kv_dpm.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739
  1. /*
  2. * Copyright 2013 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include "drmP.h"
  24. #include "radeon.h"
  25. #include "cikd.h"
  26. #include "r600_dpm.h"
  27. #include "kv_dpm.h"
  28. #include "radeon_asic.h"
  29. #include <linux/seq_file.h>
  30. #define KV_MAX_DEEPSLEEP_DIVIDER_ID 5
  31. #define KV_MINIMUM_ENGINE_CLOCK 800
  32. #define SMC_RAM_END 0x40000
  33. static void kv_init_graphics_levels(struct radeon_device *rdev);
  34. static int kv_calculate_ds_divider(struct radeon_device *rdev);
  35. static int kv_calculate_nbps_level_settings(struct radeon_device *rdev);
  36. static int kv_calculate_dpm_settings(struct radeon_device *rdev);
  37. static void kv_enable_new_levels(struct radeon_device *rdev);
  38. static void kv_program_nbps_index_settings(struct radeon_device *rdev,
  39. struct radeon_ps *new_rps);
  40. static int kv_set_enabled_level(struct radeon_device *rdev, u32 level);
  41. static int kv_set_enabled_levels(struct radeon_device *rdev);
  42. static int kv_force_dpm_highest(struct radeon_device *rdev);
  43. static int kv_force_dpm_lowest(struct radeon_device *rdev);
  44. static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
  45. struct radeon_ps *new_rps,
  46. struct radeon_ps *old_rps);
  47. static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
  48. int min_temp, int max_temp);
  49. static int kv_init_fps_limits(struct radeon_device *rdev);
  50. void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate);
  51. static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate);
  52. static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate);
  53. static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate);
  54. extern void cik_enter_rlc_safe_mode(struct radeon_device *rdev);
  55. extern void cik_exit_rlc_safe_mode(struct radeon_device *rdev);
  56. extern void cik_update_cg(struct radeon_device *rdev,
  57. u32 block, bool enable);
  58. static const struct kv_lcac_config_values sx_local_cac_cfg_kv[] =
  59. {
  60. { 0, 4, 1 },
  61. { 1, 4, 1 },
  62. { 2, 5, 1 },
  63. { 3, 4, 2 },
  64. { 4, 1, 1 },
  65. { 5, 5, 2 },
  66. { 6, 6, 1 },
  67. { 7, 9, 2 },
  68. { 0xffffffff }
  69. };
  70. static const struct kv_lcac_config_values mc0_local_cac_cfg_kv[] =
  71. {
  72. { 0, 4, 1 },
  73. { 0xffffffff }
  74. };
  75. static const struct kv_lcac_config_values mc1_local_cac_cfg_kv[] =
  76. {
  77. { 0, 4, 1 },
  78. { 0xffffffff }
  79. };
  80. static const struct kv_lcac_config_values mc2_local_cac_cfg_kv[] =
  81. {
  82. { 0, 4, 1 },
  83. { 0xffffffff }
  84. };
  85. static const struct kv_lcac_config_values mc3_local_cac_cfg_kv[] =
  86. {
  87. { 0, 4, 1 },
  88. { 0xffffffff }
  89. };
  90. static const struct kv_lcac_config_values cpl_local_cac_cfg_kv[] =
  91. {
  92. { 0, 4, 1 },
  93. { 1, 4, 1 },
  94. { 2, 5, 1 },
  95. { 3, 4, 1 },
  96. { 4, 1, 1 },
  97. { 5, 5, 1 },
  98. { 6, 6, 1 },
  99. { 7, 9, 1 },
  100. { 8, 4, 1 },
  101. { 9, 2, 1 },
  102. { 10, 3, 1 },
  103. { 11, 6, 1 },
  104. { 12, 8, 2 },
  105. { 13, 1, 1 },
  106. { 14, 2, 1 },
  107. { 15, 3, 1 },
  108. { 16, 1, 1 },
  109. { 17, 4, 1 },
  110. { 18, 3, 1 },
  111. { 19, 1, 1 },
  112. { 20, 8, 1 },
  113. { 21, 5, 1 },
  114. { 22, 1, 1 },
  115. { 23, 1, 1 },
  116. { 24, 4, 1 },
  117. { 27, 6, 1 },
  118. { 28, 1, 1 },
  119. { 0xffffffff }
  120. };
  121. static const struct kv_lcac_config_reg sx0_cac_config_reg[] =
  122. {
  123. { 0xc0400d00, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  124. };
  125. static const struct kv_lcac_config_reg mc0_cac_config_reg[] =
  126. {
  127. { 0xc0400d30, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  128. };
  129. static const struct kv_lcac_config_reg mc1_cac_config_reg[] =
  130. {
  131. { 0xc0400d3c, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  132. };
