segment.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include <linux/slab.h>
  35. #include "nilfs.h"
  36. #include "btnode.h"
  37. #include "page.h"
  38. #include "segment.h"
  39. #include "sufile.h"
  40. #include "cpfile.h"
  41. #include "ifile.h"
  42. #include "segbuf.h"
  43. /*
  44. * Segment constructor
  45. */
  46. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  47. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  48. appended in collection retry loop */
  49. /* Construction mode */
  50. enum {
  51. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  52. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  53. a logical segment without a super root */
  54. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  55. creating a checkpoint */
  56. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  57. a checkpoint */
  58. };
  59. /* Stage numbers of dirty block collection */
  60. enum {
  61. NILFS_ST_INIT = 0,
  62. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  63. NILFS_ST_FILE,
  64. NILFS_ST_IFILE,
  65. NILFS_ST_CPFILE,
  66. NILFS_ST_SUFILE,
  67. NILFS_ST_DAT,
  68. NILFS_ST_SR, /* Super root */
  69. NILFS_ST_DSYNC, /* Data sync blocks */
  70. NILFS_ST_DONE,
  71. };
  72. /* State flags of collection */
  73. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  74. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  75. #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
  76. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
  77. /* Operations depending on the construction mode and file type */
  78. struct nilfs_sc_operations {
  79. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  80. struct inode *);
  81. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  82. struct inode *);
  83. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  84. struct inode *);
  85. void (*write_data_binfo)(struct nilfs_sc_info *,
  86. struct nilfs_segsum_pointer *,
  87. union nilfs_binfo *);
  88. void (*write_node_binfo)(struct nilfs_sc_info *,
  89. struct nilfs_segsum_pointer *,
  90. union nilfs_binfo *);
  91. };
  92. /*
  93. * Other definitions
  94. */
  95. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  96. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  97. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  98. static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
  99. #define nilfs_cnt32_gt(a, b) \
  100. (typecheck(__u32, a) && typecheck(__u32, b) && \
  101. ((__s32)(b) - (__s32)(a) < 0))
  102. #define nilfs_cnt32_ge(a, b) \
  103. (typecheck(__u32, a) && typecheck(__u32, b) && \
  104. ((__s32)(a) - (__s32)(b) >= 0))
  105. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  106. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  107. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  108. {
  109. struct nilfs_transaction_info *cur_ti = current->journal_info;
  110. void *save = NULL;
  111. if (cur_ti) {
  112. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  113. return ++cur_ti->ti_count;
  114. else {
  115. /*
  116. * If journal_info field is occupied by other FS,
  117. * it is saved and will be restored on
  118. * nilfs_transaction_commit().
  119. */
  120. printk(KERN_WARNING
  121. "NILFS warning: journal info from a different "
  122. "FS\n");
  123. save = current->journal_info;
  124. }
  125. }
  126. if (!ti) {
  127. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  128. if (!ti)
  129. return -ENOMEM;
  130. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  131. } else {
  132. ti->ti_flags = 0;
  133. }
  134. ti->ti_count = 0;
  135. ti->ti_save = save;
  136. ti->ti_magic = NILFS_TI_MAGIC;
  137. current->journal_info = ti;
  138. return 0;
  139. }
  140. /**
  141. * nilfs_transaction_begin - start indivisible file operations.
  142. * @sb: super block
  143. * @ti: nilfs_transaction_info
  144. * @vacancy_check: flags for vacancy rate checks
  145. *
  146. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  147. * the segment semaphore, to make a segment construction and write tasks
  148. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  149. * The region enclosed by these two functions can be nested. To avoid a
  150. * deadlock, the semaphore is only acquired or released in the outermost call.
  151. *
  152. * This function allocates a nilfs_transaction_info struct to keep context
  153. * information on it. It is initialized and hooked onto the current task in
  154. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  155. * instead; otherwise a new struct is assigned from a slab.
  156. *
  157. * When @vacancy_check flag is set, this function will check the amount of
  158. * free space, and will wait for the GC to reclaim disk space if low capacity.
  159. *
  160. * Return Value: On success, 0 is returned. On error, one of the following
  161. * negative error code is returned.
  162. *
  163. * %-ENOMEM - Insufficient memory available.
  164. *
  165. * %-ENOSPC - No space left on device
  166. */
  167. int nilfs_transaction_begin(struct super_block *sb,
  168. struct nilfs_transaction_info *ti,
  169. int vacancy_check)
  170. {
  171. struct nilfs_sb_info *sbi;
  172. struct the_nilfs *nilfs;
  173. int ret = nilfs_prepare_segment_lock(ti);
  174. if (unlikely(ret < 0))
  175. return ret;
  176. if (ret > 0)
  177. return 0;
  178. vfs_check_frozen(sb, SB_FREEZE_WRITE);
  179. sbi = NILFS_SB(sb);
  180. nilfs = sbi->s_nilfs;
  181. down_read(&nilfs->ns_segctor_sem);
  182. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  183. up_read(&nilfs->ns_segctor_sem);
  184. ret = -ENOSPC;
  185. goto failed;
  186. }
  187. return 0;
  188. failed:
  189. ti = current->journal_info;
  190. current->journal_info = ti->ti_save;
  191. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  192. kmem_cache_free(nilfs_transaction_cachep, ti);
  193. return ret;
  194. }
  195. /**
  196. * nilfs_transaction_commit - commit indivisible file operations.
  197. * @sb: super block
  198. *
  199. * nilfs_transaction_commit() releases the read semaphore which is
  200. * acquired by nilfs_transaction_begin(). This is only performed
  201. * in outermost call of this function. If a commit flag is set,
  202. * nilfs_transaction_commit() sets a timer to start the segment
  203. * constructor. If a sync flag is set, it starts construction
  204. * directly.
  205. */
  206. int nilfs_transaction_commit(struct super_block *sb)
  207. {
  208. struct nilfs_transaction_info *ti = current->journal_info;
  209. struct the_nilfs *nilfs = NILFS_SB(sb)->s_nilfs;
  210. int err = 0;
  211. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  212. ti->ti_flags |= NILFS_TI_COMMIT;
  213. if (ti->ti_count > 0) {
  214. ti->ti_count--;
  215. return 0;
  216. }
  217. if (nilfs->ns_writer) {
  218. struct nilfs_sc_info *sci = nilfs->ns_writer;
  219. if (ti->ti_flags & NILFS_TI_COMMIT)
  220. nilfs_segctor_start_timer(sci);
  221. if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
  222. nilfs_segctor_do_flush(sci, 0);
  223. }
  224. up_read(&nilfs->ns_segctor_sem);
  225. current->journal_info = ti->ti_save;
  226. if (ti->ti_flags & NILFS_TI_SYNC)
  227. err = nilfs_construct_segment(sb);
  228. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  229. kmem_cache_free(nilfs_transaction_cachep, ti);
  230. return err;
  231. }
  232. void nilfs_transaction_abort(struct super_block *sb)
  233. {
  234. struct nilfs_transaction_info *ti = current->journal_info;
  235. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  236. if (ti->ti_count > 0) {
  237. ti->ti_count--;
  238. return;
  239. }
  240. up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
  241. current->journal_info = ti->ti_save;
  242. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  243. kmem_cache_free(nilfs_transaction_cachep, ti);
  244. }
  245. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  246. {
  247. struct the_nilfs *nilfs = NILFS_SB(sb)->s_nilfs;
  248. struct nilfs_sc_info *sci = nilfs->ns_writer;
  249. if (!sci || !sci->sc_flush_request)
  250. return;
  251. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  252. up_read(&nilfs->ns_segctor_sem);
  253. down_write(&nilfs->ns_segctor_sem);
  254. if (sci->sc_flush_request &&
  255. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  256. struct nilfs_transaction_info *ti = current->journal_info;
  257. ti->ti_flags |= NILFS_TI_WRITER;
  258. nilfs_segctor_do_immediate_flush(sci);
  259. ti->ti_flags &= ~NILFS_TI_WRITER;
  260. }
  261. downgrade_write(&nilfs->ns_segctor_sem);
  262. }
  263. static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
  264. struct nilfs_transaction_info *ti,
  265. int gcflag)
  266. {
  267. struct nilfs_transaction_info *cur_ti = current->journal_info;
  268. struct the_nilfs *nilfs = sbi->s_nilfs;
  269. struct nilfs_sc_info *sci = nilfs->ns_writer;
  270. WARN_ON(cur_ti);
  271. ti->ti_flags = NILFS_TI_WRITER;
  272. ti->ti_count = 0;
  273. ti->ti_save = cur_ti;
  274. ti->ti_magic = NILFS_TI_MAGIC;
  275. INIT_LIST_HEAD(&ti->ti_garbage);
  276. current->journal_info = ti;
  277. for (;;) {
  278. down_write(&nilfs->ns_segctor_sem);
  279. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
  280. break;
  281. nilfs_segctor_do_immediate_flush(sci);
  282. up_write(&sbi->s_nilfs->ns_segctor_sem);
  283. yield();
  284. }
  285. if (gcflag)
  286. ti->ti_flags |= NILFS_TI_GC;
  287. }
  288. static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
  289. {
  290. struct nilfs_transaction_info *ti = current->journal_info;
  291. struct the_nilfs *nilfs = sbi->s_nilfs;
  292. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  293. BUG_ON(ti->ti_count > 0);
  294. up_write(&nilfs->ns_segctor_sem);
  295. current->journal_info = ti->ti_save;
  296. if (!list_empty(&ti->ti_garbage))
  297. nilfs_dispose_list(nilfs, &ti->ti_garbage, 0);
  298. }
  299. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  300. struct nilfs_segsum_pointer *ssp,
  301. unsigned bytes)
  302. {
  303. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  304. unsigned blocksize = sci->sc_super->s_blocksize;
  305. void *p;
  306. if (unlikely(ssp->offset + bytes > blocksize)) {
  307. ssp->offset = 0;
  308. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  309. &segbuf->sb_segsum_buffers));
  310. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  311. }
  312. p = ssp->bh->b_data + ssp->offset;
  313. ssp->offset += bytes;
  314. return p;
  315. }
  316. /**
  317. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  318. * @sci: nilfs_sc_info
  319. */
  320. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  321. {
  322. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  323. struct buffer_head *sumbh;
  324. unsigned sumbytes;
  325. unsigned flags = 0;
  326. int err;
  327. if (nilfs_doing_gc())
  328. flags = NILFS_SS_GC;
  329. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
  330. if (unlikely(err))
  331. return err;
  332. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  333. sumbytes = segbuf->sb_sum.sumbytes;
  334. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  335. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  336. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  337. return 0;
  338. }
