inode.c 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
  1. /*
  2. * hugetlbpage-backed filesystem. Based on ramfs.
  3. *
  4. * William Irwin, 2002
  5. *
  6. * Copyright (C) 2002 Linus Torvalds.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/thread_info.h>
  10. #include <asm/current.h>
  11. #include <linux/sched.h> /* remove ASAP */
  12. #include <linux/fs.h>
  13. #include <linux/mount.h>
  14. #include <linux/file.h>
  15. #include <linux/kernel.h>
  16. #include <linux/writeback.h>
  17. #include <linux/pagemap.h>
  18. #include <linux/highmem.h>
  19. #include <linux/init.h>
  20. #include <linux/string.h>
  21. #include <linux/capability.h>
  22. #include <linux/ctype.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/hugetlb.h>
  25. #include <linux/pagevec.h>
  26. #include <linux/parser.h>
  27. #include <linux/mman.h>
  28. #include <linux/slab.h>
  29. #include <linux/dnotify.h>
  30. #include <linux/statfs.h>
  31. #include <linux/security.h>
  32. #include <linux/ima.h>
  33. #include <asm/uaccess.h>
  34. /* some random number */
  35. #define HUGETLBFS_MAGIC 0x958458f6
  36. static const struct super_operations hugetlbfs_ops;
  37. static const struct address_space_operations hugetlbfs_aops;
  38. const struct file_operations hugetlbfs_file_operations;
  39. static const struct inode_operations hugetlbfs_dir_inode_operations;
  40. static const struct inode_operations hugetlbfs_inode_operations;
  41. static struct backing_dev_info hugetlbfs_backing_dev_info = {
  42. .name = "hugetlbfs",
  43. .ra_pages = 0, /* No readahead */
  44. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
  45. };
  46. int sysctl_hugetlb_shm_group;
  47. enum {
  48. Opt_size, Opt_nr_inodes,
  49. Opt_mode, Opt_uid, Opt_gid,
  50. Opt_pagesize,
  51. Opt_err,
  52. };
  53. static const match_table_t tokens = {
  54. {Opt_size, "size=%s"},
  55. {Opt_nr_inodes, "nr_inodes=%s"},
  56. {Opt_mode, "mode=%o"},
  57. {Opt_uid, "uid=%u"},
  58. {Opt_gid, "gid=%u"},
  59. {Opt_pagesize, "pagesize=%s"},
  60. {Opt_err, NULL},
  61. };
  62. static void huge_pagevec_release(struct pagevec *pvec)
  63. {
  64. int i;
  65. for (i = 0; i < pagevec_count(pvec); ++i)
  66. put_page(pvec->pages[i]);
  67. pagevec_reinit(pvec);
  68. }
  69. static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
  70. {
  71. struct inode *inode = file->f_path.dentry->d_inode;
  72. loff_t len, vma_len;
  73. int ret;
  74. struct hstate *h = hstate_file(file);
  75. /*
  76. * vma address alignment (but not the pgoff alignment) has
  77. * already been checked by prepare_hugepage_range. If you add
  78. * any error returns here, do so after setting VM_HUGETLB, so
  79. * is_vm_hugetlb_page tests below unmap_region go the right
  80. * way when do_mmap_pgoff unwinds (may be important on powerpc
  81. * and ia64).
  82. */
  83. vma->vm_flags |= VM_HUGETLB | VM_RESERVED;
  84. vma->vm_ops = &hugetlb_vm_ops;
  85. if (vma->vm_pgoff & ~(huge_page_mask(h) >> PAGE_SHIFT))
  86. return -EINVAL;
  87. vma_len = (loff_t)(vma->vm_end - vma->vm_start);
  88. mutex_lock(&inode->i_mutex);
  89. file_accessed(file);
  90. ret = -ENOMEM;
  91. len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
  92. if (hugetlb_reserve_pages(inode,
  93. vma->vm_pgoff >> huge_page_order(h),
  94. len >> huge_page_shift(h), vma,
  95. vma->vm_flags))
  96. goto out;
  97. ret = 0;
  98. hugetlb_prefault_arch_hook(vma->vm_mm);
  99. if (vma->vm_flags & VM_WRITE && inode->i_size < len)
  100. inode->i_size = len;
  101. out:
  102. mutex_unlock(&inode->i_mutex);
  103. return ret;
  104. }
  105. /*
  106. * Called under down_write(mmap_sem).