  133. static const struct kv_lcac_config_reg mc2_cac_config_reg[] =
  134. {
  135. { 0xc0400d48, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  136. };
  137. static const struct kv_lcac_config_reg mc3_cac_config_reg[] =
  138. {
  139. { 0xc0400d54, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  140. };
  141. static const struct kv_lcac_config_reg cpl_cac_config_reg[] =
  142. {
  143. { 0xc0400d80, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  144. };
  145. static const struct kv_pt_config_reg didt_config_kv[] =
  146. {
  147. { 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  148. { 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  149. { 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  150. { 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  151. { 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  152. { 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  153. { 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  154. { 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  155. { 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  156. { 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  157. { 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  158. { 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  159. { 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  160. { 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  161. { 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  162. { 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  163. { 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  164. { 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  165. { 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  166. { 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  167. { 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  168. { 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  169. { 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  170. { 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  171. { 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  172. { 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  173. { 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  174. { 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  175. { 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  176. { 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  177. { 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  178. { 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  179. { 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  180. { 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  181. { 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  182. { 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  183. { 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  184. { 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  185. { 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  186. { 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  187. { 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  188. { 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  189. { 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  190. { 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  191. { 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  192. { 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  193. { 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  194. { 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  195. { 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  196. { 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  197. { 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  198. { 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  199. { 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  200. { 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  201. { 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  