wmm.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269
  1. /*
  2. * Marvell Wireless LAN device driver: WMM
  3. *
  4. * Copyright (C) 2011, Marvell International Ltd.
  5. *
  6. * This software file (the "File") is distributed by Marvell International
  7. * Ltd. under the terms of the GNU General Public License Version 2, June 1991
  8. * (the "License"). You may use, redistribute and/or modify this File in
  9. * accordance with the terms and conditions of the License, a copy of which
  10. * is available by writing to the Free Software Foundation, Inc.,
  11. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the
  12. * worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
  13. *
  14. * THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE
  15. * IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
  16. * ARE EXPRESSLY DISCLAIMED. The License provides additional details about
  17. * this warranty disclaimer.
  18. */
  19. #include "decl.h"
  20. #include "ioctl.h"
  21. #include "util.h"
  22. #include "fw.h"
  23. #include "main.h"
  24. #include "wmm.h"
  25. #include "11n.h"
  26. /* Maximum value FW can accept for driver delay in packet transmission */
  27. #define DRV_PKT_DELAY_TO_FW_MAX 512
  28. #define WMM_QUEUED_PACKET_LOWER_LIMIT 180
  29. #define WMM_QUEUED_PACKET_UPPER_LIMIT 200
  30. /* Offset for TOS field in the IP header */
  31. #define IPTOS_OFFSET 5
  32. /* WMM information IE */
  33. static const u8 wmm_info_ie[] = { WLAN_EID_VENDOR_SPECIFIC, 0x07,
  34. 0x00, 0x50, 0xf2, 0x02,
  35. 0x00, 0x01, 0x00
  36. };
  37. static const u8 wmm_aci_to_qidx_map[] = { WMM_AC_BE,
  38. WMM_AC_BK,
  39. WMM_AC_VI,
  40. WMM_AC_VO
  41. };
  42. static u8 tos_to_tid[] = {
  43. /* TID DSCP_P2 DSCP_P1 DSCP_P0 WMM_AC */
  44. 0x01, /* 0 1 0 AC_BK */
  45. 0x02, /* 0 0 0 AC_BK */
  46. 0x00, /* 0 0 1 AC_BE */
  47. 0x03, /* 0 1 1 AC_BE */
  48. 0x04, /* 1 0 0 AC_VI */
  49. 0x05, /* 1 0 1 AC_VI */
  50. 0x06, /* 1 1 0 AC_VO */
  51. 0x07 /* 1 1 1 AC_VO */
  52. };
  53. /*
  54. * This table inverses the tos_to_tid operation to get a priority
  55. * which is in sequential order, and can be compared.
  56. * Use this to compare the priority of two different TIDs.
  57. */
  58. static u8 tos_to_tid_inv[] = {
  59. 0x02, /* from tos_to_tid[2] = 0 */
  60. 0x00, /* from tos_to_tid[0] = 1 */
  61. 0x01, /* from tos_to_tid[1] = 2 */
  62. 0x03,
  63. 0x04,
  64. 0x05,
  65. 0x06,
  66. 0x07};
  67. static u8 ac_to_tid[4][2] = { {1, 2}, {0, 3}, {4, 5}, {6, 7} };
  68. /*
  69. * This function debug prints the priority parameters for a WMM AC.
  70. */
  71. static void
  72. mwifiex_wmm_ac_debug_print(const struct ieee_types_wmm_ac_parameters *ac_param)
  73. {
  74. const char *ac_str[] = { "BK", "BE", "VI", "VO" };
  75. pr_debug("info: WMM AC_%s: ACI=%d, ACM=%d, Aifsn=%d, "
  76. "EcwMin=%d, EcwMax=%d, TxopLimit=%d\n",
  77. ac_str[wmm_aci_to_qidx_map[(ac_param->aci_aifsn_bitmap
  78. & MWIFIEX_ACI) >> 5]],
  79. (ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5,
  80. (ac_param->aci_aifsn_bitmap & MWIFIEX_ACM) >> 4,
  81. ac_param->aci_aifsn_bitmap & MWIFIEX_AIFSN,
  82. ac_param->ecw_bitmap & MWIFIEX_ECW_MIN,
  83. (ac_param->ecw_bitmap & MWIFIEX_ECW_MAX) >> 4,
  84. le16_to_cpu(ac_param->tx_op_limit));
  85. }
  86. /*
  87. * This function allocates a route address list.
  88. *
  89. * The function also initializes the list with the provided RA.
  90. */
  91. static struct mwifiex_ra_list_tbl *
  92. mwifiex_wmm_allocate_ralist_node(struct mwifiex_adapter *adapter, u8 *ra)
  93. {
  94. struct mwifiex_ra_list_tbl *ra_list;
  95. ra_list = kzalloc(sizeof(struct mwifiex_ra_list_tbl), GFP_ATOMIC);
  96. if (!ra_list) {
  97. dev_err(adapter->dev, "%s: failed to alloc ra_list\n",
  98. __func__);
  99. return NULL;
  100. }
  101. INIT_LIST_HEAD(&ra_list->list);
  102. skb_queue_head_init(&ra_list->skb_head);
  103. memcpy(ra_list->ra, ra, ETH_ALEN);
  104. ra_list->total_pkts_size = 0;
  105. dev_dbg(adapter->dev, "info: allocated ra_list %p\n", ra_list);
  106. return ra_list;
  107. }
  108. /*
  109. * This function allocates and adds a RA list for all TIDs
  110. * with the given RA.
  111. */
  112. void
  113. mwifiex_ralist_add(struct mwifiex_private *priv, u8 *ra)
  114. {
  115. int i;
  116. struct mwifiex_ra_list_tbl *ra_list;
  117. struct mwifiex_adapter *adapter = priv->adapter;
  118. for (i = 0; i < MAX_NUM_TID; ++i) {
  119. ra_list = mwifiex_wmm_allocate_ralist_node(adapter, ra);
  120. dev_dbg(adapter->dev, "info: created ra_list %p\n", ra_list);
  121. if (!ra_list)
  122. break;
  123. if (!mwifiex_queuing_ra_based(priv))
  124. ra_list->is_11n_enabled = IS_11N_ENABLED(priv);
  125. else
  126. ra_list->is_11n_enabled = false;
  127. dev_dbg(adapter->dev, "data: ralist %p: is_11n_enabled=%d\n",
  128. ra_list, ra_list->is_11n_enabled);
  129. list_add_tail(&ra_list->list,
  130. &priv->wmm.tid_tbl_ptr[i].ra_list);
  131. if (!priv->wmm.tid_tbl_ptr[i].ra_list_curr)
  132. priv->wmm.tid_tbl_ptr[i].ra_list_curr = ra_list;
  133. }
  134. }
  135. /*
  136. * This function sets the WMM queue priorities to their default values.
