ide-io.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
  1. /*
  2. * IDE I/O functions
  3. *
  4. * Basic PIO and command management functionality.
  5. *
  6. * This code was split off from ide.c. See ide.c for history and original
  7. * copyrights.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the
  11. * Free Software Foundation; either version 2, or (at your option) any
  12. * later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * For the avoidance of doubt the "preferred form" of this code is one which
  20. * is in an open non patent encumbered format. Where cryptographic key signing
  21. * forms part of the process of creating an executable the information
  22. * including keys needed to generate an equivalently functional executable
  23. * are deemed to be part of the source code.
  24. */
  25. #include <linux/config.h>
  26. #include <linux/module.h>
  27. #include <linux/types.h>
  28. #include <linux/string.h>
  29. #include <linux/kernel.h>
  30. #include <linux/timer.h>
  31. #include <linux/mm.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/major.h>
  34. #include <linux/errno.h>
  35. #include <linux/genhd.h>
  36. #include <linux/blkpg.h>
  37. #include <linux/slab.h>
  38. #include <linux/init.h>
  39. #include <linux/pci.h>
  40. #include <linux/delay.h>
  41. #include <linux/ide.h>
  42. #include <linux/completion.h>
  43. #include <linux/reboot.h>
  44. #include <linux/cdrom.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/device.h>
  47. #include <linux/kmod.h>
  48. #include <linux/scatterlist.h>
  49. #include <asm/byteorder.h>
  50. #include <asm/irq.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/io.h>
  53. #include <asm/bitops.h>
  54. int __ide_end_request(ide_drive_t *drive, struct request *rq, int uptodate,
  55. int nr_sectors)
  56. {
  57. int ret = 1;
  58. BUG_ON(!(rq->flags & REQ_STARTED));
  59. /*
  60. * if failfast is set on a request, override number of sectors and
  61. * complete the whole request right now
  62. */
  63. if (blk_noretry_request(rq) && end_io_error(uptodate))
  64. nr_sectors = rq->hard_nr_sectors;
  65. if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
  66. rq->errors = -EIO;
  67. /*
  68. * decide whether to reenable DMA -- 3 is a random magic for now,
  69. * if we DMA timeout more than 3 times, just stay in PIO
  70. */
  71. if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
  72. drive->state = 0;
  73. HWGROUP(drive)->hwif->ide_dma_on(drive);
  74. }
  75. if (!end_that_request_first(rq, uptodate, nr_sectors)) {
  76. add_disk_randomness(rq->rq_disk);
  77. if (blk_rq_tagged(rq))
  78. blk_queue_end_tag(drive->queue, rq);
  79. blkdev_dequeue_request(rq);
  80. HWGROUP(drive)->rq = NULL;
  81. end_that_request_last(rq, uptodate);
  82. ret = 0;
  83. }
  84. return ret;
  85. }
  86. EXPORT_SYMBOL(__ide_end_request);
  87. /**
  88. * ide_end_request - complete an IDE I/O
  89. * @drive: IDE device for the I/O
  90. * @uptodate:
  91. * @nr_sectors: number of sectors completed
  92. *
  93. * This is our end_request wrapper function. We complete the I/O
  94. * update random number input and dequeue the request, which if
  95. * it was tagged may be out of order.
  96. */
  97. int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
  98. {
  99. struct request *rq;
  100. unsigned long flags;
  101. int ret = 1;
  102. spin_lock_irqsave(&ide_lock, flags);
  103. rq = HWGROUP(drive)->rq;
  104. if (!nr_sectors)
  105. nr_sectors = rq->hard_cur_sectors;
  106. ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
  107. spin_unlock_irqrestore(&ide_lock, flags);
  108. return ret;
  109. }
  110. EXPORT_SYMBOL(ide_end_request);
  111. /*
  112. * Power Management state machine. This one is rather trivial for now,
  113. * we should probably add more, like switching back to PIO on suspend
  114. * to help some BIOSes, re-do the door locking on resume, etc...
  115. */
  116. enum {
  117. ide_pm_flush_cache = ide_pm_state_start_suspend,
  118. idedisk_pm_standby,
  119. idedisk_pm_idle = ide_pm_state_start_resume,
  120. ide_pm_restore_dma,
  121. };
  122. static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
  123. {
  124. if (drive->media != ide_disk)
  125. return;
  126. switch (rq->pm->pm_step) {
  127. case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
  128. if (rq->pm->pm_state == PM_EVENT_FREEZE)
  129. rq->pm->pm_step = ide_pm_state_completed;
  130. else
  131. rq->pm->pm_step = idedisk_pm_standby;
  132. break;
  133. case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
  134. rq->pm->pm_step = ide_pm_state_completed;
  135. break;
  136. case idedisk_pm_idle: /* Resume step 1 (idle) complete */
  137. rq->pm->pm_step = ide_pm_restore_dma;
  138. break;
  139. }
  140. }
  141. static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
  142. {
  143. ide_task_t *args = rq->special;
  144. memset(args, 0, sizeof(*args));
  145. if (drive->media != ide_disk) {
  146. /* skip idedisk_pm_idle for ATAPI devices */
  147. if (rq->pm->pm_step == idedisk_pm_idle)
  148. rq->pm->pm_step = ide_pm_restore_dma;
  149. }
  150. switch (rq->pm->pm_step) {
  151. case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
  152. if (drive->media != ide_disk)
  153. break;
  154. /* Not supported? Switch to next step now. */
  155. if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
  156. ide_complete_power_step(drive, rq, 0, 0);
  157. return ide_stopped;
  158. }
  159. if (ide_id_has_flush_cache_ext(drive->id))
  160. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
  161. else
  162. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
  163. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  164. args->handler = &task_no_data_intr;
  165. return do_rw_taskfile(drive, args);
  166. case idedisk_pm_standby: /* Suspend step 2 (standby) */
  167. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
  168. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  169. args->handler = &task_no_data_intr;
  170. return do_rw_taskfile(drive, args);
  171. case idedisk_pm_idle: /* Resume step 1 (idle) */
  172. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
  173. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  174. args->handler = task_no_data_intr;
  175. return do_rw_taskfile(drive, args);
  176. case ide_pm_restore_dma: /* Resume step 2 (restore DMA) */
  177. /*
  178. * Right now, all we do is call hwif->ide_dma_check(drive),
  179. * we could be smarter and check for current xfer_speed
  180. * in struct drive etc...
  181. */
  182. if ((drive->id->capability & 1) == 0)
  183. break;
  184. if (drive->hwif->ide_dma_check == NULL)
  185. break;
  186. drive->hwif->ide_dma_check(drive);
  187. break;
  188. }
  189. rq->pm->pm_step = ide_pm_state_completed;
  190. return ide_stopped;
  191. }
  192. /**
  193. * ide_complete_pm_request - end the current Power Management request
  194. * @drive: target drive
  195. * @rq: request
  196. *
  197. * This function cleans up the current PM request and stops the queue
  198. * if necessary.