  339. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  340. {
  341. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  342. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  343. return -E2BIG; /* The current segment is filled up
  344. (internal code) */
  345. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  346. return nilfs_segctor_reset_segment_buffer(sci);
  347. }
  348. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  349. {
  350. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  351. int err;
  352. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  353. err = nilfs_segctor_feed_segment(sci);
  354. if (err)
  355. return err;
  356. segbuf = sci->sc_curseg;
  357. }
  358. err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
  359. if (likely(!err))
  360. segbuf->sb_sum.flags |= NILFS_SS_SR;
  361. return err;
  362. }
  363. /*
  364. * Functions for making segment summary and payloads
  365. */
  366. static int nilfs_segctor_segsum_block_required(
  367. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  368. unsigned binfo_size)
  369. {
  370. unsigned blocksize = sci->sc_super->s_blocksize;
  371. /* Size of finfo and binfo is enough small against blocksize */
  372. return ssp->offset + binfo_size +
  373. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  374. blocksize;
  375. }
  376. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  377. struct inode *inode)
  378. {
  379. sci->sc_curseg->sb_sum.nfinfo++;
  380. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  381. nilfs_segctor_map_segsum_entry(
  382. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  383. if (NILFS_I(inode)->i_root &&
  384. !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  385. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  386. /* skip finfo */
  387. }
  388. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  389. struct inode *inode)
  390. {
  391. struct nilfs_finfo *finfo;
  392. struct nilfs_inode_info *ii;
  393. struct nilfs_segment_buffer *segbuf;
  394. __u64 cno;
  395. if (sci->sc_blk_cnt == 0)
  396. return;
  397. ii = NILFS_I(inode);
  398. if (test_bit(NILFS_I_GCINODE, &ii->i_state))
  399. cno = ii->i_cno;
  400. else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
  401. cno = 0;
  402. else
  403. cno = sci->sc_cno;
  404. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  405. sizeof(*finfo));
  406. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  407. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  408. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  409. finfo->fi_cno = cpu_to_le64(cno);
  410. segbuf = sci->sc_curseg;
  411. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  412. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  413. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  414. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  415. }
  416. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  417. struct buffer_head *bh,
  418. struct inode *inode,
  419. unsigned binfo_size)
  420. {
  421. struct nilfs_segment_buffer *segbuf;
  422. int required, err = 0;
  423. retry:
  424. segbuf = sci->sc_curseg;
  425. required = nilfs_segctor_segsum_block_required(
  426. sci, &sci->sc_binfo_ptr, binfo_size);
  427. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  428. nilfs_segctor_end_finfo(sci, inode);
  429. err = nilfs_segctor_feed_segment(sci);
  430. if (err)
  431. return err;
  432. goto retry;
  433. }
  434. if (unlikely(required)) {
  435. err = nilfs_segbuf_extend_segsum(segbuf);
  436. if (unlikely(err))
  437. goto failed;
  438. }
  439. if (sci->sc_blk_cnt == 0)
  440. nilfs_segctor_begin_finfo(sci, inode);
  441. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  442. /* Substitution to vblocknr is delayed until update_blocknr() */
  443. nilfs_segbuf_add_file_buffer(segbuf, bh);
  444. sci->sc_blk_cnt++;
  445. failed:
  446. return err;
  447. }
  448. /*
  449. * Callback functions that enumerate, mark, and collect dirty blocks
  450. */
  451. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  452. struct buffer_head *bh, struct inode *inode)
  453. {
  454. int err;
  455. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  456. if (err < 0)
  457. return err;
  458. err = nilfs_segctor_add_file_block(sci, bh, inode,
  459. sizeof(struct nilfs_binfo_v));
  460. if (!err)
  461. sci->sc_datablk_cnt++;
  462. return err;
  463. }
  464. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  465. struct buffer_head *bh,
  466. struct inode *inode)
  467. {
  468. return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  469. }
  470. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  471. struct buffer_head *bh,
  472. struct inode *inode)
  473. {
  474. WARN_ON(!buffer_dirty(bh));
  475. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  476. }
  477. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  478. struct nilfs_segsum_pointer *ssp,
  479. union nilfs_binfo *binfo)
  480. {
  481. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  482. sci, ssp, sizeof(*binfo_v));
  483. *binfo_v = binfo->bi_v;
  484. }
  485. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  486. struct nilfs_segsum_pointer *ssp,
  487. union nilfs_binfo *binfo)
  488. {
  489. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  490. sci, ssp, sizeof(*vblocknr));
  491. *vblocknr = binfo->bi_v.bi_vblocknr;
  492. }
  493. static struct nilfs_sc_operations nilfs_sc_file_ops = {
  494. .collect_data = nilfs_collect_file_data,
  495. .collect_node = nilfs_collect_file_node,
  496. .collect_bmap = nilfs_collect_file_bmap,
  497. .write_data_binfo = nilfs_write_file_data_binfo,
  498. .write_node_binfo = nilfs_write_file_node_binfo,
  499. };
  500. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  501. struct buffer_head *bh, struct inode *inode)
  502. {
  503. int err;
  504. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  505. if (err < 0)
  506. return err;
  507. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  508. if (!err)
  509. sci->sc_datablk_cnt++;
  510. return err;
  511. }
  512. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  513. struct buffer_head *bh, struct inode *inode)
  514. {
  515. WARN_ON(!buffer_dirty(bh));
  516. return nilfs_segctor_add_file_block(sci, bh, inode,
  517. sizeof(struct nilfs_binfo_dat));
  518. }
  519. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  520. struct nilfs_segsum_pointer *ssp,
  521. union nilfs_binfo *binfo)
  522. {
  523. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  524. sizeof(*blkoff));
  525. *blkoff = binfo->bi_dat.bi_blkoff;
  526. }
  527. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  528. struct nilfs_segsum_pointer *ssp,
  529. union nilfs_binfo *binfo)
  530. {
  531. struct nilfs_binfo_dat *binfo_dat =
  532. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  533. *binfo_dat = binfo->bi_dat;
  534. }
  535. static struct nilfs_sc_operations nilfs_sc_dat_ops = {
  536. .collect_data = nilfs_collect_dat_data,
  537. .collect_node = nilfs_collect_file_node,
  538. .collect_bmap = nilfs_collect_dat_bmap,
  539. .write_data_binfo = nilfs_write_dat_data_binfo,
  540. .write_node_binfo = nilfs_write_dat_node_binfo,
  541. };
  542. static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  543. .collect_data = nilfs_collect_file_data,
  544. .collect_node = NULL,
  545. .collect_bmap = NULL,
  546. .write_data_binfo = nilfs_write_file_data_binfo,
  547. .write_node_binfo = NULL,
  548. };
  549. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  550. struct list_head *listp,
  551. size_t nlimit,
  552. loff_t start, loff_t end)
  553. {
  554. struct address_space *mapping = inode->i_mapping;
  555. struct pagevec pvec;
  556. pgoff_t index = 0, last = ULONG_MAX;
  557. size_t ndirties = 0;
  558. int i;
  559. if (unlikely(start != 0 || end != LLONG_MAX)) {
  560. /*
  561. * A valid range is given for sync-ing data pages. The
  562. * range is rounded to per-page; extra dirty buffers
  563. * may be included if blocksize < pagesize.
  564. */
  565. index = start >> PAGE_SHIFT;
  566. last = end >> PAGE_SHIFT;
  567. }
  568. pagevec_init(&pvec, 0);
  569. repeat:
  570. if (unlikely(index > last) ||
  571. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  572. min_t(pgoff_t, last - index,
  573. PAGEVEC_SIZE - 1) + 1))
  574. return ndirties;
  575. for (i = 0; i < pagevec_count(&pvec); i++) {
  576. struct buffer_head *bh, *head;
  577. struct page *page = pvec.pages[i];
  578. if (unlikely(page->index > last))
  579. break;
  580. if (mapping->host) {
  581. lock_page(page);
  582. if (!page_has_buffers(page))
  583. create_empty_buffers(page,
  584. 1 << inode->i_blkbits, 0);
  585. unlock_page(page);
  586. }
  587. bh = head = page_buffers(page);
  588. do {
  589. if (!buffer_dirty(bh))
  590. continue;
  591. get_bh(bh);
  592. list_add_tail(&bh->b_assoc_buffers, listp);
  593. ndirties++;
  594. if (unlikely(ndirties >= nlimit)) {
  595. pagevec_release(&pvec);
  596. cond_resched();
  597. return ndirties;
  598. }
  599. } while (bh = bh->b_this_page, bh != head);
  600. }
  601. pagevec_release(&pvec);
  602. cond_resched();
  603. goto repeat;
  604. }
  605. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  606. struct list_head *listp)
  607. {
  608. struct nilfs_inode_info *ii = NILFS_I(inode);
  609. struct address_space *mapping = &ii->i_btnode_cache;
  610. struct pagevec pvec;
  611. struct buffer_head *bh, *head;
  612. unsigned int i;
  613. pgoff_t index = 0;
  614. pagevec_init(&pvec, 0);
  615. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  616. PAGEVEC_SIZE)) {
  617. for (i = 0; i < pagevec_count(&pvec); i++) {
  618. bh = head = page_buffers(pvec.pages[i]);
  619. do {
  620. if (buffer_dirty(bh)) {
  621. get_bh(bh);
  622. list_add_tail(&bh->b_assoc_buffers,
  623. listp);
  624. }
  625. bh = bh->b_this_page;
  626. } while (bh != head);
  627. }
  628. pagevec_release(&pvec);
  629. cond_resched();
  630. }
  631. }
  632. static void nilfs_dispose_list(struct the_nilfs *nilfs,
  633. struct list_head *head, int force)
  634. {
  635. struct nilfs_inode_info *ii, *n;
  636. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  637. unsigned nv = 0;
  638. while (!list_empty(head)) {
  639. spin_lock(&nilfs->ns_inode_lock);
  640. list_for_each_entry_safe(ii, n, head, i_dirty) {
  641. list_del_init(&ii->i_dirty);
  642. if (force) {
  643. if (unlikely(ii->i_bh)) {
  644. brelse(ii->i_bh);
  645. ii->i_bh = NULL;
  646. }
  647. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  648. set_bit(NILFS_I_QUEUED, &ii->i_state);
  649. list_add_tail(&ii->i_dirty,
  650. &nilfs->ns_dirty_files);
  651. continue;
  652. }
  653. ivec[nv++] = ii;
  654. if (nv == SC_N_INODEVEC)
  655. break;
  656. }
  657. spin_unlock(&nilfs->ns_inode_lock);
  658. for (pii = ivec; nv > 0; pii++, nv--)
  659. iput(&(*pii)->vfs_inode);
  660. }
  661. }
  662. static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
  663. struct nilfs_root *root)
  664. {
  665. int ret = 0;
  666. if (nilfs_mdt_fetch_dirty(root->ifile))
  667. ret++;
  668. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  669. ret++;
  670. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  671. ret++;
