123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212 |
- /*
- * eeh.c
- * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- */
- #include <linux/delay.h>
- #include <linux/init.h>
- #include <linux/list.h>
- #include <linux/pci.h>
- #include <linux/proc_fs.h>
- #include <linux/rbtree.h>
- #include <linux/seq_file.h>
- #include <linux/spinlock.h>
- #include <asm/atomic.h>
- #include <asm/eeh.h>
- #include <asm/eeh_event.h>
- #include <asm/io.h>
- #include <asm/machdep.h>
- #include <asm/ppc-pci.h>
- #include <asm/rtas.h>
- #undef DEBUG
- /** Overview:
- * EEH, or "Extended Error Handling" is a PCI bridge technology for
- * dealing with PCI bus errors that can't be dealt with within the
- * usual PCI framework, except by check-stopping the CPU. Systems
- * that are designed for high-availability/reliability cannot afford
- * to crash due to a "mere" PCI error, thus the need for EEH.
- * An EEH-capable bridge operates by converting a detected error
- * into a "slot freeze", taking the PCI adapter off-line, making
- * the slot behave, from the OS'es point of view, as if the slot
- * were "empty": all reads return 0xff's and all writes are silently
- * ignored. EEH slot isolation events can be triggered by parity
- * errors on the address or data busses (e.g. during posted writes),
- * which in turn might be caused by low voltage on the bus, dust,
- * vibration, humidity, radioactivity or plain-old failed hardware.
- *
- * Note, however, that one of the leading causes of EEH slot
- * freeze events are buggy device drivers, buggy device microcode,
- * or buggy device hardware. This is because any attempt by the
- * device to bus-master data to a memory address that is not
- * assigned to the device will trigger a slot freeze. (The idea
- * is to prevent devices-gone-wild from corrupting system memory).
- * Buggy hardware/drivers will have a miserable time co-existing
- * with EEH.
- *
- * Ideally, a PCI device driver, when suspecting that an isolation
- * event has occured (e.g. by reading 0xff's), will then ask EEH
- * whether this is the case, and then take appropriate steps to
- * reset the PCI slot, the PCI device, and then resume operations.
- * However, until that day, the checking is done here, with the
- * eeh_check_failure() routine embedded in the MMIO macros. If
- * the slot is found to be isolated, an "EEH Event" is synthesized
- * and sent out for processing.
- */
- /* If a device driver keeps reading an MMIO register in an interrupt
- * handler after a slot isolation event has occurred, we assume it
- * is broken and panic. This sets the threshold for how many read
- * attempts we allow before panicking.
- */
- #define EEH_MAX_FAILS 100000
- /* Misc forward declaraions */
- static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn);
- /* RTAS tokens */
- static int ibm_set_eeh_option;
- static int ibm_set_slot_reset;
- static int ibm_read_slot_reset_state;
- static int ibm_read_slot_reset_state2;
- static int ibm_slot_error_detail;
- static int eeh_subsystem_enabled;
- /* Lock to avoid races due to multiple reports of an error */
- static DEFINE_SPINLOCK(confirm_error_lock);
- /* Buffer for reporting slot-error-detail rtas calls */
- static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
- static DEFINE_SPINLOCK(slot_errbuf_lock);
- static int eeh_error_buf_size;
- /* System monitoring statistics */
- static DEFINE_PER_CPU(unsigned long, no_device);
- static DEFINE_PER_CPU(unsigned long, no_dn);
- static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
- static DEFINE_PER_CPU(unsigned long, ignored_check);
- static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
- static DEFINE_PER_CPU(unsigned long, false_positives);
- static DEFINE_PER_CPU(unsigned long, ignored_failures);
- static DEFINE_PER_CPU(unsigned long, slot_resets);
- /**
- * The pci address cache subsystem. This subsystem places
- * PCI device address resources into a red-black tree, sorted
- * according to the address range, so that given only an i/o
- * address, the corresponding PCI device can be **quickly**
- * found. It is safe to perform an address lookup in an interrupt
- * context; this ability is an important feature.
- *
- * Currently, the only customer of this code is the EEH subsystem;
- * thus, this code has been somewhat tailored to suit EEH better.
- * In particular, the cache does *not* hold the addresses of devices
- * for which EEH is not enabled.
- *
- * (Implementation Note: The RB tree seems to be better/faster
- * than any hash algo I could think of for this problem, even
- * with the penalty of slow pointer chases for d-cache misses).