  107. */
  108. #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
  109. static unsigned long
  110. hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  111. unsigned long len, unsigned long pgoff, unsigned long flags)
  112. {
  113. struct mm_struct *mm = current->mm;
  114. struct vm_area_struct *vma;
  115. unsigned long start_addr;
  116. struct hstate *h = hstate_file(file);
  117. if (len & ~huge_page_mask(h))
  118. return -EINVAL;
  119. if (len > TASK_SIZE)
  120. return -ENOMEM;
  121. if (flags & MAP_FIXED) {
  122. if (prepare_hugepage_range(file, addr, len))
  123. return -EINVAL;
  124. return addr;
  125. }
  126. if (addr) {
  127. addr = ALIGN(addr, huge_page_size(h));
  128. vma = find_vma(mm, addr);
  129. if (TASK_SIZE - len >= addr &&
  130. (!vma || addr + len <= vma->vm_start))
  131. return addr;
  132. }
  133. start_addr = mm->free_area_cache;
  134. if (len <= mm->cached_hole_size)
  135. start_addr = TASK_UNMAPPED_BASE;
  136. full_search:
  137. addr = ALIGN(start_addr, huge_page_size(h));
  138. for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
  139. /* At this point: (!vma || addr < vma->vm_end). */
  140. if (TASK_SIZE - len < addr) {
  141. /*
  142. * Start a new search - just in case we missed
  143. * some holes.
  144. */
  145. if (start_addr != TASK_UNMAPPED_BASE) {
  146. start_addr = TASK_UNMAPPED_BASE;
  147. goto full_search;
  148. }
  149. return -ENOMEM;
  150. }
  151. if (!vma || addr + len <= vma->vm_start)
  152. return addr;
  153. addr = ALIGN(vma->vm_end, huge_page_size(h));
  154. }
  155. }
  156. #endif
  157. static int
  158. hugetlbfs_read_actor(struct page *page, unsigned long offset,
  159. char __user *buf, unsigned long count,
  160. unsigned long size)
  161. {
  162. char *kaddr;
  163. unsigned long left, copied = 0;
  164. int i, chunksize;
  165. if (size > count)
  166. size = count;
  167. /* Find which 4k chunk and offset with in that chunk */
  168. i = offset >> PAGE_CACHE_SHIFT;
  169. offset = offset & ~PAGE_CACHE_MASK;
  170. while (size) {
  171. chunksize = PAGE_CACHE_SIZE;
  172. if (offset)
  173. chunksize -= offset;
  174. if (chunksize > size)
  175. chunksize = size;
  176. kaddr = kmap(&page[i]);
  177. left = __copy_to_user(buf, kaddr + offset, chunksize);
  178. kunmap(&page[i]);
  179. if (left) {
  180. copied += (chunksize - left);
  181. break;
  182. }
  183. offset = 0;
  184. size -= chunksize;
  185. buf += chunksize;
  186. copied += chunksize;
  187. i++;
  188. }
  189. return copied ? copied : -EFAULT;
  190. }
  191. /*
  192. * Support for read() - Find the page attached to f_mapping and copy out the
  193. * data. Its *very* similar to do_generic_mapping_read(), we can't use that
  194. * since it has PAGE_CACHE_SIZE assumptions.
  195. */
  196. static ssize_t hugetlbfs_read(struct file *filp, char __user *buf,
  197. size_t len, loff_t *ppos)
  198. {
  199. struct hstate *h = hstate_file(filp);
  200. struct address_space *mapping = filp->f_mapping;
  201. struct inode *inode = mapping->host;
  202. unsigned long index = *ppos >> huge_page_shift(h);
  203. unsigned long offset = *ppos & ~huge_page_mask(h);
  204. unsigned long end_index;
  205. loff_t isize;
  206. ssize_t retval = 0;
  207. mutex_lock(&inode->i_mutex);
  208. /* validate length */
  209. if (len == 0)
  210. goto out;
  211. isize = i_size_read(inode);
  212. if (!isize)
  213. goto out;
  214. end_index = (isize - 1) >> huge_page_shift(h);
  215. for (;;) {
  216. struct page *page;
  217. unsigned long nr, ret;
  218. int ra;
  219. /* nr is the maximum number of bytes to copy from this page */
  220. nr = huge_page_size(h);
  221. if (index >= end_index) {
  222. if (index > end_index)
  223. goto out;
  224. nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
  225. if (nr <= offset) {
  226. goto out;
  227. }
  228. }
  229. nr = nr - offset;
  230. /* Find the page */
  231. page = find_get_page(mapping, index);
  232. if (unlikely(page == NULL)) {
  233. /*
  234. * We have a HOLE, zero out the user-buffer for the
  235. * length of the hole or request.