  672. if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
  673. ret++;
  674. return ret;
  675. }
  676. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  677. {
  678. return list_empty(&sci->sc_dirty_files) &&
  679. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  680. sci->sc_nfreesegs == 0 &&
  681. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  682. }
  683. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  684. {
  685. struct the_nilfs *nilfs = NILFS_SB(sci->sc_super)->s_nilfs;
  686. int ret = 0;
  687. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  688. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  689. spin_lock(&nilfs->ns_inode_lock);
  690. if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
  691. ret++;
  692. spin_unlock(&nilfs->ns_inode_lock);
  693. return ret;
  694. }
  695. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  696. {
  697. struct the_nilfs *nilfs = NILFS_SB(sci->sc_super)->s_nilfs;
  698. nilfs_mdt_clear_dirty(sci->sc_root->ifile);
  699. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  700. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  701. nilfs_mdt_clear_dirty(nilfs->ns_dat);
  702. }
  703. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  704. {
  705. struct the_nilfs *nilfs = NILFS_SB(sci->sc_super)->s_nilfs;
  706. struct buffer_head *bh_cp;
  707. struct nilfs_checkpoint *raw_cp;
  708. int err;
  709. /* XXX: this interface will be changed */
  710. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  711. &raw_cp, &bh_cp);
  712. if (likely(!err)) {
  713. /* The following code is duplicated with cpfile. But, it is
  714. needed to collect the checkpoint even if it was not newly
  715. created */
  716. nilfs_mdt_mark_buffer_dirty(bh_cp);
  717. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  718. nilfs_cpfile_put_checkpoint(
  719. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  720. } else
  721. WARN_ON(err == -EINVAL || err == -ENOENT);
  722. return err;
  723. }
  724. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  725. {
  726. struct the_nilfs *nilfs = NILFS_SB(sci->sc_super)->s_nilfs;
  727. struct buffer_head *bh_cp;
  728. struct nilfs_checkpoint *raw_cp;
  729. int err;
  730. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  731. &raw_cp, &bh_cp);
  732. if (unlikely(err)) {
  733. WARN_ON(err == -EINVAL || err == -ENOENT);
  734. goto failed_ibh;
  735. }
  736. raw_cp->cp_snapshot_list.ssl_next = 0;
  737. raw_cp->cp_snapshot_list.ssl_prev = 0;
  738. raw_cp->cp_inodes_count =
  739. cpu_to_le64(atomic_read(&sci->sc_root->inodes_count));
  740. raw_cp->cp_blocks_count =
  741. cpu_to_le64(atomic_read(&sci->sc_root->blocks_count));
  742. raw_cp->cp_nblk_inc =
  743. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  744. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  745. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  746. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  747. nilfs_checkpoint_clear_minor(raw_cp);
  748. else
  749. nilfs_checkpoint_set_minor(raw_cp);
  750. nilfs_write_inode_common(sci->sc_root->ifile,
  751. &raw_cp->cp_ifile_inode, 1);
  752. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  753. return 0;
  754. failed_ibh:
  755. return err;
  756. }
  757. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  758. struct nilfs_inode_info *ii)
  759. {
  760. struct buffer_head *ibh;
  761. struct nilfs_inode *raw_inode;
  762. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  763. ibh = ii->i_bh;
  764. BUG_ON(!ibh);
  765. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  766. ibh);
  767. nilfs_bmap_write(ii->i_bmap, raw_inode);
  768. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  769. }
  770. }
  771. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
  772. {
  773. struct nilfs_inode_info *ii;
  774. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  775. nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
  776. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  777. }
  778. }
  779. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  780. struct the_nilfs *nilfs)
  781. {
  782. struct buffer_head *bh_sr;
  783. struct nilfs_super_root *raw_sr;
  784. unsigned isz = nilfs->ns_inode_size;
  785. bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
  786. raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
  787. raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
  788. raw_sr->sr_nongc_ctime
  789. = cpu_to_le64(nilfs_doing_gc() ?
  790. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  791. raw_sr->sr_flags = 0;
  792. nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
  793. NILFS_SR_DAT_OFFSET(isz), 1);
  794. nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
  795. NILFS_SR_CPFILE_OFFSET(isz), 1);
  796. nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
  797. NILFS_SR_SUFILE_OFFSET(isz), 1);
  798. }
  799. static void nilfs_redirty_inodes(struct list_head *head)
  800. {
  801. struct nilfs_inode_info *ii;
  802. list_for_each_entry(ii, head, i_dirty) {
  803. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  804. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  805. }
  806. }
  807. static void nilfs_drop_collected_inodes(struct list_head *head)
  808. {
  809. struct nilfs_inode_info *ii;
  810. list_for_each_entry(ii, head, i_dirty) {
  811. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  812. continue;
  813. clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
  814. set_bit(NILFS_I_UPDATED, &ii->i_state);
  815. }
  816. }
  817. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  818. struct inode *inode,
  819. struct list_head *listp,
  820. int (*collect)(struct nilfs_sc_info *,
  821. struct buffer_head *,
  822. struct inode *))
  823. {
  824. struct buffer_head *bh, *n;
  825. int err = 0;
  826. if (collect) {
  827. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  828. list_del_init(&bh->b_assoc_buffers);
  829. err = collect(sci, bh, inode);
  830. brelse(bh);
  831. if (unlikely(err))
  832. goto dispose_buffers;
  833. }
  834. return 0;
  835. }
  836. dispose_buffers:
  837. while (!list_empty(listp)) {
  838. bh = list_entry(listp->next, struct buffer_head,
  839. b_assoc_buffers);
  840. list_del_init(&bh->b_assoc_buffers);
  841. brelse(bh);
  842. }
  843. return err;
  844. }
  845. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  846. {
  847. /* Remaining number of blocks within segment buffer */
  848. return sci->sc_segbuf_nblocks -
  849. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  850. }
  851. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  852. struct inode *inode,
  853. struct nilfs_sc_operations *sc_ops)
  854. {
  855. LIST_HEAD(data_buffers);
  856. LIST_HEAD(node_buffers);
  857. int err;
  858. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  859. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  860. n = nilfs_lookup_dirty_data_buffers(
  861. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  862. if (n > rest) {
  863. err = nilfs_segctor_apply_buffers(
  864. sci, inode, &data_buffers,
  865. sc_ops->collect_data);
  866. BUG_ON(!err); /* always receive -E2BIG or true error */
  867. goto break_or_fail;
  868. }
  869. }
  870. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  871. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  872. err = nilfs_segctor_apply_buffers(
  873. sci, inode, &data_buffers, sc_ops->collect_data);
  874. if (unlikely(err)) {
  875. /* dispose node list */
  876. nilfs_segctor_apply_buffers(
  877. sci, inode, &node_buffers, NULL);
  878. goto break_or_fail;
  879. }
  880. sci->sc_stage.flags |= NILFS_CF_NODE;
  881. }
  882. /* Collect node */
  883. err = nilfs_segctor_apply_buffers(
  884. sci, inode, &node_buffers, sc_ops->collect_node);
  885. if (unlikely(err))
  886. goto break_or_fail;
  887. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  888. err = nilfs_segctor_apply_buffers(
  889. sci, inode, &node_buffers, sc_ops->collect_bmap);
  890. if (unlikely(err))
  891. goto break_or_fail;
  892. nilfs_segctor_end_finfo(sci, inode);
  893. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  894. break_or_fail:
  895. return err;
  896. }
  897. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  898. struct inode *inode)
  899. {
  900. LIST_HEAD(data_buffers);
  901. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  902. int err;
  903. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  904. sci->sc_dsync_start,
  905. sci->sc_dsync_end);
  906. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  907. nilfs_collect_file_data);
  908. if (!err) {
  909. nilfs_segctor_end_finfo(sci, inode);
  910. BUG_ON(n > rest);
  911. /* always receive -E2BIG or true error if n > rest */
  912. }
  913. return err;
  914. }
  915. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  916. {
  917. struct the_nilfs *nilfs = NILFS_SB(sci->sc_super)->s_nilfs;
  918. struct list_head *head;
  919. struct nilfs_inode_info *ii;
  920. size_t ndone;
  921. int err = 0;
  922. switch (sci->sc_stage.scnt) {
  923. case NILFS_ST_INIT:
  924. /* Pre-processes */
  925. sci->sc_stage.flags = 0;
  926. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  927. sci->sc_nblk_inc = 0;
  928. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  929. if (mode == SC_LSEG_DSYNC) {
  930. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  931. goto dsync_mode;
  932. }
  933. }
  934. sci->sc_stage.dirty_file_ptr = NULL;
  935. sci->sc_stage.gc_inode_ptr = NULL;
  936. if (mode == SC_FLUSH_DAT) {
  937. sci->sc_stage.scnt = NILFS_ST_DAT;
  938. goto dat_stage;
  939. }
  940. sci->sc_stage.scnt++; /* Fall through */
  941. case NILFS_ST_GC:
  942. if (nilfs_doing_gc()) {
  943. head = &sci->sc_gc_inodes;
  944. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  945. head, i_dirty);
  946. list_for_each_entry_continue(ii, head, i_dirty) {
  947. err = nilfs_segctor_scan_file(
  948. sci, &ii->vfs_inode,
  949. &nilfs_sc_file_ops);
  950. if (unlikely(err)) {
  951. sci->sc_stage.gc_inode_ptr = list_entry(
  952. ii->i_dirty.prev,
  953. struct nilfs_inode_info,
  954. i_dirty);
  955. goto break_or_fail;
  956. }
  957. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  958. }
  959. sci->sc_stage.gc_inode_ptr = NULL;
  960. }
  961. sci->sc_stage.scnt++; /* Fall through */
  962. case NILFS_ST_FILE:
  963. head = &sci->sc_dirty_files;
  964. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  965. i_dirty);
  966. list_for_each_entry_continue(ii, head, i_dirty) {
  967. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  968. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  969. &nilfs_sc_file_ops);
  970. if (unlikely(err)) {
  971. sci->sc_stage.dirty_file_ptr =
  972. list_entry(ii->i_dirty.prev,
  973. struct nilfs_inode_info,
  974. i_dirty);
  975. goto break_or_fail;
  976. }
  977. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  978. /* XXX: required ? */
  979. }
  980. sci->sc_stage.dirty_file_ptr = NULL;
  981. if (mode == SC_FLUSH_FILE) {
  982. sci->sc_stage.scnt = NILFS_ST_DONE;
  983. return 0;
  984. }
  985. sci->sc_stage.scnt++;
  986. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  987. /* Fall through */
  988. case NILFS_ST_IFILE:
