fork.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/mnt_namespace.h>
  19. #include <linux/personality.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/sem.h>
  22. #include <linux/file.h>
  23. #include <linux/key.h>
  24. #include <linux/binfmts.h>
  25. #include <linux/mman.h>
  26. #include <linux/fs.h>
  27. #include <linux/nsproxy.h>
  28. #include <linux/capability.h>
  29. #include <linux/cpu.h>
  30. #include <linux/cgroup.h>
  31. #include <linux/security.h>
  32. #include <linux/swap.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/jiffies.h>
  35. #include <linux/futex.h>
  36. #include <linux/task_io_accounting_ops.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/mount.h>
  40. #include <linux/audit.h>
  41. #include <linux/profile.h>
  42. #include <linux/rmap.h>
  43. #include <linux/acct.h>
  44. #include <linux/tsacct_kern.h>
  45. #include <linux/cn_proc.h>
  46. #include <linux/freezer.h>
  47. #include <linux/delayacct.h>
  48. #include <linux/taskstats_kern.h>
  49. #include <linux/random.h>
  50. #include <linux/tty.h>
  51. #include <linux/proc_fs.h>
  52. #include <linux/blkdev.h>
  53. #include <asm/pgtable.h>
  54. #include <asm/pgalloc.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/cacheflush.h>
  58. #include <asm/tlbflush.h>
  59. /*
  60. * Protected counters by write_lock_irq(&tasklist_lock)
  61. */
  62. unsigned long total_forks; /* Handle normal Linux uptimes. */
  63. int nr_threads; /* The idle threads do not count.. */
  64. int max_threads; /* tunable limit on nr_threads */
  65. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  66. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  67. int nr_processes(void)
  68. {
  69. int cpu;
  70. int total = 0;
  71. for_each_online_cpu(cpu)
  72. total += per_cpu(process_counts, cpu);
  73. return total;
  74. }
  75. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  76. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  77. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  78. static struct kmem_cache *task_struct_cachep;
  79. #endif
  80. /* SLAB cache for signal_struct structures (tsk->signal) */
  81. static struct kmem_cache *signal_cachep;
  82. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  83. struct kmem_cache *sighand_cachep;
  84. /* SLAB cache for files_struct structures (tsk->files) */
  85. struct kmem_cache *files_cachep;
  86. /* SLAB cache for fs_struct structures (tsk->fs) */
  87. struct kmem_cache *fs_cachep;
  88. /* SLAB cache for vm_area_struct structures */
  89. struct kmem_cache *vm_area_cachep;
  90. /* SLAB cache for mm_struct structures (tsk->mm) */
  91. static struct kmem_cache *mm_cachep;
  92. void free_task(struct task_struct *tsk)
  93. {
  94. prop_local_destroy_single(&tsk->dirties);
  95. free_thread_info(tsk->stack);
  96. rt_mutex_debug_task_free(tsk);
  97. free_task_struct(tsk);
  98. }
  99. EXPORT_SYMBOL(free_task);
  100. void __put_task_struct(struct task_struct *tsk)
  101. {
  102. WARN_ON(!tsk->exit_state);
  103. WARN_ON(atomic_read(&tsk->usage));
  104. WARN_ON(tsk == current);
  105. security_task_free(tsk);
  106. free_uid(tsk->user);
  107. put_group_info(tsk->group_info);
  108. delayacct_tsk_free(tsk);
  109. if (!profile_handoff_task(tsk))
  110. free_task(tsk);
  111. }
  112. void __init fork_init(unsigned long mempages)
  113. {
  114. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  115. #ifndef ARCH_MIN_TASKALIGN
  116. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  117. #endif
  118. /* create a slab on which task_structs can be allocated */
  119. task_struct_cachep =
  120. kmem_cache_create("task_struct", sizeof(struct task_struct),
  121. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
  122. #endif
  123. /*
  124. * The default maximum number of threads is set to a safe
  125. * value: the thread structures can take up at most half
  126. * of memory.
  127. */
  128. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  129. /*
  130. * we need to allow at least 20 threads to boot a system
  131. */
  132. if(max_threads < 20)
  133. max_threads = 20;
  134. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  135. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  136. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  137. init_task.signal->rlim[RLIMIT_NPROC];
  138. }
  139. static struct task_struct *dup_task_struct(struct task_struct *orig)
  140. {
  141. struct task_struct *tsk;
  142. struct thread_info *ti;
  143. int err;
  144. prepare_to_copy(orig);
  145. tsk = alloc_task_struct();
  146. if (!tsk)
  147. return NULL;
  148. ti = alloc_thread_info(tsk);
  149. if (!ti) {
  150. free_task_struct(tsk);
  151. return NULL;
  152. }
  153. *tsk = *orig;
  154. tsk->stack = ti;
  155. err = prop_local_init_single(&tsk->dirties);
  156. if (err) {
  157. free_thread_info(ti);
  158. free_task_struct(tsk);
  159. return NULL;
  160. }
  161. setup_thread_stack(tsk, orig);
  162. #ifdef CONFIG_CC_STACKPROTECTOR
  163. tsk->stack_canary = get_random_int();
  164. #endif
  165. /* One for us, one for whoever does the "release_task()" (usually parent) */
  166. atomic_set(&tsk->usage,2);
  167. atomic_set(&tsk->fs_excl, 0);
  168. #ifdef CONFIG_BLK_DEV_IO_TRACE
  169. tsk->btrace_seq = 0;
  170. #endif
  171. tsk->splice_pipe = NULL;
  172. return tsk;
  173. }
  174. #ifdef CONFIG_MMU
  175. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  176. {
  177. struct vm_area_struct *mpnt, *tmp, **pprev;
  178. struct rb_node **rb_link, *rb_parent;
  179. int retval;
  180. unsigned long charge;
  181. struct mempolicy *pol;
  182. down_write(&oldmm->mmap_sem);
  183. flush_cache_dup_mm(oldmm);
  184. /*
  185. * Not linked in yet - no deadlock potential:
  186. */
  187. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  188. mm->locked_vm = 0;
  189. mm->mmap = NULL;
  190. mm->mmap_cache = NULL;
  191. mm->free_area_cache = oldmm->mmap_base;
  192. mm->cached_hole_size = ~0UL;
  193. mm->map_count = 0;
  194. cpus_clear(mm->cpu_vm_mask);
  195. mm->mm_rb = RB_ROOT;
  196. rb_link = &mm->mm_rb.rb_node;
  197. rb_parent = NULL;
  198. pprev = &mm->mmap;
  199. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  200. struct file *file;
  201. if (mpnt->vm_flags & VM_DONTCOPY) {
  202. long pages = vma_pages(mpnt);
  203. mm->total_vm -= pages;
  204. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  205. -pages);
  206. continue;
  207. }
  208. charge = 0;
  209. if (mpnt->vm_flags & VM_ACCOUNT) {
  210. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  211. if (security_vm_enough_memory(len))
  212. goto fail_nomem;
  213. charge = len;
  214. }
  215. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  216. if (!tmp)
  217. goto fail_nomem;
  218. *tmp = *mpnt;
  219. pol = mpol_copy(vma_policy(mpnt));
  220. retval = PTR_ERR(pol);
  221. if (IS_ERR(pol))
  222. goto fail_nomem_policy;
  223. vma_set_policy(tmp, pol);
  224. tmp->vm_flags &= ~VM_LOCKED;
  225. tmp->vm_mm = mm;
  226. tmp->vm_next = NULL;
  227. anon_vma_link(tmp);
  228. file = tmp->vm_file;
  229. if (file) {
  230. struct inode *inode = file->f_path.dentry->d_inode;
  231. get_file(file);
  232. if (tmp->vm_flags & VM_DENYWRITE)
  233. atomic_dec(&inode->i_writecount);
  234. /* insert tmp into the share list, just after mpnt */
  235. spin_lock(&file->f_mapping->i_mmap_lock);
  236. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  237. flush_dcache_mmap_lock(file->f_mapping);
  238. vma_prio_tree_add(tmp, mpnt);
  239. flush_dcache_mmap_unlock(file->f_mapping);
  240. spin_unlock(&file->f_mapping->i_mmap_lock);
  241. }
  242. /*
  243. * Link in the new vma and copy the page table entries.
