xmit.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb);
  64. enum {
  65. MCS_HT20,
  66. MCS_HT20_SGI,
  67. MCS_HT40,
  68. MCS_HT40_SGI,
  69. };
  70. /*********************/
  71. /* Aggregation logic */
  72. /*********************/
  73. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  74. __acquires(&txq->axq_lock)
  75. {
  76. spin_lock_bh(&txq->axq_lock);
  77. }
  78. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  79. __releases(&txq->axq_lock)
  80. {
  81. spin_unlock_bh(&txq->axq_lock);
  82. }
  83. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  84. __releases(&txq->axq_lock)
  85. {
  86. struct sk_buff_head q;
  87. struct sk_buff *skb;
  88. __skb_queue_head_init(&q);
  89. skb_queue_splice_init(&txq->complete_q, &q);
  90. spin_unlock_bh(&txq->axq_lock);
  91. while ((skb = __skb_dequeue(&q)))
  92. ieee80211_tx_status(sc->hw, skb);
  93. }
  94. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. if (tid->paused)
  98. return;
  99. if (tid->sched)
  100. return;
  101. tid->sched = true;
  102. list_add_tail(&tid->list, &ac->tid_q);
  103. if (ac->sched)
  104. return;
  105. ac->sched = true;
  106. list_add_tail(&ac->list, &txq->axq_acq);
  107. }
  108. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  109. {
  110. struct ath_txq *txq = tid->ac->txq;
  111. WARN_ON(!tid->paused);
  112. ath_txq_lock(sc, txq);
  113. tid->paused = false;
  114. if (skb_queue_empty(&tid->buf_q))
  115. goto unlock;
  116. ath_tx_queue_tid(txq, tid);
  117. ath_txq_schedule(sc, txq);
  118. unlock:
  119. ath_txq_unlock_complete(sc, txq);
  120. }
  121. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  122. {
  123. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  124. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  125. sizeof(tx_info->rate_driver_data));
  126. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  127. }
  128. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  129. {
  130. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  131. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  132. }
  133. static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
  134. struct ath_buf *bf)
  135. {
  136. ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
  137. ARRAY_SIZE(bf->rates));
  138. }
  139. static void ath_tx_clear_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  140. {
  141. tid->state &= ~AGGR_ADDBA_COMPLETE;
  142. tid->state &= ~AGGR_CLEANUP;
  143. if (!tid->stop_cb)
  144. return;
  145. ieee80211_start_tx_ba_cb_irqsafe(tid->an->vif, tid->an->sta->addr,
  146. tid->tidno);
  147. tid->stop_cb = false;
  148. }
  149. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid,
  150. bool flush_packets)
  151. {
  152. struct ath_txq *txq = tid->ac->txq;
  153. struct sk_buff *skb;
  154. struct ath_buf *bf;
  155. struct list_head bf_head;
  156. struct ath_tx_status ts;
  157. struct ath_frame_info *fi;
  158. bool sendbar = false;
  159. INIT_LIST_HEAD(&bf_head);
  160. memset(&ts, 0, sizeof(ts));
  161. while ((skb = __skb_dequeue(&tid->buf_q))) {
  162. fi = get_frame_info(skb);
  163. bf = fi->bf;
  164. if (!bf && !flush_packets)
  165. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  166. if (!bf) {
  167. ieee80211_free_txskb(sc->hw, skb);
  168. continue;
  169. }
  170. if (fi->retries || flush_packets) {
  171. list_add_tail(&bf->list, &bf_head);
  172. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  173. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  174. sendbar = true;
  175. } else {
  176. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  177. ath_tx_send_normal(sc, txq, NULL, skb);
  178. }
  179. }
  180. if (tid->baw_head == tid->baw_tail)
  181. ath_tx_clear_tid(sc, tid);
  182. if (sendbar && !flush_packets) {
  183. ath_txq_unlock(sc, txq);
  184. ath_send_bar(tid, tid->seq_start);
  185. ath_txq_lock(sc, txq);
  186. }
  187. }
  188. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  189. int seqno)
  190. {
  191. int index, cindex;
  192. index = ATH_BA_INDEX(tid->seq_start, seqno);
  193. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  194. __clear_bit(cindex, tid->tx_buf);
  195. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  196. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  197. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  198. if (tid->bar_index >= 0)
  199. tid->bar_index--;
  200. }
  201. }
  202. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  203. u16 seqno)
  204. {
  205. int index, cindex;
  206. index = ATH_BA_INDEX(tid->seq_start, seqno);
  207. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  208. __set_bit(cindex, tid->tx_buf);
  209. if (index >= ((tid->baw_tail - tid->baw_head) &
  210. (ATH_TID_MAX_BUFS - 1))) {
  211. tid->baw_tail = cindex;
  212. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  213. }
  214. }
  215. /*
  216. * TODO: For frame(s) that are in the retry state, we will reuse the
  217. * sequence number(s) without setting the retry bit. The
  218. * alternative is to give up on these and BAR the receiver's window
  219. * forward.
  220. */
  221. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  222. struct ath_atx_tid *tid)
  223. {
  224. struct sk_buff *skb;
  225. struct ath_buf *bf;
  226. struct list_head bf_head;
  227. struct ath_tx_status ts;
  228. struct ath_frame_info *fi;
  229. memset(&ts, 0, sizeof(ts));
  230. INIT_LIST_HEAD(&bf_head);
  231. while ((skb = __skb_dequeue(&tid->buf_q))) {
  232. fi = get_frame_info(skb);
  233. bf = fi->bf;
  234. if (!bf) {
  235. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  236. continue;
  237. }
  238. list_add_tail(&bf->list, &bf_head);
  239. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  240. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  241. }
  242. tid->seq_next = tid->seq_start;
  243. tid->baw_tail = tid->baw_head;
  244. tid->bar_index = -1;
  245. }
  246. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  247. struct sk_buff *skb, int count)
  248. {
  249. struct ath_frame_info *fi = get_frame_info(skb);
  250. struct ath_buf *bf = fi->bf;
  251. struct ieee80211_hdr *hdr;
  252. int prev = fi->retries;
  253. TX_STAT_INC(txq->axq_qnum, a_retries);
  254. fi->retries += count;
  255. if (prev > 0)
  256. return;
  257. hdr = (struct ieee80211_hdr *)skb->data;
  258. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  259. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  260. sizeof(*hdr), DMA_TO_DEVICE);
  261. }
  262. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  263. {
  264. struct ath_buf *bf = NULL;
  265. spin_lock_bh(&sc->tx.txbuflock);
  266. if (unlikely(list_empty(&sc->tx.txbuf))) {
  267. spin_unlock_bh(&sc->tx.txbuflock);
  268. return NULL;
  269. }
  270. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  271. list_del(&bf->list);
  272. spin_unlock_bh(&sc->tx.txbuflock);
  273. return bf;
  274. }
  275. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  276. {
  277. spin_lock_bh(&sc->tx.txbuflock);
  278. list_add_tail(&bf->list, &sc->tx.txbuf);
  279. spin_unlock_bh(&sc->tx.txbuflock);
  280. }
  281. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  282. {
  283. struct ath_buf *tbf;
  284. tbf = ath_tx_get_buffer(sc);
  285. if (WARN_ON(!tbf))
  286. return NULL;
  287. ATH_TXBUF_RESET(tbf);
  288. tbf->bf_mpdu = bf->bf_mpdu;
  289. tbf->bf_buf_addr = bf->bf_buf_addr;
  290. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  291. tbf->bf_state = bf->bf_state;
  292. return tbf;
  293. }
  294. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  295. struct ath_tx_status *ts, int txok,
  296. int *nframes, int *nbad)
  297. {
  298. struct ath_frame_info *fi;
  299. u16 seq_st = 0;
  300. u32 ba[WME_BA_BMP_SIZE >> 5];
  301. int ba_index;
  302. int isaggr = 0;
  303. *nbad = 0;
  304. *nframes = 0;
  305. isaggr = bf_isaggr(bf);
  306. if (isaggr) {
  307. seq_st = ts->ts_seqnum;
  308. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  309. }
  310. while (bf) {
  311. fi = get_frame_info(bf->bf_mpdu);
  312. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  313. (*nframes)++;
  314. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  315. (*nbad)++;
  316. bf = bf->bf_next;
  317. }
  318. }
  319. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  320. struct ath_buf *bf, struct list_head *bf_q,
  321. struct ath_tx_status *ts, int txok)
  322. {
  323. struct ath_node *an = NULL;
  324. struct sk_buff *skb;
  325. struct ieee80211_sta *sta;
  326. struct ieee80211_hw *hw = sc->hw;
  327. struct ieee80211_hdr *hdr;
  328. struct ieee80211_tx_info *tx_info;
  329. struct ath_atx_tid *tid = NULL;
  330. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  331. struct list_head bf_head;
  332. struct sk_buff_head bf_pending;
  333. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  334. u32 ba[WME_BA_BMP_SIZE >> 5];
  335. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  336. bool rc_update = true, isba;
  337. struct ieee80211_tx_rate rates[4];
  338. struct ath_frame_info *fi;
  339. int nframes;
  340. u8 tidno;
  341. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  342. int i, retries;
  343. int bar_index = -1;
  344. skb = bf->bf_mpdu;
  345. hdr = (struct ieee80211_hdr *)skb->data;
  346. tx_info = IEEE80211_SKB_CB(skb);
  347. memcpy(rates, bf->rates, sizeof(rates));
  348. retries = ts->ts_longretry + 1;
  349. for (i = 0; i < ts->ts_rateindex; i++)
  350. retries += rates[i].count;
  351. rcu_read_lock();
  352. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  353. if (!sta) {
  354. rcu_read_unlock();
  355. INIT_LIST_HEAD(&bf_head);
  356. while (bf) {
  357. bf_next = bf->bf_next;
  358. if (!bf->bf_stale || bf_next != NULL)
  359. list_move_tail(&bf->list, &bf_head);
  360. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  361. bf = bf_next;
  362. }
  363. return;
  364. }
  365. an = (struct ath_node *)sta->drv_priv;
  366. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  367. tid = ATH_AN_2_TID(an, tidno);
  368. seq_first = tid->seq_start;
  369. isba = ts->ts_flags & ATH9K_TX_BA;
  370. /*
  371. * The hardware occasionally sends a tx status for the wrong TID.