  989. err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
  990. &nilfs_sc_file_ops);
  991. if (unlikely(err))
  992. break;
  993. sci->sc_stage.scnt++;
  994. /* Creating a checkpoint */
  995. err = nilfs_segctor_create_checkpoint(sci);
  996. if (unlikely(err))
  997. break;
  998. /* Fall through */
  999. case NILFS_ST_CPFILE:
  1000. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1001. &nilfs_sc_file_ops);
  1002. if (unlikely(err))
  1003. break;
  1004. sci->sc_stage.scnt++; /* Fall through */
  1005. case NILFS_ST_SUFILE:
  1006. err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
  1007. sci->sc_nfreesegs, &ndone);
  1008. if (unlikely(err)) {
  1009. nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1010. sci->sc_freesegs, ndone,
  1011. NULL);
  1012. break;
  1013. }
  1014. sci->sc_stage.flags |= NILFS_CF_SUFREED;
  1015. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1016. &nilfs_sc_file_ops);
  1017. if (unlikely(err))
  1018. break;
  1019. sci->sc_stage.scnt++; /* Fall through */
  1020. case NILFS_ST_DAT:
  1021. dat_stage:
  1022. err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
  1023. &nilfs_sc_dat_ops);
  1024. if (unlikely(err))
  1025. break;
  1026. if (mode == SC_FLUSH_DAT) {
  1027. sci->sc_stage.scnt = NILFS_ST_DONE;
  1028. return 0;
  1029. }
  1030. sci->sc_stage.scnt++; /* Fall through */
  1031. case NILFS_ST_SR:
  1032. if (mode == SC_LSEG_SR) {
  1033. /* Appending a super root */
  1034. err = nilfs_segctor_add_super_root(sci);
  1035. if (unlikely(err))
  1036. break;
  1037. }
  1038. /* End of a logical segment */
  1039. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1040. sci->sc_stage.scnt = NILFS_ST_DONE;
  1041. return 0;
  1042. case NILFS_ST_DSYNC:
  1043. dsync_mode:
  1044. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1045. ii = sci->sc_dsync_inode;
  1046. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1047. break;
  1048. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1049. if (unlikely(err))
  1050. break;
  1051. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1052. sci->sc_stage.scnt = NILFS_ST_DONE;
  1053. return 0;
  1054. case NILFS_ST_DONE:
  1055. return 0;
  1056. default:
  1057. BUG();
  1058. }
  1059. break_or_fail:
  1060. return err;
  1061. }
  1062. /**
  1063. * nilfs_segctor_begin_construction - setup segment buffer to make a new log
  1064. * @sci: nilfs_sc_info
  1065. * @nilfs: nilfs object
  1066. */
  1067. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1068. struct the_nilfs *nilfs)
  1069. {
  1070. struct nilfs_segment_buffer *segbuf, *prev;
  1071. __u64 nextnum;
  1072. int err, alloc = 0;
  1073. segbuf = nilfs_segbuf_new(sci->sc_super);
  1074. if (unlikely(!segbuf))
  1075. return -ENOMEM;
  1076. if (list_empty(&sci->sc_write_logs)) {
  1077. nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1078. nilfs->ns_pseg_offset, nilfs);
  1079. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1080. nilfs_shift_to_next_segment(nilfs);
  1081. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1082. }
  1083. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1084. nextnum = nilfs->ns_nextnum;
  1085. if (nilfs->ns_segnum == nilfs->ns_nextnum)
  1086. /* Start from the head of a new full segment */
  1087. alloc++;
  1088. } else {
  1089. /* Continue logs */
  1090. prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1091. nilfs_segbuf_map_cont(segbuf, prev);
  1092. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
  1093. nextnum = prev->sb_nextnum;
  1094. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1095. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1096. segbuf->sb_sum.seg_seq++;
  1097. alloc++;
  1098. }
  1099. }
  1100. err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
  1101. if (err)
  1102. goto failed;
  1103. if (alloc) {
  1104. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1105. if (err)
  1106. goto failed;
  1107. }
  1108. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1109. BUG_ON(!list_empty(&sci->sc_segbufs));
  1110. list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
  1111. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1112. return 0;
  1113. failed:
  1114. nilfs_segbuf_free(segbuf);
  1115. return err;
  1116. }
  1117. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1118. struct the_nilfs *nilfs, int nadd)
  1119. {
  1120. struct nilfs_segment_buffer *segbuf, *prev;
  1121. struct inode *sufile = nilfs->ns_sufile;
  1122. __u64 nextnextnum;
  1123. LIST_HEAD(list);
  1124. int err, ret, i;
  1125. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1126. /*
  1127. * Since the segment specified with nextnum might be allocated during
  1128. * the previous construction, the buffer including its segusage may
  1129. * not be dirty. The following call ensures that the buffer is dirty
  1130. * and will pin the buffer on memory until the sufile is written.
  1131. */
  1132. err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
  1133. if (unlikely(err))
  1134. return err;
  1135. for (i = 0; i < nadd; i++) {
  1136. /* extend segment info */
  1137. err = -ENOMEM;
  1138. segbuf = nilfs_segbuf_new(sci->sc_super);
  1139. if (unlikely(!segbuf))
  1140. goto failed;
  1141. /* map this buffer to region of segment on-disk */
  1142. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1143. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1144. /* allocate the next next full segment */
  1145. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1146. if (unlikely(err))
  1147. goto failed_segbuf;
  1148. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1149. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1150. list_add_tail(&segbuf->sb_list, &list);
  1151. prev = segbuf;
  1152. }
  1153. list_splice_tail(&list, &sci->sc_segbufs);
  1154. return 0;
  1155. failed_segbuf:
  1156. nilfs_segbuf_free(segbuf);
  1157. failed:
  1158. list_for_each_entry(segbuf, &list, sb_list) {
  1159. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1160. WARN_ON(ret); /* never fails */
  1161. }
  1162. nilfs_destroy_logs(&list);
  1163. return err;
  1164. }
  1165. static void nilfs_free_incomplete_logs(struct list_head *logs,
  1166. struct the_nilfs *nilfs)
  1167. {
  1168. struct nilfs_segment_buffer *segbuf, *prev;
  1169. struct inode *sufile = nilfs->ns_sufile;
  1170. int ret;
  1171. segbuf = NILFS_FIRST_SEGBUF(logs);
  1172. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1173. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1174. WARN_ON(ret); /* never fails */
  1175. }
  1176. if (atomic_read(&segbuf->sb_err)) {
  1177. /* Case 1: The first segment failed */
  1178. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1179. /* Case 1a: Partial segment appended into an existing
  1180. segment */
  1181. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1182. segbuf->sb_fseg_end);
  1183. else /* Case 1b: New full segment */
  1184. set_nilfs_discontinued(nilfs);
  1185. }
  1186. prev = segbuf;
  1187. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1188. if (prev->sb_nextnum != segbuf->sb_nextnum) {
  1189. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1190. WARN_ON(ret); /* never fails */
  1191. }
  1192. if (atomic_read(&segbuf->sb_err) &&
  1193. segbuf->sb_segnum != nilfs->ns_nextnum)
  1194. /* Case 2: extended segment (!= next) failed */
  1195. nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
  1196. prev = segbuf;
  1197. }
  1198. }
  1199. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1200. struct inode *sufile)
  1201. {
  1202. struct nilfs_segment_buffer *segbuf;
  1203. unsigned long live_blocks;
  1204. int ret;
  1205. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1206. live_blocks = segbuf->sb_sum.nblocks +
  1207. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1208. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1209. live_blocks,
  1210. sci->sc_seg_ctime);
  1211. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1212. }
  1213. }
  1214. static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
  1215. {
  1216. struct nilfs_segment_buffer *segbuf;
  1217. int ret;
  1218. segbuf = NILFS_FIRST_SEGBUF(logs);
  1219. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1220. segbuf->sb_pseg_start -
  1221. segbuf->sb_fseg_start, 0);
  1222. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1223. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1224. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1225. 0, 0);
  1226. WARN_ON(ret); /* always succeed */
  1227. }
  1228. }
  1229. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1230. struct nilfs_segment_buffer *last,
  1231. struct inode *sufile)
  1232. {
  1233. struct nilfs_segment_buffer *segbuf = last;
  1234. int ret;
  1235. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1236. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1237. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1238. WARN_ON(ret);
  1239. }
  1240. nilfs_truncate_logs(&sci->sc_segbufs, last);
  1241. }
  1242. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1243. struct the_nilfs *nilfs, int mode)
  1244. {
  1245. struct nilfs_cstage prev_stage = sci->sc_stage;
  1246. int err, nadd = 1;
  1247. /* Collection retry loop */
  1248. for (;;) {
  1249. sci->sc_nblk_this_inc = 0;
  1250. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1251. err = nilfs_segctor_reset_segment_buffer(sci);
  1252. if (unlikely(err))
  1253. goto failed;
  1254. err = nilfs_segctor_collect_blocks(sci, mode);
  1255. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1256. if (!err)
  1257. break;
  1258. if (unlikely(err != -E2BIG))
  1259. goto failed;
  1260. /* The current segment is filled up */
  1261. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1262. break;
  1263. nilfs_clear_logs(&sci->sc_segbufs);
  1264. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1265. if (unlikely(err))
  1266. return err;
  1267. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1268. err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1269. sci->sc_freesegs,
  1270. sci->sc_nfreesegs,
  1271. NULL);
  1272. WARN_ON(err); /* do not happen */
  1273. }
  1274. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1275. sci->sc_stage = prev_stage;
  1276. }
  1277. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1278. return 0;
  1279. failed:
  1280. return err;
  1281. }
  1282. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1283. struct buffer_head *new_bh)
  1284. {
  1285. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1286. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1287. /* The caller must release old_bh */
  1288. }
  1289. static int
  1290. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1291. struct nilfs_segment_buffer *segbuf,
  1292. int mode)
  1293. {
  1294. struct inode *inode = NULL;
  1295. sector_t blocknr;
  1296. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1297. unsigned long nblocks = 0, ndatablk = 0;
  1298. struct nilfs_sc_operations *sc_op = NULL;
  1299. struct nilfs_segsum_pointer ssp;
  1300. struct nilfs_finfo *finfo = NULL;
  1301. union nilfs_binfo binfo;
  1302. struct buffer_head *bh, *bh_org;
  1303. ino_t ino = 0;
  1304. int err = 0;
  1305. if (!nfinfo)
  1306. goto out;