- */
- struct pci_io_addr_range
- {
- struct rb_node rb_node;
- unsigned long addr_lo;
- unsigned long addr_hi;
- struct pci_dev *pcidev;
- unsigned int flags;
- };
- static struct pci_io_addr_cache
- {
- struct rb_root rb_root;
- spinlock_t piar_lock;
- } pci_io_addr_cache_root;
- static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
- {
- struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
- while (n) {
- struct pci_io_addr_range *piar;
- piar = rb_entry(n, struct pci_io_addr_range, rb_node);
- if (addr < piar->addr_lo) {
- n = n->rb_left;
- } else {
- if (addr > piar->addr_hi) {
- n = n->rb_right;
- } else {
- pci_dev_get(piar->pcidev);
- return piar->pcidev;
- }
- }
- }
- return NULL;
- }
- /**
- * pci_get_device_by_addr - Get device, given only address
- * @addr: mmio (PIO) phys address or i/o port number
- *
- * Given an mmio phys address, or a port number, find a pci device
- * that implements this address. Be sure to pci_dev_put the device
- * when finished. I/O port numbers are assumed to be offset
- * from zero (that is, they do *not* have pci_io_addr added in).
- * It is safe to call this function within an interrupt.
- */
- static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
- {
- struct pci_dev *dev;
- unsigned long flags;
- spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
- dev = __pci_get_device_by_addr(addr);
- spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
- return dev;
- }
- #ifdef DEBUG
- /*
- * Handy-dandy debug print routine, does nothing more
- * than print out the contents of our addr cache.
- */
- static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
- {
- struct rb_node *n;
- int cnt = 0;
- n = rb_first(&cache->rb_root);
- while (n) {
- struct pci_io_addr_range *piar;
- piar = rb_entry(n, struct pci_io_addr_range, rb_node);
- printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
- (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
- piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
- cnt++;
- n = rb_next(n);
- }
- }
- #endif
- /* Insert address range into the rb tree. */
- static struct pci_io_addr_range *
- pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
- unsigned long ahi, unsigned int flags)
- {
- struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
- struct rb_node *parent = NULL;
- struct pci_io_addr_range *piar;
- /* Walk tree, find a place to insert into tree */
- while (*p) {
- parent = *p;
- piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
- if (ahi < piar->addr_lo) {
- p = &parent->rb_left;
- } else if (alo > piar->addr_hi) {
- p = &parent->rb_right;
- } else {
- if (dev != piar->pcidev ||
- alo != piar->addr_lo || ahi != piar->addr_hi) {
- printk(KERN_WARNING "PIAR: overlapping address range\n");
- }
- return piar;
- }
- }
- piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
- if (!piar)
- return NULL;
- piar->addr_lo = alo;
- piar->addr_hi = ahi;
- piar->pcidev = dev;
- piar->flags = flags;
- #ifdef DEBUG
- printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
- alo, ahi, pci_name (dev));
- #endif
- rb_link_node(&piar->rb_node, parent, p);
- rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
- return piar;
- }
- static void __pci_addr_cache_insert_device(struct pci_dev *dev)
- {
- struct device_node *dn;
- struct pci_dn *pdn;
- int i;
- int inserted = 0;
- dn = pci_device_to_OF_node(dev);
- if (!dn) {
- printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
- return;
- }
- /* Skip any devices for which EEH is not enabled. */
- pdn = PCI_DN(dn);
- if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
- pdn->eeh_mode & EEH_MODE_NOCHECK) {
- #ifdef DEBUG
- printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
- pci_name(dev), pdn->node->full_name);
- #endif
- return;
- }
- /* The cache holds a reference to the device... */
- pci_dev_get(dev);
- /* Walk resources on this device, poke them into the tree */
- for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
- unsigned long start = pci_resource_start(dev,i);
- unsigned long end = pci_resource_end(dev,i);
- unsigned int flags = pci_resource_flags(dev,i);
- /* We are interested only bus addresses, not dma or other stuff */
- if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
- continue;
- if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
- continue;
- pci_addr_cache_insert(dev, start, end, flags);
- inserted = 1;
- }
- /* If there was nothing to add, the cache has no reference... */
- if (!inserted)
- pci_dev_put(dev);
- }
- /**
- * pci_addr_cache_insert_device - Add a device to the address cache
- * @dev: PCI device whose I/O addresses we are interested in.