  372. * In this case, the BA status cannot be considered valid and all
  373. * subframes need to be retransmitted
  374. *
  375. * Only BlockAcks have a TID and therefore normal Acks cannot be
  376. * checked
  377. */
  378. if (isba && tidno != ts->tid)
  379. txok = false;
  380. isaggr = bf_isaggr(bf);
  381. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  382. if (isaggr && txok) {
  383. if (ts->ts_flags & ATH9K_TX_BA) {
  384. seq_st = ts->ts_seqnum;
  385. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  386. } else {
  387. /*
  388. * AR5416 can become deaf/mute when BA
  389. * issue happens. Chip needs to be reset.
  390. * But AP code may have sychronization issues
  391. * when perform internal reset in this routine.
  392. * Only enable reset in STA mode for now.
  393. */
  394. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  395. needreset = 1;
  396. }
  397. }
  398. __skb_queue_head_init(&bf_pending);
  399. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  400. while (bf) {
  401. u16 seqno = bf->bf_state.seqno;
  402. txfail = txpending = sendbar = 0;
  403. bf_next = bf->bf_next;
  404. skb = bf->bf_mpdu;
  405. tx_info = IEEE80211_SKB_CB(skb);
  406. fi = get_frame_info(skb);
  407. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  408. /* transmit completion, subframe is
  409. * acked by block ack */
  410. acked_cnt++;
  411. } else if (!isaggr && txok) {
  412. /* transmit completion */
  413. acked_cnt++;
  414. } else if (tid->state & AGGR_CLEANUP) {
  415. /*
  416. * cleanup in progress, just fail
  417. * the un-acked sub-frames
  418. */
  419. txfail = 1;
  420. } else if (flush) {
  421. txpending = 1;
  422. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  423. if (txok || !an->sleeping)
  424. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  425. retries);
  426. txpending = 1;
  427. } else {
  428. txfail = 1;
  429. txfail_cnt++;
  430. bar_index = max_t(int, bar_index,
  431. ATH_BA_INDEX(seq_first, seqno));
  432. }
  433. /*
  434. * Make sure the last desc is reclaimed if it
  435. * not a holding desc.
  436. */
  437. INIT_LIST_HEAD(&bf_head);
  438. if (bf_next != NULL || !bf_last->bf_stale)
  439. list_move_tail(&bf->list, &bf_head);
  440. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  441. /*
  442. * complete the acked-ones/xretried ones; update
  443. * block-ack window
  444. */
  445. ath_tx_update_baw(sc, tid, seqno);
  446. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  447. memcpy(tx_info->control.rates, rates, sizeof(rates));
  448. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  449. rc_update = false;
  450. }
  451. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  452. !txfail);
  453. } else {
  454. /* retry the un-acked ones */
  455. if (bf->bf_next == NULL && bf_last->bf_stale) {
  456. struct ath_buf *tbf;
  457. tbf = ath_clone_txbuf(sc, bf_last);
  458. /*
  459. * Update tx baw and complete the
  460. * frame with failed status if we
  461. * run out of tx buf.
  462. */
  463. if (!tbf) {
  464. ath_tx_update_baw(sc, tid, seqno);
  465. ath_tx_complete_buf(sc, bf, txq,
  466. &bf_head, ts, 0);
  467. bar_index = max_t(int, bar_index,
  468. ATH_BA_INDEX(seq_first, seqno));
  469. break;
  470. }
  471. fi->bf = tbf;
  472. }
  473. /*
  474. * Put this buffer to the temporary pending
  475. * queue to retain ordering
  476. */
  477. __skb_queue_tail(&bf_pending, skb);
  478. }
  479. bf = bf_next;
  480. }
  481. /* prepend un-acked frames to the beginning of the pending frame queue */
  482. if (!skb_queue_empty(&bf_pending)) {
  483. if (an->sleeping)
  484. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  485. skb_queue_splice(&bf_pending, &tid->buf_q);
  486. if (!an->sleeping) {
  487. ath_tx_queue_tid(txq, tid);
  488. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  489. tid->ac->clear_ps_filter = true;
  490. }
  491. }
  492. if (bar_index >= 0) {
  493. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  494. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  495. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  496. ath_txq_unlock(sc, txq);
  497. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  498. ath_txq_lock(sc, txq);
  499. }
  500. if (tid->state & AGGR_CLEANUP)
  501. ath_tx_flush_tid(sc, tid, false);
  502. rcu_read_unlock();
  503. if (needreset)
  504. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  505. }
  506. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  507. {
  508. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  509. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  510. }
  511. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  512. struct ath_tx_status *ts, struct ath_buf *bf,
  513. struct list_head *bf_head)
  514. {
  515. struct ieee80211_tx_info *info;
  516. bool txok, flush;
  517. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  518. flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  519. txq->axq_tx_inprogress = false;
  520. txq->axq_depth--;
  521. if (bf_is_ampdu_not_probing(bf))
  522. txq->axq_ampdu_depth--;
  523. if (!bf_isampdu(bf)) {
  524. if (!flush) {
  525. info = IEEE80211_SKB_CB(bf->bf_mpdu);
  526. memcpy(info->control.rates, bf->rates,
  527. sizeof(info->control.rates));
  528. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  529. }
  530. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  531. } else
  532. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
  533. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !flush)
  534. ath_txq_schedule(sc, txq);
  535. }
  536. static bool ath_lookup_legacy(struct ath_buf *bf)
  537. {
  538. struct sk_buff *skb;
  539. struct ieee80211_tx_info *tx_info;
  540. struct ieee80211_tx_rate *rates;
  541. int i;
  542. skb = bf->bf_mpdu;
  543. tx_info = IEEE80211_SKB_CB(skb);
  544. rates = tx_info->control.rates;
  545. for (i = 0; i < 4; i++) {
  546. if (!rates[i].count || rates[i].idx < 0)
  547. break;
  548. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  549. return true;
  550. }
  551. return false;
  552. }
  553. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  554. struct ath_atx_tid *tid)
  555. {
  556. struct sk_buff *skb;
  557. struct ieee80211_tx_info *tx_info;
  558. struct ieee80211_tx_rate *rates;
  559. u32 max_4ms_framelen, frmlen;
  560. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  561. int q = tid->ac->txq->mac80211_qnum;
  562. int i;
  563. skb = bf->bf_mpdu;
  564. tx_info = IEEE80211_SKB_CB(skb);
  565. rates = bf->rates;
  566. /*
  567. * Find the lowest frame length among the rate series that will have a
  568. * 4ms (or TXOP limited) transmit duration.