  1307. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1308. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1309. ssp.offset = sizeof(struct nilfs_segment_summary);
  1310. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1311. if (bh == segbuf->sb_super_root)
  1312. break;
  1313. if (!finfo) {
  1314. finfo = nilfs_segctor_map_segsum_entry(
  1315. sci, &ssp, sizeof(*finfo));
  1316. ino = le64_to_cpu(finfo->fi_ino);
  1317. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1318. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1319. if (buffer_nilfs_node(bh))
  1320. inode = NILFS_BTNC_I(bh->b_page->mapping);
  1321. else
  1322. inode = NILFS_AS_I(bh->b_page->mapping);
  1323. if (mode == SC_LSEG_DSYNC)
  1324. sc_op = &nilfs_sc_dsync_ops;
  1325. else if (ino == NILFS_DAT_INO)
  1326. sc_op = &nilfs_sc_dat_ops;
  1327. else /* file blocks */
  1328. sc_op = &nilfs_sc_file_ops;
  1329. }
  1330. bh_org = bh;
  1331. get_bh(bh_org);
  1332. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1333. &binfo);
  1334. if (bh != bh_org)
  1335. nilfs_list_replace_buffer(bh_org, bh);
  1336. brelse(bh_org);
  1337. if (unlikely(err))
  1338. goto failed_bmap;
  1339. if (ndatablk > 0)
  1340. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1341. else
  1342. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1343. blocknr++;
  1344. if (--nblocks == 0) {
  1345. finfo = NULL;
  1346. if (--nfinfo == 0)
  1347. break;
  1348. } else if (ndatablk > 0)
  1349. ndatablk--;
  1350. }
  1351. out:
  1352. return 0;
  1353. failed_bmap:
  1354. return err;
  1355. }
  1356. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1357. {
  1358. struct nilfs_segment_buffer *segbuf;
  1359. int err;
  1360. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1361. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1362. if (unlikely(err))
  1363. return err;
  1364. nilfs_segbuf_fill_in_segsum(segbuf);
  1365. }
  1366. return 0;
  1367. }
  1368. static int
  1369. nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
  1370. {
  1371. struct page *clone_page;
  1372. struct buffer_head *bh, *head, *bh2;
  1373. void *kaddr;
  1374. bh = head = page_buffers(page);
  1375. clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
  1376. if (unlikely(!clone_page))
  1377. return -ENOMEM;
  1378. bh2 = page_buffers(clone_page);
  1379. kaddr = kmap_atomic(page, KM_USER0);
  1380. do {
  1381. if (list_empty(&bh->b_assoc_buffers))
  1382. continue;
  1383. get_bh(bh2);
  1384. page_cache_get(clone_page); /* for each bh */
  1385. memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
  1386. bh2->b_blocknr = bh->b_blocknr;
  1387. list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
  1388. list_add_tail(&bh->b_assoc_buffers, out);
  1389. } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
  1390. kunmap_atomic(kaddr, KM_USER0);
  1391. if (!TestSetPageWriteback(clone_page))
  1392. account_page_writeback(clone_page);
  1393. unlock_page(clone_page);
  1394. return 0;
  1395. }
  1396. static int nilfs_test_page_to_be_frozen(struct page *page)
  1397. {
  1398. struct address_space *mapping = page->mapping;
  1399. if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
  1400. return 0;
  1401. if (page_mapped(page)) {
  1402. ClearPageChecked(page);
  1403. return 1;
  1404. }
  1405. return PageChecked(page);
  1406. }
  1407. static int nilfs_begin_page_io(struct page *page, struct list_head *out)
  1408. {
  1409. if (!page || PageWriteback(page))
  1410. /* For split b-tree node pages, this function may be called
  1411. twice. We ignore the 2nd or later calls by this check. */
  1412. return 0;
  1413. lock_page(page);
  1414. clear_page_dirty_for_io(page);
  1415. set_page_writeback(page);
  1416. unlock_page(page);
  1417. if (nilfs_test_page_to_be_frozen(page)) {
  1418. int err = nilfs_copy_replace_page_buffers(page, out);
  1419. if (unlikely(err))
  1420. return err;
  1421. }
  1422. return 0;
  1423. }
  1424. static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
  1425. struct page **failed_page)
  1426. {
  1427. struct nilfs_segment_buffer *segbuf;
  1428. struct page *bd_page = NULL, *fs_page = NULL;
  1429. struct list_head *list = &sci->sc_copied_buffers;
  1430. int err;
  1431. *failed_page = NULL;
  1432. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1433. struct buffer_head *bh;
  1434. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1435. b_assoc_buffers) {
  1436. if (bh->b_page != bd_page) {
  1437. if (bd_page) {
  1438. lock_page(bd_page);
  1439. clear_page_dirty_for_io(bd_page);
  1440. set_page_writeback(bd_page);
  1441. unlock_page(bd_page);
  1442. }
  1443. bd_page = bh->b_page;
  1444. }
  1445. }
  1446. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1447. b_assoc_buffers) {
  1448. if (bh == segbuf->sb_super_root) {
  1449. if (bh->b_page != bd_page) {
  1450. lock_page(bd_page);
  1451. clear_page_dirty_for_io(bd_page);
  1452. set_page_writeback(bd_page);
  1453. unlock_page(bd_page);
  1454. bd_page = bh->b_page;
  1455. }
  1456. break;
  1457. }
  1458. if (bh->b_page != fs_page) {
  1459. err = nilfs_begin_page_io(fs_page, list);
  1460. if (unlikely(err)) {
  1461. *failed_page = fs_page;
  1462. goto out;
  1463. }
  1464. fs_page = bh->b_page;
  1465. }
  1466. }
  1467. }
  1468. if (bd_page) {
  1469. lock_page(bd_page);
  1470. clear_page_dirty_for_io(bd_page);
  1471. set_page_writeback(bd_page);
  1472. unlock_page(bd_page);
  1473. }
  1474. err = nilfs_begin_page_io(fs_page, list);
  1475. if (unlikely(err))
  1476. *failed_page = fs_page;
  1477. out:
  1478. return err;
  1479. }
  1480. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1481. struct the_nilfs *nilfs)
  1482. {
  1483. int ret;
  1484. ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
  1485. list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
  1486. return ret;
  1487. }
  1488. static void __nilfs_end_page_io(struct page *page, int err)
  1489. {
  1490. if (!err) {
  1491. if (!nilfs_page_buffers_clean(page))
  1492. __set_page_dirty_nobuffers(page);
  1493. ClearPageError(page);
  1494. } else {
  1495. __set_page_dirty_nobuffers(page);
  1496. SetPageError(page);
  1497. }
  1498. if (buffer_nilfs_allocated(page_buffers(page))) {
  1499. if (TestClearPageWriteback(page))
  1500. dec_zone_page_state(page, NR_WRITEBACK);
  1501. } else
  1502. end_page_writeback(page);
  1503. }
  1504. static void nilfs_end_page_io(struct page *page, int err)
  1505. {
  1506. if (!page)
  1507. return;
  1508. if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
  1509. /*
  1510. * For b-tree node pages, this function may be called twice
  1511. * or more because they might be split in a segment.
  1512. */
  1513. if (PageDirty(page)) {
  1514. /*
  1515. * For pages holding split b-tree node buffers, dirty
  1516. * flag on the buffers may be cleared discretely.
  1517. * In that case, the page is once redirtied for
  1518. * remaining buffers, and it must be cancelled if
  1519. * all the buffers get cleaned later.
  1520. */
  1521. lock_page(page);
  1522. if (nilfs_page_buffers_clean(page))
  1523. __nilfs_clear_page_dirty(page);
  1524. unlock_page(page);
  1525. }
  1526. return;
  1527. }
  1528. __nilfs_end_page_io(page, err);
  1529. }
  1530. static void nilfs_clear_copied_buffers(struct list_head *list, int err)
  1531. {
  1532. struct buffer_head *bh, *head;
  1533. struct page *page;
  1534. while (!list_empty(list)) {
  1535. bh = list_entry(list->next, struct buffer_head,
  1536. b_assoc_buffers);
  1537. page = bh->b_page;
  1538. page_cache_get(page);
  1539. head = bh = page_buffers(page);
  1540. do {
  1541. if (!list_empty(&bh->b_assoc_buffers)) {
  1542. list_del_init(&bh->b_assoc_buffers);
  1543. if (!err) {
  1544. set_buffer_uptodate(bh);
  1545. clear_buffer_dirty(bh);
  1546. clear_buffer_delay(bh);
  1547. clear_buffer_nilfs_volatile(bh);
  1548. }
  1549. brelse(bh); /* for b_assoc_buffers */
  1550. }
  1551. } while ((bh = bh->b_this_page) != head);
  1552. __nilfs_end_page_io(page, err);
  1553. page_cache_release(page);
  1554. }
  1555. }
  1556. static void nilfs_abort_logs(struct list_head *logs, struct page *failed_page,
  1557. int err)
  1558. {
  1559. struct nilfs_segment_buffer *segbuf;
  1560. struct page *bd_page = NULL, *fs_page = NULL;
  1561. struct buffer_head *bh;
  1562. if (list_empty(logs))
  1563. return;
  1564. list_for_each_entry(segbuf, logs, sb_list) {
  1565. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1566. b_assoc_buffers) {
  1567. if (bh->b_page != bd_page) {
  1568. if (bd_page)
  1569. end_page_writeback(bd_page);
  1570. bd_page = bh->b_page;
  1571. }
  1572. }
  1573. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1574. b_assoc_buffers) {
  1575. if (bh == segbuf->sb_super_root) {
  1576. if (bh->b_page != bd_page) {
  1577. end_page_writeback(bd_page);
  1578. bd_page = bh->b_page;
  1579. }
  1580. break;
  1581. }
  1582. if (bh->b_page != fs_page) {
  1583. nilfs_end_page_io(fs_page, err);
  1584. if (fs_page && fs_page == failed_page)
  1585. return;
  1586. fs_page = bh->b_page;
  1587. }
  1588. }
  1589. }
  1590. if (bd_page)
  1591. end_page_writeback(bd_page);
  1592. nilfs_end_page_io(fs_page, err);
  1593. }
  1594. static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
  1595. struct the_nilfs *nilfs, int err)
  1596. {
  1597. LIST_HEAD(logs);
  1598. int ret;
  1599. list_splice_tail_init(&sci->sc_write_logs, &logs);
  1600. ret = nilfs_wait_on_logs(&logs);
  1601. nilfs_abort_logs(&logs, NULL, ret ? : err);
  1602. list_splice_tail_init(&sci->sc_segbufs, &logs);
  1603. nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
  1604. nilfs_free_incomplete_logs(&logs, nilfs);
  1605. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
  1606. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1607. ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1608. sci->sc_freesegs,
  1609. sci->sc_nfreesegs,
  1610. NULL);
  1611. WARN_ON(ret); /* do not happen */
  1612. }
  1613. nilfs_destroy_logs(&logs);
  1614. }
  1615. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1616. struct nilfs_segment_buffer *segbuf)
  1617. {
  1618. nilfs->ns_segnum = segbuf->sb_segnum;
  1619. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1620. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1621. + segbuf->sb_sum.nblocks;
  1622. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1623. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1624. }
  1625. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1626. {
  1627. struct nilfs_segment_buffer *segbuf;
  1628. struct page *bd_page = NULL, *fs_page = NULL;
  1629. struct the_nilfs *nilfs = NILFS_SB(sci->sc_super)->s_nilfs;
  1630. int update_sr = false;
  1631. list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
  1632. struct buffer_head *bh;
  1633. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1634. b_assoc_buffers) {
  1635. set_buffer_uptodate(bh);
  1636. clear_buffer_dirty(bh);
  1637. if (bh->b_page != bd_page) {
  1638. if (bd_page)
  1639. end_page_writeback(bd_page);
  1640. bd_page = bh->b_page;
  1641. }
  1642. }
  1643. /*
  1644. * We assume that the buffers which belong to the same page
  1645. * continue over the buffer list.