- *
- * In order to support the fast lookup of devices based on addresses,
- * we maintain a cache of devices that can be quickly searched.
- * This routine adds a device to that cache.
- */
- static void pci_addr_cache_insert_device(struct pci_dev *dev)
- {
- unsigned long flags;
- spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
- __pci_addr_cache_insert_device(dev);
- spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
- }
- static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
- {
- struct rb_node *n;
- int removed = 0;
- restart:
- n = rb_first(&pci_io_addr_cache_root.rb_root);
- while (n) {
- struct pci_io_addr_range *piar;
- piar = rb_entry(n, struct pci_io_addr_range, rb_node);
- if (piar->pcidev == dev) {
- rb_erase(n, &pci_io_addr_cache_root.rb_root);
- removed = 1;
- kfree(piar);
- goto restart;
- }
- n = rb_next(n);
- }
- /* The cache no longer holds its reference to this device... */
- if (removed)
- pci_dev_put(dev);
- }
- /**
- * pci_addr_cache_remove_device - remove pci device from addr cache
- * @dev: device to remove
- *
- * Remove a device from the addr-cache tree.
- * This is potentially expensive, since it will walk
- * the tree multiple times (once per resource).
- * But so what; device removal doesn't need to be that fast.
- */
- static void pci_addr_cache_remove_device(struct pci_dev *dev)
- {
- unsigned long flags;
- spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
- __pci_addr_cache_remove_device(dev);
- spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
- }
- /**
- * pci_addr_cache_build - Build a cache of I/O addresses
- *
- * Build a cache of pci i/o addresses. This cache will be used to
- * find the pci device that corresponds to a given address.
- * This routine scans all pci busses to build the cache.
- * Must be run late in boot process, after the pci controllers
- * have been scaned for devices (after all device resources are known).
- */
- void __init pci_addr_cache_build(void)
- {
- struct device_node *dn;
- struct pci_dev *dev = NULL;
- if (!eeh_subsystem_enabled)
- return;
- spin_lock_init(&pci_io_addr_cache_root.piar_lock);
- while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
- /* Ignore PCI bridges ( XXX why ??) */
- if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
- continue;
- }
- pci_addr_cache_insert_device(dev);
- /* Save the BAR's; firmware doesn't restore these after EEH reset */
- dn = pci_device_to_OF_node(dev);
- eeh_save_bars(dev, PCI_DN(dn));
- }
- #ifdef DEBUG
- /* Verify tree built up above, echo back the list of addrs. */
- pci_addr_cache_print(&pci_io_addr_cache_root);
- #endif
- }
- /* --------------------------------------------------------------- */
- /* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
- void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
- {
- unsigned long flags;
- int rc;
- /* Log the error with the rtas logger */
- spin_lock_irqsave(&slot_errbuf_lock, flags);
- memset(slot_errbuf, 0, eeh_error_buf_size);
- rc = rtas_call(ibm_slot_error_detail,
- 8, 1, NULL, pdn->eeh_config_addr,
- BUID_HI(pdn->phb->buid),
- BUID_LO(pdn->phb->buid), NULL, 0,
- virt_to_phys(slot_errbuf),
- eeh_error_buf_size,
- severity);
- if (rc == 0)
- log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
- spin_unlock_irqrestore(&slot_errbuf_lock, flags);
- }
- /**
- * read_slot_reset_state - Read the reset state of a device node's slot
- * @dn: device node to read
- * @rets: array to return results in
- */
- static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
- {
- int token, outputs;
- if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
- token = ibm_read_slot_reset_state2;
- outputs = 4;
- } else {
- token = ibm_read_slot_reset_state;
- rets[2] = 0; /* fake PE Unavailable info */
- outputs = 3;
- }
- return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
- BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
- }
- /**
- * eeh_token_to_phys - convert EEH address token to phys address
- * @token i/o token, should be address in the form 0xA....
- */
- static inline unsigned long eeh_token_to_phys(unsigned long token)
- {
- pte_t *ptep;
- unsigned long pa;
- ptep = find_linux_pte(init_mm.pgd, token);
- if (!ptep)
- return token;
- pa = pte_pfn(*ptep) << PAGE_SHIFT;
- return pa | (token & (PAGE_SIZE-1));
- }
- /**
- * Return the "partitionable endpoint" (pe) under which this device lies
- */
- static struct device_node * find_device_pe(struct device_node *dn)
- {
- while ((dn->parent) && PCI_DN(dn->parent) &&
- (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
- dn = dn->parent;
- }
- return dn;
- }
- /** Mark all devices that are peers of this device as failed.