  569. */
  570. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  571. for (i = 0; i < 4; i++) {
  572. int modeidx;
  573. if (!rates[i].count)
  574. continue;
  575. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  576. legacy = 1;
  577. break;
  578. }
  579. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  580. modeidx = MCS_HT40;
  581. else
  582. modeidx = MCS_HT20;
  583. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  584. modeidx++;
  585. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  586. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  587. }
  588. /*
  589. * limit aggregate size by the minimum rate if rate selected is
  590. * not a probe rate, if rate selected is a probe rate then
  591. * avoid aggregation of this packet.
  592. */
  593. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  594. return 0;
  595. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  596. /*
  597. * Override the default aggregation limit for BTCOEX.
  598. */
  599. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  600. if (bt_aggr_limit)
  601. aggr_limit = bt_aggr_limit;
  602. /*
  603. * h/w can accept aggregates up to 16 bit lengths (65535).
  604. * The IE, however can hold up to 65536, which shows up here
  605. * as zero. Ignore 65536 since we are constrained by hw.
  606. */
  607. if (tid->an->maxampdu)
  608. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  609. return aggr_limit;
  610. }
  611. /*
  612. * Returns the number of delimiters to be added to
  613. * meet the minimum required mpdudensity.
  614. */
  615. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  616. struct ath_buf *bf, u16 frmlen,
  617. bool first_subfrm)
  618. {
  619. #define FIRST_DESC_NDELIMS 60
  620. u32 nsymbits, nsymbols;
  621. u16 minlen;
  622. u8 flags, rix;
  623. int width, streams, half_gi, ndelim, mindelim;
  624. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  625. /* Select standard number of delimiters based on frame length alone */
  626. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  627. /*
  628. * If encryption enabled, hardware requires some more padding between
  629. * subframes.
  630. * TODO - this could be improved to be dependent on the rate.
  631. * The hardware can keep up at lower rates, but not higher rates
  632. */
  633. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  634. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  635. ndelim += ATH_AGGR_ENCRYPTDELIM;
  636. /*
  637. * Add delimiter when using RTS/CTS with aggregation
  638. * and non enterprise AR9003 card
  639. */
  640. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  641. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  642. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  643. /*
  644. * Convert desired mpdu density from microeconds to bytes based
  645. * on highest rate in rate series (i.e. first rate) to determine
  646. * required minimum length for subframe. Take into account
  647. * whether high rate is 20 or 40Mhz and half or full GI.
  648. *
  649. * If there is no mpdu density restriction, no further calculation
  650. * is needed.
  651. */
  652. if (tid->an->mpdudensity == 0)
  653. return ndelim;
  654. rix = bf->rates[0].idx;
  655. flags = bf->rates[0].flags;
  656. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  657. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  658. if (half_gi)
  659. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  660. else
  661. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  662. if (nsymbols == 0)
  663. nsymbols = 1;
  664. streams = HT_RC_2_STREAMS(rix);
  665. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  666. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  667. if (frmlen < minlen) {
  668. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  669. ndelim = max(mindelim, ndelim);
  670. }
  671. return ndelim;
  672. }
  673. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  674. struct ath_txq *txq,
  675. struct ath_atx_tid *tid,
  676. struct list_head *bf_q,
  677. int *aggr_len)
  678. {
  679. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  680. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  681. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  682. u16 aggr_limit = 0, al = 0, bpad = 0,
  683. al_delta, h_baw = tid->baw_size / 2;
  684. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  685. struct ieee80211_tx_info *tx_info;
  686. struct ath_frame_info *fi;
  687. struct sk_buff *skb;
  688. u16 seqno;
  689. do {
  690. skb = skb_peek(&tid->buf_q);
  691. fi = get_frame_info(skb);
  692. bf = fi->bf;
  693. if (!fi->bf)
  694. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  695. if (!bf) {
  696. __skb_unlink(skb, &tid->buf_q);
  697. ieee80211_free_txskb(sc->hw, skb);
  698. continue;
  699. }
  700. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  701. seqno = bf->bf_state.seqno;
  702. /* do not step over block-ack window */
  703. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  704. status = ATH_AGGR_BAW_CLOSED;
  705. break;
  706. }
  707. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  708. struct ath_tx_status ts = {};
  709. struct list_head bf_head;
  710. INIT_LIST_HEAD(&bf_head);
  711. list_add(&bf->list, &bf_head);
  712. __skb_unlink(skb, &tid->buf_q);
  713. ath_tx_update_baw(sc, tid, seqno);
  714. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  715. continue;
  716. }
  717. if (!bf_first)
  718. bf_first = bf;
  719. if (!rl) {
  720. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  721. aggr_limit = ath_lookup_rate(sc, bf, tid);
  722. rl = 1;
  723. }
  724. /* do not exceed aggregation limit */
  725. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  726. if (nframes &&
  727. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  728. ath_lookup_legacy(bf))) {
  729. status = ATH_AGGR_LIMITED;
  730. break;
  731. }
  732. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  733. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  734. break;
  735. /* do not exceed subframe limit */
  736. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  737. status = ATH_AGGR_LIMITED;
  738. break;
  739. }
  740. /* add padding for previous frame to aggregation length */
  741. al += bpad + al_delta;
  742. /*
  743. * Get the delimiters needed to meet the MPDU
  744. * density for this node.
  745. */
  746. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  747. !nframes);
  748. bpad = PADBYTES(al_delta) + (ndelim << 2);
  749. nframes++;
  750. bf->bf_next = NULL;
  751. /* link buffers of this frame to the aggregate */
  752. if (!fi->retries)
  753. ath_tx_addto_baw(sc, tid, seqno);
  754. bf->bf_state.ndelim = ndelim;
  755. __skb_unlink(skb, &tid->buf_q);
  756. list_add_tail(&bf->list, bf_q);
  757. if (bf_prev)
  758. bf_prev->bf_next = bf;
  759. bf_prev = bf;
  760. } while (!skb_queue_empty(&tid->buf_q));
  761. *aggr_len = al;
  762. return status;
  763. #undef PADBYTES
  764. }
  765. /*
  766. * rix - rate index
  767. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  768. * width - 0 for 20 MHz, 1 for 40 MHz
  769. * half_gi - to use 4us v/s 3.6 us for symbol time
  770. */
  771. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  772. int width, int half_gi, bool shortPreamble)
  773. {
  774. u32 nbits, nsymbits, duration, nsymbols;
  775. int streams;
  776. /* find number of symbols: PLCP + data */
  777. streams = HT_RC_2_STREAMS(rix);
  778. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  779. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  780. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  781. if (!half_gi)
  782. duration = SYMBOL_TIME(nsymbols);
  783. else
  784. duration = SYMBOL_TIME_HALFGI(nsymbols);
  785. /* addup duration for legacy/ht training and signal fields */
  786. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  787. return duration;
  788. }
  789. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  790. {
  791. int streams = HT_RC_2_STREAMS(mcs);
  792. int symbols, bits;
  793. int bytes = 0;
  794. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  795. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  796. bits -= OFDM_PLCP_BITS;
  797. bytes = bits / 8;
  798. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  799. if (bytes > 65532)
  800. bytes = 65532;
  801. return bytes;
  802. }
  803. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  804. {
  805. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  806. int mcs;
  807. /* 4ms is the default (and maximum) duration */
  808. if (!txop || txop > 4096)
  809. txop = 4096;
  810. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  811. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  812. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  813. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  814. for (mcs = 0; mcs < 32; mcs++) {
  815. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  816. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  817. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  818. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  819. }