  1646. * Under this assumption, the last BHs of pages is
  1647. * identifiable by the discontinuity of bh->b_page
  1648. * (page != fs_page).
  1649. *
  1650. * For B-tree node blocks, however, this assumption is not
  1651. * guaranteed. The cleanup code of B-tree node pages needs
  1652. * special care.
  1653. */
  1654. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1655. b_assoc_buffers) {
  1656. set_buffer_uptodate(bh);
  1657. clear_buffer_dirty(bh);
  1658. clear_buffer_delay(bh);
  1659. clear_buffer_nilfs_volatile(bh);
  1660. clear_buffer_nilfs_redirected(bh);
  1661. if (bh == segbuf->sb_super_root) {
  1662. if (bh->b_page != bd_page) {
  1663. end_page_writeback(bd_page);
  1664. bd_page = bh->b_page;
  1665. }
  1666. update_sr = true;
  1667. break;
  1668. }
  1669. if (bh->b_page != fs_page) {
  1670. nilfs_end_page_io(fs_page, 0);
  1671. fs_page = bh->b_page;
  1672. }
  1673. }
  1674. if (!nilfs_segbuf_simplex(segbuf)) {
  1675. if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
  1676. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1677. sci->sc_lseg_stime = jiffies;
  1678. }
  1679. if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
  1680. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1681. }
  1682. }
  1683. /*
  1684. * Since pages may continue over multiple segment buffers,
  1685. * end of the last page must be checked outside of the loop.
  1686. */
  1687. if (bd_page)
  1688. end_page_writeback(bd_page);
  1689. nilfs_end_page_io(fs_page, 0);
  1690. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
  1691. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1692. if (nilfs_doing_gc())
  1693. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1694. else
  1695. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1696. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1697. segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1698. nilfs_set_next_segment(nilfs, segbuf);
  1699. if (update_sr) {
  1700. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1701. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1702. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1703. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1704. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1705. nilfs_segctor_clear_metadata_dirty(sci);
  1706. } else
  1707. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1708. }
  1709. static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
  1710. {
  1711. int ret;
  1712. ret = nilfs_wait_on_logs(&sci->sc_write_logs);
  1713. if (!ret) {
  1714. nilfs_segctor_complete_write(sci);
  1715. nilfs_destroy_logs(&sci->sc_write_logs);
  1716. }
  1717. return ret;
  1718. }
  1719. static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
  1720. struct the_nilfs *nilfs)
  1721. {
  1722. struct nilfs_inode_info *ii, *n;
  1723. struct inode *ifile = sci->sc_root->ifile;
  1724. spin_lock(&nilfs->ns_inode_lock);
  1725. retry:
  1726. list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
  1727. if (!ii->i_bh) {
  1728. struct buffer_head *ibh;
  1729. int err;
  1730. spin_unlock(&nilfs->ns_inode_lock);
  1731. err = nilfs_ifile_get_inode_block(
  1732. ifile, ii->vfs_inode.i_ino, &ibh);
  1733. if (unlikely(err)) {
  1734. nilfs_warning(sci->sc_super, __func__,
  1735. "failed to get inode block.\n");
  1736. return err;
  1737. }
  1738. nilfs_mdt_mark_buffer_dirty(ibh);
  1739. nilfs_mdt_mark_dirty(ifile);
  1740. spin_lock(&nilfs->ns_inode_lock);
  1741. if (likely(!ii->i_bh))
  1742. ii->i_bh = ibh;
  1743. else
  1744. brelse(ibh);
  1745. goto retry;
  1746. }
  1747. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1748. set_bit(NILFS_I_BUSY, &ii->i_state);
  1749. list_del(&ii->i_dirty);
  1750. list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1751. }
  1752. spin_unlock(&nilfs->ns_inode_lock);
  1753. return 0;
  1754. }
  1755. static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
  1756. struct the_nilfs *nilfs)
  1757. {
  1758. struct nilfs_transaction_info *ti = current->journal_info;
  1759. struct nilfs_inode_info *ii, *n;
  1760. spin_lock(&nilfs->ns_inode_lock);
  1761. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1762. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1763. test_bit(NILFS_I_DIRTY, &ii->i_state))
  1764. continue;
  1765. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1766. brelse(ii->i_bh);
  1767. ii->i_bh = NULL;
  1768. list_del(&ii->i_dirty);
  1769. list_add_tail(&ii->i_dirty, &ti->ti_garbage);
  1770. }
  1771. spin_unlock(&nilfs->ns_inode_lock);
  1772. }
  1773. /*
  1774. * Main procedure of segment constructor
  1775. */
  1776. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1777. {
  1778. struct the_nilfs *nilfs = NILFS_SB(sci->sc_super)->s_nilfs;
  1779. struct page *failed_page;
  1780. int err;
  1781. sci->sc_stage.scnt = NILFS_ST_INIT;
  1782. sci->sc_cno = nilfs->ns_cno;
  1783. err = nilfs_segctor_collect_dirty_files(sci, nilfs);
  1784. if (unlikely(err))
  1785. goto out;
  1786. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  1787. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1788. if (nilfs_segctor_clean(sci))
  1789. goto out;
  1790. do {
  1791. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1792. err = nilfs_segctor_begin_construction(sci, nilfs);
  1793. if (unlikely(err))
  1794. goto out;
  1795. /* Update time stamp */
  1796. sci->sc_seg_ctime = get_seconds();
  1797. err = nilfs_segctor_collect(sci, nilfs, mode);
  1798. if (unlikely(err))
  1799. goto failed;
  1800. /* Avoid empty segment */
  1801. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  1802. nilfs_segbuf_empty(sci->sc_curseg)) {
  1803. nilfs_segctor_abort_construction(sci, nilfs, 1);
  1804. goto out;
  1805. }
  1806. err = nilfs_segctor_assign(sci, mode);
  1807. if (unlikely(err))
  1808. goto failed;
  1809. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1810. nilfs_segctor_fill_in_file_bmap(sci);
  1811. if (mode == SC_LSEG_SR &&
  1812. sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
  1813. err = nilfs_segctor_fill_in_checkpoint(sci);
  1814. if (unlikely(err))
  1815. goto failed_to_write;
  1816. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1817. }
  1818. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1819. /* Write partial segments */
  1820. err = nilfs_segctor_prepare_write(sci, &failed_page);
  1821. if (err) {
  1822. nilfs_abort_logs(&sci->sc_segbufs, failed_page, err);
  1823. goto failed_to_write;
  1824. }
  1825. nilfs_add_checksums_on_logs(&sci->sc_segbufs,
  1826. nilfs->ns_crc_seed);
  1827. err = nilfs_segctor_write(sci, nilfs);
  1828. if (unlikely(err))
  1829. goto failed_to_write;
  1830. if (sci->sc_stage.scnt == NILFS_ST_DONE ||
  1831. nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
  1832. /*
  1833. * At this point, we avoid double buffering
  1834. * for blocksize < pagesize because page dirty
  1835. * flag is turned off during write and dirty
  1836. * buffers are not properly collected for
  1837. * pages crossing over segments.
  1838. */
  1839. err = nilfs_segctor_wait(sci);
  1840. if (err)
  1841. goto failed_to_write;
  1842. }
  1843. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  1844. out:
  1845. nilfs_segctor_drop_written_files(sci, nilfs);
  1846. return err;
  1847. failed_to_write:
  1848. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1849. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1850. failed:
  1851. if (nilfs_doing_gc())
  1852. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1853. nilfs_segctor_abort_construction(sci, nilfs, err);
  1854. goto out;
  1855. }
  1856. /**
  1857. * nilfs_segctor_start_timer - set timer of background write
  1858. * @sci: nilfs_sc_info
  1859. *
  1860. * If the timer has already been set, it ignores the new request.
  1861. * This function MUST be called within a section locking the segment
  1862. * semaphore.
  1863. */
  1864. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1865. {
  1866. spin_lock(&sci->sc_state_lock);
  1867. if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1868. sci->sc_timer.expires = jiffies + sci->sc_interval;
  1869. add_timer(&sci->sc_timer);
  1870. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1871. }
  1872. spin_unlock(&sci->sc_state_lock);
  1873. }
  1874. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1875. {
  1876. spin_lock(&sci->sc_state_lock);
  1877. if (!(sci->sc_flush_request & (1 << bn))) {
  1878. unsigned long prev_req = sci->sc_flush_request;
  1879. sci->sc_flush_request |= (1 << bn);
  1880. if (!prev_req)
  1881. wake_up(&sci->sc_wait_daemon);
  1882. }
  1883. spin_unlock(&sci->sc_state_lock);
  1884. }
  1885. /**
  1886. * nilfs_flush_segment - trigger a segment construction for resource control
  1887. * @sb: super block
  1888. * @ino: inode number of the file to be flushed out.