  244. */
  245. *pprev = tmp;
  246. pprev = &tmp->vm_next;
  247. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  248. rb_link = &tmp->vm_rb.rb_right;
  249. rb_parent = &tmp->vm_rb;
  250. mm->map_count++;
  251. retval = copy_page_range(mm, oldmm, mpnt);
  252. if (tmp->vm_ops && tmp->vm_ops->open)
  253. tmp->vm_ops->open(tmp);
  254. if (retval)
  255. goto out;
  256. }
  257. /* a new mm has just been created */
  258. arch_dup_mmap(oldmm, mm);
  259. retval = 0;
  260. out:
  261. up_write(&mm->mmap_sem);
  262. flush_tlb_mm(oldmm);
  263. up_write(&oldmm->mmap_sem);
  264. return retval;
  265. fail_nomem_policy:
  266. kmem_cache_free(vm_area_cachep, tmp);
  267. fail_nomem:
  268. retval = -ENOMEM;
  269. vm_unacct_memory(charge);
  270. goto out;
  271. }
  272. static inline int mm_alloc_pgd(struct mm_struct * mm)
  273. {
  274. mm->pgd = pgd_alloc(mm);
  275. if (unlikely(!mm->pgd))
  276. return -ENOMEM;
  277. return 0;
  278. }
  279. static inline void mm_free_pgd(struct mm_struct * mm)
  280. {
  281. pgd_free(mm, mm->pgd);
  282. }
  283. #else
  284. #define dup_mmap(mm, oldmm) (0)
  285. #define mm_alloc_pgd(mm) (0)
  286. #define mm_free_pgd(mm)
  287. #endif /* CONFIG_MMU */
  288. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  289. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  290. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  291. #include <linux/init_task.h>
  292. static struct mm_struct * mm_init(struct mm_struct * mm)
  293. {
  294. atomic_set(&mm->mm_users, 1);
  295. atomic_set(&mm->mm_count, 1);
  296. init_rwsem(&mm->mmap_sem);
  297. INIT_LIST_HEAD(&mm->mmlist);
  298. mm->flags = (current->mm) ? current->mm->flags
  299. : MMF_DUMP_FILTER_DEFAULT;
  300. mm->core_waiters = 0;
  301. mm->nr_ptes = 0;
  302. set_mm_counter(mm, file_rss, 0);
  303. set_mm_counter(mm, anon_rss, 0);
  304. spin_lock_init(&mm->page_table_lock);
  305. rwlock_init(&mm->ioctx_list_lock);
  306. mm->ioctx_list = NULL;
  307. mm->free_area_cache = TASK_UNMAPPED_BASE;
  308. mm->cached_hole_size = ~0UL;
  309. if (likely(!mm_alloc_pgd(mm))) {
  310. mm->def_flags = 0;
  311. return mm;
  312. }
  313. free_mm(mm);
  314. return NULL;
  315. }
  316. /*
  317. * Allocate and initialize an mm_struct.
  318. */
  319. struct mm_struct * mm_alloc(void)
  320. {
  321. struct mm_struct * mm;
  322. mm = allocate_mm();
  323. if (mm) {
  324. memset(mm, 0, sizeof(*mm));
  325. mm = mm_init(mm);
  326. }
  327. return mm;
  328. }
  329. /*
  330. * Called when the last reference to the mm
  331. * is dropped: either by a lazy thread or by
  332. * mmput. Free the page directory and the mm.
  333. */
  334. void fastcall __mmdrop(struct mm_struct *mm)
  335. {
  336. BUG_ON(mm == &init_mm);
  337. mm_free_pgd(mm);
  338. destroy_context(mm);
  339. free_mm(mm);
  340. }
  341. EXPORT_SYMBOL_GPL(__mmdrop);
  342. /*
  343. * Decrement the use count and release all resources for an mm.
  344. */
  345. void mmput(struct mm_struct *mm)
  346. {
  347. might_sleep();
  348. if (atomic_dec_and_test(&mm->mm_users)) {
  349. exit_aio(mm);
  350. exit_mmap(mm);
  351. if (!list_empty(&mm->mmlist)) {
  352. spin_lock(&mmlist_lock);
  353. list_del(&mm->mmlist);
  354. spin_unlock(&mmlist_lock);
  355. }
  356. put_swap_token(mm);
  357. mmdrop(mm);
  358. }
  359. }
  360. EXPORT_SYMBOL_GPL(mmput);
  361. /**
  362. * get_task_mm - acquire a reference to the task's mm
  363. *
  364. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  365. * this kernel workthread has transiently adopted a user mm with use_mm,
  366. * to do its AIO) is not set and if so returns a reference to it, after
  367. * bumping up the use count. User must release the mm via mmput()
  368. * after use. Typically used by /proc and ptrace.
  369. */
  370. struct mm_struct *get_task_mm(struct task_struct *task)
  371. {
  372. struct mm_struct *mm;
  373. task_lock(task);
  374. mm = task->mm;
  375. if (mm) {
  376. if (task->flags & PF_BORROWED_MM)
  377. mm = NULL;
  378. else
  379. atomic_inc(&mm->mm_users);
  380. }
  381. task_unlock(task);
  382. return mm;
  383. }
  384. EXPORT_SYMBOL_GPL(get_task_mm);
  385. /* Please note the differences between mmput and mm_release.
  386. * mmput is called whenever we stop holding onto a mm_struct,
  387. * error success whatever.
  388. *
  389. * mm_release is called after a mm_struct has been removed
  390. * from the current process.
  391. *
  392. * This difference is important for error handling, when we
  393. * only half set up a mm_struct for a new process and need to restore
  394. * the old one. Because we mmput the new mm_struct before
  395. * restoring the old one. . .