  820. }
  821. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  822. struct ath_tx_info *info, int len)
  823. {
  824. struct ath_hw *ah = sc->sc_ah;
  825. struct sk_buff *skb;
  826. struct ieee80211_tx_info *tx_info;
  827. struct ieee80211_tx_rate *rates;
  828. const struct ieee80211_rate *rate;
  829. struct ieee80211_hdr *hdr;
  830. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  831. int i;
  832. u8 rix = 0;
  833. skb = bf->bf_mpdu;
  834. tx_info = IEEE80211_SKB_CB(skb);
  835. rates = bf->rates;
  836. hdr = (struct ieee80211_hdr *)skb->data;
  837. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  838. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  839. info->rtscts_rate = fi->rtscts_rate;
  840. for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
  841. bool is_40, is_sgi, is_sp;
  842. int phy;
  843. if (!rates[i].count || (rates[i].idx < 0))
  844. continue;
  845. rix = rates[i].idx;
  846. info->rates[i].Tries = rates[i].count;
  847. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  848. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  849. info->flags |= ATH9K_TXDESC_RTSENA;
  850. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  851. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  852. info->flags |= ATH9K_TXDESC_CTSENA;
  853. }
  854. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  855. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  856. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  857. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  858. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  859. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  860. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  861. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  862. /* MCS rates */
  863. info->rates[i].Rate = rix | 0x80;
  864. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  865. ah->txchainmask, info->rates[i].Rate);
  866. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  867. is_40, is_sgi, is_sp);
  868. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  869. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  870. continue;
  871. }
  872. /* legacy rates */
  873. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  874. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  875. !(rate->flags & IEEE80211_RATE_ERP_G))
  876. phy = WLAN_RC_PHY_CCK;
  877. else
  878. phy = WLAN_RC_PHY_OFDM;
  879. info->rates[i].Rate = rate->hw_value;
  880. if (rate->hw_value_short) {
  881. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  882. info->rates[i].Rate |= rate->hw_value_short;
  883. } else {
  884. is_sp = false;
  885. }
  886. if (bf->bf_state.bfs_paprd)
  887. info->rates[i].ChSel = ah->txchainmask;
  888. else
  889. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  890. ah->txchainmask, info->rates[i].Rate);
  891. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  892. phy, rate->bitrate * 100, len, rix, is_sp);
  893. }
  894. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  895. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  896. info->flags &= ~ATH9K_TXDESC_RTSENA;
  897. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  898. if (info->flags & ATH9K_TXDESC_RTSENA)
  899. info->flags &= ~ATH9K_TXDESC_CTSENA;
  900. }
  901. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  902. {
  903. struct ieee80211_hdr *hdr;
  904. enum ath9k_pkt_type htype;
  905. __le16 fc;
  906. hdr = (struct ieee80211_hdr *)skb->data;
  907. fc = hdr->frame_control;
  908. if (ieee80211_is_beacon(fc))
  909. htype = ATH9K_PKT_TYPE_BEACON;
  910. else if (ieee80211_is_probe_resp(fc))
  911. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  912. else if (ieee80211_is_atim(fc))
  913. htype = ATH9K_PKT_TYPE_ATIM;
  914. else if (ieee80211_is_pspoll(fc))
  915. htype = ATH9K_PKT_TYPE_PSPOLL;
  916. else
  917. htype = ATH9K_PKT_TYPE_NORMAL;
  918. return htype;
  919. }
  920. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  921. struct ath_txq *txq, int len)
  922. {
  923. struct ath_hw *ah = sc->sc_ah;
  924. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  925. struct ath_buf *bf_first = bf;
  926. struct ath_tx_info info;
  927. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  928. memset(&info, 0, sizeof(info));
  929. info.is_first = true;
  930. info.is_last = true;
  931. info.txpower = MAX_RATE_POWER;
  932. info.qcu = txq->axq_qnum;
  933. info.flags = ATH9K_TXDESC_INTREQ;
  934. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  935. info.flags |= ATH9K_TXDESC_NOACK;
  936. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  937. info.flags |= ATH9K_TXDESC_LDPC;
  938. ath_buf_set_rate(sc, bf, &info, len);
  939. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  940. info.flags |= ATH9K_TXDESC_CLRDMASK;
  941. if (bf->bf_state.bfs_paprd)
  942. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  943. while (bf) {
  944. struct sk_buff *skb = bf->bf_mpdu;
  945. struct ath_frame_info *fi = get_frame_info(skb);
  946. info.type = get_hw_packet_type(skb);
  947. if (bf->bf_next)
  948. info.link = bf->bf_next->bf_daddr;
  949. else
  950. info.link = 0;
  951. info.buf_addr[0] = bf->bf_buf_addr;
  952. info.buf_len[0] = skb->len;
  953. info.pkt_len = fi->framelen;
  954. info.keyix = fi->keyix;
  955. info.keytype = fi->keytype;
  956. if (aggr) {
  957. if (bf == bf_first)
  958. info.aggr = AGGR_BUF_FIRST;
  959. else if (!bf->bf_next)
  960. info.aggr = AGGR_BUF_LAST;
  961. else
  962. info.aggr = AGGR_BUF_MIDDLE;
  963. info.ndelim = bf->bf_state.ndelim;
  964. info.aggr_len = len;
  965. }
  966. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  967. bf = bf->bf_next;
  968. }
  969. }
  970. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  971. struct ath_atx_tid *tid)
  972. {
  973. struct ath_buf *bf;
  974. enum ATH_AGGR_STATUS status;
  975. struct ieee80211_tx_info *tx_info;
  976. struct list_head bf_q;
  977. int aggr_len;
  978. do {
  979. if (skb_queue_empty(&tid->buf_q))
  980. return;
  981. INIT_LIST_HEAD(&bf_q);
  982. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  983. /*
  984. * no frames picked up to be aggregated;
  985. * block-ack window is not open.
  986. */
  987. if (list_empty(&bf_q))
  988. break;
  989. bf = list_first_entry(&bf_q, struct ath_buf, list);
  990. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  991. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  992. if (tid->ac->clear_ps_filter) {
  993. tid->ac->clear_ps_filter = false;
  994. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  995. } else {
  996. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  997. }
  998. /* if only one frame, send as non-aggregate */
  999. if (bf == bf->bf_lastbf) {
  1000. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  1001. bf->bf_state.bf_type = BUF_AMPDU;
  1002. } else {
  1003. TX_STAT_INC(txq->axq_qnum, a_aggr);
  1004. }
  1005. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  1006. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1007. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  1008. status != ATH_AGGR_BAW_CLOSED);
  1009. }
  1010. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  1011. u16 tid, u16 *ssn)
  1012. {
  1013. struct ath_atx_tid *txtid;
  1014. struct ath_node *an;
  1015. u8 density;
  1016. an = (struct ath_node *)sta->drv_priv;
  1017. txtid = ATH_AN_2_TID(an, tid);
  1018. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  1019. return -EAGAIN;
  1020. /* update ampdu factor/density, they may have changed. This may happen
  1021. * in HT IBSS when a beacon with HT-info is received after the station
  1022. * has already been added.
  1023. */
  1024. if (sta->ht_cap.ht_supported) {
  1025. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  1026. sta->ht_cap.ampdu_factor);
  1027. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  1028. an->mpdudensity = density;
  1029. }
  1030. txtid->state |= AGGR_ADDBA_PROGRESS;
  1031. txtid->paused = true;
  1032. *ssn = txtid->seq_start = txtid->seq_next;
  1033. txtid->bar_index = -1;
  1034. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  1035. txtid->baw_head = txtid->baw_tail = 0;
  1036. return 0;
  1037. }
  1038. bool ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid,
  1039. bool flush)
  1040. {
  1041. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1042. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  1043. struct ath_txq *txq = txtid->ac->txq;
  1044. bool ret = !flush;
  1045. if (flush)
  1046. txtid->stop_cb = false;
  1047. if (txtid->state & AGGR_CLEANUP)
  1048. return false;
  1049. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  1050. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1051. return ret;
  1052. }
  1053. ath_txq_lock(sc, txq);
  1054. txtid->paused = true;
  1055. /*
  1056. * If frames are still being transmitted for this TID, they will be
  1057. * cleaned up during tx completion. To prevent race conditions, this
  1058. * TID can only be reused after all in-progress subframes have been
  1059. * completed.