  236. */
  237. ret = len < nr ? len : nr;
  238. if (clear_user(buf, ret))
  239. ra = -EFAULT;
  240. else
  241. ra = 0;
  242. } else {
  243. /*
  244. * We have the page, copy it to user space buffer.
  245. */
  246. ra = hugetlbfs_read_actor(page, offset, buf, len, nr);
  247. ret = ra;
  248. }
  249. if (ra < 0) {
  250. if (retval == 0)
  251. retval = ra;
  252. if (page)
  253. page_cache_release(page);
  254. goto out;
  255. }
  256. offset += ret;
  257. retval += ret;
  258. len -= ret;
  259. index += offset >> huge_page_shift(h);
  260. offset &= ~huge_page_mask(h);
  261. if (page)
  262. page_cache_release(page);
  263. /* short read or no more work */
  264. if ((ret != nr) || (len == 0))
  265. break;
  266. }
  267. out:
  268. *ppos = ((loff_t)index << huge_page_shift(h)) + offset;
  269. mutex_unlock(&inode->i_mutex);
  270. return retval;
  271. }
  272. static int hugetlbfs_write_begin(struct file *file,
  273. struct address_space *mapping,
  274. loff_t pos, unsigned len, unsigned flags,
  275. struct page **pagep, void **fsdata)
  276. {
  277. return -EINVAL;
  278. }
  279. static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
  280. loff_t pos, unsigned len, unsigned copied,
  281. struct page *page, void *fsdata)
  282. {
  283. BUG();
  284. return -EINVAL;
  285. }
  286. static void truncate_huge_page(struct page *page)
  287. {
  288. cancel_dirty_page(page, /* No IO accounting for huge pages? */0);
  289. ClearPageUptodate(page);
  290. remove_from_page_cache(page);
  291. put_page(page);
  292. }
  293. static void truncate_hugepages(struct inode *inode, loff_t lstart)
  294. {
  295. struct hstate *h = hstate_inode(inode);
  296. struct address_space *mapping = &inode->i_data;
  297. const pgoff_t start = lstart >> huge_page_shift(h);
  298. struct pagevec pvec;
  299. pgoff_t next;
  300. int i, freed = 0;
  301. pagevec_init(&pvec, 0);
  302. next = start;
  303. while (1) {
  304. if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
  305. if (next == start)
  306. break;
  307. next = start;
  308. continue;
  309. }
  310. for (i = 0; i < pagevec_count(&pvec); ++i) {
  311. struct page *page = pvec.pages[i];
  312. lock_page(page);
  313. if (page->index > next)
  314. next = page->index;
  315. ++next;
  316. truncate_huge_page(page);
  317. unlock_page(page);
  318. freed++;
  319. }
  320. huge_pagevec_release(&pvec);
  321. }
  322. BUG_ON(!lstart && mapping->nrpages);
  323. hugetlb_unreserve_pages(inode, start, freed);
  324. }
  325. static void hugetlbfs_delete_inode(struct inode *inode)
  326. {
  327. truncate_hugepages(inode, 0);
  328. clear_inode(inode);
  329. }
  330. static void hugetlbfs_forget_inode(struct inode *inode) __releases(inode_lock)
  331. {
  332. struct super_block *sb = inode->i_sb;
  333. if (!hlist_unhashed(&inode->i_hash)) {
  334. if (!(inode->i_state & (I_DIRTY|I_SYNC)))
  335. list_move(&inode->i_list, &inode_unused);
  336. inodes_stat.nr_unused++;
  337. if (!sb || (sb->s_flags & MS_ACTIVE)) {
  338. spin_unlock(&inode_lock);
  339. return;
  340. }
  341. inode->i_state |= I_WILL_FREE;
  342. spin_unlock(&inode_lock);
  343. /*
  344. * write_inode_now is a noop as we set BDI_CAP_NO_WRITEBACK
  345. * in our backing_dev_info.