202. { 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  203. { 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  204. { 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  205. { 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  206. { 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  207. { 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  208. { 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  209. { 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  210. { 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  211. { 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  212. { 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  213. { 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  214. { 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  215. { 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  216. { 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  217. { 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  218. { 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  219. { 0xFFFFFFFF }
  220. };
  221. static struct kv_ps *kv_get_ps(struct radeon_ps *rps)
  222. {
  223. struct kv_ps *ps = rps->ps_priv;
  224. return ps;
  225. }
  226. static struct kv_power_info *kv_get_pi(struct radeon_device *rdev)
  227. {
  228. struct kv_power_info *pi = rdev->pm.dpm.priv;
  229. return pi;
  230. }
  231. #if 0
  232. static void kv_program_local_cac_table(struct radeon_device *rdev,
  233. const struct kv_lcac_config_values *local_cac_table,
  234. const struct kv_lcac_config_reg *local_cac_reg)
  235. {
  236. u32 i, count, data;
  237. const struct kv_lcac_config_values *values = local_cac_table;
  238. while (values->block_id != 0xffffffff) {
  239. count = values->signal_id;
  240. for (i = 0; i < count; i++) {
  241. data = ((values->block_id << local_cac_reg->block_shift) &
  242. local_cac_reg->block_mask);
  243. data |= ((i << local_cac_reg->signal_shift) &
  244. local_cac_reg->signal_mask);
  245. data |= ((values->t << local_cac_reg->t_shift) &
  246. local_cac_reg->t_mask);
  247. data |= ((1 << local_cac_reg->enable_shift) &
  248. local_cac_reg->enable_mask);
  249. WREG32_SMC(local_cac_reg->cntl, data);
  250. }
  251. values++;
  252. }
  253. }
  254. #endif
  255. static int kv_program_pt_config_registers(struct radeon_device *rdev,
  256. const struct kv_pt_config_reg *cac_config_regs)
  257. {
  258. const struct kv_pt_config_reg *config_regs = cac_config_regs;
  259. u32 data;
  260. u32 cache = 0;
  261. if (config_regs == NULL)
  262. return -EINVAL;
  263. while (config_regs->offset != 0xFFFFFFFF) {
  264. if (config_regs->type == KV_CONFIGREG_CACHE) {
  265. cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  266. } else {
  267. switch (config_regs->type) {
  268. case KV_CONFIGREG_SMC_IND:
  269. data = RREG32_SMC(config_regs->offset);
  270. break;
  271. case KV_CONFIGREG_DIDT_IND:
  272. data = RREG32_DIDT(config_regs->offset);
  273. break;
  274. default:
  275. data = RREG32(config_regs->offset << 2);
  276. break;
  277. }
  278. data &= ~config_regs->mask;
  279. data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  280. data |= cache;
  281. cache = 0;
  282. switch (config_regs->type) {
  283. case KV_CONFIGREG_SMC_IND:
  284. WREG32_SMC(config_regs->offset, data);
  285. break;
  286. case KV_CONFIGREG_DIDT_IND:
  287. WREG32_DIDT(config_regs->offset, data);
  288. break;
  289. default:
  290. WREG32(config_regs->offset << 2, data);
  291. break;
  292. }
  293. }
  294. config_regs++;
  295. }
  296. return 0;
  297. }
  298. static void kv_do_enable_didt(struct radeon_device *rdev, bool enable)
  299. {
  300. struct kv_power_info *pi = kv_get_pi(rdev);
  301. u32 data;
  302. if (pi->caps_sq_ramping) {
  303. data = RREG32_DIDT(DIDT_SQ_CTRL0);
  304. if (enable)
  305. data |= DIDT_CTRL_EN;
  306. else
  307. data &= ~DIDT_CTRL_EN;
  308. WREG32_DIDT(DIDT_SQ_CTRL0, data);
