  1636. }
  1637. i915_gem_retire_requests(dev);
  1638. /* Send a periodic flush down the ring so we don't hold onto GEM
  1639. * objects indefinitely.
  1640. */
  1641. idle = true;
  1642. for (i = 0; i < I915_NUM_RINGS; i++) {
  1643. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1644. if (!list_empty(&ring->gpu_write_list)) {
  1645. struct drm_i915_gem_request *request;
  1646. int ret;
  1647. ret = i915_gem_flush_ring(dev, ring, 0,
  1648. I915_GEM_GPU_DOMAINS);
  1649. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1650. if (ret || request == NULL ||
  1651. i915_add_request(dev, NULL, request, ring))
  1652. kfree(request);
  1653. }
  1654. idle &= list_empty(&ring->request_list);
  1655. }
  1656. if (!dev_priv->mm.suspended && !idle)
  1657. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1658. mutex_unlock(&dev->struct_mutex);
  1659. }
  1660. int
  1661. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1662. bool interruptible, struct intel_ring_buffer *ring)
  1663. {
  1664. drm_i915_private_t *dev_priv = dev->dev_private;
  1665. u32 ier;
  1666. int ret = 0;
  1667. BUG_ON(seqno == 0);
  1668. if (atomic_read(&dev_priv->mm.wedged)) {
  1669. struct completion *x = &dev_priv->error_completion;
  1670. bool recovery_complete;
  1671. unsigned long flags;
  1672. /* Give the error handler a chance to run. */
  1673. spin_lock_irqsave(&x->wait.lock, flags);
  1674. recovery_complete = x->done > 0;
  1675. spin_unlock_irqrestore(&x->wait.lock, flags);
  1676. return recovery_complete ? -EIO : -EAGAIN;
  1677. }
  1678. if (seqno == ring->outstanding_lazy_request) {
  1679. struct drm_i915_gem_request *request;
  1680. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1681. if (request == NULL)
  1682. return -ENOMEM;
  1683. ret = i915_add_request(dev, NULL, request, ring);
  1684. if (ret) {
  1685. kfree(request);
  1686. return ret;
  1687. }
  1688. seqno = request->seqno;
  1689. }
  1690. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1691. if (HAS_PCH_SPLIT(dev))
  1692. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1693. else
  1694. ier = I915_READ(IER);
  1695. if (!ier) {
  1696. DRM_ERROR("something (likely vbetool) disabled "
  1697. "interrupts, re-enabling\n");
  1698. i915_driver_irq_preinstall(dev);
  1699. i915_driver_irq_postinstall(dev);
  1700. }
  1701. trace_i915_gem_request_wait_begin(dev, seqno);
  1702. ring->waiting_seqno = seqno;
  1703. if (ring->irq_get(ring)) {
  1704. if (interruptible)
  1705. ret = wait_event_interruptible(ring->irq_queue,
  1706. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1707. || atomic_read(&dev_priv->mm.wedged));
  1708. else
  1709. wait_event(ring->irq_queue,
  1710. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1711. || atomic_read(&dev_priv->mm.wedged));
  1712. ring->irq_put(ring);
  1713. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1714. seqno) ||
  1715. atomic_read(&dev_priv->mm.wedged), 3000))
  1716. ret = -EBUSY;
  1717. ring->waiting_seqno = 0;
  1718. trace_i915_gem_request_wait_end(dev, seqno);
  1719. }
  1720. if (atomic_read(&dev_priv->mm.wedged))
  1721. ret = -EAGAIN;
  1722. if (ret && ret != -ERESTARTSYS)
  1723. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1724. __func__, ret, seqno, ring->get_seqno(ring),
  1725. dev_priv->next_seqno);
  1726. /* Directly dispatch request retiring. While we have the work queue
  1727. * to handle this, the waiter on a request often wants an associated
  1728. * buffer to have made it to the inactive list, and we would need
  1729. * a separate wait queue to handle that.
  1730. */
  1731. if (ret == 0)
  1732. i915_gem_retire_requests_ring(dev, ring);
  1733. return ret;
  1734. }
  1735. /**
  1736. * Waits for a sequence number to be signaled, and cleans up the
  1737. * request and object lists appropriately for that event.
  1738. */
  1739. static int
  1740. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1741. struct intel_ring_buffer *ring)
  1742. {
  1743. return i915_do_wait_request(dev, seqno, 1, ring);
  1744. }
  1745. /**
  1746. * Ensures that all rendering to the object has completed and the object is
  1747. * safe to unbind from the GTT or access from the CPU.
  1748. */
  1749. int
  1750. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  1751. bool interruptible)
  1752. {
  1753. struct drm_device *dev = obj->base.dev;
  1754. int ret;
  1755. /* This function only exists to support waiting for existing rendering,
  1756. * not for emitting required flushes.
  1757. */
  1758. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1759. /* If there is rendering queued on the buffer being evicted, wait for
  1760. * it.
  1761. */
  1762. if (obj->active) {
  1763. ret = i915_do_wait_request(dev,
  1764. obj->last_rendering_seqno,
  1765. interruptible,
  1766. obj->ring);
  1767. if (ret)
  1768. return ret;
  1769. }
  1770. return 0;
  1771. }
  1772. /**
  1773. * Unbinds an object from the GTT aperture.
  1774. */
  1775. int
  1776. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1777. {
  1778. int ret = 0;
  1779. if (obj->gtt_space == NULL)
  1780. return 0;
  1781. if (obj->pin_count != 0) {
  1782. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1783. return -EINVAL;
  1784. }
  1785. /* blow away mappings if mapped through GTT */
  1786. i915_gem_release_mmap(obj);
  1787. /* Move the object to the CPU domain to ensure that
  1788. * any possible CPU writes while it's not in the GTT
  1789. * are flushed when we go to remap it. This will
  1790. * also ensure that all pending GPU writes are finished
  1791. * before we unbind.
  1792. */
  1793. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1794. if (ret == -ERESTARTSYS)
  1795. return ret;
  1796. /* Continue on if we fail due to EIO, the GPU is hung so we
  1797. * should be safe and we need to cleanup or else we might
  1798. * cause memory corruption through use-after-free.