  1889. */
  1890. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  1891. {
  1892. struct the_nilfs *nilfs = NILFS_SB(sb)->s_nilfs;
  1893. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1894. if (!sci || nilfs_doing_construction())
  1895. return;
  1896. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  1897. /* assign bit 0 to data files */
  1898. }
  1899. struct nilfs_segctor_wait_request {
  1900. wait_queue_t wq;
  1901. __u32 seq;
  1902. int err;
  1903. atomic_t done;
  1904. };
  1905. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  1906. {
  1907. struct nilfs_segctor_wait_request wait_req;
  1908. int err = 0;
  1909. spin_lock(&sci->sc_state_lock);
  1910. init_wait(&wait_req.wq);
  1911. wait_req.err = 0;
  1912. atomic_set(&wait_req.done, 0);
  1913. wait_req.seq = ++sci->sc_seq_request;
  1914. spin_unlock(&sci->sc_state_lock);
  1915. init_waitqueue_entry(&wait_req.wq, current);
  1916. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  1917. set_current_state(TASK_INTERRUPTIBLE);
  1918. wake_up(&sci->sc_wait_daemon);
  1919. for (;;) {
  1920. if (atomic_read(&wait_req.done)) {
  1921. err = wait_req.err;
  1922. break;
  1923. }
  1924. if (!signal_pending(current)) {
  1925. schedule();
  1926. continue;
  1927. }
  1928. err = -ERESTARTSYS;
  1929. break;
  1930. }
  1931. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  1932. return err;
  1933. }
  1934. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  1935. {
  1936. struct nilfs_segctor_wait_request *wrq, *n;
  1937. unsigned long flags;
  1938. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  1939. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  1940. wq.task_list) {
  1941. if (!atomic_read(&wrq->done) &&
  1942. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  1943. wrq->err = err;
  1944. atomic_set(&wrq->done, 1);
  1945. }
  1946. if (atomic_read(&wrq->done)) {
  1947. wrq->wq.func(&wrq->wq,
  1948. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  1949. 0, NULL);
  1950. }
  1951. }
  1952. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  1953. }
  1954. /**
  1955. * nilfs_construct_segment - construct a logical segment
  1956. * @sb: super block
  1957. *
  1958. * Return Value: On success, 0 is retured. On errors, one of the following
  1959. * negative error code is returned.
  1960. *
  1961. * %-EROFS - Read only filesystem.
  1962. *
  1963. * %-EIO - I/O error
  1964. *
  1965. * %-ENOSPC - No space left on device (only in a panic state).
  1966. *
  1967. * %-ERESTARTSYS - Interrupted.
  1968. *
  1969. * %-ENOMEM - Insufficient memory available.
  1970. */
  1971. int nilfs_construct_segment(struct super_block *sb)
  1972. {
  1973. struct the_nilfs *nilfs = NILFS_SB(sb)->s_nilfs;
  1974. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1975. struct nilfs_transaction_info *ti;
  1976. int err;
  1977. if (!sci)
  1978. return -EROFS;
  1979. /* A call inside transactions causes a deadlock. */
  1980. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  1981. err = nilfs_segctor_sync(sci);
  1982. return err;
  1983. }
  1984. /**
  1985. * nilfs_construct_dsync_segment - construct a data-only logical segment
  1986. * @sb: super block
  1987. * @inode: inode whose data blocks should be written out
  1988. * @start: start byte offset
  1989. * @end: end byte offset (inclusive)
  1990. *
  1991. * Return Value: On success, 0 is retured. On errors, one of the following
  1992. * negative error code is returned.
  1993. *
  1994. * %-EROFS - Read only filesystem.
  1995. *
  1996. * %-EIO - I/O error
  1997. *
  1998. * %-ENOSPC - No space left on device (only in a panic state).
  1999. *
  2000. * %-ERESTARTSYS - Interrupted.
  2001. *
  2002. * %-ENOMEM - Insufficient memory available.
  2003. */
  2004. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  2005. loff_t start, loff_t end)
  2006. {
  2007. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2008. struct the_nilfs *nilfs = sbi->s_nilfs;
  2009. struct nilfs_sc_info *sci = nilfs->ns_writer;
  2010. struct nilfs_inode_info *ii;
  2011. struct nilfs_transaction_info ti;
  2012. int err = 0;
  2013. if (!sci)
  2014. return -EROFS;
  2015. nilfs_transaction_lock(sbi, &ti, 0);
  2016. ii = NILFS_I(inode);
  2017. if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
  2018. nilfs_test_opt(nilfs, STRICT_ORDER) ||
  2019. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2020. nilfs_discontinued(nilfs)) {
  2021. nilfs_transaction_unlock(sbi);
  2022. err = nilfs_segctor_sync(sci);
  2023. return err;
  2024. }
  2025. spin_lock(&nilfs->ns_inode_lock);
  2026. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  2027. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  2028. spin_unlock(&nilfs->ns_inode_lock);
  2029. nilfs_transaction_unlock(sbi);
  2030. return 0;
  2031. }
  2032. spin_unlock(&nilfs->ns_inode_lock);
  2033. sci->sc_dsync_inode = ii;
  2034. sci->sc_dsync_start = start;
  2035. sci->sc_dsync_end = end;
  2036. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  2037. nilfs_transaction_unlock(sbi);
  2038. return err;
  2039. }
  2040. #define FLUSH_FILE_BIT (0x1) /* data file only */
  2041. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  2042. /**
  2043. * nilfs_segctor_accept - record accepted sequence count of log-write requests
  2044. * @sci: segment constructor object
  2045. */
  2046. static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
  2047. {
  2048. spin_lock(&sci->sc_state_lock);
  2049. sci->sc_seq_accepted = sci->sc_seq_request;
  2050. spin_unlock(&sci->sc_state_lock);
  2051. del_timer_sync(&sci->sc_timer);
  2052. }
  2053. /**
  2054. * nilfs_segctor_notify - notify the result of request to caller threads
  2055. * @sci: segment constructor object
  2056. * @mode: mode of log forming
  2057. * @err: error code to be notified
  2058. */
  2059. static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
  2060. {
  2061. /* Clear requests (even when the construction failed) */
  2062. spin_lock(&sci->sc_state_lock);
  2063. if (mode == SC_LSEG_SR) {
  2064. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  2065. sci->sc_seq_done = sci->sc_seq_accepted;
  2066. nilfs_segctor_wakeup(sci, err);
  2067. sci->sc_flush_request = 0;
  2068. } else {
  2069. if (mode == SC_FLUSH_FILE)
  2070. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  2071. else if (mode == SC_FLUSH_DAT)
  2072. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  2073. /* re-enable timer if checkpoint creation was not done */
  2074. if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2075. time_before(jiffies, sci->sc_timer.expires))
  2076. add_timer(&sci->sc_timer);
  2077. }
  2078. spin_unlock(&sci->sc_state_lock);
  2079. }
  2080. /**
  2081. * nilfs_segctor_construct - form logs and write them to disk
  2082. * @sci: segment constructor object
  2083. * @mode: mode of log forming
  2084. */
  2085. static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
  2086. {
  2087. struct nilfs_sb_info *sbi = NILFS_SB(sci->sc_super);
  2088. struct the_nilfs *nilfs = sbi->s_nilfs;
  2089. struct nilfs_super_block **sbp;
  2090. int err = 0;
  2091. nilfs_segctor_accept(sci);
  2092. if (nilfs_discontinued(nilfs))
  2093. mode = SC_LSEG_SR;
  2094. if (!nilfs_segctor_confirm(sci))
  2095. err = nilfs_segctor_do_construct(sci, mode);
  2096. if (likely(!err)) {
  2097. if (mode != SC_FLUSH_DAT)
  2098. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2099. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2100. nilfs_discontinued(nilfs)) {
  2101. down_write(&nilfs->ns_sem);
  2102. err = -EIO;
  2103. sbp = nilfs_prepare_super(sbi,
  2104. nilfs_sb_will_flip(nilfs));
  2105. if (likely(sbp)) {
  2106. nilfs_set_log_cursor(sbp[0], nilfs);
  2107. err = nilfs_commit_super(sbi, NILFS_SB_COMMIT);
  2108. }
  2109. up_write(&nilfs->ns_sem);
  2110. }
  2111. }
  2112. nilfs_segctor_notify(sci, mode, err);
  2113. return err;
  2114. }
  2115. static void nilfs_construction_timeout(unsigned long data)
  2116. {
  2117. struct task_struct *p = (struct task_struct *)data;
  2118. wake_up_process(p);
  2119. }
  2120. static void
  2121. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2122. {
  2123. struct nilfs_inode_info *ii, *n;
  2124. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2125. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2126. continue;
  2127. list_del_init(&ii->i_dirty);
  2128. iput(&ii->vfs_inode);
  2129. }
  2130. }
  2131. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2132. void **kbufs)
  2133. {
  2134. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2135. struct the_nilfs *nilfs = sbi->s_nilfs;
  2136. struct nilfs_sc_info *sci = nilfs->ns_writer;
  2137. struct nilfs_transaction_info ti;
  2138. int err;
  2139. if (unlikely(!sci))
  2140. return -EROFS;
  2141. nilfs_transaction_lock(sbi, &ti, 1);
  2142. err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
  2143. if (unlikely(err))
  2144. goto out_unlock;
  2145. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2146. if (unlikely(err)) {
  2147. nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
  2148. goto out_unlock;
  2149. }
  2150. sci->sc_freesegs = kbufs[4];
  2151. sci->sc_nfreesegs = argv[4].v_nmembs;
  2152. list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
  2153. for (;;) {
  2154. err = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2155. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2156. if (likely(!err))
  2157. break;
  2158. nilfs_warning(sb, __func__,
  2159. "segment construction failed. (err=%d)", err);
  2160. set_current_state(TASK_INTERRUPTIBLE);
  2161. schedule_timeout(sci->sc_interval);
  2162. }
  2163. if (nilfs_test_opt(nilfs, DISCARD)) {
  2164. int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
  2165. sci->sc_nfreesegs);
  2166. if (ret) {
  2167. printk(KERN_WARNING
  2168. "NILFS warning: error %d on discard request, "
  2169. "turning discards off for the device\n", ret);
  2170. nilfs_clear_opt(nilfs, DISCARD);
  2171. }
  2172. }
  2173. out_unlock:
  2174. sci->sc_freesegs = NULL;
  2175. sci->sc_nfreesegs = 0;
  2176. nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
  2177. nilfs_transaction_unlock(sbi);
  2178. return err;
  2179. }
  2180. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2181. {
  2182. struct nilfs_sb_info *sbi = NILFS_SB(sci->sc_super);
  2183. struct nilfs_transaction_info ti;
  2184. nilfs_transaction_lock(sbi, &ti, 0);
  2185. nilfs_segctor_construct(sci, mode);
  2186. /*
  2187. * Unclosed segment should be retried. We do this using sc_timer.