  137. */
  138. static void mwifiex_wmm_default_queue_priorities(struct mwifiex_private *priv)
  139. {
  140. /* Default queue priorities: VO->VI->BE->BK */
  141. priv->wmm.queue_priority[0] = WMM_AC_VO;
  142. priv->wmm.queue_priority[1] = WMM_AC_VI;
  143. priv->wmm.queue_priority[2] = WMM_AC_BE;
  144. priv->wmm.queue_priority[3] = WMM_AC_BK;
  145. }
  146. /*
  147. * This function map ACs to TIDs.
  148. */
  149. static void
  150. mwifiex_wmm_queue_priorities_tid(struct mwifiex_wmm_desc *wmm)
  151. {
  152. u8 *queue_priority = wmm->queue_priority;
  153. int i;
  154. for (i = 0; i < 4; ++i) {
  155. tos_to_tid[7 - (i * 2)] = ac_to_tid[queue_priority[i]][1];
  156. tos_to_tid[6 - (i * 2)] = ac_to_tid[queue_priority[i]][0];
  157. }
  158. for (i = 0; i < MAX_NUM_TID; ++i)
  159. tos_to_tid_inv[tos_to_tid[i]] = (u8)i;
  160. atomic_set(&wmm->highest_queued_prio, HIGH_PRIO_TID);
  161. }
  162. /*
  163. * This function initializes WMM priority queues.
  164. */
  165. void
  166. mwifiex_wmm_setup_queue_priorities(struct mwifiex_private *priv,
  167. struct ieee_types_wmm_parameter *wmm_ie)
  168. {
  169. u16 cw_min, avg_back_off, tmp[4];
  170. u32 i, j, num_ac;
  171. u8 ac_idx;
  172. if (!wmm_ie || !priv->wmm_enabled) {
  173. /* WMM is not enabled, just set the defaults and return */
  174. mwifiex_wmm_default_queue_priorities(priv);
  175. return;
  176. }
  177. dev_dbg(priv->adapter->dev, "info: WMM Parameter IE: version=%d, "
  178. "qos_info Parameter Set Count=%d, Reserved=%#x\n",
  179. wmm_ie->vend_hdr.version, wmm_ie->qos_info_bitmap &
  180. IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK,
  181. wmm_ie->reserved);
  182. for (num_ac = 0; num_ac < ARRAY_SIZE(wmm_ie->ac_params); num_ac++) {
  183. u8 ecw = wmm_ie->ac_params[num_ac].ecw_bitmap;
  184. u8 aci_aifsn = wmm_ie->ac_params[num_ac].aci_aifsn_bitmap;
  185. cw_min = (1 << (ecw & MWIFIEX_ECW_MIN)) - 1;
  186. avg_back_off = (cw_min >> 1) + (aci_aifsn & MWIFIEX_AIFSN);
  187. ac_idx = wmm_aci_to_qidx_map[(aci_aifsn & MWIFIEX_ACI) >> 5];
  188. priv->wmm.queue_priority[ac_idx] = ac_idx;
  189. tmp[ac_idx] = avg_back_off;
  190. dev_dbg(priv->adapter->dev,
  191. "info: WMM: CWmax=%d CWmin=%d Avg Back-off=%d\n",
  192. (1 << ((ecw & MWIFIEX_ECW_MAX) >> 4)) - 1,
  193. cw_min, avg_back_off);
  194. mwifiex_wmm_ac_debug_print(&wmm_ie->ac_params[num_ac]);
  195. }
  196. /* Bubble sort */
  197. for (i = 0; i < num_ac; i++) {
  198. for (j = 1; j < num_ac - i; j++) {
  199. if (tmp[j - 1] > tmp[j]) {
  200. swap(tmp[j - 1], tmp[j]);
  201. swap(priv->wmm.queue_priority[j - 1],
  202. priv->wmm.queue_priority[j]);
  203. } else if (tmp[j - 1] == tmp[j]) {
  204. if (priv->wmm.queue_priority[j - 1]
  205. < priv->wmm.queue_priority[j])
  206. swap(priv->wmm.queue_priority[j - 1],
  207. priv->wmm.queue_priority[j]);
  208. }
  209. }
  210. }
  211. mwifiex_wmm_queue_priorities_tid(&priv->wmm);
  212. }
  213. /*
  214. * This function evaluates whether or not an AC is to be downgraded.
  215. *
  216. * In case the AC is not enabled, the highest AC is returned that is
  217. * enabled and does not require admission control.
  218. */
  219. static enum mwifiex_wmm_ac_e
  220. mwifiex_wmm_eval_downgrade_ac(struct mwifiex_private *priv,
  221. enum mwifiex_wmm_ac_e eval_ac)
  222. {
  223. int down_ac;
  224. enum mwifiex_wmm_ac_e ret_ac;
  225. struct mwifiex_wmm_ac_status *ac_status;
  226. ac_status = &priv->wmm.ac_status[eval_ac];
  227. if (!ac_status->disabled)
  228. /* Okay to use this AC, its enabled */
  229. return eval_ac;
  230. /* Setup a default return value of the lowest priority */
  231. ret_ac = WMM_AC_BK;
  232. /*
  233. * Find the highest AC that is enabled and does not require
  234. * admission control. The spec disallows downgrading to an AC,
  235. * which is enabled due to a completed admission control.
  236. * Unadmitted traffic is not to be sent on an AC with admitted
  237. * traffic.