  199. */
  200. static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
  201. {
  202. unsigned long flags;
  203. #ifdef DEBUG_PM
  204. printk("%s: completing PM request, %s\n", drive->name,
  205. blk_pm_suspend_request(rq) ? "suspend" : "resume");
  206. #endif
  207. spin_lock_irqsave(&ide_lock, flags);
  208. if (blk_pm_suspend_request(rq)) {
  209. blk_stop_queue(drive->queue);
  210. } else {
  211. drive->blocked = 0;
  212. blk_start_queue(drive->queue);
  213. }
  214. blkdev_dequeue_request(rq);
  215. HWGROUP(drive)->rq = NULL;
  216. end_that_request_last(rq, 1);
  217. spin_unlock_irqrestore(&ide_lock, flags);
  218. }
  219. /*
  220. * FIXME: probably move this somewhere else, name is bad too :)
  221. */
  222. u64 ide_get_error_location(ide_drive_t *drive, char *args)
  223. {
  224. u32 high, low;
  225. u8 hcyl, lcyl, sect;
  226. u64 sector;
  227. high = 0;
  228. hcyl = args[5];
  229. lcyl = args[4];
  230. sect = args[3];
  231. if (ide_id_has_flush_cache_ext(drive->id)) {
  232. low = (hcyl << 16) | (lcyl << 8) | sect;
  233. HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
  234. high = ide_read_24(drive);
  235. } else {
  236. u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
  237. if (cur & 0x40) {
  238. high = cur & 0xf;
  239. low = (hcyl << 16) | (lcyl << 8) | sect;
  240. } else {
  241. low = hcyl * drive->head * drive->sect;
  242. low += lcyl * drive->sect;
  243. low += sect - 1;
  244. }
  245. }
  246. sector = ((u64) high << 24) | low;
  247. return sector;
  248. }
  249. EXPORT_SYMBOL(ide_get_error_location);
  250. /**
  251. * ide_end_drive_cmd - end an explicit drive command
  252. * @drive: command
  253. * @stat: status bits
  254. * @err: error bits
  255. *
  256. * Clean up after success/failure of an explicit drive command.
  257. * These get thrown onto the queue so they are synchronized with
  258. * real I/O operations on the drive.
  259. *
  260. * In LBA48 mode we have to read the register set twice to get
  261. * all the extra information out.
  262. */
  263. void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
  264. {
  265. ide_hwif_t *hwif = HWIF(drive);
  266. unsigned long flags;
  267. struct request *rq;
  268. spin_lock_irqsave(&ide_lock, flags);
  269. rq = HWGROUP(drive)->rq;
  270. spin_unlock_irqrestore(&ide_lock, flags);
  271. if (rq->flags & REQ_DRIVE_CMD) {
  272. u8 *args = (u8 *) rq->buffer;
  273. if (rq->errors == 0)
  274. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  275. if (args) {
  276. args[0] = stat;
  277. args[1] = err;
  278. args[2] = hwif->INB(IDE_NSECTOR_REG);
  279. }
  280. } else if (rq->flags & REQ_DRIVE_TASK) {
  281. u8 *args = (u8 *) rq->buffer;
  282. if (rq->errors == 0)
  283. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  284. if (args) {
  285. args[0] = stat;
  286. args[1] = err;
  287. args[2] = hwif->INB(IDE_NSECTOR_REG);
  288. args[3] = hwif->INB(IDE_SECTOR_REG);
  289. args[4] = hwif->INB(IDE_LCYL_REG);
  290. args[5] = hwif->INB(IDE_HCYL_REG);
  291. args[6] = hwif->INB(IDE_SELECT_REG);
  292. }
  293. } else if (rq->flags & REQ_DRIVE_TASKFILE) {
  294. ide_task_t *args = (ide_task_t *) rq->special;
  295. if (rq->errors == 0)
  296. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  297. if (args) {
  298. if (args->tf_in_flags.b.data) {
  299. u16 data = hwif->INW(IDE_DATA_REG);
  300. args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
  301. args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF;
  302. }
  303. args->tfRegister[IDE_ERROR_OFFSET] = err;
  304. /* be sure we're looking at the low order bits */
  305. hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
  306. args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
  307. args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
  308. args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
  309. args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
  310. args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
  311. args->tfRegister[IDE_STATUS_OFFSET] = stat;
  312. if (drive->addressing == 1) {
  313. hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
  314. args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG);
  315. args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
  316. args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
  317. args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
  318. args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
  319. }
  320. }
  321. } else if (blk_pm_request(rq)) {
  322. #ifdef DEBUG_PM
  323. printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
  324. drive->name, rq->pm->pm_step, stat, err);
  325. #endif
  326. ide_complete_power_step(drive, rq, stat, err);
  327. if (rq->pm->pm_step == ide_pm_state_completed)
  328. ide_complete_pm_request(drive, rq);
  329. return;
  330. }
  331. spin_lock_irqsave(&ide_lock, flags);
  332. blkdev_dequeue_request(rq);
  333. HWGROUP(drive)->rq = NULL;
  334. rq->errors = err;
  335. end_that_request_last(rq, !rq->errors);
  336. spin_unlock_irqrestore(&ide_lock, flags);
  337. }
  338. EXPORT_SYMBOL(ide_end_drive_cmd);
  339. /**
  340. * try_to_flush_leftover_data - flush junk
  341. * @drive: drive to flush
  342. *
  343. * try_to_flush_leftover_data() is invoked in response to a drive
  344. * unexpectedly having its DRQ_STAT bit set. As an alternative to
  345. * resetting the drive, this routine tries to clear the condition
  346. * by read a sector's worth of data from the drive. Of course,
  347. * this may not help if the drive is *waiting* for data from *us*.
  348. */
  349. static void try_to_flush_leftover_data (ide_drive_t *drive)
  350. {
  351. int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
  352. if (drive->media != ide_disk)
  353. return;
  354. while (i > 0) {
  355. u32 buffer[16];
  356. u32 wcount = (i > 16) ? 16 : i;
  357. i -= wcount;
  358. HWIF(drive)->ata_input_data(drive, buffer, wcount);
  359. }
  360. }
  361. static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
  362. {
  363. if (rq->rq_disk) {
  364. ide_driver_t *drv;
  365. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  366. drv->end_request(drive, 0, 0);
  367. } else
  368. ide_end_request(drive, 0, 0);
  369. }
  370. static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  371. {
  372. ide_hwif_t *hwif = drive->hwif;
  373. if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
  374. /* other bits are useless when BUSY */
  375. rq->errors |= ERROR_RESET;
  376. } else if (stat & ERR_STAT) {
  377. /* err has different meaning on cdrom and tape */
  378. if (err == ABRT_ERR) {
  379. if (drive->select.b.lba &&
  380. /* some newer drives don't support WIN_SPECIFY */
  381. hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
  382. return ide_stopped;
  383. } else if ((err & BAD_CRC) == BAD_CRC) {
  384. /* UDMA crc error, just retry the operation */
  385. drive->crc_count++;
  386. } else if (err & (BBD_ERR | ECC_ERR)) {
  387. /* retries won't help these */
  388. rq->errors = ERROR_MAX;
  389. } else if (err & TRK0_ERR) {
  390. /* help it find track zero */
  391. rq->errors |= ERROR_RECAL;
  392. }
  393. }
  394. if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ)
  395. try_to_flush_leftover_data(drive);
  396. if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
  397. /* force an abort */
  398. hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
  399. if (rq->errors >= ERROR_MAX || blk_noretry_request(rq))
  400. ide_kill_rq(drive, rq);
  401. else {
  402. if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
  403. ++rq->errors;
  404. return ide_do_reset(drive);
  405. }
  406. if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
  407. drive->special.b.recalibrate = 1;
  408. ++rq->errors;
  409. }
  410. return ide_stopped;
  411. }
  412. static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  413. {
  414. ide_hwif_t *hwif = drive->hwif;
  415. if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
  416. /* other bits are useless when BUSY */
  417. rq->errors |= ERROR_RESET;
  418. } else {
  419. /* add decoding error stuff */
  420. }
  421. if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
  422. /* force an abort */
  423. hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
  424. if (rq->errors >= ERROR_MAX) {
  425. ide_kill_rq(drive, rq);
  426. } else {
  427. if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
  428. ++rq->errors;
  429. return ide_do_reset(drive);
  430. }
  431. ++rq->errors;
  432. }
  433. return ide_stopped;
  434. }
  435. ide_startstop_t
  436. __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  437. {
  438. if (drive->media == ide_disk)
  439. return ide_ata_error(drive, rq, stat, err);
  440. return ide_atapi_error(drive, rq, stat, err);
  441. }
  442. EXPORT_SYMBOL_GPL(__ide_error);
  443. /**
  444. * ide_error - handle an error on the IDE
  445. * @drive: drive the error occurred on
  446. * @msg: message to report
  447. * @stat: status bits
  448. *
  449. * ide_error() takes action based on the error returned by the drive.