  346. */
  347. write_inode_now(inode, 1);
  348. spin_lock(&inode_lock);
  349. inode->i_state &= ~I_WILL_FREE;
  350. inodes_stat.nr_unused--;
  351. hlist_del_init(&inode->i_hash);
  352. }
  353. list_del_init(&inode->i_list);
  354. list_del_init(&inode->i_sb_list);
  355. inode->i_state |= I_FREEING;
  356. inodes_stat.nr_inodes--;
  357. spin_unlock(&inode_lock);
  358. truncate_hugepages(inode, 0);
  359. clear_inode(inode);
  360. destroy_inode(inode);
  361. }
  362. static void hugetlbfs_drop_inode(struct inode *inode)
  363. {
  364. if (!inode->i_nlink)
  365. generic_delete_inode(inode);
  366. else
  367. hugetlbfs_forget_inode(inode);
  368. }
  369. static inline void
  370. hugetlb_vmtruncate_list(struct prio_tree_root *root, pgoff_t pgoff)
  371. {
  372. struct vm_area_struct *vma;
  373. struct prio_tree_iter iter;
  374. vma_prio_tree_foreach(vma, &iter, root, pgoff, ULONG_MAX) {
  375. unsigned long v_offset;
  376. /*
  377. * Can the expression below overflow on 32-bit arches?
  378. * No, because the prio_tree returns us only those vmas
  379. * which overlap the truncated area starting at pgoff,
  380. * and no vma on a 32-bit arch can span beyond the 4GB.
  381. */
  382. if (vma->vm_pgoff < pgoff)
  383. v_offset = (pgoff - vma->vm_pgoff) << PAGE_SHIFT;
  384. else
  385. v_offset = 0;
  386. __unmap_hugepage_range(vma,
  387. vma->vm_start + v_offset, vma->vm_end, NULL);
  388. }
  389. }
  390. static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
  391. {
  392. pgoff_t pgoff;
  393. struct address_space *mapping = inode->i_mapping;
  394. struct hstate *h = hstate_inode(inode);
  395. BUG_ON(offset & ~huge_page_mask(h));
  396. pgoff = offset >> PAGE_SHIFT;
  397. i_size_write(inode, offset);
  398. spin_lock(&mapping->i_mmap_lock);
  399. if (!prio_tree_empty(&mapping->i_mmap))
  400. hugetlb_vmtruncate_list(&mapping->i_mmap, pgoff);
  401. spin_unlock(&mapping->i_mmap_lock);
  402. truncate_hugepages(inode, offset);
  403. return 0;
  404. }
  405. static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
  406. {
  407. struct inode *inode = dentry->d_inode;
  408. struct hstate *h = hstate_inode(inode);
  409. int error;
  410. unsigned int ia_valid = attr->ia_valid;
  411. BUG_ON(!inode);
  412. error = inode_change_ok(inode, attr);
  413. if (error)
  414. goto out;
  415. if (ia_valid & ATTR_SIZE) {
  416. error = -EINVAL;
  417. if (!(attr->ia_size & ~huge_page_mask(h)))
  418. error = hugetlb_vmtruncate(inode, attr->ia_size);
  419. if (error)
  420. goto out;
  421. attr->ia_valid &= ~ATTR_SIZE;
  422. }
  423. error = inode_setattr(inode, attr);
  424. out:
  425. return error;
  426. }
  427. static struct inode *hugetlbfs_get_inode(struct super_block *sb, uid_t uid,
  428. gid_t gid, int mode, dev_t dev)
  429. {
  430. struct inode *inode;
  431. inode = new_inode(sb);
  432. if (inode) {
  433. struct hugetlbfs_inode_info *info;
  434. inode->i_mode = mode;
  435. inode->i_uid = uid;
  436. inode->i_gid = gid;
  437. inode->i_mapping->a_ops = &hugetlbfs_aops;
  438. inode->i_mapping->backing_dev_info =&hugetlbfs_backing_dev_info;
  439. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  440. INIT_LIST_HEAD(&inode->i_mapping->private_list);
  441. info = HUGETLBFS_I(inode);
  442. mpol_shared_policy_init(&info->policy, NULL);
  443. switch (mode & S_IFMT) {
  444. default:
  445. init_special_inode(inode, mode, dev);
  446. break;
  447. case S_IFREG:
  448. inode->i_op = &hugetlbfs_inode_operations;
  449. inode->i_fop = &hugetlbfs_file_operations;
  450. break;
  451. case S_IFDIR:
  452. inode->i_op = &hugetlbfs_dir_inode_operations;
  453. inode->i_fop = &simple_dir_operations;
  454. /* directory inodes start off with i_nlink == 2 (for "." entry) */
  455. inc_nlink(inode);
  456. break;
  457. case S_IFLNK:
  458. inode->i_op = &page_symlink_inode_operations;
  459. break;
  460. }
  461. }
  462. return inode;
  463. }
  464. /*
  465. * File creation. Allocate an inode, and we're done..