  396. * Eric Biederman 10 January 1998
  397. */
  398. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  399. {
  400. struct completion *vfork_done = tsk->vfork_done;
  401. /* Get rid of any cached register state */
  402. deactivate_mm(tsk, mm);
  403. /* notify parent sleeping on vfork() */
  404. if (vfork_done) {
  405. tsk->vfork_done = NULL;
  406. complete(vfork_done);
  407. }
  408. /*
  409. * If we're exiting normally, clear a user-space tid field if
  410. * requested. We leave this alone when dying by signal, to leave
  411. * the value intact in a core dump, and to save the unnecessary
  412. * trouble otherwise. Userland only wants this done for a sys_exit.
  413. */
  414. if (tsk->clear_child_tid
  415. && !(tsk->flags & PF_SIGNALED)
  416. && atomic_read(&mm->mm_users) > 1) {
  417. u32 __user * tidptr = tsk->clear_child_tid;
  418. tsk->clear_child_tid = NULL;
  419. /*
  420. * We don't check the error code - if userspace has
  421. * not set up a proper pointer then tough luck.
  422. */
  423. put_user(0, tidptr);
  424. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  425. }
  426. }
  427. /*
  428. * Allocate a new mm structure and copy contents from the
  429. * mm structure of the passed in task structure.
  430. */
  431. static struct mm_struct *dup_mm(struct task_struct *tsk)
  432. {
  433. struct mm_struct *mm, *oldmm = current->mm;
  434. int err;
  435. if (!oldmm)
  436. return NULL;
  437. mm = allocate_mm();
  438. if (!mm)
  439. goto fail_nomem;
  440. memcpy(mm, oldmm, sizeof(*mm));
  441. /* Initializing for Swap token stuff */
  442. mm->token_priority = 0;
  443. mm->last_interval = 0;
  444. if (!mm_init(mm))
  445. goto fail_nomem;
  446. if (init_new_context(tsk, mm))
  447. goto fail_nocontext;
  448. err = dup_mmap(mm, oldmm);
  449. if (err)
  450. goto free_pt;
  451. mm->hiwater_rss = get_mm_rss(mm);
  452. mm->hiwater_vm = mm->total_vm;
  453. return mm;
  454. free_pt:
  455. mmput(mm);
  456. fail_nomem:
  457. return NULL;
  458. fail_nocontext:
  459. /*
  460. * If init_new_context() failed, we cannot use mmput() to free the mm
  461. * because it calls destroy_context()
  462. */
  463. mm_free_pgd(mm);
  464. free_mm(mm);
  465. return NULL;
  466. }
  467. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  468. {
  469. struct mm_struct * mm, *oldmm;
  470. int retval;
  471. tsk->min_flt = tsk->maj_flt = 0;
  472. tsk->nvcsw = tsk->nivcsw = 0;
  473. tsk->mm = NULL;
  474. tsk->active_mm = NULL;
  475. /*
  476. * Are we cloning a kernel thread?
  477. *
  478. * We need to steal a active VM for that..
  479. */
  480. oldmm = current->mm;
  481. if (!oldmm)
  482. return 0;
  483. if (clone_flags & CLONE_VM) {
  484. atomic_inc(&oldmm->mm_users);
  485. mm = oldmm;
  486. goto good_mm;
  487. }
  488. retval = -ENOMEM;
  489. mm = dup_mm(tsk);
  490. if (!mm)
  491. goto fail_nomem;
  492. good_mm:
  493. /* Initializing for Swap token stuff */
  494. mm->token_priority = 0;
  495. mm->last_interval = 0;
  496. tsk->mm = mm;
  497. tsk->active_mm = mm;
  498. return 0;
  499. fail_nomem:
  500. return retval;
  501. }
  502. static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  503. {
  504. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  505. /* We don't need to lock fs - think why ;-) */
  506. if (fs) {
  507. atomic_set(&fs->count, 1);
  508. rwlock_init(&fs->lock);
  509. fs->umask = old->umask;
  510. read_lock(&old->lock);
  511. fs->rootmnt = mntget(old->rootmnt);
  512. fs->root = dget(old->root);
  513. fs->pwdmnt = mntget(old->pwdmnt);
  514. fs->pwd = dget(old->pwd);
  515. if (old->altroot) {
  516. fs->altrootmnt = mntget(old->altrootmnt);
  517. fs->altroot = dget(old->altroot);
  518. } else {
  519. fs->altrootmnt = NULL;
  520. fs->altroot = NULL;
  521. }
  522. read_unlock(&old->lock);
  523. }
  524. return fs;
  525. }
  526. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  527. {
  528. return __copy_fs_struct(old);
  529. }
  530. EXPORT_SYMBOL_GPL(copy_fs_struct);
  531. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  532. {
  533. if (clone_flags & CLONE_FS) {
  534. atomic_inc(&current->fs->count);
  535. return 0;
  536. }
  537. tsk->fs = __copy_fs_struct(current->fs);
  538. if (!tsk->fs)
  539. return -ENOMEM;
  540. return 0;
  541. }
  542. static int count_open_files(struct fdtable *fdt)
  543. {
  544. int size = fdt->max_fds;
  545. int i;
  546. /* Find the last open fd */
  547. for (i = size/(8*sizeof(long)); i > 0; ) {
  548. if (fdt->open_fds->fds_bits[--i])
  549. break;
  550. }
  551. i = (i+1) * 8 * sizeof(long);
  552. return i;
  553. }
  554. static struct files_struct *alloc_files(void)
  555. {
  556. struct files_struct *newf;
  557. struct fdtable *fdt;
  558. newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
  559. if (!newf)
  560. goto out;
  561. atomic_set(&newf->count, 1);
  562. spin_lock_init(&newf->file_lock);
  563. newf->next_fd = 0;
  564. fdt = &newf->fdtab;
  565. fdt->max_fds = NR_OPEN_DEFAULT;
  566. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  567. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  568. fdt->fd = &newf->fd_array[0];
  569. INIT_RCU_HEAD(&fdt->rcu);
  570. fdt->next = NULL;
  571. rcu_assign_pointer(newf->fdt, fdt);
  572. out:
  573. return newf;
  574. }
  575. /*
  576. * Allocate a new files structure and copy contents from the
  577. * passed in files structure.
  578. * errorp will be valid only when the returned files_struct is NULL.
  579. */
  580. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  581. {
  582. struct files_struct *newf;
  583. struct file **old_fds, **new_fds;
  584. int open_files, size, i;
  585. struct fdtable *old_fdt, *new_fdt;
  586. *errorp = -ENOMEM;
  587. newf = alloc_files();
  588. if (!newf)
  589. goto out;
  590. spin_lock(&oldf->file_lock);
  591. old_fdt = files_fdtable(oldf);
  592. new_fdt = files_fdtable(newf);
  593. open_files = count_open_files(old_fdt);
  594. /*
  595. * Check whether we need to allocate a larger fd array and fd set.
  596. * Note: we're not a clone task, so the open count won't change.
  597. */
  598. if (open_files > new_fdt->max_fds) {
  599. new_fdt->max_fds = 0;
  600. spin_unlock(&oldf->file_lock);
  601. spin_lock(&newf->file_lock);
  602. *errorp = expand_files(newf, open_files-1);
  603. spin_unlock(&newf->file_lock);
  604. if (*errorp < 0)
  605. goto out_release;
  606. new_fdt = files_fdtable(newf);
  607. /*
  608. * Reacquire the oldf lock and a pointer to its fd table
  609. * who knows it may have a new bigger fd table. We need
  610. * the latest pointer.