  238. */
  239. for (down_ac = WMM_AC_BK; down_ac < eval_ac; down_ac++) {
  240. ac_status = &priv->wmm.ac_status[down_ac];
  241. if (!ac_status->disabled && !ac_status->flow_required)
  242. /* AC is enabled and does not require admission
  243. control */
  244. ret_ac = (enum mwifiex_wmm_ac_e) down_ac;
  245. }
  246. return ret_ac;
  247. }
  248. /*
  249. * This function downgrades WMM priority queue.
  250. */
  251. void
  252. mwifiex_wmm_setup_ac_downgrade(struct mwifiex_private *priv)
  253. {
  254. int ac_val;
  255. dev_dbg(priv->adapter->dev, "info: WMM: AC Priorities:"
  256. "BK(0), BE(1), VI(2), VO(3)\n");
  257. if (!priv->wmm_enabled) {
  258. /* WMM is not enabled, default priorities */
  259. for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++)
  260. priv->wmm.ac_down_graded_vals[ac_val] =
  261. (enum mwifiex_wmm_ac_e) ac_val;
  262. } else {
  263. for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) {
  264. priv->wmm.ac_down_graded_vals[ac_val]
  265. = mwifiex_wmm_eval_downgrade_ac(priv,
  266. (enum mwifiex_wmm_ac_e) ac_val);
  267. dev_dbg(priv->adapter->dev,
  268. "info: WMM: AC PRIO %d maps to %d\n",
  269. ac_val, priv->wmm.ac_down_graded_vals[ac_val]);
  270. }
  271. }
  272. }
  273. /*
  274. * This function converts the IP TOS field to an WMM AC
  275. * Queue assignment.
  276. */
  277. static enum mwifiex_wmm_ac_e
  278. mwifiex_wmm_convert_tos_to_ac(struct mwifiex_adapter *adapter, u32 tos)
  279. {
  280. /* Map of TOS UP values to WMM AC */
  281. const enum mwifiex_wmm_ac_e tos_to_ac[] = { WMM_AC_BE,
  282. WMM_AC_BK,
  283. WMM_AC_BK,
  284. WMM_AC_BE,
  285. WMM_AC_VI,
  286. WMM_AC_VI,
  287. WMM_AC_VO,
  288. WMM_AC_VO
  289. };
  290. if (tos >= ARRAY_SIZE(tos_to_ac))
  291. return WMM_AC_BE;
  292. return tos_to_ac[tos];
  293. }
  294. /*
  295. * This function evaluates a given TID and downgrades it to a lower
  296. * TID if the WMM Parameter IE received from the AP indicates that the
  297. * AP is disabled (due to call admission control (ACM bit). Mapping
  298. * of TID to AC is taken care of internally.
  299. */
  300. static u8
  301. mwifiex_wmm_downgrade_tid(struct mwifiex_private *priv, u32 tid)
  302. {
  303. enum mwifiex_wmm_ac_e ac, ac_down;
  304. u8 new_tid;
  305. ac = mwifiex_wmm_convert_tos_to_ac(priv->adapter, tid);
  306. ac_down = priv->wmm.ac_down_graded_vals[ac];
  307. /* Send the index to tid array, picking from the array will be
  308. * taken care by dequeuing function
  309. */
  310. new_tid = ac_to_tid[ac_down][tid % 2];
  311. return new_tid;
  312. }
  313. /*
  314. * This function initializes the WMM state information and the
  315. * WMM data path queues.
  316. */
  317. void
  318. mwifiex_wmm_init(struct mwifiex_adapter *adapter)
  319. {
  320. int i, j;
  321. struct mwifiex_private *priv;
  322. for (j = 0; j < adapter->priv_num; ++j) {
  323. priv = adapter->priv[j];
  324. if (!priv)
  325. continue;
  326. for (i = 0; i < MAX_NUM_TID; ++i) {
  327. priv->aggr_prio_tbl[i].amsdu = tos_to_tid_inv[i];
  328. priv->aggr_prio_tbl[i].ampdu_ap = tos_to_tid_inv[i];
  329. priv->aggr_prio_tbl[i].ampdu_user = tos_to_tid_inv[i];
  330. priv->wmm.tid_tbl_ptr[i].ra_list_curr = NULL;
  331. }
  332. priv->aggr_prio_tbl[6].amsdu
  333. = priv->aggr_prio_tbl[6].ampdu_ap
  334. = priv->aggr_prio_tbl[6].ampdu_user
  335. = BA_STREAM_NOT_ALLOWED;
  336. priv->aggr_prio_tbl[7].amsdu = priv->aggr_prio_tbl[7].ampdu_ap
  337. = priv->aggr_prio_tbl[7].ampdu_user
  338. = BA_STREAM_NOT_ALLOWED;
  339. priv->add_ba_param.timeout = MWIFIEX_DEFAULT_BLOCK_ACK_TIMEOUT;
  340. priv->add_ba_param.tx_win_size = MWIFIEX_AMPDU_DEF_TXWINSIZE;
  341. priv->add_ba_param.rx_win_size = MWIFIEX_AMPDU_DEF_RXWINSIZE;
  342. atomic_set(&priv->wmm.tx_pkts_queued, 0);
  343. atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
  344. }
  345. }
  346. /*
  347. * This function checks if WMM Tx queue is empty.
  348. */
  349. int
  350. mwifiex_wmm_lists_empty(struct mwifiex_adapter *adapter)
  351. {
  352. int i;
  353. struct mwifiex_private *priv;
  354. for (i = 0; i < adapter->priv_num; ++i) {
  355. priv = adapter->priv[i];
  356. if (priv && atomic_read(&priv->wmm.tx_pkts_queued))
  357. return false;
  358. }
  359. return true;
  360. }
  361. /*
  362. * This function deletes all packets in an RA list node.
  363. *
  364. * The packet sent completion callback handler are called with
  365. * status failure, after they are dequeued to ensure proper
  366. * cleanup. The RA list node itself is freed at the end.
  367. */
  368. static void
  369. mwifiex_wmm_del_pkts_in_ralist_node(struct mwifiex_private *priv,
  370. struct mwifiex_ra_list_tbl *ra_list)
  371. {
  372. struct mwifiex_adapter *adapter = priv->adapter;
  373. struct sk_buff *skb, *tmp;
  374. skb_queue_walk_safe(&ra_list->skb_head, skb, tmp)
  375. mwifiex_write_data_complete(adapter, skb, -1);
  376. }
  377. /*
  378. * This function deletes all packets in an RA list.