  450. * For normal I/O that may well include retries. We deal with
  451. * both new-style (taskfile) and old style command handling here.
  452. * In the case of taskfile command handling there is work left to
  453. * do
  454. */
  455. ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
  456. {
  457. struct request *rq;
  458. u8 err;
  459. err = ide_dump_status(drive, msg, stat);
  460. if ((rq = HWGROUP(drive)->rq) == NULL)
  461. return ide_stopped;
  462. /* retry only "normal" I/O: */
  463. if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
  464. rq->errors = 1;
  465. ide_end_drive_cmd(drive, stat, err);
  466. return ide_stopped;
  467. }
  468. if (rq->rq_disk) {
  469. ide_driver_t *drv;
  470. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  471. return drv->error(drive, rq, stat, err);
  472. } else
  473. return __ide_error(drive, rq, stat, err);
  474. }
  475. EXPORT_SYMBOL_GPL(ide_error);
  476. ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
  477. {
  478. if (drive->media != ide_disk)
  479. rq->errors |= ERROR_RESET;
  480. ide_kill_rq(drive, rq);
  481. return ide_stopped;
  482. }
  483. EXPORT_SYMBOL_GPL(__ide_abort);
  484. /**
  485. * ide_abort - abort pending IDE operations
  486. * @drive: drive the error occurred on
  487. * @msg: message to report
  488. *
  489. * ide_abort kills and cleans up when we are about to do a
  490. * host initiated reset on active commands. Longer term we
  491. * want handlers to have sensible abort handling themselves
  492. *
  493. * This differs fundamentally from ide_error because in
  494. * this case the command is doing just fine when we
  495. * blow it away.
  496. */
  497. ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
  498. {
  499. struct request *rq;
  500. if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
  501. return ide_stopped;
  502. /* retry only "normal" I/O: */
  503. if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
  504. rq->errors = 1;
  505. ide_end_drive_cmd(drive, BUSY_STAT, 0);
  506. return ide_stopped;
  507. }
  508. if (rq->rq_disk) {
  509. ide_driver_t *drv;
  510. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  511. return drv->abort(drive, rq);
  512. } else
  513. return __ide_abort(drive, rq);
  514. }
  515. /**
  516. * ide_cmd - issue a simple drive command
  517. * @drive: drive the command is for
  518. * @cmd: command byte
  519. * @nsect: sector byte
  520. * @handler: handler for the command completion
  521. *
  522. * Issue a simple drive command with interrupts.
  523. * The drive must be selected beforehand.
  524. */
  525. static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
  526. ide_handler_t *handler)
  527. {
  528. ide_hwif_t *hwif = HWIF(drive);
  529. if (IDE_CONTROL_REG)
  530. hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
  531. SELECT_MASK(drive,0);
  532. hwif->OUTB(nsect,IDE_NSECTOR_REG);
  533. ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
  534. }
  535. /**
  536. * drive_cmd_intr - drive command completion interrupt
  537. * @drive: drive the completion interrupt occurred on
  538. *
  539. * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
  540. * We do any necessary data reading and then wait for the drive to
  541. * go non busy. At that point we may read the error data and complete
  542. * the request
  543. */
  544. static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
  545. {
  546. struct request *rq = HWGROUP(drive)->rq;
  547. ide_hwif_t *hwif = HWIF(drive);
  548. u8 *args = (u8 *) rq->buffer;
  549. u8 stat = hwif->INB(IDE_STATUS_REG);
  550. int retries = 10;
  551. local_irq_enable();
  552. if ((stat & DRQ_STAT) && args && args[3]) {
  553. u8 io_32bit = drive->io_32bit;
  554. drive->io_32bit = 0;
  555. hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
  556. drive->io_32bit = io_32bit;
  557. while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
  558. udelay(100);
  559. }
  560. if (!OK_STAT(stat, READY_STAT, BAD_STAT))
  561. return ide_error(drive, "drive_cmd", stat);
  562. /* calls ide_end_drive_cmd */
  563. ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
  564. return ide_stopped;
  565. }
  566. static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
  567. {
  568. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
  569. task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect;
  570. task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl;
  571. task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8;
  572. task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF;
  573. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
  574. task->handler = &set_geometry_intr;
  575. }
  576. static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
  577. {
  578. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
  579. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
  580. task->handler = &recal_intr;
  581. }
  582. static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
  583. {
  584. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
  585. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
  586. task->handler = &set_multmode_intr;
  587. }
  588. static ide_startstop_t ide_disk_special(ide_drive_t *drive)
  589. {
  590. special_t *s = &drive->special;
  591. ide_task_t args;
  592. memset(&args, 0, sizeof(ide_task_t));
  593. args.command_type = IDE_DRIVE_TASK_NO_DATA;
  594. if (s->b.set_geometry) {
  595. s->b.set_geometry = 0;
  596. ide_init_specify_cmd(drive, &args);
  597. } else if (s->b.recalibrate) {
  598. s->b.recalibrate = 0;
  599. ide_init_restore_cmd(drive, &args);
  600. } else if (s->b.set_multmode) {
  601. s->b.set_multmode = 0;
  602. if (drive->mult_req > drive->id->max_multsect)
  603. drive->mult_req = drive->id->max_multsect;
  604. ide_init_setmult_cmd(drive, &args);
  605. } else if (s->all) {
  606. int special = s->all;
  607. s->all = 0;
  608. printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
  609. return ide_stopped;
  610. }
  611. do_rw_taskfile(drive, &args);
  612. return ide_started;
  613. }
  614. /**
  615. * do_special - issue some special commands
  616. * @drive: drive the command is for
  617. *
  618. * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
  619. * commands to a drive. It used to do much more, but has been scaled
  620. * back.