  466. */
  467. static int hugetlbfs_mknod(struct inode *dir,
  468. struct dentry *dentry, int mode, dev_t dev)
  469. {
  470. struct inode *inode;
  471. int error = -ENOSPC;
  472. gid_t gid;
  473. if (dir->i_mode & S_ISGID) {
  474. gid = dir->i_gid;
  475. if (S_ISDIR(mode))
  476. mode |= S_ISGID;
  477. } else {
  478. gid = current_fsgid();
  479. }
  480. inode = hugetlbfs_get_inode(dir->i_sb, current_fsuid(), gid, mode, dev);
  481. if (inode) {
  482. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  483. d_instantiate(dentry, inode);
  484. dget(dentry); /* Extra count - pin the dentry in core */
  485. error = 0;
  486. }
  487. return error;
  488. }
  489. static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  490. {
  491. int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
  492. if (!retval)
  493. inc_nlink(dir);
  494. return retval;
  495. }
  496. static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd)
  497. {
  498. return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
  499. }
  500. static int hugetlbfs_symlink(struct inode *dir,
  501. struct dentry *dentry, const char *symname)
  502. {
  503. struct inode *inode;
  504. int error = -ENOSPC;
  505. gid_t gid;
  506. if (dir->i_mode & S_ISGID)
  507. gid = dir->i_gid;
  508. else
  509. gid = current_fsgid();
  510. inode = hugetlbfs_get_inode(dir->i_sb, current_fsuid(),
  511. gid, S_IFLNK|S_IRWXUGO, 0);
  512. if (inode) {
  513. int l = strlen(symname)+1;
  514. error = page_symlink(inode, symname, l);
  515. if (!error) {
  516. d_instantiate(dentry, inode);
  517. dget(dentry);
  518. } else
  519. iput(inode);
  520. }
  521. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  522. return error;
  523. }
  524. /*
  525. * mark the head page dirty
  526. */
  527. static int hugetlbfs_set_page_dirty(struct page *page)
  528. {
  529. struct page *head = compound_head(page);
  530. SetPageDirty(head);
  531. return 0;
  532. }
  533. static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  534. {
  535. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
  536. struct hstate *h = hstate_inode(dentry->d_inode);
  537. buf->f_type = HUGETLBFS_MAGIC;
  538. buf->f_bsize = huge_page_size(h);
  539. if (sbinfo) {
  540. spin_lock(&sbinfo->stat_lock);
  541. /* If no limits set, just report 0 for max/free/used
  542. * blocks, like simple_statfs() */
  543. if (sbinfo->max_blocks >= 0) {
  544. buf->f_blocks = sbinfo->max_blocks;
  545. buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
  546. buf->f_files = sbinfo->max_inodes;
  547. buf->f_ffree = sbinfo->free_inodes;
  548. }
  549. spin_unlock(&sbinfo->stat_lock);
  550. }
  551. buf->f_namelen = NAME_MAX;
  552. return 0;
  553. }
  554. static void hugetlbfs_put_super(struct super_block *sb)
  555. {
  556. struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
  557. if (sbi) {
  558. sb->s_fs_info = NULL;
  559. kfree(sbi);
  560. }
  561. }
  562. static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  563. {
  564. if (sbinfo->free_inodes >= 0) {
  565. spin_lock(&sbinfo->stat_lock);
  566. if (unlikely(!sbinfo->free_inodes)) {
  567. spin_unlock(&sbinfo->stat_lock);
  568. return 0;
  569. }
  570. sbinfo->free_inodes--;
  571. spin_unlock(&sbinfo->stat_lock);
  572. }
  573. return 1;
  574. }
  575. static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  576. {
  577. if (sbinfo->free_inodes >= 0) {
  578. spin_lock(&sbinfo->stat_lock);
  579. sbinfo->free_inodes++;
  580. spin_unlock(&sbinfo->stat_lock);