  611. */
  612. spin_lock(&oldf->file_lock);
  613. old_fdt = files_fdtable(oldf);
  614. }
  615. old_fds = old_fdt->fd;
  616. new_fds = new_fdt->fd;
  617. memcpy(new_fdt->open_fds->fds_bits,
  618. old_fdt->open_fds->fds_bits, open_files/8);
  619. memcpy(new_fdt->close_on_exec->fds_bits,
  620. old_fdt->close_on_exec->fds_bits, open_files/8);
  621. for (i = open_files; i != 0; i--) {
  622. struct file *f = *old_fds++;
  623. if (f) {
  624. get_file(f);
  625. } else {
  626. /*
  627. * The fd may be claimed in the fd bitmap but not yet
  628. * instantiated in the files array if a sibling thread
  629. * is partway through open(). So make sure that this
  630. * fd is available to the new process.
  631. */
  632. FD_CLR(open_files - i, new_fdt->open_fds);
  633. }
  634. rcu_assign_pointer(*new_fds++, f);
  635. }
  636. spin_unlock(&oldf->file_lock);
  637. /* compute the remainder to be cleared */
  638. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  639. /* This is long word aligned thus could use a optimized version */
  640. memset(new_fds, 0, size);
  641. if (new_fdt->max_fds > open_files) {
  642. int left = (new_fdt->max_fds-open_files)/8;
  643. int start = open_files / (8 * sizeof(unsigned long));
  644. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  645. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  646. }
  647. return newf;
  648. out_release:
  649. kmem_cache_free(files_cachep, newf);
  650. out:
  651. return NULL;
  652. }
  653. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  654. {
  655. struct files_struct *oldf, *newf;
  656. int error = 0;
  657. /*
  658. * A background process may not have any files ...
  659. */
  660. oldf = current->files;
  661. if (!oldf)
  662. goto out;
  663. if (clone_flags & CLONE_FILES) {
  664. atomic_inc(&oldf->count);
  665. goto out;
  666. }
  667. /*
  668. * Note: we may be using current for both targets (See exec.c)
  669. * This works because we cache current->files (old) as oldf. Don't
  670. * break this.
  671. */
  672. tsk->files = NULL;
  673. newf = dup_fd(oldf, &error);
  674. if (!newf)
  675. goto out;
  676. tsk->files = newf;
  677. error = 0;
  678. out:
  679. return error;
  680. }
  681. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  682. {
  683. #ifdef CONFIG_BLOCK
  684. struct io_context *ioc = current->io_context;
  685. if (!ioc)
  686. return 0;
  687. /*
  688. * Share io context with parent, if CLONE_IO is set
  689. */
  690. if (clone_flags & CLONE_IO) {
  691. tsk->io_context = ioc_task_link(ioc);
  692. if (unlikely(!tsk->io_context))
  693. return -ENOMEM;
  694. } else if (ioprio_valid(ioc->ioprio)) {
  695. tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
  696. if (unlikely(!tsk->io_context))
  697. return -ENOMEM;
  698. tsk->io_context->ioprio = ioc->ioprio;
  699. }
  700. #endif
  701. return 0;
  702. }
  703. /*
  704. * Helper to unshare the files of the current task.
  705. * We don't want to expose copy_files internals to
  706. * the exec layer of the kernel.
  707. */
  708. int unshare_files(void)
  709. {
  710. struct files_struct *files = current->files;
  711. int rc;
  712. BUG_ON(!files);
  713. /* This can race but the race causes us to copy when we don't
  714. need to and drop the copy */
  715. if(atomic_read(&files->count) == 1)
  716. {
  717. atomic_inc(&files->count);
  718. return 0;
  719. }
  720. rc = copy_files(0, current);
  721. if(rc)
  722. current->files = files;
  723. return rc;
  724. }
  725. EXPORT_SYMBOL(unshare_files);
  726. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  727. {
  728. struct sighand_struct *sig;
  729. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  730. atomic_inc(&current->sighand->count);
  731. return 0;
  732. }
  733. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  734. rcu_assign_pointer(tsk->sighand, sig);
  735. if (!sig)
  736. return -ENOMEM;
  737. atomic_set(&sig->count, 1);
  738. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  739. return 0;
  740. }
  741. void __cleanup_sighand(struct sighand_struct *sighand)
  742. {
  743. if (atomic_dec_and_test(&sighand->count))
  744. kmem_cache_free(sighand_cachep, sighand);
  745. }
  746. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  747. {
  748. struct signal_struct *sig;
  749. int ret;
  750. if (clone_flags & CLONE_THREAD) {
  751. atomic_inc(&current->signal->count);
  752. atomic_inc(&current->signal->live);
  753. return 0;
  754. }
  755. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  756. tsk->signal = sig;
  757. if (!sig)
  758. return -ENOMEM;
  759. ret = copy_thread_group_keys(tsk);
  760. if (ret < 0) {
  761. kmem_cache_free(signal_cachep, sig);
  762. return ret;
  763. }
  764. atomic_set(&sig->count, 1);
  765. atomic_set(&sig->live, 1);
  766. init_waitqueue_head(&sig->wait_chldexit);
  767. sig->flags = 0;
  768. sig->group_exit_code = 0;
  769. sig->group_exit_task = NULL;
  770. sig->group_stop_count = 0;
  771. sig->curr_target = NULL;
  772. init_sigpending(&sig->shared_pending);
  773. INIT_LIST_HEAD(&sig->posix_timers);
  774. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  775. sig->it_real_incr.tv64 = 0;
  776. sig->real_timer.function = it_real_fn;
  777. sig->tsk = tsk;
  778. sig->it_virt_expires = cputime_zero;
  779. sig->it_virt_incr = cputime_zero;
  780. sig->it_prof_expires = cputime_zero;
  781. sig->it_prof_incr = cputime_zero;
  782. sig->leader = 0; /* session leadership doesn't inherit */
  783. sig->tty_old_pgrp = NULL;
  784. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  785. sig->gtime = cputime_zero;
  786. sig->cgtime = cputime_zero;
  787. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  788. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  789. sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
  790. sig->sum_sched_runtime = 0;
  791. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  792. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  793. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  794. taskstats_tgid_init(sig);
  795. task_lock(current->group_leader);
  796. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  797. task_unlock(current->group_leader);
  798. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  799. /*
  800. * New sole thread in the process gets an expiry time
  801. * of the whole CPU time limit.