  621. */
  622. static ide_startstop_t do_special (ide_drive_t *drive)
  623. {
  624. special_t *s = &drive->special;
  625. #ifdef DEBUG
  626. printk("%s: do_special: 0x%02x\n", drive->name, s->all);
  627. #endif
  628. if (s->b.set_tune) {
  629. s->b.set_tune = 0;
  630. if (HWIF(drive)->tuneproc != NULL)
  631. HWIF(drive)->tuneproc(drive, drive->tune_req);
  632. return ide_stopped;
  633. } else {
  634. if (drive->media == ide_disk)
  635. return ide_disk_special(drive);
  636. s->all = 0;
  637. drive->mult_req = 0;
  638. return ide_stopped;
  639. }
  640. }
  641. void ide_map_sg(ide_drive_t *drive, struct request *rq)
  642. {
  643. ide_hwif_t *hwif = drive->hwif;
  644. struct scatterlist *sg = hwif->sg_table;
  645. if (hwif->sg_mapped) /* needed by ide-scsi */
  646. return;
  647. if ((rq->flags & REQ_DRIVE_TASKFILE) == 0) {
  648. hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
  649. } else {
  650. sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
  651. hwif->sg_nents = 1;
  652. }
  653. }
  654. EXPORT_SYMBOL_GPL(ide_map_sg);
  655. void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
  656. {
  657. ide_hwif_t *hwif = drive->hwif;
  658. hwif->nsect = hwif->nleft = rq->nr_sectors;
  659. hwif->cursg = hwif->cursg_ofs = 0;
  660. }
  661. EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
  662. /**
  663. * execute_drive_command - issue special drive command
  664. * @drive: the drive to issue the command on
  665. * @rq: the request structure holding the command
  666. *
  667. * execute_drive_cmd() issues a special drive command, usually
  668. * initiated by ioctl() from the external hdparm program. The
  669. * command can be a drive command, drive task or taskfile
  670. * operation. Weirdly you can call it with NULL to wait for
  671. * all commands to finish. Don't do this as that is due to change
  672. */
  673. static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
  674. struct request *rq)
  675. {
  676. ide_hwif_t *hwif = HWIF(drive);
  677. if (rq->flags & REQ_DRIVE_TASKFILE) {
  678. ide_task_t *args = rq->special;
  679. if (!args)
  680. goto done;
  681. hwif->data_phase = args->data_phase;
  682. switch (hwif->data_phase) {
  683. case TASKFILE_MULTI_OUT:
  684. case TASKFILE_OUT:
  685. case TASKFILE_MULTI_IN:
  686. case TASKFILE_IN:
  687. ide_init_sg_cmd(drive, rq);
  688. ide_map_sg(drive, rq);
  689. default:
  690. break;
  691. }
  692. if (args->tf_out_flags.all != 0)
  693. return flagged_taskfile(drive, args);
  694. return do_rw_taskfile(drive, args);
  695. } else if (rq->flags & REQ_DRIVE_TASK) {
  696. u8 *args = rq->buffer;
  697. u8 sel;
  698. if (!args)
  699. goto done;
  700. #ifdef DEBUG
  701. printk("%s: DRIVE_TASK_CMD ", drive->name);
  702. printk("cmd=0x%02x ", args[0]);
  703. printk("fr=0x%02x ", args[1]);
  704. printk("ns=0x%02x ", args[2]);
  705. printk("sc=0x%02x ", args[3]);
  706. printk("lcyl=0x%02x ", args[4]);
  707. printk("hcyl=0x%02x ", args[5]);
  708. printk("sel=0x%02x\n", args[6]);
  709. #endif
  710. hwif->OUTB(args[1], IDE_FEATURE_REG);
  711. hwif->OUTB(args[3], IDE_SECTOR_REG);
  712. hwif->OUTB(args[4], IDE_LCYL_REG);
  713. hwif->OUTB(args[5], IDE_HCYL_REG);
  714. sel = (args[6] & ~0x10);
  715. if (drive->select.b.unit)
  716. sel |= 0x10;
  717. hwif->OUTB(sel, IDE_SELECT_REG);
  718. ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
  719. return ide_started;
  720. } else if (rq->flags & REQ_DRIVE_CMD) {
  721. u8 *args = rq->buffer;
  722. if (!args)
  723. goto done;
  724. #ifdef DEBUG
  725. printk("%s: DRIVE_CMD ", drive->name);
  726. printk("cmd=0x%02x ", args[0]);
  727. printk("sc=0x%02x ", args[1]);
  728. printk("fr=0x%02x ", args[2]);
  729. printk("xx=0x%02x\n", args[3]);
  730. #endif
  731. if (args[0] == WIN_SMART) {
  732. hwif->OUTB(0x4f, IDE_LCYL_REG);
  733. hwif->OUTB(0xc2, IDE_HCYL_REG);
  734. hwif->OUTB(args[2],IDE_FEATURE_REG);
  735. hwif->OUTB(args[1],IDE_SECTOR_REG);
  736. ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
  737. return ide_started;
  738. }
  739. hwif->OUTB(args[2],IDE_FEATURE_REG);
  740. ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
  741. return ide_started;
  742. }
  743. done:
  744. /*
  745. * NULL is actually a valid way of waiting for
  746. * all current requests to be flushed from the queue.
  747. */
  748. #ifdef DEBUG
  749. printk("%s: DRIVE_CMD (null)\n", drive->name);
  750. #endif
  751. ide_end_drive_cmd(drive,
  752. hwif->INB(IDE_STATUS_REG),
  753. hwif->INB(IDE_ERROR_REG));
  754. return ide_stopped;
  755. }
  756. /**
  757. * start_request - start of I/O and command issuing for IDE
  758. *
  759. * start_request() initiates handling of a new I/O request. It
  760. * accepts commands and I/O (read/write) requests. It also does
  761. * the final remapping for weird stuff like EZDrive. Once
  762. * device mapper can work sector level the EZDrive stuff can go away
  763. *
  764. * FIXME: this function needs a rename
  765. */
  766. static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
  767. {
  768. ide_startstop_t startstop;
  769. sector_t block;
  770. BUG_ON(!(rq->flags & REQ_STARTED));
  771. #ifdef DEBUG
  772. printk("%s: start_request: current=0x%08lx\n",
  773. HWIF(drive)->name, (unsigned long) rq);
  774. #endif
  775. /* bail early if we've exceeded max_failures */
  776. if (drive->max_failures && (drive->failures > drive->max_failures)) {
  777. goto kill_rq;
  778. }
  779. block = rq->sector;
  780. if (blk_fs_request(rq) &&
  781. (drive->media == ide_disk || drive->media == ide_floppy)) {
  782. block += drive->sect0;
  783. }
  784. /* Yecch - this will shift the entire interval,
  785. possibly killing some innocent following sector */
  786. if (block == 0 && drive->remap_0_to_1 == 1)
  787. block = 1; /* redirect MBR access to EZ-Drive partn table */
  788. if (blk_pm_suspend_request(rq) &&
  789. rq->pm->pm_step == ide_pm_state_start_suspend)
  790. /* Mark drive blocked when starting the suspend sequence. */
  791. drive->blocked = 1;
  792. else if (blk_pm_resume_request(rq) &&
  793. rq->pm->pm_step == ide_pm_state_start_resume) {
  794. /*
  795. * The first thing we do on wakeup is to wait for BSY bit to
  796. * go away (with a looong timeout) as a drive on this hwif may
  797. * just be POSTing itself.