  1060. */
  1061. if (txtid->baw_head != txtid->baw_tail) {
  1062. txtid->state |= AGGR_CLEANUP;
  1063. ret = false;
  1064. txtid->stop_cb = !flush;
  1065. } else {
  1066. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  1067. }
  1068. ath_tx_flush_tid(sc, txtid, flush);
  1069. ath_txq_unlock_complete(sc, txq);
  1070. return ret;
  1071. }
  1072. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1073. struct ath_node *an)
  1074. {
  1075. struct ath_atx_tid *tid;
  1076. struct ath_atx_ac *ac;
  1077. struct ath_txq *txq;
  1078. bool buffered;
  1079. int tidno;
  1080. for (tidno = 0, tid = &an->tid[tidno];
  1081. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1082. if (!tid->sched)
  1083. continue;
  1084. ac = tid->ac;
  1085. txq = ac->txq;
  1086. ath_txq_lock(sc, txq);
  1087. buffered = !skb_queue_empty(&tid->buf_q);
  1088. tid->sched = false;
  1089. list_del(&tid->list);
  1090. if (ac->sched) {
  1091. ac->sched = false;
  1092. list_del(&ac->list);
  1093. }
  1094. ath_txq_unlock(sc, txq);
  1095. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1096. }
  1097. }
  1098. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1099. {
  1100. struct ath_atx_tid *tid;
  1101. struct ath_atx_ac *ac;
  1102. struct ath_txq *txq;
  1103. int tidno;
  1104. for (tidno = 0, tid = &an->tid[tidno];
  1105. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1106. ac = tid->ac;
  1107. txq = ac->txq;
  1108. ath_txq_lock(sc, txq);
  1109. ac->clear_ps_filter = true;
  1110. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1111. ath_tx_queue_tid(txq, tid);
  1112. ath_txq_schedule(sc, txq);
  1113. }
  1114. ath_txq_unlock_complete(sc, txq);
  1115. }
  1116. }
  1117. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1118. {
  1119. struct ath_atx_tid *txtid;
  1120. struct ath_node *an;
  1121. an = (struct ath_node *)sta->drv_priv;
  1122. txtid = ATH_AN_2_TID(an, tid);
  1123. txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1124. txtid->state |= AGGR_ADDBA_COMPLETE;
  1125. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1126. ath_tx_resume_tid(sc, txtid);
  1127. }
  1128. /********************/
  1129. /* Queue Management */
  1130. /********************/
  1131. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1132. {
  1133. struct ath_hw *ah = sc->sc_ah;
  1134. struct ath9k_tx_queue_info qi;
  1135. static const int subtype_txq_to_hwq[] = {
  1136. [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
  1137. [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
  1138. [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
  1139. [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
  1140. };
  1141. int axq_qnum, i;
  1142. memset(&qi, 0, sizeof(qi));
  1143. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1144. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1145. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1146. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1147. qi.tqi_physCompBuf = 0;
  1148. /*
  1149. * Enable interrupts only for EOL and DESC conditions.
  1150. * We mark tx descriptors to receive a DESC interrupt
  1151. * when a tx queue gets deep; otherwise waiting for the
  1152. * EOL to reap descriptors. Note that this is done to
  1153. * reduce interrupt load and this only defers reaping
  1154. * descriptors, never transmitting frames. Aside from
  1155. * reducing interrupts this also permits more concurrency.
  1156. * The only potential downside is if the tx queue backs
  1157. * up in which case the top half of the kernel may backup
  1158. * due to a lack of tx descriptors.
  1159. *
  1160. * The UAPSD queue is an exception, since we take a desc-
  1161. * based intr on the EOSP frames.
  1162. */
  1163. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1164. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1165. } else {
  1166. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1167. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1168. else
  1169. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1170. TXQ_FLAG_TXDESCINT_ENABLE;
  1171. }
  1172. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1173. if (axq_qnum == -1) {
  1174. /*
  1175. * NB: don't print a message, this happens
  1176. * normally on parts with too few tx queues
  1177. */
  1178. return NULL;
  1179. }
  1180. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1181. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1182. txq->axq_qnum = axq_qnum;
  1183. txq->mac80211_qnum = -1;
  1184. txq->axq_link = NULL;
  1185. __skb_queue_head_init(&txq->complete_q);
  1186. INIT_LIST_HEAD(&txq->axq_q);
  1187. INIT_LIST_HEAD(&txq->axq_acq);
  1188. spin_lock_init(&txq->axq_lock);
  1189. txq->axq_depth = 0;
  1190. txq->axq_ampdu_depth = 0;
  1191. txq->axq_tx_inprogress = false;
  1192. sc->tx.txqsetup |= 1<<axq_qnum;
  1193. txq->txq_headidx = txq->txq_tailidx = 0;
  1194. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1195. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1196. }
  1197. return &sc->tx.txq[axq_qnum];
  1198. }
  1199. int ath_txq_update(struct ath_softc *sc, int qnum,
  1200. struct ath9k_tx_queue_info *qinfo)
  1201. {
  1202. struct ath_hw *ah = sc->sc_ah;
  1203. int error = 0;
  1204. struct ath9k_tx_queue_info qi;
  1205. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1206. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1207. qi.tqi_aifs = qinfo->tqi_aifs;
  1208. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1209. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1210. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1211. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1212. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1213. ath_err(ath9k_hw_common(sc->sc_ah),
  1214. "Unable to update hardware queue %u!\n", qnum);
  1215. error = -EIO;
  1216. } else {
  1217. ath9k_hw_resettxqueue(ah, qnum);
  1218. }
  1219. return error;
  1220. }
  1221. int ath_cabq_update(struct ath_softc *sc)
  1222. {
  1223. struct ath9k_tx_queue_info qi;
  1224. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1225. int qnum = sc->beacon.cabq->axq_qnum;
  1226. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1227. /*
  1228. * Ensure the readytime % is within the bounds.
  1229. */
  1230. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1231. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1232. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1233. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1234. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1235. sc->config.cabqReadytime) / 100;
  1236. ath_txq_update(sc, qnum, &qi);
  1237. return 0;
  1238. }
  1239. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1240. struct list_head *list)
  1241. {
  1242. struct ath_buf *bf, *lastbf;
  1243. struct list_head bf_head;
  1244. struct ath_tx_status ts;
  1245. memset(&ts, 0, sizeof(ts));
  1246. ts.ts_status = ATH9K_TX_FLUSH;
  1247. INIT_LIST_HEAD(&bf_head);
  1248. while (!list_empty(list)) {
  1249. bf = list_first_entry(list, struct ath_buf, list);
  1250. if (bf->bf_stale) {
  1251. list_del(&bf->list);
  1252. ath_tx_return_buffer(sc, bf);
  1253. continue;
  1254. }
  1255. lastbf = bf->bf_lastbf;
  1256. list_cut_position(&bf_head, list, &lastbf->list);
  1257. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1258. }
  1259. }
  1260. /*
  1261. * Drain a given TX queue (could be Beacon or Data)
  1262. *
  1263. * This assumes output has been stopped and
  1264. * we do not need to block ath_tx_tasklet.
  1265. */
  1266. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
  1267. {
  1268. ath_txq_lock(sc, txq);
  1269. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1270. int idx = txq->txq_tailidx;
  1271. while (!list_empty(&txq->txq_fifo[idx])) {
  1272. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
  1273. INCR(idx, ATH_TXFIFO_DEPTH);
  1274. }
  1275. txq->txq_tailidx = idx;
  1276. }
  1277. txq->axq_link = NULL;
  1278. txq->axq_tx_inprogress = false;
  1279. ath_drain_txq_list(sc, txq, &txq->axq_q);
  1280. ath_txq_unlock_complete(sc, txq);
  1281. }
  1282. bool ath_drain_all_txq(struct ath_softc *sc)
  1283. {
  1284. struct ath_hw *ah = sc->sc_ah;
  1285. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1286. struct ath_txq *txq;
  1287. int i;
  1288. u32 npend = 0;
  1289. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1290. return true;
  1291. ath9k_hw_abort_tx_dma(ah);
  1292. /* Check if any queue remains active */
  1293. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1294. if (!ATH_TXQ_SETUP(sc, i))
  1295. continue;
  1296. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1297. npend |= BIT(i);
  1298. }
  1299. if (npend)
  1300. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1301. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1302. if (!ATH_TXQ_SETUP(sc, i))
  1303. continue;
  1304. /*
  1305. * The caller will resume queues with ieee80211_wake_queues.
  1306. * Mark the queue as not stopped to prevent ath_tx_complete
  1307. * from waking the queue too early.
  1308. */
  1309. txq = &sc->tx.txq[i];
  1310. txq->stopped = false;
  1311. ath_draintxq(sc, txq);
  1312. }
  1313. return !npend;
  1314. }
  1315. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1316. {
  1317. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1318. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1319. }
  1320. /* For each axq_acq entry, for each tid, try to schedule packets
  1321. * for transmit until ampdu_depth has reached min Q depth.