  802. */
  803. tsk->it_prof_expires =
  804. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  805. }
  806. acct_init_pacct(&sig->pacct);
  807. tty_audit_fork(sig);
  808. return 0;
  809. }
  810. void __cleanup_signal(struct signal_struct *sig)
  811. {
  812. exit_thread_group_keys(sig);
  813. kmem_cache_free(signal_cachep, sig);
  814. }
  815. static void cleanup_signal(struct task_struct *tsk)
  816. {
  817. struct signal_struct *sig = tsk->signal;
  818. atomic_dec(&sig->live);
  819. if (atomic_dec_and_test(&sig->count))
  820. __cleanup_signal(sig);
  821. }
  822. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  823. {
  824. unsigned long new_flags = p->flags;
  825. new_flags &= ~PF_SUPERPRIV;
  826. new_flags |= PF_FORKNOEXEC;
  827. if (!(clone_flags & CLONE_PTRACE))
  828. p->ptrace = 0;
  829. p->flags = new_flags;
  830. clear_freeze_flag(p);
  831. }
  832. asmlinkage long sys_set_tid_address(int __user *tidptr)
  833. {
  834. current->clear_child_tid = tidptr;
  835. return task_pid_vnr(current);
  836. }
  837. static void rt_mutex_init_task(struct task_struct *p)
  838. {
  839. spin_lock_init(&p->pi_lock);
  840. #ifdef CONFIG_RT_MUTEXES
  841. plist_head_init(&p->pi_waiters, &p->pi_lock);
  842. p->pi_blocked_on = NULL;
  843. #endif
  844. }
  845. /*
  846. * This creates a new process as a copy of the old one,
  847. * but does not actually start it yet.
  848. *
  849. * It copies the registers, and all the appropriate
  850. * parts of the process environment (as per the clone
  851. * flags). The actual kick-off is left to the caller.
  852. */
  853. static struct task_struct *copy_process(unsigned long clone_flags,
  854. unsigned long stack_start,
  855. struct pt_regs *regs,
  856. unsigned long stack_size,
  857. int __user *child_tidptr,
  858. struct pid *pid)
  859. {
  860. int retval;
  861. struct task_struct *p;
  862. int cgroup_callbacks_done = 0;
  863. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  864. return ERR_PTR(-EINVAL);
  865. /*
  866. * Thread groups must share signals as well, and detached threads
  867. * can only be started up within the thread group.
  868. */
  869. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  870. return ERR_PTR(-EINVAL);
  871. /*
  872. * Shared signal handlers imply shared VM. By way of the above,
  873. * thread groups also imply shared VM. Blocking this case allows
  874. * for various simplifications in other code.
  875. */
  876. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  877. return ERR_PTR(-EINVAL);
  878. retval = security_task_create(clone_flags);
  879. if (retval)
  880. goto fork_out;
  881. retval = -ENOMEM;
  882. p = dup_task_struct(current);
  883. if (!p)
  884. goto fork_out;
  885. rt_mutex_init_task(p);
  886. #ifdef CONFIG_TRACE_IRQFLAGS
  887. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  888. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  889. #endif
  890. retval = -EAGAIN;
  891. if (atomic_read(&p->user->processes) >=
  892. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  893. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  894. p->user != current->nsproxy->user_ns->root_user)
  895. goto bad_fork_free;
  896. }
  897. atomic_inc(&p->user->__count);
  898. atomic_inc(&p->user->processes);
  899. get_group_info(p->group_info);
  900. /*
  901. * If multiple threads are within copy_process(), then this check
  902. * triggers too late. This doesn't hurt, the check is only there
  903. * to stop root fork bombs.
  904. */
  905. if (nr_threads >= max_threads)
  906. goto bad_fork_cleanup_count;
  907. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  908. goto bad_fork_cleanup_count;
  909. if (p->binfmt && !try_module_get(p->binfmt->module))
  910. goto bad_fork_cleanup_put_domain;
  911. p->did_exec = 0;
  912. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  913. copy_flags(clone_flags, p);
  914. INIT_LIST_HEAD(&p->children);
  915. INIT_LIST_HEAD(&p->sibling);
  916. #ifdef CONFIG_PREEMPT_RCU
  917. p->rcu_read_lock_nesting = 0;
  918. p->rcu_flipctr_idx = 0;
  919. #endif /* #ifdef CONFIG_PREEMPT_RCU */
  920. p->vfork_done = NULL;
  921. spin_lock_init(&p->alloc_lock);
  922. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  923. init_sigpending(&p->pending);
  924. p->utime = cputime_zero;
  925. p->stime = cputime_zero;
  926. p->gtime = cputime_zero;
  927. p->utimescaled = cputime_zero;
  928. p->stimescaled = cputime_zero;
  929. p->prev_utime = cputime_zero;
  930. p->prev_stime = cputime_zero;
  931. #ifdef CONFIG_DETECT_SOFTLOCKUP
  932. p->last_switch_count = 0;
  933. p->last_switch_timestamp = 0;
  934. #endif
  935. #ifdef CONFIG_TASK_XACCT
  936. p->rchar = 0; /* I/O counter: bytes read */
  937. p->wchar = 0; /* I/O counter: bytes written */
  938. p->syscr = 0; /* I/O counter: read syscalls */
  939. p->syscw = 0; /* I/O counter: write syscalls */
  940. #endif
  941. task_io_accounting_init(p);
  942. acct_clear_integrals(p);
  943. p->it_virt_expires = cputime_zero;
  944. p->it_prof_expires = cputime_zero;
  945. p->it_sched_expires = 0;
  946. INIT_LIST_HEAD(&p->cpu_timers[0]);
  947. INIT_LIST_HEAD(&p->cpu_timers[1]);
  948. INIT_LIST_HEAD(&p->cpu_timers[2]);
  949. p->lock_depth = -1; /* -1 = no lock */
  950. do_posix_clock_monotonic_gettime(&p->start_time);
  951. p->real_start_time = p->start_time;
  952. monotonic_to_bootbased(&p->real_start_time);
  953. #ifdef CONFIG_SECURITY
  954. p->security = NULL;
  955. #endif
  956. p->cap_bset = current->cap_bset;
  957. p->io_context = NULL;
  958. p->audit_context = NULL;
  959. cgroup_fork(p);
  960. #ifdef CONFIG_NUMA
  961. p->mempolicy = mpol_copy(p->mempolicy);
  962. if (IS_ERR(p->mempolicy)) {
  963. retval = PTR_ERR(p->mempolicy);
  964. p->mempolicy = NULL;
  965. goto bad_fork_cleanup_cgroup;
  966. }
  967. mpol_fix_fork_child_flag(p);
  968. #endif
  969. #ifdef CONFIG_TRACE_IRQFLAGS
  970. p->irq_events = 0;
  971. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  972. p->hardirqs_enabled = 1;
  973. #else
  974. p->hardirqs_enabled = 0;
  975. #endif
  976. p->hardirq_enable_ip = 0;
  977. p->hardirq_enable_event = 0;
  978. p->hardirq_disable_ip = _THIS_IP_;
  979. p->hardirq_disable_event = 0;
  980. p->softirqs_enabled = 1;