  379. *
  380. * Each nodes in the RA list are freed individually first, and then
  381. * the RA list itself is freed.
  382. */
  383. static void
  384. mwifiex_wmm_del_pkts_in_ralist(struct mwifiex_private *priv,
  385. struct list_head *ra_list_head)
  386. {
  387. struct mwifiex_ra_list_tbl *ra_list;
  388. list_for_each_entry(ra_list, ra_list_head, list)
  389. mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list);
  390. }
  391. /*
  392. * This function deletes all packets in all RA lists.
  393. */
  394. static void mwifiex_wmm_cleanup_queues(struct mwifiex_private *priv)
  395. {
  396. int i;
  397. for (i = 0; i < MAX_NUM_TID; i++)
  398. mwifiex_wmm_del_pkts_in_ralist(priv, &priv->wmm.tid_tbl_ptr[i].
  399. ra_list);
  400. atomic_set(&priv->wmm.tx_pkts_queued, 0);
  401. atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
  402. }
  403. /*
  404. * This function deletes all route addresses from all RA lists.
  405. */
  406. static void mwifiex_wmm_delete_all_ralist(struct mwifiex_private *priv)
  407. {
  408. struct mwifiex_ra_list_tbl *ra_list, *tmp_node;
  409. int i;
  410. for (i = 0; i < MAX_NUM_TID; ++i) {
  411. dev_dbg(priv->adapter->dev,
  412. "info: ra_list: freeing buf for tid %d\n", i);
  413. list_for_each_entry_safe(ra_list, tmp_node,
  414. &priv->wmm.tid_tbl_ptr[i].ra_list,
  415. list) {
  416. list_del(&ra_list->list);
  417. kfree(ra_list);
  418. }
  419. INIT_LIST_HEAD(&priv->wmm.tid_tbl_ptr[i].ra_list);
  420. priv->wmm.tid_tbl_ptr[i].ra_list_curr = NULL;
  421. }
  422. }
  423. /*
  424. * This function cleans up the Tx and Rx queues.
  425. *
  426. * Cleanup includes -
  427. * - All packets in RA lists
  428. * - All entries in Rx reorder table
  429. * - All entries in Tx BA stream table
  430. * - MPA buffer (if required)
  431. * - All RA lists
  432. */
  433. void
  434. mwifiex_clean_txrx(struct mwifiex_private *priv)
  435. {
  436. unsigned long flags;
  437. mwifiex_11n_cleanup_reorder_tbl(priv);
  438. spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
  439. mwifiex_wmm_cleanup_queues(priv);
  440. mwifiex_11n_delete_all_tx_ba_stream_tbl(priv);
  441. if (priv->adapter->if_ops.cleanup_mpa_buf)
  442. priv->adapter->if_ops.cleanup_mpa_buf(priv->adapter);
  443. mwifiex_wmm_delete_all_ralist(priv);
  444. memcpy(tos_to_tid, ac_to_tid, sizeof(tos_to_tid));
  445. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
  446. }
  447. /*
  448. * This function retrieves a particular RA list node, matching with the
  449. * given TID and RA address.
  450. */
  451. static struct mwifiex_ra_list_tbl *
  452. mwifiex_wmm_get_ralist_node(struct mwifiex_private *priv, u8 tid,
  453. u8 *ra_addr)
  454. {
  455. struct mwifiex_ra_list_tbl *ra_list;
  456. list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[tid].ra_list,
  457. list) {
  458. if (!memcmp(ra_list->ra, ra_addr, ETH_ALEN))
  459. return ra_list;
  460. }
  461. return NULL;
  462. }
  463. /*
  464. * This function retrieves an RA list node for a given TID and
  465. * RA address pair.
  466. *
  467. * If no such node is found, a new node is added first and then
  468. * retrieved.
  469. */
  470. static struct mwifiex_ra_list_tbl *
  471. mwifiex_wmm_get_queue_raptr(struct mwifiex_private *priv, u8 tid, u8 *ra_addr)
  472. {
  473. struct mwifiex_ra_list_tbl *ra_list;
  474. ra_list = mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
  475. if (ra_list)
  476. return ra_list;
  477. mwifiex_ralist_add(priv, ra_addr);
  478. return mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
  479. }
  480. /*
  481. * This function checks if a particular RA list node exists in a given TID
  482. * table index.
  483. */
  484. int
  485. mwifiex_is_ralist_valid(struct mwifiex_private *priv,
  486. struct mwifiex_ra_list_tbl *ra_list, int ptr_index)
  487. {
  488. struct mwifiex_ra_list_tbl *rlist;
  489. list_for_each_entry(rlist, &priv->wmm.tid_tbl_ptr[ptr_index].ra_list,
  490. list) {
  491. if (rlist == ra_list)
  492. return true;
  493. }
  494. return false;
  495. }
  496. /*
  497. * This function adds a packet to WMM queue.
  498. *
  499. * In disconnected state the packet is immediately dropped and the
  500. * packet send completion callback is called with status failure.
  501. *
  502. * Otherwise, the correct RA list node is located and the packet
  503. * is queued at the list tail.