  1322. */
  1323. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1324. {
  1325. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1326. struct ath_atx_tid *tid, *last_tid;
  1327. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1328. list_empty(&txq->axq_acq) ||
  1329. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1330. return;
  1331. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1332. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1333. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1334. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1335. list_del(&ac->list);
  1336. ac->sched = false;
  1337. while (!list_empty(&ac->tid_q)) {
  1338. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1339. list);
  1340. list_del(&tid->list);
  1341. tid->sched = false;
  1342. if (tid->paused)
  1343. continue;
  1344. ath_tx_sched_aggr(sc, txq, tid);
  1345. /*
  1346. * add tid to round-robin queue if more frames
  1347. * are pending for the tid
  1348. */
  1349. if (!skb_queue_empty(&tid->buf_q))
  1350. ath_tx_queue_tid(txq, tid);
  1351. if (tid == last_tid ||
  1352. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1353. break;
  1354. }
  1355. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1356. ac->sched = true;
  1357. list_add_tail(&ac->list, &txq->axq_acq);
  1358. }
  1359. if (ac == last_ac ||
  1360. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1361. return;
  1362. }
  1363. }
  1364. /***********/
  1365. /* TX, DMA */
  1366. /***********/
  1367. /*
  1368. * Insert a chain of ath_buf (descriptors) on a txq and
  1369. * assume the descriptors are already chained together by caller.
  1370. */
  1371. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1372. struct list_head *head, bool internal)
  1373. {
  1374. struct ath_hw *ah = sc->sc_ah;
  1375. struct ath_common *common = ath9k_hw_common(ah);
  1376. struct ath_buf *bf, *bf_last;
  1377. bool puttxbuf = false;
  1378. bool edma;
  1379. /*
  1380. * Insert the frame on the outbound list and
  1381. * pass it on to the hardware.
  1382. */
  1383. if (list_empty(head))
  1384. return;
  1385. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1386. bf = list_first_entry(head, struct ath_buf, list);
  1387. bf_last = list_entry(head->prev, struct ath_buf, list);
  1388. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1389. txq->axq_qnum, txq->axq_depth);
  1390. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1391. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1392. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1393. puttxbuf = true;
  1394. } else {
  1395. list_splice_tail_init(head, &txq->axq_q);
  1396. if (txq->axq_link) {
  1397. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1398. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1399. txq->axq_qnum, txq->axq_link,
  1400. ito64(bf->bf_daddr), bf->bf_desc);
  1401. } else if (!edma)
  1402. puttxbuf = true;
  1403. txq->axq_link = bf_last->bf_desc;
  1404. }
  1405. if (puttxbuf) {
  1406. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1407. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1408. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1409. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1410. }
  1411. if (!edma) {
  1412. TX_STAT_INC(txq->axq_qnum, txstart);
  1413. ath9k_hw_txstart(ah, txq->axq_qnum);
  1414. }
  1415. if (!internal) {
  1416. txq->axq_depth++;
  1417. if (bf_is_ampdu_not_probing(bf))
  1418. txq->axq_ampdu_depth++;
  1419. }
  1420. }
  1421. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1422. struct sk_buff *skb, struct ath_tx_control *txctl)
  1423. {
  1424. struct ath_frame_info *fi = get_frame_info(skb);
  1425. struct list_head bf_head;
  1426. struct ath_buf *bf;
  1427. /*
  1428. * Do not queue to h/w when any of the following conditions is true:
  1429. * - there are pending frames in software queue
  1430. * - the TID is currently paused for ADDBA/BAR request
  1431. * - seqno is not within block-ack window
  1432. * - h/w queue depth exceeds low water mark
  1433. */
  1434. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1435. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1436. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1437. /*
  1438. * Add this frame to software queue for scheduling later
  1439. * for aggregation.
  1440. */
  1441. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1442. __skb_queue_tail(&tid->buf_q, skb);
  1443. if (!txctl->an || !txctl->an->sleeping)
  1444. ath_tx_queue_tid(txctl->txq, tid);
  1445. return;
  1446. }
  1447. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1448. if (!bf) {
  1449. ieee80211_free_txskb(sc->hw, skb);
  1450. return;
  1451. }
  1452. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1453. bf->bf_state.bf_type = BUF_AMPDU;
  1454. INIT_LIST_HEAD(&bf_head);
  1455. list_add(&bf->list, &bf_head);
  1456. /* Add sub-frame to BAW */
  1457. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1458. /* Queue to h/w without aggregation */
  1459. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1460. bf->bf_lastbf = bf;
  1461. ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
  1462. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1463. }
  1464. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1465. struct ath_atx_tid *tid, struct sk_buff *skb)
  1466. {
  1467. struct ath_frame_info *fi = get_frame_info(skb);
  1468. struct list_head bf_head;
  1469. struct ath_buf *bf;
  1470. bf = fi->bf;
  1471. INIT_LIST_HEAD(&bf_head);
  1472. list_add_tail(&bf->list, &bf_head);
  1473. bf->bf_state.bf_type = 0;
  1474. bf->bf_next = NULL;
  1475. bf->bf_lastbf = bf;
  1476. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1477. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1478. TX_STAT_INC(txq->axq_qnum, queued);
  1479. }
  1480. static void setup_frame_info(struct ieee80211_hw *hw,
  1481. struct ieee80211_sta *sta,
  1482. struct sk_buff *skb,
  1483. int framelen)
  1484. {
  1485. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1486. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1487. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1488. const struct ieee80211_rate *rate;
  1489. struct ath_frame_info *fi = get_frame_info(skb);
  1490. struct ath_node *an = NULL;
  1491. enum ath9k_key_type keytype;
  1492. bool short_preamble = false;
  1493. /*
  1494. * We check if Short Preamble is needed for the CTS rate by
  1495. * checking the BSS's global flag.
  1496. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1497. */
  1498. if (tx_info->control.vif &&
  1499. tx_info->control.vif->bss_conf.use_short_preamble)
  1500. short_preamble = true;
  1501. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1502. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1503. if (sta)
  1504. an = (struct ath_node *) sta->drv_priv;
  1505. memset(fi, 0, sizeof(*fi));
  1506. if (hw_key)
  1507. fi->keyix = hw_key->hw_key_idx;
  1508. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1509. fi->keyix = an->ps_key;
  1510. else
  1511. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1512. fi->keytype = keytype;
  1513. fi->framelen = framelen;
  1514. fi->rtscts_rate = rate->hw_value;
  1515. if (short_preamble)
  1516. fi->rtscts_rate |= rate->hw_value_short;
  1517. }
  1518. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1519. {
  1520. struct ath_hw *ah = sc->sc_ah;
  1521. struct ath9k_channel *curchan = ah->curchan;
  1522. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1523. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1524. (chainmask == 0x7) && (rate < 0x90))
  1525. return 0x3;
  1526. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1527. IS_CCK_RATE(rate))
  1528. return 0x2;
  1529. else
  1530. return chainmask;
  1531. }
  1532. /*
  1533. * Assign a descriptor (and sequence number if necessary,
  1534. * and map buffer for DMA. Frees skb on error
  1535. */
  1536. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1537. struct ath_txq *txq,
  1538. struct ath_atx_tid *tid,
  1539. struct sk_buff *skb)
  1540. {
  1541. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1542. struct ath_frame_info *fi = get_frame_info(skb);
  1543. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1544. struct ath_buf *bf;
  1545. int fragno;
  1546. u16 seqno;
  1547. bf = ath_tx_get_buffer(sc);
  1548. if (!bf) {
  1549. ath_dbg(common, XMIT, "TX buffers are full\n");
  1550. return NULL;
  1551. }
  1552. ATH_TXBUF_RESET(bf);
  1553. if (tid) {
  1554. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1555. seqno = tid->seq_next;
  1556. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1557. if (fragno)
  1558. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1559. if (!ieee80211_has_morefrags(hdr->frame_control))
  1560. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1561. bf->bf_state.seqno = seqno;
  1562. }
  1563. bf->bf_mpdu = skb;
  1564. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1565. skb->len, DMA_TO_DEVICE);
  1566. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1567. bf->bf_mpdu = NULL;
  1568. bf->bf_buf_addr = 0;
  1569. ath_err(ath9k_hw_common(sc->sc_ah),
  1570. "dma_mapping_error() on TX\n");
  1571. ath_tx_return_buffer(sc, bf);
  1572. return NULL;
  1573. }
  1574. fi->bf = bf;
  1575. return bf;
  1576. }
  1577. /* Upon failure caller should free skb */
  1578. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1579. struct ath_tx_control *txctl)
  1580. {
  1581. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1582. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1583. struct ieee80211_sta *sta = txctl->sta;
  1584. struct ieee80211_vif *vif = info->control.vif;
  1585. struct ath_softc *sc = hw->priv;
  1586. struct ath_txq *txq = txctl->txq;
  1587. struct ath_atx_tid *tid = NULL;
  1588. struct ath_buf *bf;
  1589. int padpos, padsize;
  1590. int frmlen = skb->len + FCS_LEN;
  1591. u8 tidno;
  1592. int q;
  1593. /* NOTE: sta can be NULL according to net/mac80211.h */
  1594. if (sta)
  1595. txctl->an = (struct ath_node *)sta->drv_priv;
  1596. if (info->control.hw_key)
  1597. frmlen += info->control.hw_key->icv_len;
  1598. /*
  1599. * As a temporary workaround, assign seq# here; this will likely need
  1600. * to be cleaned up to work better with Beacon transmission and virtual
  1601. * BSSes.