  581. }
  582. }
  583. static struct kmem_cache *hugetlbfs_inode_cachep;
  584. static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
  585. {
  586. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
  587. struct hugetlbfs_inode_info *p;
  588. if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
  589. return NULL;
  590. p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
  591. if (unlikely(!p)) {
  592. hugetlbfs_inc_free_inodes(sbinfo);
  593. return NULL;
  594. }
  595. return &p->vfs_inode;
  596. }
  597. static void hugetlbfs_destroy_inode(struct inode *inode)
  598. {
  599. hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
  600. mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
  601. kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
  602. }
  603. static const struct address_space_operations hugetlbfs_aops = {
  604. .write_begin = hugetlbfs_write_begin,
  605. .write_end = hugetlbfs_write_end,
  606. .set_page_dirty = hugetlbfs_set_page_dirty,
  607. };
  608. static void init_once(void *foo)
  609. {
  610. struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
  611. inode_init_once(&ei->vfs_inode);
  612. }
  613. const struct file_operations hugetlbfs_file_operations = {
  614. .read = hugetlbfs_read,
  615. .mmap = hugetlbfs_file_mmap,
  616. .fsync = simple_sync_file,
  617. .get_unmapped_area = hugetlb_get_unmapped_area,
  618. };
  619. static const struct inode_operations hugetlbfs_dir_inode_operations = {
  620. .create = hugetlbfs_create,
  621. .lookup = simple_lookup,
  622. .link = simple_link,
  623. .unlink = simple_unlink,
  624. .symlink = hugetlbfs_symlink,
  625. .mkdir = hugetlbfs_mkdir,
  626. .rmdir = simple_rmdir,
  627. .mknod = hugetlbfs_mknod,
  628. .rename = simple_rename,
  629. .setattr = hugetlbfs_setattr,
  630. };
  631. static const struct inode_operations hugetlbfs_inode_operations = {
  632. .setattr = hugetlbfs_setattr,
  633. };
  634. static const struct super_operations hugetlbfs_ops = {
  635. .alloc_inode = hugetlbfs_alloc_inode,
  636. .destroy_inode = hugetlbfs_destroy_inode,
  637. .statfs = hugetlbfs_statfs,
  638. .delete_inode = hugetlbfs_delete_inode,
  639. .drop_inode = hugetlbfs_drop_inode,
  640. .put_super = hugetlbfs_put_super,
  641. .show_options = generic_show_options,
  642. };
  643. static int
  644. hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
  645. {
  646. char *p, *rest;
  647. substring_t args[MAX_OPT_ARGS];
  648. int option;
  649. unsigned long long size = 0;
  650. enum { NO_SIZE, SIZE_STD, SIZE_PERCENT } setsize = NO_SIZE;
  651. if (!options)
  652. return 0;
  653. while ((p = strsep(&options, ",")) != NULL) {
  654. int token;
  655. if (!*p)
  656. continue;
  657. token = match_token(p, tokens, args);
  658. switch (token) {
  659. case Opt_uid:
  660. if (match_int(&args[0], &option))
  661. goto bad_val;
  662. pconfig->uid = option;
  663. break;
  664. case Opt_gid:
  665. if (match_int(&args[0], &option))
  666. goto bad_val;
  667. pconfig->gid = option;
  668. break;
  669. case Opt_mode:
  670. if (match_octal(&args[0], &option))
  671. goto bad_val;
  672. pconfig->mode = option & 01777U;
  673. break;
  674. case Opt_size: {
  675. /* memparse() will accept a K/M/G without a digit */
  676. if (!isdigit(*args[0].from))
  677. goto bad_val;
  678. size = memparse(args[0].from, &rest);
  679. setsize = SIZE_STD;
  680. if (*rest == '%')
  681. setsize = SIZE_PERCENT;
  682. break;
  683. }
  684. case Opt_nr_inodes:
  685. /* memparse() will accept a K/M/G without a digit */