  309. }
  310. if (pi->caps_db_ramping) {
  311. data = RREG32_DIDT(DIDT_DB_CTRL0);
  312. if (enable)
  313. data |= DIDT_CTRL_EN;
  314. else
  315. data &= ~DIDT_CTRL_EN;
  316. WREG32_DIDT(DIDT_DB_CTRL0, data);
  317. }
  318. if (pi->caps_td_ramping) {
  319. data = RREG32_DIDT(DIDT_TD_CTRL0);
  320. if (enable)
  321. data |= DIDT_CTRL_EN;
  322. else
  323. data &= ~DIDT_CTRL_EN;
  324. WREG32_DIDT(DIDT_TD_CTRL0, data);
  325. }
  326. if (pi->caps_tcp_ramping) {
  327. data = RREG32_DIDT(DIDT_TCP_CTRL0);
  328. if (enable)
  329. data |= DIDT_CTRL_EN;
  330. else
  331. data &= ~DIDT_CTRL_EN;
  332. WREG32_DIDT(DIDT_TCP_CTRL0, data);
  333. }
  334. }
  335. static int kv_enable_didt(struct radeon_device *rdev, bool enable)
  336. {
  337. struct kv_power_info *pi = kv_get_pi(rdev);
  338. int ret;
  339. if (pi->caps_sq_ramping ||
  340. pi->caps_db_ramping ||
  341. pi->caps_td_ramping ||
  342. pi->caps_tcp_ramping) {
  343. cik_enter_rlc_safe_mode(rdev);
  344. if (enable) {
  345. ret = kv_program_pt_config_registers(rdev, didt_config_kv);
  346. if (ret) {
  347. cik_exit_rlc_safe_mode(rdev);
  348. return ret;
  349. }
  350. }
  351. kv_do_enable_didt(rdev, enable);
  352. cik_exit_rlc_safe_mode(rdev);
  353. }
  354. return 0;
  355. }
  356. #if 0
  357. static void kv_initialize_hardware_cac_manager(struct radeon_device *rdev)
  358. {
  359. struct kv_power_info *pi = kv_get_pi(rdev);
  360. if (pi->caps_cac) {
  361. WREG32_SMC(LCAC_SX0_OVR_SEL, 0);
  362. WREG32_SMC(LCAC_SX0_OVR_VAL, 0);
  363. kv_program_local_cac_table(rdev, sx_local_cac_cfg_kv, sx0_cac_config_reg);
  364. WREG32_SMC(LCAC_MC0_OVR_SEL, 0);
  365. WREG32_SMC(LCAC_MC0_OVR_VAL, 0);
  366. kv_program_local_cac_table(rdev, mc0_local_cac_cfg_kv, mc0_cac_config_reg);
  367. WREG32_SMC(LCAC_MC1_OVR_SEL, 0);
  368. WREG32_SMC(LCAC_MC1_OVR_VAL, 0);
  369. kv_program_local_cac_table(rdev, mc1_local_cac_cfg_kv, mc1_cac_config_reg);
  370. WREG32_SMC(LCAC_MC2_OVR_SEL, 0);
  371. WREG32_SMC(LCAC_MC2_OVR_VAL, 0);
  372. kv_program_local_cac_table(rdev, mc2_local_cac_cfg_kv, mc2_cac_config_reg);
  373. WREG32_SMC(LCAC_MC3_OVR_SEL, 0);
  374. WREG32_SMC(LCAC_MC3_OVR_VAL, 0);
  375. kv_program_local_cac_table(rdev, mc3_local_cac_cfg_kv, mc3_cac_config_reg);
  376. WREG32_SMC(LCAC_CPL_OVR_SEL, 0);
  377. WREG32_SMC(LCAC_CPL_OVR_VAL, 0);
  378. kv_program_local_cac_table(rdev, cpl_local_cac_cfg_kv, cpl_cac_config_reg);
  379. }
  380. }
  381. #endif
  382. static int kv_enable_smc_cac(struct radeon_device *rdev, bool enable)
  383. {
  384. struct kv_power_info *pi = kv_get_pi(rdev);
  385. int ret = 0;
  386. if (pi->caps_cac) {
  387. if (enable) {
  388. ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_EnableCac);
  389. if (ret)
  390. pi->cac_enabled = false;
  391. else
  392. pi->cac_enabled = true;
  393. } else if (pi->cac_enabled) {
  394. kv_notify_message_to_smu(rdev, PPSMC_MSG_DisableCac);
  395. pi->cac_enabled = false;
  396. }
  397. }
  398. return ret;
  399. }
  400. static int kv_process_firmware_header(struct radeon_device *rdev)
  401. {
  402. struct kv_power_info *pi = kv_get_pi(rdev);
  403. u32 tmp;
  404. int ret;
  405. ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
  406. offsetof(SMU7_Firmware_Header, DpmTable),
  407. &tmp, pi->sram_end);
  408. if (ret == 0)
  409. pi->dpm_table_start = tmp;
  410. ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
  411. offsetof(SMU7_Firmware_Header, SoftRegisters),
  412. &tmp, pi->sram_end);
  413. if (ret == 0)
  414. pi->soft_regs_start = tmp;
  415. return ret;
  416. }
  417. static int kv_enable_dpm_voltage_scaling(struct radeon_device *rdev)
  418. {
  419. struct kv_power_info *pi = kv_get_pi(rdev);
  420. int ret;
  421. pi->graphics_voltage_change_enable = 1;
  422. ret = kv_copy_bytes_to_smc(rdev,
  423. pi->dpm_table_start +
  424. offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable),