- * Mark the device driver too, so that it can see the failure
- * immediately; this is critical, since some drivers poll
- * status registers in interrupts ... If a driver is polling,
- * and the slot is frozen, then the driver can deadlock in
- * an interrupt context, which is bad.
- */
- static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
- {
- while (dn) {
- if (PCI_DN(dn)) {
- PCI_DN(dn)->eeh_mode |= mode_flag;
- if (dn->child)
- __eeh_mark_slot (dn->child, mode_flag);
- }
- dn = dn->sibling;
- }
- }
- void eeh_mark_slot (struct device_node *dn, int mode_flag)
- {
- dn = find_device_pe (dn);
- PCI_DN(dn)->eeh_mode |= mode_flag;
- __eeh_mark_slot (dn->child, mode_flag);
- }
- static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
- {
- while (dn) {
- if (PCI_DN(dn)) {
- PCI_DN(dn)->eeh_mode &= ~mode_flag;
- PCI_DN(dn)->eeh_check_count = 0;
- if (dn->child)
- __eeh_clear_slot (dn->child, mode_flag);
- }
- dn = dn->sibling;
- }
- }
- void eeh_clear_slot (struct device_node *dn, int mode_flag)
- {
- unsigned long flags;
- spin_lock_irqsave(&confirm_error_lock, flags);
- dn = find_device_pe (dn);
- PCI_DN(dn)->eeh_mode &= ~mode_flag;
- PCI_DN(dn)->eeh_check_count = 0;
- __eeh_clear_slot (dn->child, mode_flag);
- spin_unlock_irqrestore(&confirm_error_lock, flags);
- }
- /**
- * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
- * @dn device node
- * @dev pci device, if known
- *
- * Check for an EEH failure for the given device node. Call this
- * routine if the result of a read was all 0xff's and you want to
- * find out if this is due to an EEH slot freeze. This routine
- * will query firmware for the EEH status.
- *
- * Returns 0 if there has not been an EEH error; otherwise returns
- * a non-zero value and queues up a slot isolation event notification.
- *
- * It is safe to call this routine in an interrupt context.
- */
- int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
- {
- int ret;
- int rets[3];
- unsigned long flags;
- struct pci_dn *pdn;
- int rc = 0;
- __get_cpu_var(total_mmio_ffs)++;
- if (!eeh_subsystem_enabled)
- return 0;
- if (!dn) {
- __get_cpu_var(no_dn)++;
- return 0;
- }
- pdn = PCI_DN(dn);
- /* Access to IO BARs might get this far and still not want checking. */
- if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
- pdn->eeh_mode & EEH_MODE_NOCHECK) {
- __get_cpu_var(ignored_check)++;
- #ifdef DEBUG
- printk ("EEH:ignored check (%x) for %s %s\n",
- pdn->eeh_mode, pci_name (dev), dn->full_name);
- #endif
- return 0;
- }
- if (!pdn->eeh_config_addr) {
- __get_cpu_var(no_cfg_addr)++;
- return 0;
- }
- /* If we already have a pending isolation event for this
- * slot, we know it's bad already, we don't need to check.
- * Do this checking under a lock; as multiple PCI devices
- * in one slot might report errors simultaneously, and we
- * only want one error recovery routine running.
- */
- spin_lock_irqsave(&confirm_error_lock, flags);
- rc = 1;
- if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
- pdn->eeh_check_count ++;
- if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
- printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
- pdn->eeh_check_count);
- dump_stack();
-
- /* re-read the slot reset state */
- if (read_slot_reset_state(pdn, rets) != 0)
- rets[0] = -1; /* reset state unknown */
- /* If we are here, then we hit an infinite loop. Stop. */
- panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
- }
- goto dn_unlock;
- }
- /*
- * Now test for an EEH failure. This is VERY expensive.
- * Note that the eeh_config_addr may be a parent device
- * in the case of a device behind a bridge, or it may be
- * function zero of a multi-function device.
- * In any case they must share a common PHB.