  686. if (!isdigit(*args[0].from))
  687. goto bad_val;
  688. pconfig->nr_inodes = memparse(args[0].from, &rest);
  689. break;
  690. case Opt_pagesize: {
  691. unsigned long ps;
  692. ps = memparse(args[0].from, &rest);
  693. pconfig->hstate = size_to_hstate(ps);
  694. if (!pconfig->hstate) {
  695. printk(KERN_ERR
  696. "hugetlbfs: Unsupported page size %lu MB\n",
  697. ps >> 20);
  698. return -EINVAL;
  699. }
  700. break;
  701. }
  702. default:
  703. printk(KERN_ERR "hugetlbfs: Bad mount option: \"%s\"\n",
  704. p);
  705. return -EINVAL;
  706. break;
  707. }
  708. }
  709. /* Do size after hstate is set up */
  710. if (setsize > NO_SIZE) {
  711. struct hstate *h = pconfig->hstate;
  712. if (setsize == SIZE_PERCENT) {
  713. size <<= huge_page_shift(h);
  714. size *= h->max_huge_pages;
  715. do_div(size, 100);
  716. }
  717. pconfig->nr_blocks = (size >> huge_page_shift(h));
  718. }
  719. return 0;
  720. bad_val:
  721. printk(KERN_ERR "hugetlbfs: Bad value '%s' for mount option '%s'\n",
  722. args[0].from, p);
  723. return -EINVAL;
  724. }
  725. static int
  726. hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
  727. {
  728. struct inode * inode;
  729. struct dentry * root;
  730. int ret;
  731. struct hugetlbfs_config config;
  732. struct hugetlbfs_sb_info *sbinfo;
  733. save_mount_options(sb, data);
  734. config.nr_blocks = -1; /* No limit on size by default */
  735. config.nr_inodes = -1; /* No limit on number of inodes by default */
  736. config.uid = current_fsuid();
  737. config.gid = current_fsgid();
  738. config.mode = 0755;
  739. config.hstate = &default_hstate;
  740. ret = hugetlbfs_parse_options(data, &config);
  741. if (ret)
  742. return ret;
  743. sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
  744. if (!sbinfo)
  745. return -ENOMEM;
  746. sb->s_fs_info = sbinfo;
  747. sbinfo->hstate = config.hstate;
  748. spin_lock_init(&sbinfo->stat_lock);
  749. sbinfo->max_blocks = config.nr_blocks;
  750. sbinfo->free_blocks = config.nr_blocks;
  751. sbinfo->max_inodes = config.nr_inodes;
  752. sbinfo->free_inodes = config.nr_inodes;
  753. sb->s_maxbytes = MAX_LFS_FILESIZE;
  754. sb->s_blocksize = huge_page_size(config.hstate);
  755. sb->s_blocksize_bits = huge_page_shift(config.hstate);
  756. sb->s_magic = HUGETLBFS_MAGIC;
  757. sb->s_op = &hugetlbfs_ops;
  758. sb->s_time_gran = 1;
  759. inode = hugetlbfs_get_inode(sb, config.uid, config.gid,
  760. S_IFDIR | config.mode, 0);
  761. if (!inode)
  762. goto out_free;
  763. root = d_alloc_root(inode);
  764. if (!root) {
  765. iput(inode);
  766. goto out_free;
  767. }
  768. sb->s_root = root;
  769. return 0;
  770. out_free:
  771. kfree(sbinfo);
  772. return -ENOMEM;
  773. }
  774. int hugetlb_get_quota(struct address_space *mapping, long delta)
  775. {
  776. int ret = 0;
  777. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  778. if (sbinfo->free_blocks > -1) {
  779. spin_lock(&sbinfo->stat_lock);
  780. if (sbinfo->free_blocks - delta >= 0)
  781. sbinfo->free_blocks -= delta;
  782. else
  783. ret = -ENOMEM;
  784. spin_unlock(&sbinfo->stat_lock);
  785. }
  786. return ret;
  787. }
  788. void hugetlb_put_quota(struct address_space *mapping, long delta)
  789. {
  790. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  791. if (sbinfo->free_blocks > -1) {
  792. spin_lock(&sbinfo->stat_lock);
  793. sbinfo->free_blocks += delta;
  794. spin_unlock(&sbinfo->stat_lock);
  795. }
  796. }