  504. */
  505. void
  506. mwifiex_wmm_add_buf_txqueue(struct mwifiex_private *priv,
  507. struct sk_buff *skb)
  508. {
  509. struct mwifiex_adapter *adapter = priv->adapter;
  510. u32 tid;
  511. struct mwifiex_ra_list_tbl *ra_list;
  512. u8 ra[ETH_ALEN], tid_down;
  513. unsigned long flags;
  514. if (!priv->media_connected) {
  515. dev_dbg(adapter->dev, "data: drop packet in disconnect\n");
  516. mwifiex_write_data_complete(adapter, skb, -1);
  517. return;
  518. }
  519. tid = skb->priority;
  520. spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
  521. tid_down = mwifiex_wmm_downgrade_tid(priv, tid);
  522. /* In case of infra as we have already created the list during
  523. association we just don't have to call get_queue_raptr, we will
  524. have only 1 raptr for a tid in case of infra */
  525. if (!mwifiex_queuing_ra_based(priv)) {
  526. if (!list_empty(&priv->wmm.tid_tbl_ptr[tid_down].ra_list))
  527. ra_list = list_first_entry(
  528. &priv->wmm.tid_tbl_ptr[tid_down].ra_list,
  529. struct mwifiex_ra_list_tbl, list);
  530. else
  531. ra_list = NULL;
  532. } else {
  533. memcpy(ra, skb->data, ETH_ALEN);
  534. if (ra[0] & 0x01)
  535. memset(ra, 0xff, ETH_ALEN);
  536. ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, ra);
  537. }
  538. if (!ra_list) {
  539. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
  540. mwifiex_write_data_complete(adapter, skb, -1);
  541. return;
  542. }
  543. skb_queue_tail(&ra_list->skb_head, skb);
  544. ra_list->total_pkts_size += skb->len;
  545. atomic_inc(&priv->wmm.tx_pkts_queued);
  546. if (atomic_read(&priv->wmm.highest_queued_prio) <
  547. tos_to_tid_inv[tid_down])
  548. atomic_set(&priv->wmm.highest_queued_prio,
  549. tos_to_tid_inv[tid_down]);
  550. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
  551. }
  552. /*
  553. * This function processes the get WMM status command response from firmware.
  554. *
  555. * The response may contain multiple TLVs -
  556. * - AC Queue status TLVs
  557. * - Current WMM Parameter IE TLV
  558. * - Admission Control action frame TLVs
  559. *
  560. * This function parses the TLVs and then calls further specific functions
  561. * to process any changes in the queue prioritize or state.
  562. */
  563. int mwifiex_ret_wmm_get_status(struct mwifiex_private *priv,
  564. const struct host_cmd_ds_command *resp)
  565. {
  566. u8 *curr = (u8 *) &resp->params.get_wmm_status;
  567. uint16_t resp_len = le16_to_cpu(resp->size), tlv_len;
  568. int valid = true;
  569. struct mwifiex_ie_types_data *tlv_hdr;
  570. struct mwifiex_ie_types_wmm_queue_status *tlv_wmm_qstatus;
  571. struct ieee_types_wmm_parameter *wmm_param_ie = NULL;
  572. struct mwifiex_wmm_ac_status *ac_status;
  573. dev_dbg(priv->adapter->dev, "info: WMM: WMM_GET_STATUS cmdresp received: %d\n",
  574. resp_len);
  575. while ((resp_len >= sizeof(tlv_hdr->header)) && valid) {
  576. tlv_hdr = (struct mwifiex_ie_types_data *) curr;
  577. tlv_len = le16_to_cpu(tlv_hdr->header.len);
  578. switch (le16_to_cpu(tlv_hdr->header.type)) {
  579. case TLV_TYPE_WMMQSTATUS:
  580. tlv_wmm_qstatus =
  581. (struct mwifiex_ie_types_wmm_queue_status *)
  582. tlv_hdr;
  583. dev_dbg(priv->adapter->dev,
  584. "info: CMD_RESP: WMM_GET_STATUS:"
  585. " QSTATUS TLV: %d, %d, %d\n",
  586. tlv_wmm_qstatus->queue_index,
  587. tlv_wmm_qstatus->flow_required,
  588. tlv_wmm_qstatus->disabled);
  589. ac_status = &priv->wmm.ac_status[tlv_wmm_qstatus->
  590. queue_index];
  591. ac_status->disabled = tlv_wmm_qstatus->disabled;
  592. ac_status->flow_required =
  593. tlv_wmm_qstatus->flow_required;
  594. ac_status->flow_created = tlv_wmm_qstatus->flow_created;
  595. break;
  596. case WLAN_EID_VENDOR_SPECIFIC:
  597. /*
  598. * Point the regular IEEE IE 2 bytes into the Marvell IE
  599. * and setup the IEEE IE type and length byte fields
  600. */
  601. wmm_param_ie =
  602. (struct ieee_types_wmm_parameter *) (curr +
  603. 2);
  604. wmm_param_ie->vend_hdr.len = (u8) tlv_len;
  605. wmm_param_ie->vend_hdr.element_id =
  606. WLAN_EID_VENDOR_SPECIFIC;
  607. dev_dbg(priv->adapter->dev,
  608. "info: CMD_RESP: WMM_GET_STATUS:"
  609. " WMM Parameter Set Count: %d\n",
  610. wmm_param_ie->qos_info_bitmap &
  611. IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK);
  612. memcpy((u8 *) &priv->curr_bss_params.bss_descriptor.
  613. wmm_ie, wmm_param_ie,
  614. wmm_param_ie->vend_hdr.len + 2);
  615. break;
  616. default:
  617. valid = false;
  618. break;
  619. }
  620. curr += (tlv_len + sizeof(tlv_hdr->header));
  621. resp_len -= (tlv_len + sizeof(tlv_hdr->header));
  622. }
  623. mwifiex_wmm_setup_queue_priorities(priv, wmm_param_ie);
  624. mwifiex_wmm_setup_ac_downgrade(priv);
  625. return 0;
  626. }
  627. /*
  628. * Callback handler from the command module to allow insertion of a WMM TLV.
  629. *
  630. * If the BSS we are associating to supports WMM, this function adds the
  631. * required WMM Information IE to the association request command buffer in
  632. * the form of a Marvell extended IEEE IE.