  1799. */
  1800. if (ret) {
  1801. i915_gem_clflush_object(obj);
  1802. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1803. }
  1804. /* release the fence reg _after_ flushing */
  1805. ret = i915_gem_object_put_fence(obj);
  1806. if (ret == -ERESTARTSYS)
  1807. return ret;
  1808. i915_gem_gtt_unbind_object(obj);
  1809. i915_gem_object_put_pages_gtt(obj);
  1810. list_del_init(&obj->gtt_list);
  1811. list_del_init(&obj->mm_list);
  1812. /* Avoid an unnecessary call to unbind on rebind. */
  1813. obj->map_and_fenceable = true;
  1814. drm_mm_put_block(obj->gtt_space);
  1815. obj->gtt_space = NULL;
  1816. obj->gtt_offset = 0;
  1817. if (i915_gem_object_is_purgeable(obj))
  1818. i915_gem_object_truncate(obj);
  1819. trace_i915_gem_object_unbind(obj);
  1820. return ret;
  1821. }
  1822. int
  1823. i915_gem_flush_ring(struct drm_device *dev,
  1824. struct intel_ring_buffer *ring,
  1825. uint32_t invalidate_domains,
  1826. uint32_t flush_domains)
  1827. {
  1828. int ret;
  1829. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1830. if (ret)
  1831. return ret;
  1832. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1833. return 0;
  1834. }
  1835. static int i915_ring_idle(struct drm_device *dev,
  1836. struct intel_ring_buffer *ring)
  1837. {
  1838. int ret;
  1839. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1840. return 0;
  1841. if (!list_empty(&ring->gpu_write_list)) {
  1842. ret = i915_gem_flush_ring(dev, ring,
  1843. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1844. if (ret)
  1845. return ret;
  1846. }
  1847. return i915_wait_request(dev,
  1848. i915_gem_next_request_seqno(dev, ring),
  1849. ring);
  1850. }
  1851. int
  1852. i915_gpu_idle(struct drm_device *dev)
  1853. {
  1854. drm_i915_private_t *dev_priv = dev->dev_private;
  1855. bool lists_empty;
  1856. int ret, i;
  1857. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1858. list_empty(&dev_priv->mm.active_list));
  1859. if (lists_empty)
  1860. return 0;
  1861. /* Flush everything onto the inactive list. */
  1862. for (i = 0; i < I915_NUM_RINGS; i++) {
  1863. ret = i915_ring_idle(dev, &dev_priv->ring[i]);
  1864. if (ret)
  1865. return ret;
  1866. }
  1867. return 0;
  1868. }
  1869. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1870. struct intel_ring_buffer *pipelined)
  1871. {
  1872. struct drm_device *dev = obj->base.dev;
  1873. drm_i915_private_t *dev_priv = dev->dev_private;
  1874. u32 size = obj->gtt_space->size;
  1875. int regnum = obj->fence_reg;
  1876. uint64_t val;
  1877. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1878. 0xfffff000) << 32;
  1879. val |= obj->gtt_offset & 0xfffff000;
  1880. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1881. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1882. if (obj->tiling_mode == I915_TILING_Y)
  1883. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1884. val |= I965_FENCE_REG_VALID;
  1885. if (pipelined) {
  1886. int ret = intel_ring_begin(pipelined, 6);
  1887. if (ret)
  1888. return ret;
  1889. intel_ring_emit(pipelined, MI_NOOP);
  1890. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1891. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1892. intel_ring_emit(pipelined, (u32)val);
  1893. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1894. intel_ring_emit(pipelined, (u32)(val >> 32));
  1895. intel_ring_advance(pipelined);
  1896. } else
  1897. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1898. return 0;
  1899. }
  1900. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1901. struct intel_ring_buffer *pipelined)
  1902. {
  1903. struct drm_device *dev = obj->base.dev;
  1904. drm_i915_private_t *dev_priv = dev->dev_private;
  1905. u32 size = obj->gtt_space->size;
  1906. int regnum = obj->fence_reg;
  1907. uint64_t val;
  1908. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1909. 0xfffff000) << 32;
  1910. val |= obj->gtt_offset & 0xfffff000;
  1911. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1912. if (obj->tiling_mode == I915_TILING_Y)
  1913. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1914. val |= I965_FENCE_REG_VALID;
  1915. if (pipelined) {
  1916. int ret = intel_ring_begin(pipelined, 6);
  1917. if (ret)
  1918. return ret;
  1919. intel_ring_emit(pipelined, MI_NOOP);
  1920. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1921. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1922. intel_ring_emit(pipelined, (u32)val);
  1923. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1924. intel_ring_emit(pipelined, (u32)(val >> 32));
  1925. intel_ring_advance(pipelined);
  1926. } else
  1927. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1928. return 0;
  1929. }
  1930. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1931. struct intel_ring_buffer *pipelined)
  1932. {
  1933. struct drm_device *dev = obj->base.dev;
  1934. drm_i915_private_t *dev_priv = dev->dev_private;
  1935. u32 size = obj->gtt_space->size;
  1936. u32 fence_reg, val, pitch_val;
  1937. int tile_width;
  1938. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1939. (size & -size) != size ||
  1940. (obj->gtt_offset & (size - 1)),
  1941. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1942. obj->gtt_offset, obj->map_and_fenceable, size))
  1943. return -EINVAL;
  1944. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1945. tile_width = 128;
  1946. else
  1947. tile_width = 512;
  1948. /* Note: pitch better be a power of two tile widths */
  1949. pitch_val = obj->stride / tile_width;
  1950. pitch_val = ffs(pitch_val) - 1;
  1951. val = obj->gtt_offset;
  1952. if (obj->tiling_mode == I915_TILING_Y)
  1953. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1954. val |= I915_FENCE_SIZE_BITS(size);
  1955. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1956. val |= I830_FENCE_REG_VALID;
  1957. fence_reg = obj->fence_reg;
  1958. if (fence_reg < 8)
  1959. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1960. else
  1961. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1962. if (pipelined) {
  1963. int ret = intel_ring_begin(pipelined, 4);
  1964. if (ret)
  1965. return ret;
  1966. intel_ring_emit(pipelined, MI_NOOP);
  1967. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1968. intel_ring_emit(pipelined, fence_reg);
  1969. intel_ring_emit(pipelined, val);
  1970. intel_ring_advance(pipelined);
  1971. } else
  1972. I915_WRITE(fence_reg, val);
  1973. return 0;
  1974. }
  1975. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1976. struct intel_ring_buffer *pipelined)
  1977. {
  1978. struct drm_device *dev = obj->base.dev;
  1979. drm_i915_private_t *dev_priv = dev->dev_private;
  1980. u32 size = obj->gtt_space->size;
  1981. int regnum = obj->fence_reg;
  1982. uint32_t val;
  1983. uint32_t pitch_val;
  1984. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1985. (size & -size) != size ||
  1986. (obj->gtt_offset & (size - 1)),
  1987. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1988. obj->gtt_offset, size))
  1989. return -EINVAL;
  1990. pitch_val = obj->stride / 128;
  1991. pitch_val = ffs(pitch_val) - 1;
  1992. val = obj->gtt_offset;
  1993. if (obj->tiling_mode == I915_TILING_Y)
  1994. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1995. val |= I830_FENCE_SIZE_BITS(size);
  1996. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1997. val |= I830_FENCE_REG_VALID;
  1998. if (pipelined) {
  1999. int ret = intel_ring_begin(pipelined, 4);
  2000. if (ret)
  2001. return ret;
  2002. intel_ring_emit(pipelined, MI_NOOP);
  2003. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  2004. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  2005. intel_ring_emit(pipelined, val);
  2006. intel_ring_advance(pipelined);
  2007. } else
  2008. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  2009. return 0;
  2010. }
  2011. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  2012. {
  2013. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  2014. }
  2015. static int
  2016. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  2017. struct intel_ring_buffer *pipelined,
  2018. bool interruptible)
  2019. {
  2020. int ret;
  2021. if (obj->fenced_gpu_access) {
  2022. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2023. ret = i915_gem_flush_ring(obj->base.dev,
  2024. obj->last_fenced_ring,
  2025. 0, obj->base.write_domain);
  2026. if (ret)
  2027. return ret;
  2028. }
  2029. obj->fenced_gpu_access = false;
  2030. }
  2031. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  2032. if (!ring_passed_seqno(obj->last_fenced_ring,
  2033. obj->last_fenced_seqno)) {
  2034. ret = i915_do_wait_request(obj->base.dev,
  2035. obj->last_fenced_seqno,
  2036. interruptible,
  2037. obj->last_fenced_ring);
  2038. if (ret)
  2039. return ret;
  2040. }
  2041. obj->last_fenced_seqno = 0;
  2042. obj->last_fenced_ring = NULL;
  2043. }
  2044. /* Ensure that all CPU reads are completed before installing a fence
  2045. * and all writes before removing the fence.