  425. &pi->graphics_voltage_change_enable,
  426. sizeof(u8), pi->sram_end);
  427. return ret;
  428. }
  429. static int kv_set_dpm_interval(struct radeon_device *rdev)
  430. {
  431. struct kv_power_info *pi = kv_get_pi(rdev);
  432. int ret;
  433. pi->graphics_interval = 1;
  434. ret = kv_copy_bytes_to_smc(rdev,
  435. pi->dpm_table_start +
  436. offsetof(SMU7_Fusion_DpmTable, GraphicsInterval),
  437. &pi->graphics_interval,
  438. sizeof(u8), pi->sram_end);
  439. return ret;
  440. }
  441. static int kv_set_dpm_boot_state(struct radeon_device *rdev)
  442. {
  443. struct kv_power_info *pi = kv_get_pi(rdev);
  444. int ret;
  445. ret = kv_copy_bytes_to_smc(rdev,
  446. pi->dpm_table_start +
  447. offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel),
  448. &pi->graphics_boot_level,
  449. sizeof(u8), pi->sram_end);
  450. return ret;
  451. }
  452. static void kv_program_vc(struct radeon_device *rdev)
  453. {
  454. WREG32_SMC(CG_FTV_0, 0x3FFFC100);
  455. }
  456. static void kv_clear_vc(struct radeon_device *rdev)
  457. {
  458. WREG32_SMC(CG_FTV_0, 0);
  459. }
  460. static int kv_set_divider_value(struct radeon_device *rdev,
  461. u32 index, u32 sclk)
  462. {
  463. struct kv_power_info *pi = kv_get_pi(rdev);
  464. struct atom_clock_dividers dividers;
  465. int ret;
  466. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  467. sclk, false, &dividers);
  468. if (ret)
  469. return ret;
  470. pi->graphics_level[index].SclkDid = (u8)dividers.post_div;
  471. pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk);
  472. return 0;
  473. }
  474. static u16 kv_convert_8bit_index_to_voltage(struct radeon_device *rdev,
  475. u16 voltage)
  476. {
  477. return 6200 - (voltage * 25);
  478. }
  479. static u16 kv_convert_2bit_index_to_voltage(struct radeon_device *rdev,
  480. u32 vid_2bit)
  481. {
  482. struct kv_power_info *pi = kv_get_pi(rdev);
  483. u32 vid_8bit = sumo_convert_vid2_to_vid7(rdev,
  484. &pi->sys_info.vid_mapping_table,
  485. vid_2bit);
  486. return kv_convert_8bit_index_to_voltage(rdev, (u16)vid_8bit);
  487. }
  488. static int kv_set_vid(struct radeon_device *rdev, u32 index, u32 vid)
  489. {
  490. struct kv_power_info *pi = kv_get_pi(rdev);
  491. pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t;
  492. pi->graphics_level[index].MinVddNb =
  493. cpu_to_be32(kv_convert_2bit_index_to_voltage(rdev, vid));
  494. return 0;
  495. }
  496. static int kv_set_at(struct radeon_device *rdev, u32 index, u32 at)
  497. {
  498. struct kv_power_info *pi = kv_get_pi(rdev);
  499. pi->graphics_level[index].AT = cpu_to_be16((u16)at);
  500. return 0;
  501. }
  502. static void kv_dpm_power_level_enable(struct radeon_device *rdev,
  503. u32 index, bool enable)
  504. {
  505. struct kv_power_info *pi = kv_get_pi(rdev);
  506. pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0;
  507. }
  508. static void kv_start_dpm(struct radeon_device *rdev)
  509. {
  510. u32 tmp = RREG32_SMC(GENERAL_PWRMGT);
  511. tmp |= GLOBAL_PWRMGT_EN;
  512. WREG32_SMC(GENERAL_PWRMGT, tmp);
  513. kv_smc_dpm_enable(rdev, true);
  514. }
  515. static void kv_stop_dpm(struct radeon_device *rdev)
  516. {
  517. kv_smc_dpm_enable(rdev, false);
  518. }
  519. static void kv_start_am(struct radeon_device *rdev)
  520. {
  521. u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
  522. sclk_pwrmgt_cntl &= ~(RESET_SCLK_CNT | RESET_BUSY_CNT);
  523. sclk_pwrmgt_cntl |= DYNAMIC_PM_EN;
  524. WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  525. }
  526. static void kv_reset_am(struct radeon_device *rdev)
  527. {
  528. u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
  529. sclk_pwrmgt_cntl |= (RESET_SCLK_CNT | RESET_BUSY_CNT);
  530. WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  531. }
  532. static int kv_freeze_sclk_dpm(struct radeon_device *rdev, bool freeze)
  533. {
  534. return kv_notify_message_to_smu(rdev, freeze ?