  633. */
  634. u32
  635. mwifiex_wmm_process_association_req(struct mwifiex_private *priv,
  636. u8 **assoc_buf,
  637. struct ieee_types_wmm_parameter *wmm_ie,
  638. struct ieee80211_ht_cap *ht_cap)
  639. {
  640. struct mwifiex_ie_types_wmm_param_set *wmm_tlv;
  641. u32 ret_len = 0;
  642. /* Null checks */
  643. if (!assoc_buf)
  644. return 0;
  645. if (!(*assoc_buf))
  646. return 0;
  647. if (!wmm_ie)
  648. return 0;
  649. dev_dbg(priv->adapter->dev,
  650. "info: WMM: process assoc req: bss->wmm_ie=%#x\n",
  651. wmm_ie->vend_hdr.element_id);
  652. if ((priv->wmm_required ||
  653. (ht_cap && (priv->adapter->config_bands & BAND_GN ||
  654. priv->adapter->config_bands & BAND_AN))) &&
  655. wmm_ie->vend_hdr.element_id == WLAN_EID_VENDOR_SPECIFIC) {
  656. wmm_tlv = (struct mwifiex_ie_types_wmm_param_set *) *assoc_buf;
  657. wmm_tlv->header.type = cpu_to_le16((u16) wmm_info_ie[0]);
  658. wmm_tlv->header.len = cpu_to_le16((u16) wmm_info_ie[1]);
  659. memcpy(wmm_tlv->wmm_ie, &wmm_info_ie[2],
  660. le16_to_cpu(wmm_tlv->header.len));
  661. if (wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD)
  662. memcpy((u8 *) (wmm_tlv->wmm_ie
  663. + le16_to_cpu(wmm_tlv->header.len)
  664. - sizeof(priv->wmm_qosinfo)),
  665. &priv->wmm_qosinfo, sizeof(priv->wmm_qosinfo));
  666. ret_len = sizeof(wmm_tlv->header)
  667. + le16_to_cpu(wmm_tlv->header.len);
  668. *assoc_buf += ret_len;
  669. }
  670. return ret_len;
  671. }
  672. /*
  673. * This function computes the time delay in the driver queues for a
  674. * given packet.
  675. *
  676. * When the packet is received at the OS/Driver interface, the current
  677. * time is set in the packet structure. The difference between the present
  678. * time and that received time is computed in this function and limited
  679. * based on pre-compiled limits in the driver.
  680. */
  681. u8
  682. mwifiex_wmm_compute_drv_pkt_delay(struct mwifiex_private *priv,
  683. const struct sk_buff *skb)
  684. {
  685. u8 ret_val;
  686. struct timeval out_tstamp, in_tstamp;
  687. u32 queue_delay;
  688. do_gettimeofday(&out_tstamp);
  689. in_tstamp = ktime_to_timeval(skb->tstamp);
  690. queue_delay = (out_tstamp.tv_sec - in_tstamp.tv_sec) * 1000;
  691. queue_delay += (out_tstamp.tv_usec - in_tstamp.tv_usec) / 1000;
  692. /*
  693. * Queue delay is passed as a uint8 in units of 2ms (ms shifted
  694. * by 1). Min value (other than 0) is therefore 2ms, max is 510ms.
  695. *
  696. * Pass max value if queue_delay is beyond the uint8 range
  697. */
  698. ret_val = (u8) (min(queue_delay, priv->wmm.drv_pkt_delay_max) >> 1);
  699. dev_dbg(priv->adapter->dev, "data: WMM: Pkt Delay: %d ms,"
  700. " %d ms sent to FW\n", queue_delay, ret_val);
  701. return ret_val;
  702. }
  703. /*
  704. * This function retrieves the highest priority RA list table pointer.
  705. */
  706. static struct mwifiex_ra_list_tbl *
  707. mwifiex_wmm_get_highest_priolist_ptr(struct mwifiex_adapter *adapter,
  708. struct mwifiex_private **priv, int *tid)
  709. {
  710. struct mwifiex_private *priv_tmp;
  711. struct mwifiex_ra_list_tbl *ptr, *head;
  712. struct mwifiex_bss_prio_node *bssprio_node, *bssprio_head;
  713. struct mwifiex_tid_tbl *tid_ptr;
  714. atomic_t *hqp;
  715. int is_list_empty;
  716. unsigned long flags;
  717. int i, j;
  718. for (j = adapter->priv_num - 1; j >= 0; --j) {
  719. spin_lock_irqsave(&adapter->bss_prio_tbl[j].bss_prio_lock,
  720. flags);
  721. is_list_empty = list_empty(&adapter->bss_prio_tbl[j]
  722. .bss_prio_head);
  723. spin_unlock_irqrestore(&adapter->bss_prio_tbl[j].bss_prio_lock,
  724. flags);
  725. if (is_list_empty)
  726. continue;
  727. if (adapter->bss_prio_tbl[j].bss_prio_cur ==
  728. (struct mwifiex_bss_prio_node *)
  729. &adapter->bss_prio_tbl[j].bss_prio_head) {
  730. bssprio_node =
  731. list_first_entry(&adapter->bss_prio_tbl[j]
  732. .bss_prio_head,
  733. struct mwifiex_bss_prio_node,
  734. list);
  735. bssprio_head = bssprio_node;
  736. } else {
  737. bssprio_node = adapter->bss_prio_tbl[j].bss_prio_cur;
  738. bssprio_head = bssprio_node;
  739. }
  740. do {
  741. priv_tmp = bssprio_node->priv;
  742. hqp = &priv_tmp->wmm.highest_queued_prio;
  743. for (i = atomic_read(hqp); i >= LOW_PRIO_TID; --i) {
  744. tid_ptr = &(priv_tmp)->wmm.
  745. tid_tbl_ptr[tos_to_tid[i]];
  746. spin_lock_irqsave(&tid_ptr->tid_tbl_lock,
  747. flags);
  748. is_list_empty =
  749. list_empty(&adapter->bss_prio_tbl[j]
  750. .bss_prio_head);
  751. spin_unlock_irqrestore(&tid_ptr->tid_tbl_lock,
  752. flags);
  753. if (is_list_empty)
  754. continue;
  755. /*
  756. * Always choose the next ra we transmitted
  757. * last time, this way we pick the ra's in
  758. * round robin fashion.
  759. */
  760. ptr = list_first_entry(
  761. &tid_ptr->ra_list_curr->list,
  762. struct mwifiex_ra_list_tbl,
  763. list);
  764. head = ptr;
  765. if (ptr == (struct mwifiex_ra_list_tbl *)
  766. &tid_ptr->ra_list) {
  767. /* Get next ra */
  768. ptr = list_first_entry(&ptr->list,
  769. struct mwifiex_ra_list_tbl, list);
  770. head = ptr;
  771. }
  772. do {
  773. is_list_empty =
  774. skb_queue_empty(&ptr->skb_head);
  775. if (!is_list_empty)
  776. goto found;
  777. /* Get next ra */
  778. ptr = list_first_entry(&ptr->list,
  779. struct mwifiex_ra_list_tbl,
  780. list);
  781. if (ptr ==
  782. (struct mwifiex_ra_list_tbl *)
  783. &tid_ptr->ra_list)
  784. ptr = list_first_entry(
  785. &ptr->list,
  786. struct mwifiex_ra_list_tbl,
  787. list);
  788. } while (ptr != head);
  789. }
  790. /* No packet at any TID for this priv. Mark as such
  791. * to skip checking TIDs for this priv (until pkt is
  792. * added).