- */
- ret = read_slot_reset_state(pdn, rets);
- /* If the call to firmware failed, punt */
- if (ret != 0) {
- printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
- ret, dn->full_name);
- __get_cpu_var(false_positives)++;
- rc = 0;
- goto dn_unlock;
- }
- /* If EEH is not supported on this device, punt. */
- if (rets[1] != 1) {
- printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
- ret, dn->full_name);
- __get_cpu_var(false_positives)++;
- rc = 0;
- goto dn_unlock;
- }
- /* If not the kind of error we know about, punt. */
- if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
- __get_cpu_var(false_positives)++;
- rc = 0;
- goto dn_unlock;
- }
- /* Note that config-io to empty slots may fail;
- * we recognize empty because they don't have children. */
- if ((rets[0] == 5) && (dn->child == NULL)) {
- __get_cpu_var(false_positives)++;
- rc = 0;
- goto dn_unlock;
- }
- __get_cpu_var(slot_resets)++;
-
- /* Avoid repeated reports of this failure, including problems
- * with other functions on this device, and functions under
- * bridges. */
- eeh_mark_slot (dn, EEH_MODE_ISOLATED);
- spin_unlock_irqrestore(&confirm_error_lock, flags);
- eeh_send_failure_event (dn, dev, rets[0], rets[2]);
-
- /* Most EEH events are due to device driver bugs. Having
- * a stack trace will help the device-driver authors figure
- * out what happened. So print that out. */
- if (rets[0] != 5) dump_stack();
- return 1;
- dn_unlock:
- spin_unlock_irqrestore(&confirm_error_lock, flags);
- return rc;
- }
- EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
- /**
- * eeh_check_failure - check if all 1's data is due to EEH slot freeze
- * @token i/o token, should be address in the form 0xA....
- * @val value, should be all 1's (XXX why do we need this arg??)
- *
- * Check for an EEH failure at the given token address. Call this
- * routine if the result of a read was all 0xff's and you want to
- * find out if this is due to an EEH slot freeze event. This routine
- * will query firmware for the EEH status.
- *
- * Note this routine is safe to call in an interrupt context.
- */
- unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
- {
- unsigned long addr;
- struct pci_dev *dev;
- struct device_node *dn;
- /* Finding the phys addr + pci device; this is pretty quick. */
- addr = eeh_token_to_phys((unsigned long __force) token);
- dev = pci_get_device_by_addr(addr);
- if (!dev) {
- __get_cpu_var(no_device)++;
- return val;
- }
- dn = pci_device_to_OF_node(dev);
- eeh_dn_check_failure (dn, dev);
- pci_dev_put(dev);
- return val;
- }
- EXPORT_SYMBOL(eeh_check_failure);
- /* ------------------------------------------------------------- */
- /* The code below deals with error recovery */
- /** Return negative value if a permanent error, else return
- * a number of milliseconds to wait until the PCI slot is
- * ready to be used.
- */
- static int
- eeh_slot_availability(struct pci_dn *pdn)
- {
- int rc;
- int rets[3];
- rc = read_slot_reset_state(pdn, rets);
- if (rc) return rc;
- if (rets[1] == 0) return -1; /* EEH is not supported */
- if (rets[0] == 0) return 0; /* Oll Korrect */
- if (rets[0] == 5) {
- if (rets[2] == 0) return -1; /* permanently unavailable */
- return rets[2]; /* number of millisecs to wait */
- }
- return -1;
- }
- /** rtas_pci_slot_reset raises/lowers the pci #RST line
- * state: 1/0 to raise/lower the #RST
- *
- * Clear the EEH-frozen condition on a slot. This routine
- * asserts the PCI #RST line if the 'state' argument is '1',
- * and drops the #RST line if 'state is '0'. This routine is
- * safe to call in an interrupt context.
- *
- */
- static void
- rtas_pci_slot_reset(struct pci_dn *pdn, int state)
- {
- int rc;
- BUG_ON (pdn==NULL);
- if (!pdn->phb) {
- printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
- pdn->node->full_name);
- return;
- }
- rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
- pdn->eeh_config_addr,
- BUID_HI(pdn->phb->buid),
- BUID_LO(pdn->phb->buid),
- state);
- if (rc) {
- printk (KERN_WARNING "EEH: Unable to reset the failed slot, (%d) #RST=%d dn=%s\n",
- rc, state, pdn->node->full_name);
- return;
- }
- }
- /** rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
- * dn -- device node to be reset.