  798. * We do that before even selecting as the "other" device on
  799. * the bus may be broken enough to walk on our toes at this
  800. * point.
  801. */
  802. int rc;
  803. #ifdef DEBUG_PM
  804. printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
  805. #endif
  806. rc = ide_wait_not_busy(HWIF(drive), 35000);
  807. if (rc)
  808. printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
  809. SELECT_DRIVE(drive);
  810. HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
  811. rc = ide_wait_not_busy(HWIF(drive), 10000);
  812. if (rc)
  813. printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
  814. }
  815. SELECT_DRIVE(drive);
  816. if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
  817. printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
  818. return startstop;
  819. }
  820. if (!drive->special.all) {
  821. ide_driver_t *drv;
  822. if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK))
  823. return execute_drive_cmd(drive, rq);
  824. else if (rq->flags & REQ_DRIVE_TASKFILE)
  825. return execute_drive_cmd(drive, rq);
  826. else if (blk_pm_request(rq)) {
  827. #ifdef DEBUG_PM
  828. printk("%s: start_power_step(step: %d)\n",
  829. drive->name, rq->pm->pm_step);
  830. #endif
  831. startstop = ide_start_power_step(drive, rq);
  832. if (startstop == ide_stopped &&
  833. rq->pm->pm_step == ide_pm_state_completed)
  834. ide_complete_pm_request(drive, rq);
  835. return startstop;
  836. }
  837. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  838. return drv->do_request(drive, rq, block);
  839. }
  840. return do_special(drive);
  841. kill_rq:
  842. ide_kill_rq(drive, rq);
  843. return ide_stopped;
  844. }
  845. /**
  846. * ide_stall_queue - pause an IDE device
  847. * @drive: drive to stall
  848. * @timeout: time to stall for (jiffies)
  849. *
  850. * ide_stall_queue() can be used by a drive to give excess bandwidth back
  851. * to the hwgroup by sleeping for timeout jiffies.
  852. */
  853. void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
  854. {
  855. if (timeout > WAIT_WORSTCASE)
  856. timeout = WAIT_WORSTCASE;
  857. drive->sleep = timeout + jiffies;
  858. drive->sleeping = 1;
  859. }
  860. EXPORT_SYMBOL(ide_stall_queue);
  861. #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
  862. /**
  863. * choose_drive - select a drive to service
  864. * @hwgroup: hardware group to select on
  865. *
  866. * choose_drive() selects the next drive which will be serviced.
  867. * This is necessary because the IDE layer can't issue commands
  868. * to both drives on the same cable, unlike SCSI.
  869. */
  870. static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
  871. {
  872. ide_drive_t *drive, *best;
  873. repeat:
  874. best = NULL;
  875. drive = hwgroup->drive;
  876. /*
  877. * drive is doing pre-flush, ordered write, post-flush sequence. even
  878. * though that is 3 requests, it must be seen as a single transaction.
  879. * we must not preempt this drive until that is complete
  880. */
  881. if (blk_queue_flushing(drive->queue)) {
  882. /*
  883. * small race where queue could get replugged during
  884. * the 3-request flush cycle, just yank the plug since
  885. * we want it to finish asap
  886. */
  887. blk_remove_plug(drive->queue);
  888. return drive;
  889. }
  890. do {
  891. if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
  892. && !elv_queue_empty(drive->queue)) {
  893. if (!best
  894. || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
  895. || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
  896. {
  897. if (!blk_queue_plugged(drive->queue))
  898. best = drive;
  899. }
  900. }
  901. } while ((drive = drive->next) != hwgroup->drive);
  902. if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
  903. long t = (signed long)(WAKEUP(best) - jiffies);
  904. if (t >= WAIT_MIN_SLEEP) {
  905. /*
  906. * We *may* have some time to spare, but first let's see if
  907. * someone can potentially benefit from our nice mood today..
  908. */
  909. drive = best->next;
  910. do {
  911. if (!drive->sleeping
  912. && time_before(jiffies - best->service_time, WAKEUP(drive))
  913. && time_before(WAKEUP(drive), jiffies + t))
  914. {
  915. ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
  916. goto repeat;
  917. }
  918. } while ((drive = drive->next) != best);
  919. }
  920. }
  921. return best;
  922. }
  923. /*
  924. * Issue a new request to a drive from hwgroup
  925. * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
  926. *
  927. * A hwgroup is a serialized group of IDE interfaces. Usually there is
  928. * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
  929. * may have both interfaces in a single hwgroup to "serialize" access.
  930. * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
  931. * together into one hwgroup for serialized access.
  932. *
  933. * Note also that several hwgroups can end up sharing a single IRQ,
  934. * possibly along with many other devices. This is especially common in
  935. * PCI-based systems with off-board IDE controller cards.
  936. *
  937. * The IDE driver uses the single global ide_lock spinlock to protect
  938. * access to the request queues, and to protect the hwgroup->busy flag.
  939. *
  940. * The first thread into the driver for a particular hwgroup sets the
  941. * hwgroup->busy flag to indicate that this hwgroup is now active,
  942. * and then initiates processing of the top request from the request queue.
  943. *
  944. * Other threads attempting entry notice the busy setting, and will simply
  945. * queue their new requests and exit immediately. Note that hwgroup->busy
  946. * remains set even when the driver is merely awaiting the next interrupt.
  947. * Thus, the meaning is "this hwgroup is busy processing a request".
  948. *
  949. * When processing of a request completes, the completing thread or IRQ-handler
  950. * will start the next request from the queue. If no more work remains,
  951. * the driver will clear the hwgroup->busy flag and exit.
  952. *
  953. * The ide_lock (spinlock) is used to protect all access to the
  954. * hwgroup->busy flag, but is otherwise not needed for most processing in
  955. * the driver. This makes the driver much more friendlier to shared IRQs
  956. * than previous designs, while remaining 100% (?) SMP safe and capable.
  957. */
  958. static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
  959. {
  960. ide_drive_t *drive;
  961. ide_hwif_t *hwif;
  962. struct request *rq;
  963. ide_startstop_t startstop;
  964. int loops = 0;
  965. /* for atari only: POSSIBLY BROKEN HERE(?) */
  966. ide_get_lock(ide_intr, hwgroup);
  967. /* caller must own ide_lock */
  968. BUG_ON(!irqs_disabled());
  969. while (!hwgroup->busy) {
  970. hwgroup->busy = 1;
  971. drive = choose_drive(hwgroup);
  972. if (drive == NULL) {
  973. int sleeping = 0;
  974. unsigned long sleep = 0; /* shut up, gcc */
  975. hwgroup->rq = NULL;
  976. drive = hwgroup->drive;
  977. do {
  978. if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
  979. sleeping = 1;
  980. sleep = drive->sleep;
  981. }
  982. } while ((drive = drive->next) != hwgroup->drive);
  983. if (sleeping) {
  984. /*
  985. * Take a short snooze, and then wake up this hwgroup again.