  2046. */
  2047. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2048. mb();
  2049. return 0;
  2050. }
  2051. int
  2052. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2053. {
  2054. int ret;
  2055. if (obj->tiling_mode)
  2056. i915_gem_release_mmap(obj);
  2057. ret = i915_gem_object_flush_fence(obj, NULL, true);
  2058. if (ret)
  2059. return ret;
  2060. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2061. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2062. i915_gem_clear_fence_reg(obj->base.dev,
  2063. &dev_priv->fence_regs[obj->fence_reg]);
  2064. obj->fence_reg = I915_FENCE_REG_NONE;
  2065. }
  2066. return 0;
  2067. }
  2068. static struct drm_i915_fence_reg *
  2069. i915_find_fence_reg(struct drm_device *dev,
  2070. struct intel_ring_buffer *pipelined)
  2071. {
  2072. struct drm_i915_private *dev_priv = dev->dev_private;
  2073. struct drm_i915_fence_reg *reg, *first, *avail;
  2074. int i;
  2075. /* First try to find a free reg */
  2076. avail = NULL;
  2077. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2078. reg = &dev_priv->fence_regs[i];
  2079. if (!reg->obj)
  2080. return reg;
  2081. if (!reg->obj->pin_count)
  2082. avail = reg;
  2083. }
  2084. if (avail == NULL)
  2085. return NULL;
  2086. /* None available, try to steal one or wait for a user to finish */
  2087. avail = first = NULL;
  2088. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2089. if (reg->obj->pin_count)
  2090. continue;
  2091. if (first == NULL)
  2092. first = reg;
  2093. if (!pipelined ||
  2094. !reg->obj->last_fenced_ring ||
  2095. reg->obj->last_fenced_ring == pipelined) {
  2096. avail = reg;
  2097. break;
  2098. }
  2099. }
  2100. if (avail == NULL)
  2101. avail = first;
  2102. return avail;
  2103. }
  2104. /**
  2105. * i915_gem_object_get_fence - set up a fence reg for an object
  2106. * @obj: object to map through a fence reg
  2107. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2108. * @interruptible: must we wait uninterruptibly for the register to retire?
  2109. *
  2110. * When mapping objects through the GTT, userspace wants to be able to write
  2111. * to them without having to worry about swizzling if the object is tiled.
  2112. *
  2113. * This function walks the fence regs looking for a free one for @obj,
  2114. * stealing one if it can't find any.
  2115. *
  2116. * It then sets up the reg based on the object's properties: address, pitch
  2117. * and tiling format.
  2118. */
  2119. int
  2120. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2121. struct intel_ring_buffer *pipelined,
  2122. bool interruptible)
  2123. {
  2124. struct drm_device *dev = obj->base.dev;
  2125. struct drm_i915_private *dev_priv = dev->dev_private;
  2126. struct drm_i915_fence_reg *reg;
  2127. int ret;
  2128. /* XXX disable pipelining. There are bugs. Shocking. */
  2129. pipelined = NULL;
  2130. /* Just update our place in the LRU if our fence is getting reused. */
  2131. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2132. reg = &dev_priv->fence_regs[obj->fence_reg];
  2133. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2134. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2135. pipelined = NULL;
  2136. if (!pipelined) {
  2137. if (reg->setup_seqno) {
  2138. if (!ring_passed_seqno(obj->last_fenced_ring,
  2139. reg->setup_seqno)) {
  2140. ret = i915_do_wait_request(obj->base.dev,
  2141. reg->setup_seqno,
  2142. interruptible,
  2143. obj->last_fenced_ring);
  2144. if (ret)
  2145. return ret;
  2146. }
  2147. reg->setup_seqno = 0;
  2148. }
  2149. } else if (obj->last_fenced_ring &&
  2150. obj->last_fenced_ring != pipelined) {
  2151. ret = i915_gem_object_flush_fence(obj,
  2152. pipelined,
  2153. interruptible);
  2154. if (ret)
  2155. return ret;
  2156. } else if (obj->tiling_changed) {
  2157. if (obj->fenced_gpu_access) {
  2158. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2159. ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
  2160. 0, obj->base.write_domain);
  2161. if (ret)
  2162. return ret;
  2163. }
  2164. obj->fenced_gpu_access = false;
  2165. }
  2166. }
  2167. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2168. pipelined = NULL;
  2169. BUG_ON(!pipelined && reg->setup_seqno);
  2170. if (obj->tiling_changed) {
  2171. if (pipelined) {
  2172. reg->setup_seqno =
  2173. i915_gem_next_request_seqno(dev, pipelined);
  2174. obj->last_fenced_seqno = reg->setup_seqno;
  2175. obj->last_fenced_ring = pipelined;
  2176. }
  2177. goto update;
  2178. }
  2179. return 0;
  2180. }
  2181. reg = i915_find_fence_reg(dev, pipelined);
  2182. if (reg == NULL)
  2183. return -ENOSPC;
  2184. ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
  2185. if (ret)
  2186. return ret;
  2187. if (reg->obj) {
  2188. struct drm_i915_gem_object *old = reg->obj;
  2189. drm_gem_object_reference(&old->base);
  2190. if (old->tiling_mode)
  2191. i915_gem_release_mmap(old);
  2192. ret = i915_gem_object_flush_fence(old,
  2193. pipelined,
  2194. interruptible);
  2195. if (ret) {
  2196. drm_gem_object_unreference(&old->base);
  2197. return ret;
  2198. }
  2199. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2200. pipelined = NULL;
  2201. old->fence_reg = I915_FENCE_REG_NONE;
  2202. old->last_fenced_ring = pipelined;
  2203. old->last_fenced_seqno =
  2204. pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
  2205. drm_gem_object_unreference(&old->base);
  2206. } else if (obj->last_fenced_seqno == 0)
  2207. pipelined = NULL;
  2208. reg->obj = obj;
  2209. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2210. obj->fence_reg = reg - dev_priv->fence_regs;
  2211. obj->last_fenced_ring = pipelined;
  2212. reg->setup_seqno =
  2213. pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
  2214. obj->last_fenced_seqno = reg->setup_seqno;
  2215. update:
  2216. obj->tiling_changed = false;
  2217. switch (INTEL_INFO(dev)->gen) {
  2218. case 6:
  2219. ret = sandybridge_write_fence_reg(obj, pipelined);
  2220. break;
  2221. case 5:
  2222. case 4:
  2223. ret = i965_write_fence_reg(obj, pipelined);
  2224. break;
  2225. case 3:
  2226. ret = i915_write_fence_reg(obj, pipelined);
  2227. break;
  2228. case 2:
  2229. ret = i830_write_fence_reg(obj, pipelined);
  2230. break;
  2231. }
  2232. return ret;
  2233. }
  2234. /**
  2235. * i915_gem_clear_fence_reg - clear out fence register info
  2236. * @obj: object to clear
  2237. *
  2238. * Zeroes out the fence register itself and clears out the associated
  2239. * data structures in dev_priv and obj.
  2240. */
  2241. static void
  2242. i915_gem_clear_fence_reg(struct drm_device *dev,
  2243. struct drm_i915_fence_reg *reg)
  2244. {
  2245. drm_i915_private_t *dev_priv = dev->dev_private;
  2246. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2247. switch (INTEL_INFO(dev)->gen) {
  2248. case 6:
  2249. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2250. break;
  2251. case 5:
  2252. case 4:
  2253. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2254. break;
  2255. case 3:
  2256. if (fence_reg >= 8)
  2257. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2258. else
  2259. case 2:
  2260. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2261. I915_WRITE(fence_reg, 0);
  2262. break;
  2263. }
  2264. list_del_init(&reg->lru_list);
  2265. reg->obj = NULL;
  2266. reg->setup_seqno = 0;
  2267. }
  2268. /**
  2269. * Finds free space in the GTT aperture and binds the object there.
  2270. */
  2271. static int
  2272. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2273. unsigned alignment,
  2274. bool map_and_fenceable)
  2275. {
  2276. struct drm_device *dev = obj->base.dev;
  2277. drm_i915_private_t *dev_priv = dev->dev_private;
  2278. struct drm_mm_node *free_space;
  2279. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2280. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2281. bool mappable, fenceable;
  2282. int ret;
  2283. if (obj->madv != I915_MADV_WILLNEED) {
  2284. DRM_ERROR("Attempting to bind a purgeable object\n");
  2285. return -EINVAL;
  2286. }
  2287. fence_size = i915_gem_get_gtt_size(obj);
  2288. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2289. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2290. if (alignment == 0)
  2291. alignment = map_and_fenceable ? fence_alignment :
  2292. unfenced_alignment;
  2293. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2294. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2295. return -EINVAL;
  2296. }
  2297. size = map_and_fenceable ? fence_size : obj->base.size;
  2298. /* If the object is bigger than the entire aperture, reject it early
  2299. * before evicting everything in a vain attempt to find space.