  981. p->softirq_enable_ip = _THIS_IP_;
  982. p->softirq_enable_event = 0;
  983. p->softirq_disable_ip = 0;
  984. p->softirq_disable_event = 0;
  985. p->hardirq_context = 0;
  986. p->softirq_context = 0;
  987. #endif
  988. #ifdef CONFIG_LOCKDEP
  989. p->lockdep_depth = 0; /* no locks held yet */
  990. p->curr_chain_key = 0;
  991. p->lockdep_recursion = 0;
  992. #endif
  993. #ifdef CONFIG_DEBUG_MUTEXES
  994. p->blocked_on = NULL; /* not blocked yet */
  995. #endif
  996. /* Perform scheduler related setup. Assign this task to a CPU. */
  997. sched_fork(p, clone_flags);
  998. if ((retval = security_task_alloc(p)))
  999. goto bad_fork_cleanup_policy;
  1000. if ((retval = audit_alloc(p)))
  1001. goto bad_fork_cleanup_security;
  1002. /* copy all the process information */
  1003. if ((retval = copy_semundo(clone_flags, p)))
  1004. goto bad_fork_cleanup_audit;
  1005. if ((retval = copy_files(clone_flags, p)))
  1006. goto bad_fork_cleanup_semundo;
  1007. if ((retval = copy_fs(clone_flags, p)))
  1008. goto bad_fork_cleanup_files;
  1009. if ((retval = copy_sighand(clone_flags, p)))
  1010. goto bad_fork_cleanup_fs;
  1011. if ((retval = copy_signal(clone_flags, p)))
  1012. goto bad_fork_cleanup_sighand;
  1013. if ((retval = copy_mm(clone_flags, p)))
  1014. goto bad_fork_cleanup_signal;
  1015. if ((retval = copy_keys(clone_flags, p)))
  1016. goto bad_fork_cleanup_mm;
  1017. if ((retval = copy_namespaces(clone_flags, p)))
  1018. goto bad_fork_cleanup_keys;
  1019. if ((retval = copy_io(clone_flags, p)))
  1020. goto bad_fork_cleanup_namespaces;
  1021. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  1022. if (retval)
  1023. goto bad_fork_cleanup_io;
  1024. if (pid != &init_struct_pid) {
  1025. retval = -ENOMEM;
  1026. pid = alloc_pid(task_active_pid_ns(p));
  1027. if (!pid)
  1028. goto bad_fork_cleanup_io;
  1029. if (clone_flags & CLONE_NEWPID) {
  1030. retval = pid_ns_prepare_proc(task_active_pid_ns(p));
  1031. if (retval < 0)
  1032. goto bad_fork_free_pid;
  1033. }
  1034. }
  1035. p->pid = pid_nr(pid);
  1036. p->tgid = p->pid;
  1037. if (clone_flags & CLONE_THREAD)
  1038. p->tgid = current->tgid;
  1039. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1040. /*
  1041. * Clear TID on mm_release()?
  1042. */
  1043. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  1044. #ifdef CONFIG_FUTEX
  1045. p->robust_list = NULL;
  1046. #ifdef CONFIG_COMPAT
  1047. p->compat_robust_list = NULL;
  1048. #endif
  1049. INIT_LIST_HEAD(&p->pi_state_list);
  1050. p->pi_state_cache = NULL;
  1051. #endif
  1052. /*
  1053. * sigaltstack should be cleared when sharing the same VM
  1054. */
  1055. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1056. p->sas_ss_sp = p->sas_ss_size = 0;
  1057. /*
  1058. * Syscall tracing should be turned off in the child regardless
  1059. * of CLONE_PTRACE.
  1060. */
  1061. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1062. #ifdef TIF_SYSCALL_EMU
  1063. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1064. #endif
  1065. clear_all_latency_tracing(p);
  1066. /* Our parent execution domain becomes current domain
  1067. These must match for thread signalling to apply */
  1068. p->parent_exec_id = p->self_exec_id;
  1069. /* ok, now we should be set up.. */
  1070. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1071. p->pdeath_signal = 0;
  1072. p->exit_state = 0;
  1073. /*
  1074. * Ok, make it visible to the rest of the system.
  1075. * We dont wake it up yet.
  1076. */
  1077. p->group_leader = p;
  1078. INIT_LIST_HEAD(&p->thread_group);
  1079. INIT_LIST_HEAD(&p->ptrace_children);
  1080. INIT_LIST_HEAD(&p->ptrace_list);
  1081. /* Now that the task is set up, run cgroup callbacks if
  1082. * necessary. We need to run them before the task is visible
  1083. * on the tasklist. */
  1084. cgroup_fork_callbacks(p);
  1085. cgroup_callbacks_done = 1;
  1086. /* Need tasklist lock for parent etc handling! */
  1087. write_lock_irq(&tasklist_lock);
  1088. /*
  1089. * The task hasn't been attached yet, so its cpus_allowed mask will
  1090. * not be changed, nor will its assigned CPU.
  1091. *
  1092. * The cpus_allowed mask of the parent may have changed after it was
  1093. * copied first time - so re-copy it here, then check the child's CPU
  1094. * to ensure it is on a valid CPU (and if not, just force it back to
  1095. * parent's CPU). This avoids alot of nasty races.
  1096. */
  1097. p->cpus_allowed = current->cpus_allowed;
  1098. p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
  1099. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1100. !cpu_online(task_cpu(p))))
  1101. set_task_cpu(p, smp_processor_id());
  1102. /* CLONE_PARENT re-uses the old parent */
  1103. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1104. p->real_parent = current->real_parent;
  1105. else
  1106. p->real_parent = current;
  1107. p->parent = p->real_parent;
  1108. spin_lock(&current->sighand->siglock);
  1109. /*
  1110. * Process group and session signals need to be delivered to just the
  1111. * parent before the fork or both the parent and the child after the
  1112. * fork. Restart if a signal comes in before we add the new process to
  1113. * it's process group.
  1114. * A fatal signal pending means that current will exit, so the new
  1115. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1116. */
  1117. recalc_sigpending();
  1118. if (signal_pending(current)) {
  1119. spin_unlock(&current->sighand->siglock);
  1120. write_unlock_irq(&tasklist_lock);
  1121. retval = -ERESTARTNOINTR;
  1122. goto bad_fork_free_pid;
  1123. }
  1124. if (clone_flags & CLONE_THREAD) {
  1125. p->group_leader = current->group_leader;
  1126. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1127. if (!cputime_eq(current->signal->it_virt_expires,
  1128. cputime_zero) ||
  1129. !cputime_eq(current->signal->it_prof_expires,
  1130. cputime_zero) ||
  1131. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1132. !list_empty(&current->signal->cpu_timers[0]) ||
  1133. !list_empty(&current->signal->cpu_timers[1]) ||
  1134. !list_empty(&current->signal->cpu_timers[2])) {
  1135. /*
  1136. * Have child wake up on its first tick to check
  1137. * for process CPU timers.