  535. PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel);
  536. }
  537. static int kv_force_lowest_valid(struct radeon_device *rdev)
  538. {
  539. return kv_force_dpm_lowest(rdev);
  540. }
  541. static int kv_unforce_levels(struct radeon_device *rdev)
  542. {
  543. if (rdev->family == CHIP_KABINI)
  544. return kv_notify_message_to_smu(rdev, PPSMC_MSG_NoForcedLevel);
  545. else
  546. return kv_set_enabled_levels(rdev);
  547. }
  548. static int kv_update_sclk_t(struct radeon_device *rdev)
  549. {
  550. struct kv_power_info *pi = kv_get_pi(rdev);
  551. u32 low_sclk_interrupt_t = 0;
  552. int ret = 0;
  553. if (pi->caps_sclk_throttle_low_notification) {
  554. low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
  555. ret = kv_copy_bytes_to_smc(rdev,
  556. pi->dpm_table_start +
  557. offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT),
  558. (u8 *)&low_sclk_interrupt_t,
  559. sizeof(u32), pi->sram_end);
  560. }
  561. return ret;
  562. }
  563. static int kv_program_bootup_state(struct radeon_device *rdev)
  564. {
  565. struct kv_power_info *pi = kv_get_pi(rdev);
  566. u32 i;
  567. struct radeon_clock_voltage_dependency_table *table =
  568. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  569. if (table && table->count) {
  570. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  571. if (table->entries[i].clk == pi->boot_pl.sclk)
  572. break;
  573. }
  574. pi->graphics_boot_level = (u8)i;
  575. kv_dpm_power_level_enable(rdev, i, true);
  576. } else {
  577. struct sumo_sclk_voltage_mapping_table *table =
  578. &pi->sys_info.sclk_voltage_mapping_table;
  579. if (table->num_max_dpm_entries == 0)
  580. return -EINVAL;
  581. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  582. if (table->entries[i].sclk_frequency == pi->boot_pl.sclk)
  583. break;
  584. }
  585. pi->graphics_boot_level = (u8)i;
  586. kv_dpm_power_level_enable(rdev, i, true);
  587. }
  588. return 0;
  589. }
  590. static int kv_enable_auto_thermal_throttling(struct radeon_device *rdev)
  591. {
  592. struct kv_power_info *pi = kv_get_pi(rdev);
  593. int ret;
  594. pi->graphics_therm_throttle_enable = 1;
  595. ret = kv_copy_bytes_to_smc(rdev,
  596. pi->dpm_table_start +
  597. offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable),
  598. &pi->graphics_therm_throttle_enable,
  599. sizeof(u8), pi->sram_end);
  600. return ret;
  601. }
  602. static int kv_upload_dpm_settings(struct radeon_device *rdev)
  603. {
  604. struct kv_power_info *pi = kv_get_pi(rdev);
  605. int ret;
  606. ret = kv_copy_bytes_to_smc(rdev,
  607. pi->dpm_table_start +
  608. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel),
  609. (u8 *)&pi->graphics_level,
  610. sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS,
  611. pi->sram_end);
  612. if (ret)
  613. return ret;
  614. ret = kv_copy_bytes_to_smc(rdev,
  615. pi->dpm_table_start +
  616. offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount),
  617. &pi->graphics_dpm_level_count,
  618. sizeof(u8), pi->sram_end);
  619. return ret;
  620. }
  621. static u32 kv_get_clock_difference(u32 a, u32 b)
  622. {
  623. return (a >= b) ? a - b : b - a;
  624. }
  625. static u32 kv_get_clk_bypass(struct radeon_device *rdev, u32 clk)
  626. {
  627. struct kv_power_info *pi = kv_get_pi(rdev);
  628. u32 value;
  629. if (pi->caps_enable_dfs_bypass) {
  630. if (kv_get_clock_difference(clk, 40000) < 200)
  631. value = 3;
  632. else if (kv_get_clock_difference(clk, 30000) < 200)