  2300. */
  2301. if (obj->base.size >
  2302. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2303. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2304. return -E2BIG;
  2305. }
  2306. search_free:
  2307. if (map_and_fenceable)
  2308. free_space =
  2309. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2310. size, alignment, 0,
  2311. dev_priv->mm.gtt_mappable_end,
  2312. 0);
  2313. else
  2314. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2315. size, alignment, 0);
  2316. if (free_space != NULL) {
  2317. if (map_and_fenceable)
  2318. obj->gtt_space =
  2319. drm_mm_get_block_range_generic(free_space,
  2320. size, alignment, 0,
  2321. dev_priv->mm.gtt_mappable_end,
  2322. 0);
  2323. else
  2324. obj->gtt_space =
  2325. drm_mm_get_block(free_space, size, alignment);
  2326. }
  2327. if (obj->gtt_space == NULL) {
  2328. /* If the gtt is empty and we're still having trouble
  2329. * fitting our object in, we're out of memory.
  2330. */
  2331. ret = i915_gem_evict_something(dev, size, alignment,
  2332. map_and_fenceable);
  2333. if (ret)
  2334. return ret;
  2335. goto search_free;
  2336. }
  2337. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2338. if (ret) {
  2339. drm_mm_put_block(obj->gtt_space);
  2340. obj->gtt_space = NULL;
  2341. if (ret == -ENOMEM) {
  2342. /* first try to reclaim some memory by clearing the GTT */
  2343. ret = i915_gem_evict_everything(dev, false);
  2344. if (ret) {
  2345. /* now try to shrink everyone else */
  2346. if (gfpmask) {
  2347. gfpmask = 0;
  2348. goto search_free;
  2349. }
  2350. return -ENOMEM;
  2351. }
  2352. goto search_free;
  2353. }
  2354. return ret;
  2355. }
  2356. ret = i915_gem_gtt_bind_object(obj);
  2357. if (ret) {
  2358. i915_gem_object_put_pages_gtt(obj);
  2359. drm_mm_put_block(obj->gtt_space);
  2360. obj->gtt_space = NULL;
  2361. if (i915_gem_evict_everything(dev, false))
  2362. return ret;
  2363. goto search_free;
  2364. }
  2365. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2366. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2367. /* Assert that the object is not currently in any GPU domain. As it
  2368. * wasn't in the GTT, there shouldn't be any way it could have been in
  2369. * a GPU cache
  2370. */
  2371. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2372. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2373. obj->gtt_offset = obj->gtt_space->start;
  2374. fenceable =
  2375. obj->gtt_space->size == fence_size &&
  2376. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2377. mappable =
  2378. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2379. obj->map_and_fenceable = mappable && fenceable;
  2380. trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
  2381. return 0;
  2382. }
  2383. void
  2384. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2385. {
  2386. /* If we don't have a page list set up, then we're not pinned
  2387. * to GPU, and we can ignore the cache flush because it'll happen
  2388. * again at bind time.
  2389. */
  2390. if (obj->pages == NULL)
  2391. return;
  2392. trace_i915_gem_object_clflush(obj);
  2393. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2394. }
  2395. /** Flushes any GPU write domain for the object if it's dirty. */
  2396. static int
  2397. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2398. {
  2399. struct drm_device *dev = obj->base.dev;
  2400. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2401. return 0;
  2402. /* Queue the GPU write cache flushing we need. */
  2403. return i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
  2404. }
  2405. /** Flushes the GTT write domain for the object if it's dirty. */
  2406. static void
  2407. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2408. {
  2409. uint32_t old_write_domain;
  2410. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2411. return;
  2412. /* No actual flushing is required for the GTT write domain. Writes
  2413. * to it immediately go to main memory as far as we know, so there's
  2414. * no chipset flush. It also doesn't land in render cache.
  2415. *
  2416. * However, we do have to enforce the order so that all writes through
  2417. * the GTT land before any writes to the device, such as updates to
  2418. * the GATT itself.
  2419. */
  2420. wmb();
  2421. i915_gem_release_mmap(obj);
  2422. old_write_domain = obj->base.write_domain;
  2423. obj->base.write_domain = 0;
  2424. trace_i915_gem_object_change_domain(obj,
  2425. obj->base.read_domains,
  2426. old_write_domain);
  2427. }
  2428. /** Flushes the CPU write domain for the object if it's dirty. */
  2429. static void
  2430. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2431. {
  2432. uint32_t old_write_domain;
  2433. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2434. return;
  2435. i915_gem_clflush_object(obj);
  2436. intel_gtt_chipset_flush();
  2437. old_write_domain = obj->base.write_domain;
  2438. obj->base.write_domain = 0;
  2439. trace_i915_gem_object_change_domain(obj,
  2440. obj->base.read_domains,
  2441. old_write_domain);
  2442. }
  2443. /**
  2444. * Moves a single object to the GTT read, and possibly write domain.
  2445. *
  2446. * This function returns when the move is complete, including waiting on
  2447. * flushes to occur.
  2448. */
  2449. int
  2450. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2451. {
  2452. uint32_t old_write_domain, old_read_domains;
  2453. int ret;
  2454. /* Not valid to be called on unbound objects. */
  2455. if (obj->gtt_space == NULL)
  2456. return -EINVAL;
  2457. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2458. if (ret)
  2459. return ret;
  2460. if (obj->pending_gpu_write || write) {
  2461. ret = i915_gem_object_wait_rendering(obj, true);
  2462. if (ret)
  2463. return ret;
  2464. }
  2465. i915_gem_object_flush_cpu_write_domain(obj);
  2466. old_write_domain = obj->base.write_domain;
  2467. old_read_domains = obj->base.read_domains;
  2468. /* It should now be out of any other write domains, and we can update
  2469. * the domain values for our changes.
  2470. */
  2471. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2472. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2473. if (write) {
  2474. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2475. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2476. obj->dirty = 1;
  2477. }
  2478. trace_i915_gem_object_change_domain(obj,
  2479. old_read_domains,
  2480. old_write_domain);
  2481. return 0;
  2482. }
  2483. /*
  2484. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2485. * wait, as in modesetting process we're not supposed to be interrupted.
  2486. */
  2487. int
  2488. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2489. struct intel_ring_buffer *pipelined)
  2490. {
  2491. uint32_t old_read_domains;
  2492. int ret;
  2493. /* Not valid to be called on unbound objects. */
  2494. if (obj->gtt_space == NULL)
  2495. return -EINVAL;
  2496. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2497. if (ret)
  2498. return ret;
  2499. /* Currently, we are always called from an non-interruptible context. */
  2500. if (pipelined != obj->ring) {
  2501. ret = i915_gem_object_wait_rendering(obj, false);
  2502. if (ret)
  2503. return ret;
  2504. }
  2505. i915_gem_object_flush_cpu_write_domain(obj);
  2506. old_read_domains = obj->base.read_domains;
  2507. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2508. trace_i915_gem_object_change_domain(obj,
  2509. old_read_domains,
  2510. obj->base.write_domain);
  2511. return 0;
  2512. }
  2513. int
  2514. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
  2515. bool interruptible)
  2516. {
  2517. int ret;
  2518. if (!obj->active)
  2519. return 0;
  2520. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2521. ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
  2522. 0, obj->base.write_domain);
  2523. if (ret)
  2524. return ret;
  2525. }
  2526. return i915_gem_object_wait_rendering(obj, interruptible);
  2527. }
  2528. /**
  2529. * Moves a single object to the CPU read, and possibly write domain.
  2530. *
  2531. * This function returns when the move is complete, including waiting on
  2532. * flushes to occur.