  797. static int hugetlbfs_get_sb(struct file_system_type *fs_type,
  798. int flags, const char *dev_name, void *data, struct vfsmount *mnt)
  799. {
  800. return get_sb_nodev(fs_type, flags, data, hugetlbfs_fill_super, mnt);
  801. }
  802. static struct file_system_type hugetlbfs_fs_type = {
  803. .name = "hugetlbfs",
  804. .get_sb = hugetlbfs_get_sb,
  805. .kill_sb = kill_litter_super,
  806. };
  807. static struct vfsmount *hugetlbfs_vfsmount;
  808. static int can_do_hugetlb_shm(void)
  809. {
  810. return capable(CAP_IPC_LOCK) || in_group_p(sysctl_hugetlb_shm_group);
  811. }
  812. struct file *hugetlb_file_setup(const char *name, size_t size, int acctflag,
  813. struct user_struct **user)
  814. {
  815. int error = -ENOMEM;
  816. struct file *file;
  817. struct inode *inode;
  818. struct dentry *dentry, *root;
  819. struct qstr quick_string;
  820. *user = NULL;
  821. if (!hugetlbfs_vfsmount)
  822. return ERR_PTR(-ENOENT);
  823. if (!can_do_hugetlb_shm()) {
  824. *user = current_user();
  825. if (user_shm_lock(size, *user)) {
  826. WARN_ONCE(1,
  827. "Using mlock ulimits for SHM_HUGETLB deprecated\n");
  828. } else {
  829. *user = NULL;
  830. return ERR_PTR(-EPERM);
  831. }
  832. }
  833. root = hugetlbfs_vfsmount->mnt_root;
  834. quick_string.name = name;
  835. quick_string.len = strlen(quick_string.name);
  836. quick_string.hash = 0;
  837. dentry = d_alloc(root, &quick_string);
  838. if (!dentry)
  839. goto out_shm_unlock;
  840. error = -ENOSPC;
  841. inode = hugetlbfs_get_inode(root->d_sb, current_fsuid(),
  842. current_fsgid(), S_IFREG | S_IRWXUGO, 0);
  843. if (!inode)
  844. goto out_dentry;
  845. error = -ENOMEM;
  846. if (hugetlb_reserve_pages(inode, 0,
  847. size >> huge_page_shift(hstate_inode(inode)), NULL,
  848. acctflag))
  849. goto out_inode;
  850. d_instantiate(dentry, inode);
  851. inode->i_size = size;
  852. inode->i_nlink = 0;
  853. error = -ENFILE;
  854. file = alloc_file(hugetlbfs_vfsmount, dentry,
  855. FMODE_WRITE | FMODE_READ,
  856. &hugetlbfs_file_operations);
  857. if (!file)
  858. goto out_dentry; /* inode is already attached */
  859. ima_counts_get(file);
  860. return file;
  861. out_inode:
  862. iput(inode);
  863. out_dentry:
  864. dput(dentry);
  865. out_shm_unlock:
  866. if (*user) {
  867. user_shm_unlock(size, *user);
  868. *user = NULL;
  869. }
  870. return ERR_PTR(error);
  871. }
  872. static int __init init_hugetlbfs_fs(void)
  873. {
  874. int error;
  875. struct vfsmount *vfsmount;
  876. error = bdi_init(&hugetlbfs_backing_dev_info);
  877. if (error)
  878. return error;
  879. hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
  880. sizeof(struct hugetlbfs_inode_info),
  881. 0, 0, init_once);
  882. if (hugetlbfs_inode_cachep == NULL)
  883. goto out2;
  884. error = register_filesystem(&hugetlbfs_fs_type);
  885. if (error)
  886. goto out;
  887. vfsmount = kern_mount(&hugetlbfs_fs_type);
  888. if (!IS_ERR(vfsmount)) {
  889. hugetlbfs_vfsmount = vfsmount;
  890. return 0;
  891. }
  892. error = PTR_ERR(vfsmount);
  893. out:
  894. if (error)
  895. kmem_cache_destroy(hugetlbfs_inode_cachep);
  896. out2:
  897. bdi_destroy(&hugetlbfs_backing_dev_info);
  898. return error;
  899. }
  900. static void __exit exit_hugetlbfs_fs(void)
  901. {
  902. kmem_cache_destroy(hugetlbfs_inode_cachep);
  903. unregister_filesystem(&hugetlbfs_fs_type);
  904. bdi_destroy(&hugetlbfs_backing_dev_info);
  905. }
  906. module_init(init_hugetlbfs_fs)
  907. module_exit(exit_hugetlbfs_fs)
  908. MODULE_LICENSE("GPL");