  793. */
  794. atomic_set(hqp, NO_PKT_PRIO_TID);
  795. /* Get next bss priority node */
  796. bssprio_node = list_first_entry(&bssprio_node->list,
  797. struct mwifiex_bss_prio_node,
  798. list);
  799. if (bssprio_node ==
  800. (struct mwifiex_bss_prio_node *)
  801. &adapter->bss_prio_tbl[j].bss_prio_head)
  802. /* Get next bss priority node */
  803. bssprio_node = list_first_entry(
  804. &bssprio_node->list,
  805. struct mwifiex_bss_prio_node,
  806. list);
  807. } while (bssprio_node != bssprio_head);
  808. }
  809. return NULL;
  810. found:
  811. spin_lock_irqsave(&priv_tmp->wmm.ra_list_spinlock, flags);
  812. if (atomic_read(hqp) > i)
  813. atomic_set(hqp, i);
  814. spin_unlock_irqrestore(&priv_tmp->wmm.ra_list_spinlock, flags);
  815. *priv = priv_tmp;
  816. *tid = tos_to_tid[i];
  817. return ptr;
  818. }
  819. /*
  820. * This function checks if 11n aggregation is possible.
  821. */
  822. static int
  823. mwifiex_is_11n_aggragation_possible(struct mwifiex_private *priv,
  824. struct mwifiex_ra_list_tbl *ptr,
  825. int max_buf_size)
  826. {
  827. int count = 0, total_size = 0;
  828. struct sk_buff *skb, *tmp;
  829. skb_queue_walk_safe(&ptr->skb_head, skb, tmp) {
  830. total_size += skb->len;
  831. if (total_size >= max_buf_size)
  832. break;
  833. if (++count >= MIN_NUM_AMSDU)
  834. return true;
  835. }
  836. return false;
  837. }
  838. /*
  839. * This function sends a single packet to firmware for transmission.
  840. */
  841. static void
  842. mwifiex_send_single_packet(struct mwifiex_private *priv,
  843. struct mwifiex_ra_list_tbl *ptr, int ptr_index,
  844. unsigned long ra_list_flags)
  845. __releases(&priv->wmm.ra_list_spinlock)
  846. {
  847. struct sk_buff *skb, *skb_next;
  848. struct mwifiex_tx_param tx_param;
  849. struct mwifiex_adapter *adapter = priv->adapter;
  850. struct mwifiex_txinfo *tx_info;
  851. if (skb_queue_empty(&ptr->skb_head)) {
  852. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  853. ra_list_flags);
  854. dev_dbg(adapter->dev, "data: nothing to send\n");
  855. return;
  856. }
  857. skb = skb_dequeue(&ptr->skb_head);
  858. tx_info = MWIFIEX_SKB_TXCB(skb);
  859. dev_dbg(adapter->dev, "data: dequeuing the packet %p %p\n", ptr, skb);
  860. ptr->total_pkts_size -= skb->len;
  861. if (!skb_queue_empty(&ptr->skb_head))
  862. skb_next = skb_peek(&ptr->skb_head);
  863. else
  864. skb_next = NULL;
  865. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags);
  866. tx_param.next_pkt_len = ((skb_next) ? skb_next->len +
  867. sizeof(struct txpd) : 0);
  868. if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) {
  869. /* Queue the packet back at the head */
  870. spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
  871. if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
  872. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  873. ra_list_flags);
  874. mwifiex_write_data_complete(adapter, skb, -1);
  875. return;
  876. }
  877. skb_queue_tail(&ptr->skb_head, skb);
  878. ptr->total_pkts_size += skb->len;
  879. tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
  880. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  881. ra_list_flags);
  882. } else {
  883. spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
  884. if (mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
  885. priv->wmm.packets_out[ptr_index]++;
  886. priv->wmm.tid_tbl_ptr[ptr_index].ra_list_curr = ptr;
  887. }
  888. adapter->bss_prio_tbl[priv->bss_priority].bss_prio_cur =
  889. list_first_entry(
  890. &adapter->bss_prio_tbl[priv->bss_priority]
  891. .bss_prio_cur->list,
  892. struct mwifiex_bss_prio_node,
  893. list);
  894. atomic_dec(&priv->wmm.tx_pkts_queued);
  895. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  896. ra_list_flags);
  897. }
  898. }
  899. /*
  900. * This function checks if the first packet in the given RA list
  901. * is already processed or not.
  902. */
  903. static int
  904. mwifiex_is_ptr_processed(struct mwifiex_private *priv,
  905. struct mwifiex_ra_list_tbl *ptr)
  906. {
  907. struct sk_buff *skb;
  908. struct mwifiex_txinfo *tx_info;
  909. if (skb_queue_empty(&ptr->skb_head))
  910. return false;
  911. skb = skb_peek(&ptr->skb_head);
  912. tx_info = MWIFIEX_SKB_TXCB(skb);
  913. if (tx_info->flags & MWIFIEX_BUF_FLAG_REQUEUED_PKT)
  914. return true;
  915. return false;
  916. }
  917. /*
  918. * This function sends a single processed packet to firmware for
  919. * transmission.