  1602. */
  1603. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1604. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1605. sc->tx.seq_no += 0x10;
  1606. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1607. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1608. }
  1609. /* Add the padding after the header if this is not already done */
  1610. padpos = ieee80211_hdrlen(hdr->frame_control);
  1611. padsize = padpos & 3;
  1612. if (padsize && skb->len > padpos) {
  1613. if (skb_headroom(skb) < padsize)
  1614. return -ENOMEM;
  1615. skb_push(skb, padsize);
  1616. memmove(skb->data, skb->data + padsize, padpos);
  1617. hdr = (struct ieee80211_hdr *) skb->data;
  1618. }
  1619. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1620. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1621. !ieee80211_is_data(hdr->frame_control))
  1622. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1623. setup_frame_info(hw, sta, skb, frmlen);
  1624. /*
  1625. * At this point, the vif, hw_key and sta pointers in the tx control
  1626. * info are no longer valid (overwritten by the ath_frame_info data.
  1627. */
  1628. q = skb_get_queue_mapping(skb);
  1629. ath_txq_lock(sc, txq);
  1630. if (txq == sc->tx.txq_map[q] &&
  1631. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1632. !txq->stopped) {
  1633. ieee80211_stop_queue(sc->hw, q);
  1634. txq->stopped = true;
  1635. }
  1636. if (txctl->an && ieee80211_is_data_qos(hdr->frame_control)) {
  1637. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1638. IEEE80211_QOS_CTL_TID_MASK;
  1639. tid = ATH_AN_2_TID(txctl->an, tidno);
  1640. WARN_ON(tid->ac->txq != txctl->txq);
  1641. }
  1642. if ((info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1643. /*
  1644. * Try aggregation if it's a unicast data frame
  1645. * and the destination is HT capable.
  1646. */
  1647. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1648. goto out;
  1649. }
  1650. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1651. if (!bf) {
  1652. if (txctl->paprd)
  1653. dev_kfree_skb_any(skb);
  1654. else
  1655. ieee80211_free_txskb(sc->hw, skb);
  1656. goto out;
  1657. }
  1658. bf->bf_state.bfs_paprd = txctl->paprd;
  1659. if (txctl->paprd)
  1660. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1661. ath_set_rates(vif, sta, bf);
  1662. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1663. out:
  1664. ath_txq_unlock(sc, txq);
  1665. return 0;
  1666. }
  1667. /*****************/
  1668. /* TX Completion */
  1669. /*****************/
  1670. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1671. int tx_flags, struct ath_txq *txq)
  1672. {
  1673. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1674. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1675. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1676. int q, padpos, padsize;
  1677. unsigned long flags;
  1678. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1679. if (sc->sc_ah->caldata)
  1680. sc->sc_ah->caldata->paprd_packet_sent = true;
  1681. if (!(tx_flags & ATH_TX_ERROR))
  1682. /* Frame was ACKed */
  1683. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1684. padpos = ieee80211_hdrlen(hdr->frame_control);
  1685. padsize = padpos & 3;
  1686. if (padsize && skb->len>padpos+padsize) {
  1687. /*
  1688. * Remove MAC header padding before giving the frame back to
  1689. * mac80211.
  1690. */
  1691. memmove(skb->data + padsize, skb->data, padpos);
  1692. skb_pull(skb, padsize);
  1693. }
  1694. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1695. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1696. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1697. ath_dbg(common, PS,
  1698. "Going back to sleep after having received TX status (0x%lx)\n",
  1699. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1700. PS_WAIT_FOR_CAB |
  1701. PS_WAIT_FOR_PSPOLL_DATA |
  1702. PS_WAIT_FOR_TX_ACK));
  1703. }
  1704. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1705. q = skb_get_queue_mapping(skb);
  1706. if (txq == sc->tx.txq_map[q]) {
  1707. if (WARN_ON(--txq->pending_frames < 0))
  1708. txq->pending_frames = 0;
  1709. if (txq->stopped &&
  1710. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  1711. ieee80211_wake_queue(sc->hw, q);
  1712. txq->stopped = false;
  1713. }
  1714. }
  1715. __skb_queue_tail(&txq->complete_q, skb);
  1716. }
  1717. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1718. struct ath_txq *txq, struct list_head *bf_q,
  1719. struct ath_tx_status *ts, int txok)
  1720. {
  1721. struct sk_buff *skb = bf->bf_mpdu;
  1722. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1723. unsigned long flags;
  1724. int tx_flags = 0;
  1725. if (!txok)
  1726. tx_flags |= ATH_TX_ERROR;
  1727. if (ts->ts_status & ATH9K_TXERR_FILT)
  1728. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1729. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1730. bf->bf_buf_addr = 0;
  1731. if (bf->bf_state.bfs_paprd) {
  1732. if (time_after(jiffies,
  1733. bf->bf_state.bfs_paprd_timestamp +
  1734. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1735. dev_kfree_skb_any(skb);
  1736. else
  1737. complete(&sc->paprd_complete);
  1738. } else {
  1739. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1740. ath_tx_complete(sc, skb, tx_flags, txq);
  1741. }
  1742. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1743. * accidentally reference it later.
  1744. */
  1745. bf->bf_mpdu = NULL;
  1746. /*
  1747. * Return the list of ath_buf of this mpdu to free queue
  1748. */
  1749. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1750. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1751. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1752. }
  1753. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1754. struct ath_tx_status *ts, int nframes, int nbad,
  1755. int txok)
  1756. {
  1757. struct sk_buff *skb = bf->bf_mpdu;
  1758. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1759. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1760. struct ieee80211_hw *hw = sc->hw;
  1761. struct ath_hw *ah = sc->sc_ah;
  1762. u8 i, tx_rateindex;
  1763. if (txok)
  1764. tx_info->status.ack_signal = ts->ts_rssi;
  1765. tx_rateindex = ts->ts_rateindex;
  1766. WARN_ON(tx_rateindex >= hw->max_rates);
  1767. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1768. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1769. BUG_ON(nbad > nframes);
  1770. }
  1771. tx_info->status.ampdu_len = nframes;
  1772. tx_info->status.ampdu_ack_len = nframes - nbad;
  1773. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1774. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1775. /*
  1776. * If an underrun error is seen assume it as an excessive
  1777. * retry only if max frame trigger level has been reached
  1778. * (2 KB for single stream, and 4 KB for dual stream).
  1779. * Adjust the long retry as if the frame was tried
  1780. * hw->max_rate_tries times to affect how rate control updates
  1781. * PER for the failed rate.
  1782. * In case of congestion on the bus penalizing this type of
  1783. * underruns should help hardware actually transmit new frames
  1784. * successfully by eventually preferring slower rates.
  1785. * This itself should also alleviate congestion on the bus.