  1138. */
  1139. p->it_prof_expires = jiffies_to_cputime(1);
  1140. }
  1141. }
  1142. if (likely(p->pid)) {
  1143. add_parent(p);
  1144. if (unlikely(p->ptrace & PT_PTRACED))
  1145. __ptrace_link(p, current->parent);
  1146. if (thread_group_leader(p)) {
  1147. if (clone_flags & CLONE_NEWPID)
  1148. p->nsproxy->pid_ns->child_reaper = p;
  1149. p->signal->tty = current->signal->tty;
  1150. set_task_pgrp(p, task_pgrp_nr(current));
  1151. set_task_session(p, task_session_nr(current));
  1152. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1153. attach_pid(p, PIDTYPE_SID, task_session(current));
  1154. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1155. __get_cpu_var(process_counts)++;
  1156. }
  1157. attach_pid(p, PIDTYPE_PID, pid);
  1158. nr_threads++;
  1159. }
  1160. total_forks++;
  1161. spin_unlock(&current->sighand->siglock);
  1162. write_unlock_irq(&tasklist_lock);
  1163. proc_fork_connector(p);
  1164. cgroup_post_fork(p);
  1165. return p;
  1166. bad_fork_free_pid:
  1167. if (pid != &init_struct_pid)
  1168. free_pid(pid);
  1169. bad_fork_cleanup_io:
  1170. put_io_context(p->io_context);
  1171. bad_fork_cleanup_namespaces:
  1172. exit_task_namespaces(p);
  1173. bad_fork_cleanup_keys:
  1174. exit_keys(p);
  1175. bad_fork_cleanup_mm:
  1176. if (p->mm)
  1177. mmput(p->mm);
  1178. bad_fork_cleanup_signal:
  1179. cleanup_signal(p);
  1180. bad_fork_cleanup_sighand:
  1181. __cleanup_sighand(p->sighand);
  1182. bad_fork_cleanup_fs:
  1183. exit_fs(p); /* blocking */
  1184. bad_fork_cleanup_files:
  1185. exit_files(p); /* blocking */
  1186. bad_fork_cleanup_semundo:
  1187. exit_sem(p);
  1188. bad_fork_cleanup_audit:
  1189. audit_free(p);
  1190. bad_fork_cleanup_security:
  1191. security_task_free(p);
  1192. bad_fork_cleanup_policy:
  1193. #ifdef CONFIG_NUMA
  1194. mpol_free(p->mempolicy);
  1195. bad_fork_cleanup_cgroup:
  1196. #endif
  1197. cgroup_exit(p, cgroup_callbacks_done);
  1198. delayacct_tsk_free(p);
  1199. if (p->binfmt)
  1200. module_put(p->binfmt->module);
  1201. bad_fork_cleanup_put_domain:
  1202. module_put(task_thread_info(p)->exec_domain->module);
  1203. bad_fork_cleanup_count:
  1204. put_group_info(p->group_info);
  1205. atomic_dec(&p->user->processes);
  1206. free_uid(p->user);
  1207. bad_fork_free:
  1208. free_task(p);
  1209. fork_out:
  1210. return ERR_PTR(retval);
  1211. }
  1212. noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1213. {
  1214. memset(regs, 0, sizeof(struct pt_regs));
  1215. return regs;
  1216. }
  1217. struct task_struct * __cpuinit fork_idle(int cpu)
  1218. {
  1219. struct task_struct *task;
  1220. struct pt_regs regs;
  1221. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1222. &init_struct_pid);
  1223. if (!IS_ERR(task))
  1224. init_idle(task, cpu);
  1225. return task;
  1226. }
  1227. static int fork_traceflag(unsigned clone_flags)
  1228. {
  1229. if (clone_flags & CLONE_UNTRACED)
  1230. return 0;
  1231. else if (clone_flags & CLONE_VFORK) {
  1232. if (current->ptrace & PT_TRACE_VFORK)
  1233. return PTRACE_EVENT_VFORK;
  1234. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1235. if (current->ptrace & PT_TRACE_CLONE)
  1236. return PTRACE_EVENT_CLONE;
  1237. } else if (current->ptrace & PT_TRACE_FORK)
  1238. return PTRACE_EVENT_FORK;
  1239. return 0;
  1240. }
  1241. /*
  1242. * Ok, this is the main fork-routine.
  1243. *
  1244. * It copies the process, and if successful kick-starts
  1245. * it and waits for it to finish using the VM if required.
  1246. */
  1247. long do_fork(unsigned long clone_flags,
  1248. unsigned long stack_start,
  1249. struct pt_regs *regs,
  1250. unsigned long stack_size,
  1251. int __user *parent_tidptr,
  1252. int __user *child_tidptr)
  1253. {
  1254. struct task_struct *p;
  1255. int trace = 0;
  1256. long nr;
  1257. /*
  1258. * We hope to recycle these flags after 2.6.26
  1259. */
  1260. if (unlikely(clone_flags & CLONE_STOPPED)) {
  1261. static int __read_mostly count = 100;
  1262. if (count > 0 && printk_ratelimit()) {
  1263. char comm[TASK_COMM_LEN];
  1264. count--;
  1265. printk(KERN_INFO "fork(): process `%s' used deprecated "
  1266. "clone flags 0x%lx\n",
  1267. get_task_comm(comm, current),
  1268. clone_flags & CLONE_STOPPED);
  1269. }
  1270. }
  1271. if (unlikely(current->ptrace)) {
  1272. trace = fork_traceflag (clone_flags);
  1273. if (trace)
  1274. clone_flags |= CLONE_PTRACE;
  1275. }
  1276. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1277. child_tidptr, NULL);
  1278. /*
  1279. * Do this prior waking up the new thread - the thread pointer
  1280. * might get invalid after that point, if the thread exits quickly.
  1281. */
  1282. if (!IS_ERR(p)) {
  1283. struct completion vfork;
  1284. /*
  1285. * this is enough to call pid_nr_ns here, but this if
  1286. * improves optimisation of regular fork()
  1287. */
  1288. nr = (clone_flags & CLONE_NEWPID) ?
  1289. task_pid_nr_ns(p, current->nsproxy->pid_ns) :
  1290. task_pid_vnr(p);
  1291. if (clone_flags & CLONE_PARENT_SETTID)
  1292. put_user(nr, parent_tidptr);
  1293. if (clone_flags & CLONE_VFORK) {
  1294. p->vfork_done = &vfork;
  1295. init_completion(&vfork);
  1296. }
  1297. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1298. /*
  1299. * We'll start up with an immediate SIGSTOP.
  1300. */
  1301. sigaddset(&p->pending.signal, SIGSTOP);
  1302. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1303. }
  1304. if (!(clone_flags & CLONE_STOPPED))
  1305. wake_up_new_task(p, clone_flags);
  1306. else
  1307. __set_task_state(p, TASK_STOPPED);
  1308. if (unlikely (trace)) {
  1309. current->ptrace_message = nr;
  1310. ptrace_notify ((trace << 8) | SIGTRAP);
  1311. }
  1312. if (clone_flags & CLONE_VFORK) {
  1313. freezer_do_not_count();
  1314. wait_for_completion(&vfork);
  1315. freezer_count();
  1316. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1317. current->ptrace_message = nr;
  1318. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1319. }
  1320. }
  1321. } else {
  1322. nr = PTR_ERR(p);
  1323. }
  1324. return nr;
  1325. }
  1326. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1327. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1328. #endif
  1329. static void sighand_ctor(struct kmem_cache *cachep, void *data)
  1330. {
  1331. struct sighand_struct *sighand = data;
  1332. spin_lock_init(&sighand->siglock);
  1333. init_waitqueue_head(&sighand->signalfd_wqh);
  1334. }
  1335. void __init proc_caches_init(void)
  1336. {
  1337. sighand_cachep = kmem_cache_create("sighand_cache",
  1338. sizeof(struct sighand_struct), 0,
  1339. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1340. sighand_ctor);
  1341. signal_cachep = kmem_cache_create("signal_cache",
  1342. sizeof(struct signal_struct), 0,
  1343. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1344. files_cachep = kmem_cache_create("files_cache",
  1345. sizeof(struct files_struct), 0,
  1346. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1347. fs_cachep = kmem_cache_create("fs_cache",
  1348. sizeof(struct fs_struct), 0,
  1349. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1350. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1351. sizeof(struct vm_area_struct), 0,
  1352. SLAB_PANIC, NULL);
  1353. mm_cachep = kmem_cache_create("mm_struct",
  1354. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1355. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1356. }
  1357. /*
  1358. * Check constraints on flags passed to the unshare system call and
  1359. * force unsharing of additional process context as appropriate.