  920. */
  921. static void
  922. mwifiex_send_processed_packet(struct mwifiex_private *priv,
  923. struct mwifiex_ra_list_tbl *ptr, int ptr_index,
  924. unsigned long ra_list_flags)
  925. __releases(&priv->wmm.ra_list_spinlock)
  926. {
  927. struct mwifiex_tx_param tx_param;
  928. struct mwifiex_adapter *adapter = priv->adapter;
  929. int ret = -1;
  930. struct sk_buff *skb, *skb_next;
  931. struct mwifiex_txinfo *tx_info;
  932. if (skb_queue_empty(&ptr->skb_head)) {
  933. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  934. ra_list_flags);
  935. return;
  936. }
  937. skb = skb_dequeue(&ptr->skb_head);
  938. if (!skb_queue_empty(&ptr->skb_head))
  939. skb_next = skb_peek(&ptr->skb_head);
  940. else
  941. skb_next = NULL;
  942. tx_info = MWIFIEX_SKB_TXCB(skb);
  943. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags);
  944. if (adapter->iface_type == MWIFIEX_USB) {
  945. adapter->data_sent = true;
  946. ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_USB_EP_DATA,
  947. skb, NULL);
  948. } else {
  949. tx_param.next_pkt_len =
  950. ((skb_next) ? skb_next->len +
  951. sizeof(struct txpd) : 0);
  952. ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_TYPE_DATA,
  953. skb, &tx_param);
  954. }
  955. switch (ret) {
  956. case -EBUSY:
  957. dev_dbg(adapter->dev, "data: -EBUSY is returned\n");
  958. spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
  959. if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
  960. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  961. ra_list_flags);
  962. mwifiex_write_data_complete(adapter, skb, -1);
  963. return;
  964. }
  965. skb_queue_tail(&ptr->skb_head, skb);
  966. tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
  967. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  968. ra_list_flags);
  969. break;
  970. case -1:
  971. adapter->data_sent = false;
  972. dev_err(adapter->dev, "host_to_card failed: %#x\n", ret);
  973. adapter->dbg.num_tx_host_to_card_failure++;
  974. mwifiex_write_data_complete(adapter, skb, ret);
  975. break;
  976. case -EINPROGRESS:
  977. adapter->data_sent = false;
  978. default:
  979. break;
  980. }
  981. if (ret != -EBUSY) {
  982. spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
  983. if (mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
  984. priv->wmm.packets_out[ptr_index]++;
  985. priv->wmm.tid_tbl_ptr[ptr_index].ra_list_curr = ptr;
  986. }
  987. adapter->bss_prio_tbl[priv->bss_priority].bss_prio_cur =
  988. list_first_entry(
  989. &adapter->bss_prio_tbl[priv->bss_priority]
  990. .bss_prio_cur->list,
  991. struct mwifiex_bss_prio_node,
  992. list);
  993. atomic_dec(&priv->wmm.tx_pkts_queued);
  994. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
  995. ra_list_flags);
  996. }
  997. }
  998. /*
  999. * This function dequeues a packet from the highest priority list
  1000. * and transmits it.
  1001. */
  1002. static int
  1003. mwifiex_dequeue_tx_packet(struct mwifiex_adapter *adapter)
  1004. {
  1005. struct mwifiex_ra_list_tbl *ptr;
  1006. struct mwifiex_private *priv = NULL;
  1007. int ptr_index = 0;
  1008. u8 ra[ETH_ALEN];
  1009. int tid_del = 0, tid = 0;
  1010. unsigned long flags;
  1011. ptr = mwifiex_wmm_get_highest_priolist_ptr(adapter, &priv, &ptr_index);
  1012. if (!ptr)
  1013. return -1;
  1014. tid = mwifiex_get_tid(ptr);
  1015. dev_dbg(adapter->dev, "data: tid=%d\n", tid);
  1016. spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
  1017. if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
  1018. spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
  1019. return -1;
  1020. }
  1021. if (mwifiex_is_ptr_processed(priv, ptr)) {
  1022. mwifiex_send_processed_packet(priv, ptr, ptr_index, flags);
  1023. /* ra_list_spinlock has been freed in
  1024. mwifiex_send_processed_packet() */
  1025. return 0;
  1026. }
  1027. if (!ptr->is_11n_enabled ||
  1028. mwifiex_is_ba_stream_setup(priv, ptr, tid) ||
  1029. ((priv->sec_info.wpa_enabled ||
  1030. priv->sec_info.wpa2_enabled) &&
  1031. !priv->wpa_is_gtk_set)) {
  1032. mwifiex_send_single_packet(priv, ptr, ptr_index, flags);
  1033. /* ra_list_spinlock has been freed in
  1034. mwifiex_send_single_packet() */
  1035. } else {
  1036. if (mwifiex_is_ampdu_allowed(priv, tid)) {
  1037. if (mwifiex_space_avail_for_new_ba_stream(adapter)) {
  1038. mwifiex_create_ba_tbl(priv, ptr->ra, tid,
  1039. BA_SETUP_INPROGRESS);
  1040. mwifiex_send_addba(priv, tid, ptr->ra);
  1041. } else if (mwifiex_find_stream_to_delete
  1042. (priv, tid, &tid_del, ra)) {
  1043. mwifiex_create_ba_tbl(priv, ptr->ra, tid,
  1044. BA_SETUP_INPROGRESS);
  1045. mwifiex_send_delba(priv, tid_del, ra, 1);
  1046. }
  1047. }
  1048. if (mwifiex_is_amsdu_allowed(priv, tid) &&
  1049. mwifiex_is_11n_aggragation_possible(priv, ptr,
  1050. adapter->tx_buf_size))
  1051. mwifiex_11n_aggregate_pkt(priv, ptr, INTF_HEADER_LEN,
  1052. ptr_index, flags);
  1053. /* ra_list_spinlock has been freed in
  1054. mwifiex_11n_aggregate_pkt() */
  1055. else
  1056. mwifiex_send_single_packet(priv, ptr, ptr_index, flags);
  1057. /* ra_list_spinlock has been freed in
  1058. mwifiex_send_single_packet() */
  1059. }
  1060. return 0;
  1061. }
  1062. /*
  1063. * This function transmits the highest priority packet awaiting in the
  1064. * WMM Queues.
  1065. */
  1066. void
  1067. mwifiex_wmm_process_tx(struct mwifiex_adapter *adapter)
  1068. {
  1069. do {
  1070. /* Check if busy */
  1071. if (adapter->data_sent || adapter->tx_lock_flag)
  1072. break;
  1073. if (mwifiex_dequeue_tx_packet(adapter))
  1074. break;
  1075. } while (!mwifiex_wmm_lists_empty(adapter));
  1076. }