  2533. */
  2534. static int
  2535. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2536. {
  2537. uint32_t old_write_domain, old_read_domains;
  2538. int ret;
  2539. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2540. if (ret)
  2541. return ret;
  2542. ret = i915_gem_object_wait_rendering(obj, true);
  2543. if (ret)
  2544. return ret;
  2545. i915_gem_object_flush_gtt_write_domain(obj);
  2546. /* If we have a partially-valid cache of the object in the CPU,
  2547. * finish invalidating it and free the per-page flags.
  2548. */
  2549. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2550. old_write_domain = obj->base.write_domain;
  2551. old_read_domains = obj->base.read_domains;
  2552. /* Flush the CPU cache if it's still invalid. */
  2553. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2554. i915_gem_clflush_object(obj);
  2555. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2556. }
  2557. /* It should now be out of any other write domains, and we can update
  2558. * the domain values for our changes.
  2559. */
  2560. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2561. /* If we're writing through the CPU, then the GPU read domains will
  2562. * need to be invalidated at next use.
  2563. */
  2564. if (write) {
  2565. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2566. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2567. }
  2568. trace_i915_gem_object_change_domain(obj,
  2569. old_read_domains,
  2570. old_write_domain);
  2571. return 0;
  2572. }
  2573. /**
  2574. * Moves the object from a partially CPU read to a full one.
  2575. *
  2576. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2577. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2578. */
  2579. static void
  2580. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2581. {
  2582. if (!obj->page_cpu_valid)
  2583. return;
  2584. /* If we're partially in the CPU read domain, finish moving it in.
  2585. */
  2586. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2587. int i;
  2588. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2589. if (obj->page_cpu_valid[i])
  2590. continue;
  2591. drm_clflush_pages(obj->pages + i, 1);
  2592. }
  2593. }
  2594. /* Free the page_cpu_valid mappings which are now stale, whether
  2595. * or not we've got I915_GEM_DOMAIN_CPU.
  2596. */
  2597. kfree(obj->page_cpu_valid);
  2598. obj->page_cpu_valid = NULL;
  2599. }
  2600. /**
  2601. * Set the CPU read domain on a range of the object.
  2602. *
  2603. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2604. * not entirely valid. The page_cpu_valid member of the object flags which
  2605. * pages have been flushed, and will be respected by
  2606. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2607. * of the whole object.
  2608. *
  2609. * This function returns when the move is complete, including waiting on
  2610. * flushes to occur.
  2611. */
  2612. static int
  2613. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2614. uint64_t offset, uint64_t size)
  2615. {
  2616. uint32_t old_read_domains;
  2617. int i, ret;
  2618. if (offset == 0 && size == obj->base.size)
  2619. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2620. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2621. if (ret)
  2622. return ret;
  2623. ret = i915_gem_object_wait_rendering(obj, true);
  2624. if (ret)
  2625. return ret;
  2626. i915_gem_object_flush_gtt_write_domain(obj);
  2627. /* If we're already fully in the CPU read domain, we're done. */
  2628. if (obj->page_cpu_valid == NULL &&
  2629. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2630. return 0;
  2631. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2632. * newly adding I915_GEM_DOMAIN_CPU
  2633. */
  2634. if (obj->page_cpu_valid == NULL) {
  2635. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2636. GFP_KERNEL);
  2637. if (obj->page_cpu_valid == NULL)
  2638. return -ENOMEM;
  2639. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2640. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2641. /* Flush the cache on any pages that are still invalid from the CPU's
  2642. * perspective.
  2643. */
  2644. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2645. i++) {
  2646. if (obj->page_cpu_valid[i])
  2647. continue;
  2648. drm_clflush_pages(obj->pages + i, 1);
  2649. obj->page_cpu_valid[i] = 1;
  2650. }
  2651. /* It should now be out of any other write domains, and we can update
  2652. * the domain values for our changes.
  2653. */
  2654. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2655. old_read_domains = obj->base.read_domains;
  2656. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2657. trace_i915_gem_object_change_domain(obj,
  2658. old_read_domains,
  2659. obj->base.write_domain);
  2660. return 0;
  2661. }
  2662. /* Throttle our rendering by waiting until the ring has completed our requests
  2663. * emitted over 20 msec ago.
  2664. *
  2665. * Note that if we were to use the current jiffies each time around the loop,
  2666. * we wouldn't escape the function with any frames outstanding if the time to
  2667. * render a frame was over 20ms.
  2668. *
  2669. * This should get us reasonable parallelism between CPU and GPU but also
  2670. * relatively low latency when blocking on a particular request to finish.
  2671. */
  2672. static int
  2673. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2674. {
  2675. struct drm_i915_private *dev_priv = dev->dev_private;
  2676. struct drm_i915_file_private *file_priv = file->driver_priv;
  2677. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2678. struct drm_i915_gem_request *request;
  2679. struct intel_ring_buffer *ring = NULL;
  2680. u32 seqno = 0;
  2681. int ret;
  2682. if (atomic_read(&dev_priv->mm.wedged))
  2683. return -EIO;
  2684. spin_lock(&file_priv->mm.lock);
  2685. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2686. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2687. break;
  2688. ring = request->ring;
  2689. seqno = request->seqno;
  2690. }
  2691. spin_unlock(&file_priv->mm.lock);
  2692. if (seqno == 0)
  2693. return 0;
  2694. ret = 0;
  2695. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2696. /* And wait for the seqno passing without holding any locks and
  2697. * causing extra latency for others. This is safe as the irq
  2698. * generation is designed to be run atomically and so is
  2699. * lockless.
  2700. */
  2701. if (ring->irq_get(ring)) {
  2702. ret = wait_event_interruptible(ring->irq_queue,
  2703. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2704. || atomic_read(&dev_priv->mm.wedged));
  2705. ring->irq_put(ring);
  2706. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2707. ret = -EIO;
  2708. }
  2709. }
  2710. if (ret == 0)
  2711. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2712. return ret;
  2713. }
  2714. int
  2715. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2716. uint32_t alignment,
  2717. bool map_and_fenceable)
  2718. {
  2719. struct drm_device *dev = obj->base.dev;
  2720. struct drm_i915_private *dev_priv = dev->dev_private;
  2721. int ret;
  2722. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2723. WARN_ON(i915_verify_lists(dev));
  2724. if (obj->gtt_space != NULL) {
  2725. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2726. (map_and_fenceable && !obj->map_and_fenceable)) {
  2727. WARN(obj->pin_count,
  2728. "bo is already pinned with incorrect alignment:"
  2729. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2730. " obj->map_and_fenceable=%d\n",
  2731. obj->gtt_offset, alignment,
  2732. map_and_fenceable,
  2733. obj->map_and_fenceable);
  2734. ret = i915_gem_object_unbind(obj);
  2735. if (ret)
  2736. return ret;
  2737. }
  2738. }
  2739. if (obj->gtt_space == NULL) {
  2740. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2741. map_and_fenceable);
  2742. if (ret)
  2743. return ret;
  2744. }
  2745. if (obj->pin_count++ == 0) {
  2746. if (!obj->active)
  2747. list_move_tail(&obj->mm_list,
  2748. &dev_priv->mm.pinned_list);
  2749. }
  2750. obj->pin_mappable |= map_and_fenceable;
  2751. WARN_ON(i915_verify_lists(dev));
  2752. return 0;
  2753. }
  2754. void
  2755. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2756. {
  2757. struct drm_device *dev = obj->base.dev;
  2758. drm_i915_private_t *dev_priv = dev->dev_private;
  2759. WARN_ON(i915_verify_lists(dev));
  2760. BUG_ON(obj->pin_count == 0);
  2761. BUG_ON(obj->gtt_space == NULL);
  2762. if (--obj->pin_count == 0) {
  2763. if (!obj->active)
  2764. list_move_tail(&obj->mm_list,
  2765. &dev_priv->mm.inactive_list);
  2766. obj->pin_mappable = false;
  2767. }
  2768. WARN_ON(i915_verify_lists(dev));
  2769. }
  2770. int