  2188. * Timeout of sc_timer will invoke complete construction which leads
  2189. * to close the current logical segment.
  2190. */
  2191. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2192. nilfs_segctor_start_timer(sci);
  2193. nilfs_transaction_unlock(sbi);
  2194. }
  2195. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2196. {
  2197. int mode = 0;
  2198. int err;
  2199. spin_lock(&sci->sc_state_lock);
  2200. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2201. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2202. spin_unlock(&sci->sc_state_lock);
  2203. if (mode) {
  2204. err = nilfs_segctor_do_construct(sci, mode);
  2205. spin_lock(&sci->sc_state_lock);
  2206. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2207. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2208. spin_unlock(&sci->sc_state_lock);
  2209. }
  2210. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2211. }
  2212. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2213. {
  2214. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2215. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2216. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2217. return SC_FLUSH_FILE;
  2218. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2219. return SC_FLUSH_DAT;
  2220. }
  2221. return SC_LSEG_SR;
  2222. }
  2223. /**
  2224. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2225. * @arg: pointer to a struct nilfs_sc_info.
  2226. *
  2227. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2228. * to execute segment constructions.
  2229. */
  2230. static int nilfs_segctor_thread(void *arg)
  2231. {
  2232. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2233. struct the_nilfs *nilfs = NILFS_SB(sci->sc_super)->s_nilfs;
  2234. int timeout = 0;
  2235. sci->sc_timer.data = (unsigned long)current;
  2236. sci->sc_timer.function = nilfs_construction_timeout;
  2237. /* start sync. */
  2238. sci->sc_task = current;
  2239. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2240. printk(KERN_INFO
  2241. "segctord starting. Construction interval = %lu seconds, "
  2242. "CP frequency < %lu seconds\n",
  2243. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2244. spin_lock(&sci->sc_state_lock);
  2245. loop:
  2246. for (;;) {
  2247. int mode;
  2248. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2249. goto end_thread;
  2250. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2251. mode = SC_LSEG_SR;
  2252. else if (!sci->sc_flush_request)
  2253. break;
  2254. else
  2255. mode = nilfs_segctor_flush_mode(sci);
  2256. spin_unlock(&sci->sc_state_lock);
  2257. nilfs_segctor_thread_construct(sci, mode);
  2258. spin_lock(&sci->sc_state_lock);
  2259. timeout = 0;
  2260. }
  2261. if (freezing(current)) {
  2262. spin_unlock(&sci->sc_state_lock);
  2263. refrigerator();
  2264. spin_lock(&sci->sc_state_lock);
  2265. } else {
  2266. DEFINE_WAIT(wait);
  2267. int should_sleep = 1;
  2268. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2269. TASK_INTERRUPTIBLE);
  2270. if (sci->sc_seq_request != sci->sc_seq_done)
  2271. should_sleep = 0;
  2272. else if (sci->sc_flush_request)
  2273. should_sleep = 0;
  2274. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2275. should_sleep = time_before(jiffies,
  2276. sci->sc_timer.expires);
  2277. if (should_sleep) {
  2278. spin_unlock(&sci->sc_state_lock);
  2279. schedule();
  2280. spin_lock(&sci->sc_state_lock);
  2281. }
  2282. finish_wait(&sci->sc_wait_daemon, &wait);
  2283. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2284. time_after_eq(jiffies, sci->sc_timer.expires));
  2285. if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
  2286. set_nilfs_discontinued(nilfs);
  2287. }
  2288. goto loop;
  2289. end_thread:
  2290. spin_unlock(&sci->sc_state_lock);
  2291. /* end sync. */
  2292. sci->sc_task = NULL;
  2293. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2294. return 0;
  2295. }
  2296. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2297. {
  2298. struct task_struct *t;
  2299. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2300. if (IS_ERR(t)) {
  2301. int err = PTR_ERR(t);
  2302. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2303. err);
  2304. return err;
  2305. }
  2306. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2307. return 0;
  2308. }
  2309. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2310. __acquires(&sci->sc_state_lock)
  2311. __releases(&sci->sc_state_lock)
  2312. {
  2313. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2314. while (sci->sc_task) {
  2315. wake_up(&sci->sc_wait_daemon);
  2316. spin_unlock(&sci->sc_state_lock);
  2317. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2318. spin_lock(&sci->sc_state_lock);
  2319. }
  2320. }
  2321. /*
  2322. * Setup & clean-up functions
  2323. */
  2324. static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi,
  2325. struct nilfs_root *root)
  2326. {
  2327. struct the_nilfs *nilfs = sbi->s_nilfs;
  2328. struct nilfs_sc_info *sci;
  2329. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2330. if (!sci)
  2331. return NULL;
  2332. sci->sc_super = sbi->s_super;
  2333. nilfs_get_root(root);
  2334. sci->sc_root = root;
  2335. init_waitqueue_head(&sci->sc_wait_request);
  2336. init_waitqueue_head(&sci->sc_wait_daemon);
  2337. init_waitqueue_head(&sci->sc_wait_task);
  2338. spin_lock_init(&sci->sc_state_lock);
  2339. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2340. INIT_LIST_HEAD(&sci->sc_segbufs);
  2341. INIT_LIST_HEAD(&sci->sc_write_logs);
  2342. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2343. INIT_LIST_HEAD(&sci->sc_copied_buffers);
  2344. init_timer(&sci->sc_timer);
  2345. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2346. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2347. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2348. if (nilfs->ns_interval)
  2349. sci->sc_interval = nilfs->ns_interval;
  2350. if (nilfs->ns_watermark)
  2351. sci->sc_watermark = nilfs->ns_watermark;
  2352. return sci;
  2353. }
  2354. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2355. {
  2356. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2357. /* The segctord thread was stopped and its timer was removed.
  2358. But some tasks remain. */
  2359. do {
  2360. struct nilfs_sb_info *sbi = NILFS_SB(sci->sc_super);
  2361. struct nilfs_transaction_info ti;
  2362. nilfs_transaction_lock(sbi, &ti, 0);
  2363. ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2364. nilfs_transaction_unlock(sbi);
  2365. } while (ret && retrycount-- > 0);
  2366. }
  2367. /**
  2368. * nilfs_segctor_destroy - destroy the segment constructor.
  2369. * @sci: nilfs_sc_info
  2370. *
  2371. * nilfs_segctor_destroy() kills the segctord thread and frees
  2372. * the nilfs_sc_info struct.
  2373. * Caller must hold the segment semaphore.
  2374. */
  2375. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2376. {
  2377. struct the_nilfs *nilfs = NILFS_SB(sci->sc_super)->s_nilfs;
  2378. int flag;
  2379. up_write(&nilfs->ns_segctor_sem);
  2380. spin_lock(&sci->sc_state_lock);
  2381. nilfs_segctor_kill_thread(sci);
  2382. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2383. || sci->sc_seq_request != sci->sc_seq_done);
  2384. spin_unlock(&sci->sc_state_lock);
  2385. if (flag || !nilfs_segctor_confirm(sci))
  2386. nilfs_segctor_write_out(sci);
  2387. WARN_ON(!list_empty(&sci->sc_copied_buffers));
  2388. if (!list_empty(&sci->sc_dirty_files)) {
  2389. nilfs_warning(sci->sc_super, __func__,
  2390. "dirty file(s) after the final construction\n");
  2391. nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
  2392. }
  2393. WARN_ON(!list_empty(&sci->sc_segbufs));
  2394. WARN_ON(!list_empty(&sci->sc_write_logs));
  2395. nilfs_put_root(sci->sc_root);
  2396. down_write(&nilfs->ns_segctor_sem);
  2397. del_timer_sync(&sci->sc_timer);
  2398. kfree(sci);
  2399. }
  2400. /**
  2401. * nilfs_attach_segment_constructor - attach a segment constructor
  2402. * @sbi: nilfs_sb_info
  2403. * @root: root object of the current filesystem tree
  2404. *
  2405. * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
  2406. * initializes it, and starts the segment constructor.
  2407. *
  2408. * Return Value: On success, 0 is returned. On error, one of the following
  2409. * negative error code is returned.
  2410. *
  2411. * %-ENOMEM - Insufficient memory available.
  2412. */
  2413. int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi,
  2414. struct nilfs_root *root)
  2415. {
  2416. struct the_nilfs *nilfs = sbi->s_nilfs;
  2417. int err;
  2418. if (nilfs->ns_writer) {
  2419. /*
  2420. * This happens if the filesystem was remounted
  2421. * read/write after nilfs_error degenerated it into a
  2422. * read-only mount.
  2423. */
  2424. nilfs_detach_segment_constructor(sbi);
  2425. }
  2426. nilfs->ns_writer = nilfs_segctor_new(sbi, root);
  2427. if (!nilfs->ns_writer)
  2428. return -ENOMEM;
  2429. err = nilfs_segctor_start_thread(nilfs->ns_writer);
  2430. if (err) {
  2431. kfree(nilfs->ns_writer);
  2432. nilfs->ns_writer = NULL;
  2433. }
  2434. return err;
  2435. }
  2436. /**
  2437. * nilfs_detach_segment_constructor - destroy the segment constructor
  2438. * @sbi: nilfs_sb_info
  2439. *
  2440. * nilfs_detach_segment_constructor() kills the segment constructor daemon,
  2441. * frees the struct nilfs_sc_info, and destroy the dirty file list.
  2442. */
  2443. void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
  2444. {
  2445. struct the_nilfs *nilfs = sbi->s_nilfs;
  2446. LIST_HEAD(garbage_list);
  2447. down_write(&nilfs->ns_segctor_sem);
  2448. if (nilfs->ns_writer) {
  2449. nilfs_segctor_destroy(nilfs->ns_writer);
  2450. nilfs->ns_writer = NULL;
  2451. }
  2452. /* Force to free the list of dirty files */
  2453. spin_lock(&nilfs->ns_inode_lock);
  2454. if (!list_empty(&nilfs->ns_dirty_files)) {
  2455. list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
  2456. nilfs_warning(sbi->s_super, __func__,
  2457. "Non empty dirty list after the last "
  2458. "segment construction\n");
  2459. }
  2460. spin_unlock(&nilfs->ns_inode_lock);
  2461. up_write(&nilfs->ns_segctor_sem);
  2462. nilfs_dispose_list(nilfs, &garbage_list, 1);
  2463. }