  986. * This gives other hwgroups on the same a chance to
  987. * play fairly with us, just in case there are big differences
  988. * in relative throughputs.. don't want to hog the cpu too much.
  989. */
  990. if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
  991. sleep = jiffies + WAIT_MIN_SLEEP;
  992. #if 1
  993. if (timer_pending(&hwgroup->timer))
  994. printk(KERN_CRIT "ide_set_handler: timer already active\n");
  995. #endif
  996. /* so that ide_timer_expiry knows what to do */
  997. hwgroup->sleeping = 1;
  998. mod_timer(&hwgroup->timer, sleep);
  999. /* we purposely leave hwgroup->busy==1
  1000. * while sleeping */
  1001. } else {
  1002. /* Ugly, but how can we sleep for the lock
  1003. * otherwise? perhaps from tq_disk?
  1004. */
  1005. /* for atari only */
  1006. ide_release_lock();
  1007. hwgroup->busy = 0;
  1008. }
  1009. /* no more work for this hwgroup (for now) */
  1010. return;
  1011. }
  1012. again:
  1013. hwif = HWIF(drive);
  1014. if (hwgroup->hwif->sharing_irq &&
  1015. hwif != hwgroup->hwif &&
  1016. hwif->io_ports[IDE_CONTROL_OFFSET]) {
  1017. /* set nIEN for previous hwif */
  1018. SELECT_INTERRUPT(drive);
  1019. }
  1020. hwgroup->hwif = hwif;
  1021. hwgroup->drive = drive;
  1022. drive->sleeping = 0;
  1023. drive->service_start = jiffies;
  1024. if (blk_queue_plugged(drive->queue)) {
  1025. printk(KERN_ERR "ide: huh? queue was plugged!\n");
  1026. break;
  1027. }
  1028. /*
  1029. * we know that the queue isn't empty, but this can happen
  1030. * if the q->prep_rq_fn() decides to kill a request
  1031. */
  1032. rq = elv_next_request(drive->queue);
  1033. if (!rq) {
  1034. hwgroup->busy = 0;
  1035. break;
  1036. }
  1037. /*
  1038. * Sanity: don't accept a request that isn't a PM request
  1039. * if we are currently power managed. This is very important as
  1040. * blk_stop_queue() doesn't prevent the elv_next_request()
  1041. * above to return us whatever is in the queue. Since we call
  1042. * ide_do_request() ourselves, we end up taking requests while
  1043. * the queue is blocked...
  1044. *
  1045. * We let requests forced at head of queue with ide-preempt
  1046. * though. I hope that doesn't happen too much, hopefully not
  1047. * unless the subdriver triggers such a thing in its own PM
  1048. * state machine.
  1049. *
  1050. * We count how many times we loop here to make sure we service
  1051. * all drives in the hwgroup without looping for ever
  1052. */
  1053. if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) {
  1054. drive = drive->next ? drive->next : hwgroup->drive;
  1055. if (loops++ < 4 && !blk_queue_plugged(drive->queue))
  1056. goto again;
  1057. /* We clear busy, there should be no pending ATA command at this point. */
  1058. hwgroup->busy = 0;
  1059. break;
  1060. }
  1061. hwgroup->rq = rq;
  1062. /*
  1063. * Some systems have trouble with IDE IRQs arriving while
  1064. * the driver is still setting things up. So, here we disable
  1065. * the IRQ used by this interface while the request is being started.
  1066. * This may look bad at first, but pretty much the same thing
  1067. * happens anyway when any interrupt comes in, IDE or otherwise
  1068. * -- the kernel masks the IRQ while it is being handled.
  1069. */
  1070. if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
  1071. disable_irq_nosync(hwif->irq);
  1072. spin_unlock(&ide_lock);
  1073. local_irq_enable();
  1074. /* allow other IRQs while we start this request */
  1075. startstop = start_request(drive, rq);
  1076. spin_lock_irq(&ide_lock);
  1077. if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
  1078. enable_irq(hwif->irq);
  1079. if (startstop == ide_stopped)
  1080. hwgroup->busy = 0;
  1081. }
  1082. }
  1083. /*
  1084. * Passes the stuff to ide_do_request
  1085. */
  1086. void do_ide_request(request_queue_t *q)
  1087. {
  1088. ide_drive_t *drive = q->queuedata;
  1089. ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
  1090. }
  1091. /*
  1092. * un-busy the hwgroup etc, and clear any pending DMA status. we want to
  1093. * retry the current request in pio mode instead of risking tossing it
  1094. * all away
  1095. */
  1096. static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
  1097. {
  1098. ide_hwif_t *hwif = HWIF(drive);
  1099. struct request *rq;
  1100. ide_startstop_t ret = ide_stopped;
  1101. /*
  1102. * end current dma transaction
  1103. */
  1104. if (error < 0) {
  1105. printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
  1106. (void)HWIF(drive)->ide_dma_end(drive);
  1107. ret = ide_error(drive, "dma timeout error",
  1108. hwif->INB(IDE_STATUS_REG));
  1109. } else {
  1110. printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
  1111. (void) hwif->ide_dma_timeout(drive);
  1112. }
  1113. /*
  1114. * disable dma for now, but remember that we did so because of
  1115. * a timeout -- we'll reenable after we finish this next request
  1116. * (or rather the first chunk of it) in pio.
  1117. */
  1118. drive->retry_pio++;
  1119. drive->state = DMA_PIO_RETRY;
  1120. (void) hwif->ide_dma_off_quietly(drive);
  1121. /*
  1122. * un-busy drive etc (hwgroup->busy is cleared on return) and
  1123. * make sure request is sane
  1124. */
  1125. rq = HWGROUP(drive)->rq;
  1126. HWGROUP(drive)->rq = NULL;
  1127. rq->errors = 0;
  1128. if (!rq->bio)
  1129. goto out;
  1130. rq->sector = rq->bio->bi_sector;
  1131. rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
  1132. rq->hard_cur_sectors = rq->current_nr_sectors;
  1133. rq->buffer = bio_data(rq->bio);
  1134. out:
  1135. return ret;
  1136. }
  1137. /**
  1138. * ide_timer_expiry - handle lack of an IDE interrupt
  1139. * @data: timer callback magic (hwgroup)
  1140. *
  1141. * An IDE command has timed out before the expected drive return
  1142. * occurred. At this point we attempt to clean up the current
  1143. * mess. If the current handler includes an expiry handler then
  1144. * we invoke the expiry handler, and providing it is happy the
  1145. * work is done. If that fails we apply generic recovery rules
  1146. * invoking the handler and checking the drive DMA status. We
  1147. * have an excessively incestuous relationship with the DMA
  1148. * logic that wants cleaning up.