- */
- void
- rtas_set_slot_reset(struct pci_dn *pdn)
- {
- int i, rc;
- rtas_pci_slot_reset (pdn, 1);
- /* The PCI bus requires that the reset be held high for at least
- * a 100 milliseconds. We wait a bit longer 'just in case'. */
- #define PCI_BUS_RST_HOLD_TIME_MSEC 250
- msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
-
- /* We might get hit with another EEH freeze as soon as the
- * pci slot reset line is dropped. Make sure we don't miss
- * these, and clear the flag now. */
- eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
- rtas_pci_slot_reset (pdn, 0);
- /* After a PCI slot has been reset, the PCI Express spec requires
- * a 1.5 second idle time for the bus to stabilize, before starting
- * up traffic. */
- #define PCI_BUS_SETTLE_TIME_MSEC 1800
- msleep (PCI_BUS_SETTLE_TIME_MSEC);
- /* Now double check with the firmware to make sure the device is
- * ready to be used; if not, wait for recovery. */
- for (i=0; i<10; i++) {
- rc = eeh_slot_availability (pdn);
- if (rc <= 0) break;
- msleep (rc+100);
- }
- }
- /* ------------------------------------------------------- */
- /** Save and restore of PCI BARs
- *
- * Although firmware will set up BARs during boot, it doesn't
- * set up device BAR's after a device reset, although it will,
- * if requested, set up bridge configuration. Thus, we need to
- * configure the PCI devices ourselves.
- */
- /**
- * __restore_bars - Restore the Base Address Registers
- * Loads the PCI configuration space base address registers,
- * the expansion ROM base address, the latency timer, and etc.
- * from the saved values in the device node.
- */
- static inline void __restore_bars (struct pci_dn *pdn)
- {
- int i;
- if (NULL==pdn->phb) return;
- for (i=4; i<10; i++) {
- rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
- }
- /* 12 == Expansion ROM Address */
- rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
- #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
- #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
- rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
- SAVED_BYTE(PCI_CACHE_LINE_SIZE));
- rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
- SAVED_BYTE(PCI_LATENCY_TIMER));
- /* max latency, min grant, interrupt pin and line */
- rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
- }
- /**
- * eeh_restore_bars - restore the PCI config space info
- *
- * This routine performs a recursive walk to the children
- * of this device as well.
- */
- void eeh_restore_bars(struct pci_dn *pdn)
- {
- struct device_node *dn;
- if (!pdn)
- return;
-
- if (! pdn->eeh_is_bridge)
- __restore_bars (pdn);
- dn = pdn->node->child;
- while (dn) {
- eeh_restore_bars (PCI_DN(dn));
- dn = dn->sibling;
- }
- }
- /**
- * eeh_save_bars - save device bars
- *
- * Save the values of the device bars. Unlike the restore
- * routine, this routine is *not* recursive. This is because
- * PCI devices are added individuallly; but, for the restore,
- * an entire slot is reset at a time.
- */
- static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
- {
- int i;
- if (!pdev || !pdn )
- return;
-
- for (i = 0; i < 16; i++)
- pci_read_config_dword(pdev, i * 4, &pdn->config_space[i]);
- if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
- pdn->eeh_is_bridge = 1;
- }
- void
- rtas_configure_bridge(struct pci_dn *pdn)
- {
- int token = rtas_token ("ibm,configure-bridge");
- int rc;
- if (token == RTAS_UNKNOWN_SERVICE)
- return;
- rc = rtas_call(token,3,1, NULL,
- pdn->eeh_config_addr,
- BUID_HI(pdn->phb->buid),
- BUID_LO(pdn->phb->buid));
- if (rc) {
- printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
- rc, pdn->node->full_name);
- }
- }
- /* ------------------------------------------------------------- */
- /* The code below deals with enabling EEH for devices during the
- * early boot sequence. EEH must be enabled before any PCI probing
- * can be done.