  2771. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2772. struct drm_file *file)
  2773. {
  2774. struct drm_i915_gem_pin *args = data;
  2775. struct drm_i915_gem_object *obj;
  2776. int ret;
  2777. ret = i915_mutex_lock_interruptible(dev);
  2778. if (ret)
  2779. return ret;
  2780. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2781. if (obj == NULL) {
  2782. ret = -ENOENT;
  2783. goto unlock;
  2784. }
  2785. if (obj->madv != I915_MADV_WILLNEED) {
  2786. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2787. ret = -EINVAL;
  2788. goto out;
  2789. }
  2790. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2791. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2792. args->handle);
  2793. ret = -EINVAL;
  2794. goto out;
  2795. }
  2796. obj->user_pin_count++;
  2797. obj->pin_filp = file;
  2798. if (obj->user_pin_count == 1) {
  2799. ret = i915_gem_object_pin(obj, args->alignment, true);
  2800. if (ret)
  2801. goto out;
  2802. }
  2803. /* XXX - flush the CPU caches for pinned objects
  2804. * as the X server doesn't manage domains yet
  2805. */
  2806. i915_gem_object_flush_cpu_write_domain(obj);
  2807. args->offset = obj->gtt_offset;
  2808. out:
  2809. drm_gem_object_unreference(&obj->base);
  2810. unlock:
  2811. mutex_unlock(&dev->struct_mutex);
  2812. return ret;
  2813. }
  2814. int
  2815. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2816. struct drm_file *file)
  2817. {
  2818. struct drm_i915_gem_pin *args = data;
  2819. struct drm_i915_gem_object *obj;
  2820. int ret;
  2821. ret = i915_mutex_lock_interruptible(dev);
  2822. if (ret)
  2823. return ret;
  2824. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2825. if (obj == NULL) {
  2826. ret = -ENOENT;
  2827. goto unlock;
  2828. }
  2829. if (obj->pin_filp != file) {
  2830. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2831. args->handle);
  2832. ret = -EINVAL;
  2833. goto out;
  2834. }
  2835. obj->user_pin_count--;
  2836. if (obj->user_pin_count == 0) {
  2837. obj->pin_filp = NULL;
  2838. i915_gem_object_unpin(obj);
  2839. }
  2840. out:
  2841. drm_gem_object_unreference(&obj->base);
  2842. unlock:
  2843. mutex_unlock(&dev->struct_mutex);
  2844. return ret;
  2845. }
  2846. int
  2847. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2848. struct drm_file *file)
  2849. {
  2850. struct drm_i915_gem_busy *args = data;
  2851. struct drm_i915_gem_object *obj;
  2852. int ret;
  2853. ret = i915_mutex_lock_interruptible(dev);
  2854. if (ret)
  2855. return ret;
  2856. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2857. if (obj == NULL) {
  2858. ret = -ENOENT;
  2859. goto unlock;
  2860. }
  2861. /* Count all active objects as busy, even if they are currently not used
  2862. * by the gpu. Users of this interface expect objects to eventually
  2863. * become non-busy without any further actions, therefore emit any
  2864. * necessary flushes here.
  2865. */
  2866. args->busy = obj->active;
  2867. if (args->busy) {
  2868. /* Unconditionally flush objects, even when the gpu still uses this
  2869. * object. Userspace calling this function indicates that it wants to
  2870. * use this buffer rather sooner than later, so issuing the required
  2871. * flush earlier is beneficial.
  2872. */
  2873. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2874. ret = i915_gem_flush_ring(dev, obj->ring,
  2875. 0, obj->base.write_domain);
  2876. } else if (obj->ring->outstanding_lazy_request ==
  2877. obj->last_rendering_seqno) {
  2878. struct drm_i915_gem_request *request;
  2879. /* This ring is not being cleared by active usage,
  2880. * so emit a request to do so.
  2881. */
  2882. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2883. if (request)
  2884. ret = i915_add_request(dev,
  2885. NULL, request,
  2886. obj->ring);
  2887. else
  2888. ret = -ENOMEM;
  2889. }
  2890. /* Update the active list for the hardware's current position.
  2891. * Otherwise this only updates on a delayed timer or when irqs
  2892. * are actually unmasked, and our working set ends up being
  2893. * larger than required.
  2894. */
  2895. i915_gem_retire_requests_ring(dev, obj->ring);
  2896. args->busy = obj->active;
  2897. }
  2898. drm_gem_object_unreference(&obj->base);
  2899. unlock:
  2900. mutex_unlock(&dev->struct_mutex);
  2901. return ret;
  2902. }
  2903. int
  2904. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2905. struct drm_file *file_priv)
  2906. {
  2907. return i915_gem_ring_throttle(dev, file_priv);
  2908. }
  2909. int
  2910. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2911. struct drm_file *file_priv)
  2912. {
  2913. struct drm_i915_gem_madvise *args = data;
  2914. struct drm_i915_gem_object *obj;
  2915. int ret;
  2916. switch (args->madv) {
  2917. case I915_MADV_DONTNEED:
  2918. case I915_MADV_WILLNEED:
  2919. break;
  2920. default:
  2921. return -EINVAL;
  2922. }
  2923. ret = i915_mutex_lock_interruptible(dev);
  2924. if (ret)
  2925. return ret;
  2926. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2927. if (obj == NULL) {
  2928. ret = -ENOENT;
  2929. goto unlock;
  2930. }
  2931. if (obj->pin_count) {
  2932. ret = -EINVAL;
  2933. goto out;
  2934. }
  2935. if (obj->madv != __I915_MADV_PURGED)
  2936. obj->madv = args->madv;
  2937. /* if the object is no longer bound, discard its backing storage */
  2938. if (i915_gem_object_is_purgeable(obj) &&
  2939. obj->gtt_space == NULL)
  2940. i915_gem_object_truncate(obj);
  2941. args->retained = obj->madv != __I915_MADV_PURGED;
  2942. out:
  2943. drm_gem_object_unreference(&obj->base);
  2944. unlock:
  2945. mutex_unlock(&dev->struct_mutex);
  2946. return ret;
  2947. }
  2948. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2949. size_t size)
  2950. {
  2951. struct drm_i915_private *dev_priv = dev->dev_private;
  2952. struct drm_i915_gem_object *obj;
  2953. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2954. if (obj == NULL)
  2955. return NULL;
  2956. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2957. kfree(obj);
  2958. return NULL;
  2959. }
  2960. i915_gem_info_add_obj(dev_priv, size);
  2961. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2962. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2963. obj->agp_type = AGP_USER_MEMORY;
  2964. obj->base.driver_private = NULL;
  2965. obj->fence_reg = I915_FENCE_REG_NONE;
  2966. INIT_LIST_HEAD(&obj->mm_list);
  2967. INIT_LIST_HEAD(&obj->gtt_list);
  2968. INIT_LIST_HEAD(&obj->ring_list);
  2969. INIT_LIST_HEAD(&obj->exec_list);
  2970. INIT_LIST_HEAD(&obj->gpu_write_list);
  2971. obj->madv = I915_MADV_WILLNEED;
  2972. /* Avoid an unnecessary call to unbind on the first bind. */
  2973. obj->map_and_fenceable = true;
  2974. return obj;
  2975. }
  2976. int i915_gem_init_object(struct drm_gem_object *obj)
  2977. {
  2978. BUG();
  2979. return 0;
  2980. }
  2981. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2982. {
  2983. struct drm_device *dev = obj->base.dev;
  2984. drm_i915_private_t *dev_priv = dev->dev_private;
  2985. int ret;
  2986. ret = i915_gem_object_unbind(obj);
  2987. if (ret == -ERESTARTSYS) {
  2988. list_move(&obj->mm_list,
  2989. &dev_priv->mm.deferred_free_list);
  2990. return;
  2991. }
  2992. if (obj->base.map_list.map)
  2993. i915_gem_free_mmap_offset(obj);
  2994. drm_gem_object_release(&obj->base);
  2995. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2996. kfree(obj->page_cpu_valid);
  2997. kfree(obj->bit_17);
  2998. kfree(obj);
  2999. }
  3000. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3001. {
  3002. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3003. struct drm_device *dev = obj->base.dev;
  3004. trace_i915_gem_object_destroy(obj);
  3005. while (obj->pin_count > 0)
  3006. i915_gem_object_unpin(obj);
  3007. if (obj->phys_obj)
  3008. i915_gem_detach_phys_object(dev, obj);
  3009. i915_gem_free_object_tail(obj);
  3010. }
  3011. int
  3012. i915_gem_idle(struct drm_device *dev)
  3013. {
  3014. drm_i915_private_t *dev_priv = dev->dev_private;
  3015. int ret;
  3016. mutex_lock(&dev->struct_mutex);
  3017. if (dev_priv->mm.suspended) {
  3018. mutex_unlock(&dev->struct_mutex);
  3019. return 0;
  3020. }
  3021. ret = i915_gpu_idle(dev);
  3022. if (ret) {
  3023. mutex_unlock(&dev->struct_mutex);
  3024. return ret;
  3025. }
  3026. /* Under UMS, be paranoid and evict. */
  3027. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3028. ret = i915_gem_evict_inactive(dev, false);
  3029. if (ret) {
  3030. mutex_unlock(&dev->struct_mutex);
  3031. return ret;
  3032. }
  3033. }
  3034. i915_gem_reset_fences(dev);
  3035. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3036. * We need to replace this with a semaphore, or something.