  1149. */
  1150. void ide_timer_expiry (unsigned long data)
  1151. {
  1152. ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
  1153. ide_handler_t *handler;
  1154. ide_expiry_t *expiry;
  1155. unsigned long flags;
  1156. unsigned long wait = -1;
  1157. spin_lock_irqsave(&ide_lock, flags);
  1158. if ((handler = hwgroup->handler) == NULL) {
  1159. /*
  1160. * Either a marginal timeout occurred
  1161. * (got the interrupt just as timer expired),
  1162. * or we were "sleeping" to give other devices a chance.
  1163. * Either way, we don't really want to complain about anything.
  1164. */
  1165. if (hwgroup->sleeping) {
  1166. hwgroup->sleeping = 0;
  1167. hwgroup->busy = 0;
  1168. }
  1169. } else {
  1170. ide_drive_t *drive = hwgroup->drive;
  1171. if (!drive) {
  1172. printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
  1173. hwgroup->handler = NULL;
  1174. } else {
  1175. ide_hwif_t *hwif;
  1176. ide_startstop_t startstop = ide_stopped;
  1177. if (!hwgroup->busy) {
  1178. hwgroup->busy = 1; /* paranoia */
  1179. printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
  1180. }
  1181. if ((expiry = hwgroup->expiry) != NULL) {
  1182. /* continue */
  1183. if ((wait = expiry(drive)) > 0) {
  1184. /* reset timer */
  1185. hwgroup->timer.expires = jiffies + wait;
  1186. add_timer(&hwgroup->timer);
  1187. spin_unlock_irqrestore(&ide_lock, flags);
  1188. return;
  1189. }
  1190. }
  1191. hwgroup->handler = NULL;
  1192. /*
  1193. * We need to simulate a real interrupt when invoking
  1194. * the handler() function, which means we need to
  1195. * globally mask the specific IRQ:
  1196. */
  1197. spin_unlock(&ide_lock);
  1198. hwif = HWIF(drive);
  1199. #if DISABLE_IRQ_NOSYNC
  1200. disable_irq_nosync(hwif->irq);
  1201. #else
  1202. /* disable_irq_nosync ?? */
  1203. disable_irq(hwif->irq);
  1204. #endif /* DISABLE_IRQ_NOSYNC */
  1205. /* local CPU only,
  1206. * as if we were handling an interrupt */
  1207. local_irq_disable();
  1208. if (hwgroup->polling) {
  1209. startstop = handler(drive);
  1210. } else if (drive_is_ready(drive)) {
  1211. if (drive->waiting_for_dma)
  1212. (void) hwgroup->hwif->ide_dma_lostirq(drive);
  1213. (void)ide_ack_intr(hwif);
  1214. printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
  1215. startstop = handler(drive);
  1216. } else {
  1217. if (drive->waiting_for_dma) {
  1218. startstop = ide_dma_timeout_retry(drive, wait);
  1219. } else
  1220. startstop =
  1221. ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
  1222. }
  1223. drive->service_time = jiffies - drive->service_start;
  1224. spin_lock_irq(&ide_lock);
  1225. enable_irq(hwif->irq);
  1226. if (startstop == ide_stopped)
  1227. hwgroup->busy = 0;
  1228. }
  1229. }
  1230. ide_do_request(hwgroup, IDE_NO_IRQ);
  1231. spin_unlock_irqrestore(&ide_lock, flags);
  1232. }
  1233. /**
  1234. * unexpected_intr - handle an unexpected IDE interrupt
  1235. * @irq: interrupt line
  1236. * @hwgroup: hwgroup being processed
  1237. *
  1238. * There's nothing really useful we can do with an unexpected interrupt,
  1239. * other than reading the status register (to clear it), and logging it.
  1240. * There should be no way that an irq can happen before we're ready for it,
  1241. * so we needn't worry much about losing an "important" interrupt here.
  1242. *
  1243. * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
  1244. * the drive enters "idle", "standby", or "sleep" mode, so if the status
  1245. * looks "good", we just ignore the interrupt completely.
  1246. *
  1247. * This routine assumes __cli() is in effect when called.
  1248. *
  1249. * If an unexpected interrupt happens on irq15 while we are handling irq14
  1250. * and if the two interfaces are "serialized" (CMD640), then it looks like
  1251. * we could screw up by interfering with a new request being set up for
  1252. * irq15.
  1253. *
  1254. * In reality, this is a non-issue. The new command is not sent unless
  1255. * the drive is ready to accept one, in which case we know the drive is
  1256. * not trying to interrupt us. And ide_set_handler() is always invoked
  1257. * before completing the issuance of any new drive command, so we will not
  1258. * be accidentally invoked as a result of any valid command completion
  1259. * interrupt.
  1260. *
  1261. * Note that we must walk the entire hwgroup here. We know which hwif
  1262. * is doing the current command, but we don't know which hwif burped
  1263. * mysteriously.
  1264. */
  1265. static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
  1266. {
  1267. u8 stat;
  1268. ide_hwif_t *hwif = hwgroup->hwif;
  1269. /*
  1270. * handle the unexpected interrupt
  1271. */
  1272. do {
  1273. if (hwif->irq == irq) {
  1274. stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1275. if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
  1276. /* Try to not flood the console with msgs */
  1277. static unsigned long last_msgtime, count;
  1278. ++count;
  1279. if (time_after(jiffies, last_msgtime + HZ)) {
  1280. last_msgtime = jiffies;
  1281. printk(KERN_ERR "%s%s: unexpected interrupt, "
  1282. "status=0x%02x, count=%ld\n",
  1283. hwif->name,
  1284. (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
  1285. }
  1286. }
  1287. }
  1288. } while ((hwif = hwif->next) != hwgroup->hwif);
  1289. }
  1290. /**
  1291. * ide_intr - default IDE interrupt handler
  1292. * @irq: interrupt number
  1293. * @dev_id: hwif group
  1294. * @regs: unused weirdness from the kernel irq layer
  1295. *
  1296. * This is the default IRQ handler for the IDE layer. You should
  1297. * not need to override it. If you do be aware it is subtle in
  1298. * places
  1299. *
  1300. * hwgroup->hwif is the interface in the group currently performing
  1301. * a command. hwgroup->drive is the drive and hwgroup->handler is
  1302. * the IRQ handler to call. As we issue a command the handlers
  1303. * step through multiple states, reassigning the handler to the
  1304. * next step in the process. Unlike a smart SCSI controller IDE
  1305. * expects the main processor to sequence the various transfer
  1306. * stages. We also manage a poll timer to catch up with most
  1307. * timeout situations. There are still a few where the handlers
  1308. * don't ever decide to give up.
  1309. *
  1310. * The handler eventually returns ide_stopped to indicate the
  1311. * request completed. At this point we issue the next request
  1312. * on the hwgroup and the process begins again.
  1313. */
  1314. irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs)
  1315. {
  1316. unsigned long flags;
  1317. ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
  1318. ide_hwif_t *hwif;
  1319. ide_drive_t *drive;
  1320. ide_handler_t *handler;
  1321. ide_startstop_t startstop;
  1322. spin_lock_irqsave(&ide_lock, flags);
  1323. hwif = hwgroup->hwif;
  1324. if (!ide_ack_intr(hwif)) {
  1325. spin_unlock_irqrestore(&ide_lock, flags);
  1326. return IRQ_NONE;
  1327. }
  1328. if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
  1329. /*
  1330. * Not expecting an interrupt from this drive.