- */
- #define EEH_ENABLE 1
- struct eeh_early_enable_info {
- unsigned int buid_hi;
- unsigned int buid_lo;
- };
- /* Enable eeh for the given device node. */
- static void *early_enable_eeh(struct device_node *dn, void *data)
- {
- struct eeh_early_enable_info *info = data;
- int ret;
- char *status = get_property(dn, "status", NULL);
- u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
- u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
- u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
- u32 *regs;
- int enable;
- struct pci_dn *pdn = PCI_DN(dn);
- pdn->eeh_mode = 0;
- pdn->eeh_check_count = 0;
- pdn->eeh_freeze_count = 0;
- if (status && strcmp(status, "ok") != 0)
- return NULL; /* ignore devices with bad status */
- /* Ignore bad nodes. */
- if (!class_code || !vendor_id || !device_id)
- return NULL;
- /* There is nothing to check on PCI to ISA bridges */
- if (dn->type && !strcmp(dn->type, "isa")) {
- pdn->eeh_mode |= EEH_MODE_NOCHECK;
- return NULL;
- }
- /*
- * Now decide if we are going to "Disable" EEH checking
- * for this device. We still run with the EEH hardware active,
- * but we won't be checking for ff's. This means a driver
- * could return bad data (very bad!), an interrupt handler could
- * hang waiting on status bits that won't change, etc.
- * But there are a few cases like display devices that make sense.
- */
- enable = 1; /* i.e. we will do checking */
- if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
- enable = 0;
- if (!enable)
- pdn->eeh_mode |= EEH_MODE_NOCHECK;
- /* Ok... see if this device supports EEH. Some do, some don't,
- * and the only way to find out is to check each and every one. */
- regs = (u32 *)get_property(dn, "reg", NULL);
- if (regs) {
- /* First register entry is addr (00BBSS00) */
- /* Try to enable eeh */
- ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
- regs[0], info->buid_hi, info->buid_lo,
- EEH_ENABLE);
- if (ret == 0) {
- eeh_subsystem_enabled = 1;
- pdn->eeh_mode |= EEH_MODE_SUPPORTED;
- pdn->eeh_config_addr = regs[0];
- #ifdef DEBUG
- printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
- #endif
- } else {
- /* This device doesn't support EEH, but it may have an
- * EEH parent, in which case we mark it as supported. */
- if (dn->parent && PCI_DN(dn->parent)
- && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
- /* Parent supports EEH. */
- pdn->eeh_mode |= EEH_MODE_SUPPORTED;
- pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
- return NULL;
- }
- }
- } else {
- printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
- dn->full_name);
- }
- return NULL;
- }
- /*
- * Initialize EEH by trying to enable it for all of the adapters in the system.
- * As a side effect we can determine here if eeh is supported at all.
- * Note that we leave EEH on so failed config cycles won't cause a machine
- * check. If a user turns off EEH for a particular adapter they are really
- * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
- * grant access to a slot if EEH isn't enabled, and so we always enable
- * EEH for all slots/all devices.
- *
- * The eeh-force-off option disables EEH checking globally, for all slots.
- * Even if force-off is set, the EEH hardware is still enabled, so that
- * newer systems can boot.
- */
- void __init eeh_init(void)
- {
- struct device_node *phb, *np;
- struct eeh_early_enable_info info;
- spin_lock_init(&confirm_error_lock);
- spin_lock_init(&slot_errbuf_lock);
- np = of_find_node_by_path("/rtas");
- if (np == NULL)
- return;
- ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
- ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
- ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
- ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
- ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
- if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
- return;
- eeh_error_buf_size = rtas_token("rtas-error-log-max");
- if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
- eeh_error_buf_size = 1024;
- }
- if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
- printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
- "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
- eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
- }
- /* Enable EEH for all adapters. Note that eeh requires buid's */
- for (phb = of_find_node_by_name(NULL, "pci"); phb;
- phb = of_find_node_by_name(phb, "pci")) {
- unsigned long buid;
- buid = get_phb_buid(phb);
- if (buid == 0 || PCI_DN(phb) == NULL)
- continue;
- info.buid_lo = BUID_LO(buid);
- info.buid_hi = BUID_HI(buid);
- traverse_pci_devices(phb, early_enable_eeh, &info);
- }
- if (eeh_subsystem_enabled)
- printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
- else
- printk(KERN_WARNING "EEH: No capable adapters found\n");
- }
- /**
- * eeh_add_device_early - enable EEH for the indicated device_node
- * @dn: device node for which to set up EEH
- *
- * This routine must be used to perform EEH initialization for PCI
- * devices that were added after system boot (e.g. hotplug, dlpar).
- * This routine must be called before any i/o is performed to the
- * adapter (inluding any config-space i/o).