  633. value = 2;
  634. else if (kv_get_clock_difference(clk, 20000) < 200)
  635. value = 7;
  636. else if (kv_get_clock_difference(clk, 15000) < 200)
  637. value = 6;
  638. else if (kv_get_clock_difference(clk, 10000) < 200)
  639. value = 8;
  640. else
  641. value = 0;
  642. } else {
  643. value = 0;
  644. }
  645. return value;
  646. }
  647. static int kv_populate_uvd_table(struct radeon_device *rdev)
  648. {
  649. struct kv_power_info *pi = kv_get_pi(rdev);
  650. struct radeon_uvd_clock_voltage_dependency_table *table =
  651. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  652. struct atom_clock_dividers dividers;
  653. int ret;
  654. u32 i;
  655. if (table == NULL || table->count == 0)
  656. return 0;
  657. pi->uvd_level_count = 0;
  658. for (i = 0; i < table->count; i++) {
  659. if (pi->high_voltage_t &&
  660. (pi->high_voltage_t < table->entries[i].v))
  661. break;
  662. pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk);
  663. pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk);
  664. pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v);
  665. pi->uvd_level[i].VClkBypassCntl =
  666. (u8)kv_get_clk_bypass(rdev, table->entries[i].vclk);
  667. pi->uvd_level[i].DClkBypassCntl =
  668. (u8)kv_get_clk_bypass(rdev, table->entries[i].dclk);
  669. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  670. table->entries[i].vclk, false, &dividers);
  671. if (ret)
  672. return ret;
  673. pi->uvd_level[i].VclkDivider = (u8)dividers.post_div;
  674. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  675. table->entries[i].dclk, false, &dividers);
  676. if (ret)
  677. return ret;
  678. pi->uvd_level[i].DclkDivider = (u8)dividers.post_div;
  679. pi->uvd_level_count++;
  680. }
  681. ret = kv_copy_bytes_to_smc(rdev,
  682. pi->dpm_table_start +
  683. offsetof(SMU7_Fusion_DpmTable, UvdLevelCount),
  684. (u8 *)&pi->uvd_level_count,
  685. sizeof(u8), pi->sram_end);
  686. if (ret)
  687. return ret;
  688. pi->uvd_interval = 1;
  689. ret = kv_copy_bytes_to_smc(rdev,
  690. pi->dpm_table_start +
  691. offsetof(SMU7_Fusion_DpmTable, UVDInterval),
  692. &pi->uvd_interval,
  693. sizeof(u8), pi->sram_end);
  694. if (ret)
  695. return ret;
  696. ret = kv_copy_bytes_to_smc(rdev,
  697. pi->dpm_table_start +
  698. offsetof(SMU7_Fusion_DpmTable, UvdLevel),
  699. (u8 *)&pi->uvd_level,
  700. sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD,
  701. pi->sram_end);
  702. return ret;
  703. }
  704. static int kv_populate_vce_table(struct radeon_device *rdev)
  705. {
  706. struct kv_power_info *pi = kv_get_pi(rdev);
  707. int ret;
  708. u32 i;
  709. struct radeon_vce_clock_voltage_dependency_table *table =
  710. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  711. struct atom_clock_dividers dividers;
  712. if (table == NULL || table->count == 0)
  713. return 0;
  714. pi->vce_level_count = 0;
  715. for (i = 0; i < table->count; i++) {
  716. if (pi->high_voltage_t &&
  717. pi->high_voltage_t < table->entries[i].v)
  718. break;
  719. pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk);
  720. pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  721. pi->vce_level[i].ClkBypassCntl =
  722. (u8)kv_get_clk_bypass(rdev, table->entries[i].evclk);
  723. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  724. table->entries[i].evclk, false, &dividers);
  725. if (ret)
  726. return ret;
  727. pi->vce_level[i].Divider = (u8)dividers.post_div;