  1331. * That means this could be:
  1332. * (1) an interrupt from another PCI device
  1333. * sharing the same PCI INT# as us.
  1334. * or (2) a drive just entered sleep or standby mode,
  1335. * and is interrupting to let us know.
  1336. * or (3) a spurious interrupt of unknown origin.
  1337. *
  1338. * For PCI, we cannot tell the difference,
  1339. * so in that case we just ignore it and hope it goes away.
  1340. *
  1341. * FIXME: unexpected_intr should be hwif-> then we can
  1342. * remove all the ifdef PCI crap
  1343. */
  1344. #ifdef CONFIG_BLK_DEV_IDEPCI
  1345. if (hwif->pci_dev && !hwif->pci_dev->vendor)
  1346. #endif /* CONFIG_BLK_DEV_IDEPCI */
  1347. {
  1348. /*
  1349. * Probably not a shared PCI interrupt,
  1350. * so we can safely try to do something about it:
  1351. */
  1352. unexpected_intr(irq, hwgroup);
  1353. #ifdef CONFIG_BLK_DEV_IDEPCI
  1354. } else {
  1355. /*
  1356. * Whack the status register, just in case
  1357. * we have a leftover pending IRQ.
  1358. */
  1359. (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1360. #endif /* CONFIG_BLK_DEV_IDEPCI */
  1361. }
  1362. spin_unlock_irqrestore(&ide_lock, flags);
  1363. return IRQ_NONE;
  1364. }
  1365. drive = hwgroup->drive;
  1366. if (!drive) {
  1367. /*
  1368. * This should NEVER happen, and there isn't much
  1369. * we could do about it here.
  1370. *
  1371. * [Note - this can occur if the drive is hot unplugged]
  1372. */
  1373. spin_unlock_irqrestore(&ide_lock, flags);
  1374. return IRQ_HANDLED;
  1375. }
  1376. if (!drive_is_ready(drive)) {
  1377. /*
  1378. * This happens regularly when we share a PCI IRQ with
  1379. * another device. Unfortunately, it can also happen
  1380. * with some buggy drives that trigger the IRQ before
  1381. * their status register is up to date. Hopefully we have
  1382. * enough advance overhead that the latter isn't a problem.
  1383. */
  1384. spin_unlock_irqrestore(&ide_lock, flags);
  1385. return IRQ_NONE;
  1386. }
  1387. if (!hwgroup->busy) {
  1388. hwgroup->busy = 1; /* paranoia */
  1389. printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
  1390. }
  1391. hwgroup->handler = NULL;
  1392. del_timer(&hwgroup->timer);
  1393. spin_unlock(&ide_lock);
  1394. if (drive->unmask)
  1395. local_irq_enable();
  1396. /* service this interrupt, may set handler for next interrupt */
  1397. startstop = handler(drive);
  1398. spin_lock_irq(&ide_lock);
  1399. /*
  1400. * Note that handler() may have set things up for another
  1401. * interrupt to occur soon, but it cannot happen until
  1402. * we exit from this routine, because it will be the
  1403. * same irq as is currently being serviced here, and Linux
  1404. * won't allow another of the same (on any CPU) until we return.
  1405. */
  1406. drive->service_time = jiffies - drive->service_start;
  1407. if (startstop == ide_stopped) {
  1408. if (hwgroup->handler == NULL) { /* paranoia */
  1409. hwgroup->busy = 0;
  1410. ide_do_request(hwgroup, hwif->irq);
  1411. } else {
  1412. printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
  1413. "on exit\n", drive->name);
  1414. }
  1415. }
  1416. spin_unlock_irqrestore(&ide_lock, flags);
  1417. return IRQ_HANDLED;
  1418. }
  1419. /**
  1420. * ide_init_drive_cmd - initialize a drive command request
  1421. * @rq: request object
  1422. *
  1423. * Initialize a request before we fill it in and send it down to
  1424. * ide_do_drive_cmd. Commands must be set up by this function. Right
  1425. * now it doesn't do a lot, but if that changes abusers will have a
  1426. * nasty suprise.
  1427. */
  1428. void ide_init_drive_cmd (struct request *rq)
  1429. {
  1430. memset(rq, 0, sizeof(*rq));
  1431. rq->flags = REQ_DRIVE_CMD;
  1432. rq->ref_count = 1;
  1433. }
  1434. EXPORT_SYMBOL(ide_init_drive_cmd);
  1435. /**
  1436. * ide_do_drive_cmd - issue IDE special command
  1437. * @drive: device to issue command
  1438. * @rq: request to issue
  1439. * @action: action for processing
  1440. *
  1441. * This function issues a special IDE device request
  1442. * onto the request queue.
  1443. *
  1444. * If action is ide_wait, then the rq is queued at the end of the
  1445. * request queue, and the function sleeps until it has been processed.
  1446. * This is for use when invoked from an ioctl handler.
  1447. *
  1448. * If action is ide_preempt, then the rq is queued at the head of
  1449. * the request queue, displacing the currently-being-processed
  1450. * request and this function returns immediately without waiting
  1451. * for the new rq to be completed. This is VERY DANGEROUS, and is
  1452. * intended for careful use by the ATAPI tape/cdrom driver code.
  1453. *
  1454. * If action is ide_end, then the rq is queued at the end of the
  1455. * request queue, and the function returns immediately without waiting
  1456. * for the new rq to be completed. This is again intended for careful
  1457. * use by the ATAPI tape/cdrom driver code.
  1458. */
  1459. int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
  1460. {
  1461. unsigned long flags;
  1462. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  1463. DECLARE_COMPLETION(wait);
  1464. int where = ELEVATOR_INSERT_BACK, err;
  1465. int must_wait = (action == ide_wait || action == ide_head_wait);
  1466. rq->errors = 0;
  1467. rq->rq_status = RQ_ACTIVE;
  1468. /*
  1469. * we need to hold an extra reference to request for safe inspection
  1470. * after completion
  1471. */
  1472. if (must_wait) {
  1473. rq->ref_count++;
  1474. rq->waiting = &wait;
  1475. rq->end_io = blk_end_sync_rq;
  1476. }
  1477. spin_lock_irqsave(&ide_lock, flags);
  1478. if (action == ide_preempt)
  1479. hwgroup->rq = NULL;
  1480. if (action == ide_preempt || action == ide_head_wait) {
  1481. where = ELEVATOR_INSERT_FRONT;
  1482. rq->flags |= REQ_PREEMPT;
  1483. }
  1484. __elv_add_request(drive->queue, rq, where, 0);
  1485. ide_do_request(hwgroup, IDE_NO_IRQ);
  1486. spin_unlock_irqrestore(&ide_lock, flags);
  1487. err = 0;
  1488. if (must_wait) {
  1489. wait_for_completion(&wait);
  1490. rq->waiting = NULL;
  1491. if (rq->errors)
  1492. err = -EIO;
  1493. blk_put_request(rq);
  1494. }
  1495. return err;
  1496. }
  1497. EXPORT_SYMBOL(ide_do_drive_cmd);