  1786. */
  1787. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1788. ATH9K_TX_DELIM_UNDERRUN)) &&
  1789. ieee80211_is_data(hdr->frame_control) &&
  1790. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1791. tx_info->status.rates[tx_rateindex].count =
  1792. hw->max_rate_tries;
  1793. }
  1794. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1795. tx_info->status.rates[i].count = 0;
  1796. tx_info->status.rates[i].idx = -1;
  1797. }
  1798. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1799. }
  1800. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1801. {
  1802. struct ath_hw *ah = sc->sc_ah;
  1803. struct ath_common *common = ath9k_hw_common(ah);
  1804. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1805. struct list_head bf_head;
  1806. struct ath_desc *ds;
  1807. struct ath_tx_status ts;
  1808. int status;
  1809. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1810. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1811. txq->axq_link);
  1812. ath_txq_lock(sc, txq);
  1813. for (;;) {
  1814. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1815. break;
  1816. if (list_empty(&txq->axq_q)) {
  1817. txq->axq_link = NULL;
  1818. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1819. ath_txq_schedule(sc, txq);
  1820. break;
  1821. }
  1822. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1823. /*
  1824. * There is a race condition that a BH gets scheduled
  1825. * after sw writes TxE and before hw re-load the last
  1826. * descriptor to get the newly chained one.
  1827. * Software must keep the last DONE descriptor as a
  1828. * holding descriptor - software does so by marking
  1829. * it with the STALE flag.
  1830. */
  1831. bf_held = NULL;
  1832. if (bf->bf_stale) {
  1833. bf_held = bf;
  1834. if (list_is_last(&bf_held->list, &txq->axq_q))
  1835. break;
  1836. bf = list_entry(bf_held->list.next, struct ath_buf,
  1837. list);
  1838. }
  1839. lastbf = bf->bf_lastbf;
  1840. ds = lastbf->bf_desc;
  1841. memset(&ts, 0, sizeof(ts));
  1842. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1843. if (status == -EINPROGRESS)
  1844. break;
  1845. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1846. /*
  1847. * Remove ath_buf's of the same transmit unit from txq,
  1848. * however leave the last descriptor back as the holding
  1849. * descriptor for hw.
  1850. */
  1851. lastbf->bf_stale = true;
  1852. INIT_LIST_HEAD(&bf_head);
  1853. if (!list_is_singular(&lastbf->list))
  1854. list_cut_position(&bf_head,
  1855. &txq->axq_q, lastbf->list.prev);
  1856. if (bf_held) {
  1857. list_del(&bf_held->list);
  1858. ath_tx_return_buffer(sc, bf_held);
  1859. }
  1860. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1861. }
  1862. ath_txq_unlock_complete(sc, txq);
  1863. }
  1864. void ath_tx_tasklet(struct ath_softc *sc)
  1865. {
  1866. struct ath_hw *ah = sc->sc_ah;
  1867. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  1868. int i;
  1869. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1870. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1871. ath_tx_processq(sc, &sc->tx.txq[i]);
  1872. }
  1873. }
  1874. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1875. {
  1876. struct ath_tx_status ts;
  1877. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1878. struct ath_hw *ah = sc->sc_ah;
  1879. struct ath_txq *txq;
  1880. struct ath_buf *bf, *lastbf;
  1881. struct list_head bf_head;
  1882. struct list_head *fifo_list;
  1883. int status;
  1884. for (;;) {
  1885. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1886. break;
  1887. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1888. if (status == -EINPROGRESS)
  1889. break;
  1890. if (status == -EIO) {
  1891. ath_dbg(common, XMIT, "Error processing tx status\n");
  1892. break;
  1893. }
  1894. /* Process beacon completions separately */
  1895. if (ts.qid == sc->beacon.beaconq) {
  1896. sc->beacon.tx_processed = true;
  1897. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  1898. continue;
  1899. }
  1900. txq = &sc->tx.txq[ts.qid];
  1901. ath_txq_lock(sc, txq);
  1902. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1903. fifo_list = &txq->txq_fifo[txq->txq_tailidx];
  1904. if (list_empty(fifo_list)) {
  1905. ath_txq_unlock(sc, txq);
  1906. return;
  1907. }
  1908. bf = list_first_entry(fifo_list, struct ath_buf, list);
  1909. if (bf->bf_stale) {
  1910. list_del(&bf->list);
  1911. ath_tx_return_buffer(sc, bf);
  1912. bf = list_first_entry(fifo_list, struct ath_buf, list);
  1913. }
  1914. lastbf = bf->bf_lastbf;
  1915. INIT_LIST_HEAD(&bf_head);
  1916. if (list_is_last(&lastbf->list, fifo_list)) {
  1917. list_splice_tail_init(fifo_list, &bf_head);
  1918. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1919. if (!list_empty(&txq->axq_q)) {
  1920. struct list_head bf_q;
  1921. INIT_LIST_HEAD(&bf_q);
  1922. txq->axq_link = NULL;
  1923. list_splice_tail_init(&txq->axq_q, &bf_q);
  1924. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1925. }
  1926. } else {
  1927. lastbf->bf_stale = true;
  1928. if (bf != lastbf)
  1929. list_cut_position(&bf_head, fifo_list,
  1930. lastbf->list.prev);
  1931. }
  1932. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1933. ath_txq_unlock_complete(sc, txq);
  1934. }
  1935. }
  1936. /*****************/
  1937. /* Init, Cleanup */
  1938. /*****************/
  1939. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1940. {
  1941. struct ath_descdma *dd = &sc->txsdma;
  1942. u8 txs_len = sc->sc_ah->caps.txs_len;
  1943. dd->dd_desc_len = size * txs_len;
  1944. dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
  1945. &dd->dd_desc_paddr, GFP_KERNEL);
  1946. if (!dd->dd_desc)
  1947. return -ENOMEM;
  1948. return 0;
  1949. }
  1950. static int ath_tx_edma_init(struct ath_softc *sc)
  1951. {
  1952. int err;
  1953. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1954. if (!err)
  1955. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1956. sc->txsdma.dd_desc_paddr,
  1957. ATH_TXSTATUS_RING_SIZE);
  1958. return err;
  1959. }
  1960. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1961. {
  1962. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1963. int error = 0;
  1964. spin_lock_init(&sc->tx.txbuflock);
  1965. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1966. "tx", nbufs, 1, 1);
  1967. if (error != 0) {
  1968. ath_err(common,
  1969. "Failed to allocate tx descriptors: %d\n", error);
  1970. return error;
  1971. }
  1972. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1973. "beacon", ATH_BCBUF, 1, 1);
  1974. if (error != 0) {
  1975. ath_err(common,
  1976. "Failed to allocate beacon descriptors: %d\n", error);
  1977. return error;
  1978. }
  1979. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1980. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1981. error = ath_tx_edma_init(sc);
  1982. return error;
  1983. }
  1984. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1985. {
  1986. struct ath_atx_tid *tid;
  1987. struct ath_atx_ac *ac;
  1988. int tidno, acno;
  1989. for (tidno = 0, tid = &an->tid[tidno];
  1990. tidno < IEEE80211_NUM_TIDS;
  1991. tidno++, tid++) {
  1992. tid->an = an;
  1993. tid->tidno = tidno;
  1994. tid->seq_start = tid->seq_next = 0;
  1995. tid->baw_size = WME_MAX_BA;
  1996. tid->baw_head = tid->baw_tail = 0;
  1997. tid->sched = false;
  1998. tid->paused = false;
  1999. tid->state &= ~AGGR_CLEANUP;
  2000. __skb_queue_head_init(&tid->buf_q);
  2001. acno = TID_TO_WME_AC(tidno);
  2002. tid->ac = &an->ac[acno];
  2003. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2004. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2005. tid->stop_cb = false;
  2006. }
  2007. for (acno = 0, ac = &an->ac[acno];
  2008. acno < IEEE80211_NUM_ACS; acno++, ac++) {
  2009. ac->sched = false;
  2010. ac->txq = sc->tx.txq_map[acno];
  2011. INIT_LIST_HEAD(&ac->tid_q);
  2012. }
  2013. }
  2014. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2015. {
  2016. struct ath_atx_ac *ac;
  2017. struct ath_atx_tid *tid;
  2018. struct ath_txq *txq;
  2019. int tidno;
  2020. for (tidno = 0, tid = &an->tid[tidno];
  2021. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  2022. ac = tid->ac;
  2023. txq = ac->txq;
  2024. ath_txq_lock(sc, txq);
  2025. if (tid->sched) {
  2026. list_del(&tid->list);
  2027. tid->sched = false;
  2028. }
  2029. if (ac->sched) {
  2030. list_del(&ac->list);
  2031. tid->ac->sched = false;
  2032. }
  2033. ath_tid_drain(sc, txq, tid);
  2034. ath_tx_clear_tid(sc, tid);
  2035. ath_txq_unlock(sc, txq);
  2036. }
  2037. }