  3037. * And not confound mm.suspended!
  3038. */
  3039. dev_priv->mm.suspended = 1;
  3040. del_timer_sync(&dev_priv->hangcheck_timer);
  3041. i915_kernel_lost_context(dev);
  3042. i915_gem_cleanup_ringbuffer(dev);
  3043. mutex_unlock(&dev->struct_mutex);
  3044. /* Cancel the retire work handler, which should be idle now. */
  3045. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3046. return 0;
  3047. }
  3048. int
  3049. i915_gem_init_ringbuffer(struct drm_device *dev)
  3050. {
  3051. drm_i915_private_t *dev_priv = dev->dev_private;
  3052. int ret;
  3053. ret = intel_init_render_ring_buffer(dev);
  3054. if (ret)
  3055. return ret;
  3056. if (HAS_BSD(dev)) {
  3057. ret = intel_init_bsd_ring_buffer(dev);
  3058. if (ret)
  3059. goto cleanup_render_ring;
  3060. }
  3061. if (HAS_BLT(dev)) {
  3062. ret = intel_init_blt_ring_buffer(dev);
  3063. if (ret)
  3064. goto cleanup_bsd_ring;
  3065. }
  3066. dev_priv->next_seqno = 1;
  3067. return 0;
  3068. cleanup_bsd_ring:
  3069. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3070. cleanup_render_ring:
  3071. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3072. return ret;
  3073. }
  3074. void
  3075. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3076. {
  3077. drm_i915_private_t *dev_priv = dev->dev_private;
  3078. int i;
  3079. for (i = 0; i < I915_NUM_RINGS; i++)
  3080. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3081. }
  3082. int
  3083. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3084. struct drm_file *file_priv)
  3085. {
  3086. drm_i915_private_t *dev_priv = dev->dev_private;
  3087. int ret, i;
  3088. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3089. return 0;
  3090. if (atomic_read(&dev_priv->mm.wedged)) {
  3091. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3092. atomic_set(&dev_priv->mm.wedged, 0);
  3093. }
  3094. mutex_lock(&dev->struct_mutex);
  3095. dev_priv->mm.suspended = 0;
  3096. ret = i915_gem_init_ringbuffer(dev);
  3097. if (ret != 0) {
  3098. mutex_unlock(&dev->struct_mutex);
  3099. return ret;
  3100. }
  3101. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3102. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3103. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3104. for (i = 0; i < I915_NUM_RINGS; i++) {
  3105. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3106. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3107. }
  3108. mutex_unlock(&dev->struct_mutex);
  3109. ret = drm_irq_install(dev);
  3110. if (ret)
  3111. goto cleanup_ringbuffer;
  3112. return 0;
  3113. cleanup_ringbuffer:
  3114. mutex_lock(&dev->struct_mutex);
  3115. i915_gem_cleanup_ringbuffer(dev);
  3116. dev_priv->mm.suspended = 1;
  3117. mutex_unlock(&dev->struct_mutex);
  3118. return ret;
  3119. }
  3120. int
  3121. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3122. struct drm_file *file_priv)
  3123. {
  3124. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3125. return 0;
  3126. drm_irq_uninstall(dev);
  3127. return i915_gem_idle(dev);
  3128. }
  3129. void
  3130. i915_gem_lastclose(struct drm_device *dev)
  3131. {
  3132. int ret;
  3133. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3134. return;
  3135. ret = i915_gem_idle(dev);
  3136. if (ret)
  3137. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3138. }
  3139. static void
  3140. init_ring_lists(struct intel_ring_buffer *ring)
  3141. {
  3142. INIT_LIST_HEAD(&ring->active_list);
  3143. INIT_LIST_HEAD(&ring->request_list);
  3144. INIT_LIST_HEAD(&ring->gpu_write_list);
  3145. }
  3146. void
  3147. i915_gem_load(struct drm_device *dev)
  3148. {
  3149. int i;
  3150. drm_i915_private_t *dev_priv = dev->dev_private;
  3151. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3152. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3153. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3154. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3155. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3156. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3157. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3158. for (i = 0; i < I915_NUM_RINGS; i++)
  3159. init_ring_lists(&dev_priv->ring[i]);
  3160. for (i = 0; i < 16; i++)
  3161. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3162. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3163. i915_gem_retire_work_handler);
  3164. init_completion(&dev_priv->error_completion);
  3165. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3166. if (IS_GEN3(dev)) {
  3167. u32 tmp = I915_READ(MI_ARB_STATE);
  3168. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3169. /* arb state is a masked write, so set bit + bit in mask */
  3170. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3171. I915_WRITE(MI_ARB_STATE, tmp);
  3172. }
  3173. }
  3174. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3175. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3176. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3177. dev_priv->fence_reg_start = 3;
  3178. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3179. dev_priv->num_fence_regs = 16;
  3180. else
  3181. dev_priv->num_fence_regs = 8;
  3182. /* Initialize fence registers to zero */
  3183. switch (INTEL_INFO(dev)->gen) {
  3184. case 6:
  3185. for (i = 0; i < 16; i++)
  3186. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3187. break;
  3188. case 5:
  3189. case 4:
  3190. for (i = 0; i < 16; i++)
  3191. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3192. break;
  3193. case 3:
  3194. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3195. for (i = 0; i < 8; i++)
  3196. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3197. case 2:
  3198. for (i = 0; i < 8; i++)
  3199. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3200. break;
  3201. }
  3202. i915_gem_detect_bit_6_swizzle(dev);
  3203. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3204. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3205. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3206. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3207. }
  3208. /*
  3209. * Create a physically contiguous memory object for this object
  3210. * e.g. for cursor + overlay regs
  3211. */
  3212. static int i915_gem_init_phys_object(struct drm_device *dev,
  3213. int id, int size, int align)
  3214. {
  3215. drm_i915_private_t *dev_priv = dev->dev_private;
  3216. struct drm_i915_gem_phys_object *phys_obj;
  3217. int ret;
  3218. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3219. return 0;
  3220. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3221. if (!phys_obj)
  3222. return -ENOMEM;
  3223. phys_obj->id = id;
  3224. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3225. if (!phys_obj->handle) {
  3226. ret = -ENOMEM;
  3227. goto kfree_obj;
  3228. }
  3229. #ifdef CONFIG_X86
  3230. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3231. #endif
  3232. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3233. return 0;
  3234. kfree_obj:
  3235. kfree(phys_obj);
  3236. return ret;
  3237. }