  1360. */
  1361. static void check_unshare_flags(unsigned long *flags_ptr)
  1362. {
  1363. /*
  1364. * If unsharing a thread from a thread group, must also
  1365. * unshare vm.
  1366. */
  1367. if (*flags_ptr & CLONE_THREAD)
  1368. *flags_ptr |= CLONE_VM;
  1369. /*
  1370. * If unsharing vm, must also unshare signal handlers.
  1371. */
  1372. if (*flags_ptr & CLONE_VM)
  1373. *flags_ptr |= CLONE_SIGHAND;
  1374. /*
  1375. * If unsharing signal handlers and the task was created
  1376. * using CLONE_THREAD, then must unshare the thread
  1377. */
  1378. if ((*flags_ptr & CLONE_SIGHAND) &&
  1379. (atomic_read(&current->signal->count) > 1))
  1380. *flags_ptr |= CLONE_THREAD;
  1381. /*
  1382. * If unsharing namespace, must also unshare filesystem information.
  1383. */
  1384. if (*flags_ptr & CLONE_NEWNS)
  1385. *flags_ptr |= CLONE_FS;
  1386. }
  1387. /*
  1388. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1389. */
  1390. static int unshare_thread(unsigned long unshare_flags)
  1391. {
  1392. if (unshare_flags & CLONE_THREAD)
  1393. return -EINVAL;
  1394. return 0;
  1395. }
  1396. /*
  1397. * Unshare the filesystem structure if it is being shared
  1398. */
  1399. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1400. {
  1401. struct fs_struct *fs = current->fs;
  1402. if ((unshare_flags & CLONE_FS) &&
  1403. (fs && atomic_read(&fs->count) > 1)) {
  1404. *new_fsp = __copy_fs_struct(current->fs);
  1405. if (!*new_fsp)
  1406. return -ENOMEM;
  1407. }
  1408. return 0;
  1409. }
  1410. /*
  1411. * Unsharing of sighand is not supported yet
  1412. */
  1413. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1414. {
  1415. struct sighand_struct *sigh = current->sighand;
  1416. if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
  1417. return -EINVAL;
  1418. else
  1419. return 0;
  1420. }
  1421. /*
  1422. * Unshare vm if it is being shared
  1423. */
  1424. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1425. {
  1426. struct mm_struct *mm = current->mm;
  1427. if ((unshare_flags & CLONE_VM) &&
  1428. (mm && atomic_read(&mm->mm_users) > 1)) {
  1429. return -EINVAL;
  1430. }
  1431. return 0;
  1432. }
  1433. /*
  1434. * Unshare file descriptor table if it is being shared
  1435. */
  1436. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1437. {
  1438. struct files_struct *fd = current->files;
  1439. int error = 0;
  1440. if ((unshare_flags & CLONE_FILES) &&
  1441. (fd && atomic_read(&fd->count) > 1)) {
  1442. *new_fdp = dup_fd(fd, &error);
  1443. if (!*new_fdp)
  1444. return error;
  1445. }
  1446. return 0;
  1447. }
  1448. /*
  1449. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1450. * supported yet
  1451. */
  1452. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1453. {
  1454. if (unshare_flags & CLONE_SYSVSEM)
  1455. return -EINVAL;
  1456. return 0;
  1457. }
  1458. /*
  1459. * unshare allows a process to 'unshare' part of the process
  1460. * context which was originally shared using clone. copy_*
  1461. * functions used by do_fork() cannot be used here directly
  1462. * because they modify an inactive task_struct that is being
  1463. * constructed. Here we are modifying the current, active,
  1464. * task_struct.
  1465. */
  1466. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1467. {
  1468. int err = 0;
  1469. struct fs_struct *fs, *new_fs = NULL;
  1470. struct sighand_struct *new_sigh = NULL;
  1471. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1472. struct files_struct *fd, *new_fd = NULL;
  1473. struct sem_undo_list *new_ulist = NULL;
  1474. struct nsproxy *new_nsproxy = NULL;
  1475. check_unshare_flags(&unshare_flags);
  1476. /* Return -EINVAL for all unsupported flags */
  1477. err = -EINVAL;
  1478. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1479. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1480. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
  1481. CLONE_NEWNET))
  1482. goto bad_unshare_out;
  1483. if ((err = unshare_thread(unshare_flags)))
  1484. goto bad_unshare_out;
  1485. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1486. goto bad_unshare_cleanup_thread;
  1487. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1488. goto bad_unshare_cleanup_fs;
  1489. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1490. goto bad_unshare_cleanup_sigh;
  1491. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1492. goto bad_unshare_cleanup_vm;
  1493. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1494. goto bad_unshare_cleanup_fd;
  1495. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1496. new_fs)))
  1497. goto bad_unshare_cleanup_semundo;
  1498. if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
  1499. if (new_nsproxy) {
  1500. switch_task_namespaces(current, new_nsproxy);
  1501. new_nsproxy = NULL;
  1502. }
  1503. task_lock(current);
  1504. if (new_fs) {
  1505. fs = current->fs;
  1506. current->fs = new_fs;
  1507. new_fs = fs;
  1508. }
  1509. if (new_mm) {
  1510. mm = current->mm;
  1511. active_mm = current->active_mm;
  1512. current->mm = new_mm;
  1513. current->active_mm = new_mm;
  1514. activate_mm(active_mm, new_mm);
  1515. new_mm = mm;
  1516. }
  1517. if (new_fd) {
  1518. fd = current->files;
  1519. current->files = new_fd;
  1520. new_fd = fd;
  1521. }
  1522. task_unlock(current);
  1523. }
  1524. if (new_nsproxy)
  1525. put_nsproxy(new_nsproxy);
  1526. bad_unshare_cleanup_semundo:
  1527. bad_unshare_cleanup_fd:
  1528. if (new_fd)
  1529. put_files_struct(new_fd);
  1530. bad_unshare_cleanup_vm:
  1531. if (new_mm)
  1532. mmput(new_mm);
  1533. bad_unshare_cleanup_sigh:
  1534. if (new_sigh)
  1535. if (atomic_dec_and_test(&new_sigh->count))
  1536. kmem_cache_free(sighand_cachep, new_sigh);
  1537. bad_unshare_cleanup_fs:
  1538. if (new_fs)
  1539. put_fs_struct(new_fs);
  1540. bad_unshare_cleanup_thread:
  1541. bad_unshare_out:
  1542. return err;
  1543. }