- * Whether this actually enables EEH or not for this device depends
- * on the CEC architecture, type of the device, on earlier boot
- * command-line arguments & etc.
- */
- void eeh_add_device_early(struct device_node *dn)
- {
- struct pci_controller *phb;
- struct eeh_early_enable_info info;
- if (!dn || !PCI_DN(dn))
- return;
- phb = PCI_DN(dn)->phb;
- if (NULL == phb || 0 == phb->buid) {
- printk(KERN_WARNING "EEH: Expected buid but found none for %s\n",
- dn->full_name);
- dump_stack();
- return;
- }
- info.buid_hi = BUID_HI(phb->buid);
- info.buid_lo = BUID_LO(phb->buid);
- early_enable_eeh(dn, &info);
- }
- EXPORT_SYMBOL_GPL(eeh_add_device_early);
- /**
- * eeh_add_device_late - perform EEH initialization for the indicated pci device
- * @dev: pci device for which to set up EEH
- *
- * This routine must be used to complete EEH initialization for PCI
- * devices that were added after system boot (e.g. hotplug, dlpar).
- */
- void eeh_add_device_late(struct pci_dev *dev)
- {
- struct device_node *dn;
- struct pci_dn *pdn;
- if (!dev || !eeh_subsystem_enabled)
- return;
- #ifdef DEBUG
- printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
- #endif
- pci_dev_get (dev);
- dn = pci_device_to_OF_node(dev);
- pdn = PCI_DN(dn);
- pdn->pcidev = dev;
- pci_addr_cache_insert_device (dev);
- eeh_save_bars(dev, pdn);
- }
- EXPORT_SYMBOL_GPL(eeh_add_device_late);
- /**
- * eeh_remove_device - undo EEH setup for the indicated pci device
- * @dev: pci device to be removed
- *
- * This routine should be when a device is removed from a running
- * system (e.g. by hotplug or dlpar).
- */
- void eeh_remove_device(struct pci_dev *dev)
- {
- struct device_node *dn;
- if (!dev || !eeh_subsystem_enabled)
- return;
- /* Unregister the device with the EEH/PCI address search system */
- #ifdef DEBUG
- printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
- #endif
- pci_addr_cache_remove_device(dev);
- dn = pci_device_to_OF_node(dev);
- PCI_DN(dn)->pcidev = NULL;
- pci_dev_put (dev);
- }
- EXPORT_SYMBOL_GPL(eeh_remove_device);
- static int proc_eeh_show(struct seq_file *m, void *v)
- {
- unsigned int cpu;
- unsigned long ffs = 0, positives = 0, failures = 0;
- unsigned long resets = 0;
- unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
- for_each_cpu(cpu) {
- ffs += per_cpu(total_mmio_ffs, cpu);
- positives += per_cpu(false_positives, cpu);
- failures += per_cpu(ignored_failures, cpu);
- resets += per_cpu(slot_resets, cpu);
- no_dev += per_cpu(no_device, cpu);
- no_dn += per_cpu(no_dn, cpu);
- no_cfg += per_cpu(no_cfg_addr, cpu);
- no_check += per_cpu(ignored_check, cpu);
- }
- if (0 == eeh_subsystem_enabled) {
- seq_printf(m, "EEH Subsystem is globally disabled\n");
- seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
- } else {
- seq_printf(m, "EEH Subsystem is enabled\n");
- seq_printf(m,
- "no device=%ld\n"
- "no device node=%ld\n"
- "no config address=%ld\n"
- "check not wanted=%ld\n"
- "eeh_total_mmio_ffs=%ld\n"
- "eeh_false_positives=%ld\n"
- "eeh_ignored_failures=%ld\n"
- "eeh_slot_resets=%ld\n",
- no_dev, no_dn, no_cfg, no_check,
- ffs, positives, failures, resets);
- }
- return 0;
- }
- static int proc_eeh_open(struct inode *inode, struct file *file)
- {
- return single_open(file, proc_eeh_show, NULL);
- }
- static struct file_operations proc_eeh_operations = {
- .open = proc_eeh_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = single_release,
- };
- static int __init eeh_init_proc(void)
- {
- struct proc_dir_entry *e;
- if (platform_is_pseries()) {
- e = create_proc_entry("ppc64/eeh", 0, NULL);
- if (e)
- e->proc_fops = &proc_eeh_operations;
- }
- return 0;
- }
- __initcall(eeh_init_proc);
|