  3238. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3239. {
  3240. drm_i915_private_t *dev_priv = dev->dev_private;
  3241. struct drm_i915_gem_phys_object *phys_obj;
  3242. if (!dev_priv->mm.phys_objs[id - 1])
  3243. return;
  3244. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3245. if (phys_obj->cur_obj) {
  3246. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3247. }
  3248. #ifdef CONFIG_X86
  3249. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3250. #endif
  3251. drm_pci_free(dev, phys_obj->handle);
  3252. kfree(phys_obj);
  3253. dev_priv->mm.phys_objs[id - 1] = NULL;
  3254. }
  3255. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3256. {
  3257. int i;
  3258. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3259. i915_gem_free_phys_object(dev, i);
  3260. }
  3261. void i915_gem_detach_phys_object(struct drm_device *dev,
  3262. struct drm_i915_gem_object *obj)
  3263. {
  3264. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3265. char *vaddr;
  3266. int i;
  3267. int page_count;
  3268. if (!obj->phys_obj)
  3269. return;
  3270. vaddr = obj->phys_obj->handle->vaddr;
  3271. page_count = obj->base.size / PAGE_SIZE;
  3272. for (i = 0; i < page_count; i++) {
  3273. struct page *page = read_cache_page_gfp(mapping, i,
  3274. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3275. if (!IS_ERR(page)) {
  3276. char *dst = kmap_atomic(page);
  3277. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3278. kunmap_atomic(dst);
  3279. drm_clflush_pages(&page, 1);
  3280. set_page_dirty(page);
  3281. mark_page_accessed(page);
  3282. page_cache_release(page);
  3283. }
  3284. }
  3285. intel_gtt_chipset_flush();
  3286. obj->phys_obj->cur_obj = NULL;
  3287. obj->phys_obj = NULL;
  3288. }
  3289. int
  3290. i915_gem_attach_phys_object(struct drm_device *dev,
  3291. struct drm_i915_gem_object *obj,
  3292. int id,
  3293. int align)
  3294. {
  3295. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3296. drm_i915_private_t *dev_priv = dev->dev_private;
  3297. int ret = 0;
  3298. int page_count;
  3299. int i;
  3300. if (id > I915_MAX_PHYS_OBJECT)
  3301. return -EINVAL;
  3302. if (obj->phys_obj) {
  3303. if (obj->phys_obj->id == id)
  3304. return 0;
  3305. i915_gem_detach_phys_object(dev, obj);
  3306. }
  3307. /* create a new object */
  3308. if (!dev_priv->mm.phys_objs[id - 1]) {
  3309. ret = i915_gem_init_phys_object(dev, id,
  3310. obj->base.size, align);
  3311. if (ret) {
  3312. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3313. id, obj->base.size);
  3314. return ret;
  3315. }
  3316. }
  3317. /* bind to the object */
  3318. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3319. obj->phys_obj->cur_obj = obj;
  3320. page_count = obj->base.size / PAGE_SIZE;
  3321. for (i = 0; i < page_count; i++) {
  3322. struct page *page;
  3323. char *dst, *src;
  3324. page = read_cache_page_gfp(mapping, i,
  3325. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3326. if (IS_ERR(page))
  3327. return PTR_ERR(page);
  3328. src = kmap_atomic(page);
  3329. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3330. memcpy(dst, src, PAGE_SIZE);
  3331. kunmap_atomic(src);
  3332. mark_page_accessed(page);
  3333. page_cache_release(page);
  3334. }
  3335. return 0;
  3336. }
  3337. static int
  3338. i915_gem_phys_pwrite(struct drm_device *dev,
  3339. struct drm_i915_gem_object *obj,
  3340. struct drm_i915_gem_pwrite *args,
  3341. struct drm_file *file_priv)
  3342. {
  3343. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3344. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3345. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3346. unsigned long unwritten;
  3347. /* The physical object once assigned is fixed for the lifetime
  3348. * of the obj, so we can safely drop the lock and continue
  3349. * to access vaddr.
  3350. */
  3351. mutex_unlock(&dev->struct_mutex);
  3352. unwritten = copy_from_user(vaddr, user_data, args->size);
  3353. mutex_lock(&dev->struct_mutex);
  3354. if (unwritten)
  3355. return -EFAULT;
  3356. }
  3357. intel_gtt_chipset_flush();
  3358. return 0;
  3359. }
  3360. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3361. {
  3362. struct drm_i915_file_private *file_priv = file->driver_priv;
  3363. /* Clean up our request list when the client is going away, so that
  3364. * later retire_requests won't dereference our soon-to-be-gone
  3365. * file_priv.
  3366. */
  3367. spin_lock(&file_priv->mm.lock);
  3368. while (!list_empty(&file_priv->mm.request_list)) {
  3369. struct drm_i915_gem_request *request;
  3370. request = list_first_entry(&file_priv->mm.request_list,
  3371. struct drm_i915_gem_request,
  3372. client_list);
  3373. list_del(&request->client_list);
  3374. request->file_priv = NULL;
  3375. }
  3376. spin_unlock(&file_priv->mm.lock);
  3377. }
  3378. static int
  3379. i915_gpu_is_active(struct drm_device *dev)
  3380. {
  3381. drm_i915_private_t *dev_priv = dev->dev_private;
  3382. int lists_empty;
  3383. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3384. list_empty(&dev_priv->mm.active_list);
  3385. return !lists_empty;
  3386. }
  3387. static int
  3388. i915_gem_inactive_shrink(struct shrinker *shrinker,
  3389. int nr_to_scan,
  3390. gfp_t gfp_mask)
  3391. {
  3392. struct drm_i915_private *dev_priv =
  3393. container_of(shrinker,
  3394. struct drm_i915_private,
  3395. mm.inactive_shrinker);
  3396. struct drm_device *dev = dev_priv->dev;
  3397. struct drm_i915_gem_object *obj, *next;
  3398. int cnt;
  3399. if (!mutex_trylock(&dev->struct_mutex))
  3400. return 0;
  3401. /* "fast-path" to count number of available objects */
  3402. if (nr_to_scan == 0) {
  3403. cnt = 0;
  3404. list_for_each_entry(obj,
  3405. &dev_priv->mm.inactive_list,
  3406. mm_list)
  3407. cnt++;
  3408. mutex_unlock(&dev->struct_mutex);
  3409. return cnt / 100 * sysctl_vfs_cache_pressure;
  3410. }
  3411. rescan:
  3412. /* first scan for clean buffers */
  3413. i915_gem_retire_requests(dev);
  3414. list_for_each_entry_safe(obj, next,
  3415. &dev_priv->mm.inactive_list,
  3416. mm_list) {
  3417. if (i915_gem_object_is_purgeable(obj)) {
  3418. if (i915_gem_object_unbind(obj) == 0 &&
  3419. --nr_to_scan == 0)
  3420. break;
  3421. }
  3422. }
  3423. /* second pass, evict/count anything still on the inactive list */
  3424. cnt = 0;
  3425. list_for_each_entry_safe(obj, next,
  3426. &dev_priv->mm.inactive_list,
  3427. mm_list) {
  3428. if (nr_to_scan &&
  3429. i915_gem_object_unbind(obj) == 0)
  3430. nr_to_scan--;
  3431. else
  3432. cnt++;
  3433. }
  3434. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3435. /*
  3436. * We are desperate for pages, so as a last resort, wait
  3437. * for the GPU to finish and discard whatever we can.
  3438. * This has a dramatic impact to reduce the number of
  3439. * OOM-killer events whilst running the GPU aggressively.
  3440. */
  3441. if (i915_gpu_idle(dev) == 0)
  3442. goto rescan;
  3443. }
  3444. mutex_unlock(&dev->struct_mutex);
  3445. return cnt / 100 * sysctl_vfs_cache_pressure;
  3446. }