  728. pi->vce_level_count++;
  729. }
  730. ret = kv_copy_bytes_to_smc(rdev,
  731. pi->dpm_table_start +
  732. offsetof(SMU7_Fusion_DpmTable, VceLevelCount),
  733. (u8 *)&pi->vce_level_count,
  734. sizeof(u8),
  735. pi->sram_end);
  736. if (ret)
  737. return ret;
  738. pi->vce_interval = 1;
  739. ret = kv_copy_bytes_to_smc(rdev,
  740. pi->dpm_table_start +
  741. offsetof(SMU7_Fusion_DpmTable, VCEInterval),
  742. (u8 *)&pi->vce_interval,
  743. sizeof(u8),
  744. pi->sram_end);
  745. if (ret)
  746. return ret;
  747. ret = kv_copy_bytes_to_smc(rdev,
  748. pi->dpm_table_start +
  749. offsetof(SMU7_Fusion_DpmTable, VceLevel),
  750. (u8 *)&pi->vce_level,
  751. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE,
  752. pi->sram_end);
  753. return ret;
  754. }
  755. static int kv_populate_samu_table(struct radeon_device *rdev)
  756. {
  757. struct kv_power_info *pi = kv_get_pi(rdev);
  758. struct radeon_clock_voltage_dependency_table *table =
  759. &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  760. struct atom_clock_dividers dividers;
  761. int ret;
  762. u32 i;
  763. if (table == NULL || table->count == 0)
  764. return 0;
  765. pi->samu_level_count = 0;
  766. for (i = 0; i < table->count; i++) {
  767. if (pi->high_voltage_t &&
  768. pi->high_voltage_t < table->entries[i].v)
  769. break;
  770. pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  771. pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  772. pi->samu_level[i].ClkBypassCntl =
  773. (u8)kv_get_clk_bypass(rdev, table->entries[i].clk);
  774. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  775. table->entries[i].clk, false, &dividers);
  776. if (ret)
  777. return ret;
  778. pi->samu_level[i].Divider = (u8)dividers.post_div;
  779. pi->samu_level_count++;
  780. }
  781. ret = kv_copy_bytes_to_smc(rdev,
  782. pi->dpm_table_start +
  783. offsetof(SMU7_Fusion_DpmTable, SamuLevelCount),
  784. (u8 *)&pi->samu_level_count,
  785. sizeof(u8),
  786. pi->sram_end);
  787. if (ret)
  788. return ret;
  789. pi->samu_interval = 1;
  790. ret = kv_copy_bytes_to_smc(rdev,
  791. pi->dpm_table_start +
  792. offsetof(SMU7_Fusion_DpmTable, SAMUInterval),
  793. (u8 *)&pi->samu_interval,
  794. sizeof(u8),
  795. pi->sram_end);
  796. if (ret)
  797. return ret;
  798. ret = kv_copy_bytes_to_smc(rdev,
  799. pi->dpm_table_start +
  800. offsetof(SMU7_Fusion_DpmTable, SamuLevel),
  801. (u8 *)&pi->samu_level,
  802. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU,
  803. pi->sram_end);
  804. if (ret)
  805. return ret;
  806. return ret;
  807. }
  808. static int kv_populate_acp_table(struct radeon_device *rdev)
  809. {
  810. struct kv_power_info *pi = kv_get_pi(rdev);
  811. struct radeon_clock_voltage_dependency_table *table =
  812. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  813. struct atom_clock_dividers dividers;
  814. int ret;
  815. u32 i;
  816. if (table == NULL || table->count == 0)
  817. return 0;
  818. pi->acp_level_count = 0;
  819. for (i = 0; i < table->count; i++) {
  820. pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  821. pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  822. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  823. table->entries[i].clk, false, &dividers);
  824. if (ret)
  825. return ret;
  826. pi->acp_level[i].Divider = (u8)dividers.post_div;
  827. pi->acp_level_count++;
  828. }
  829. ret = kv_copy_bytes_to_smc(rdev,
  830. pi->dpm_table_start +
  831. offsetof(SMU7_Fusion_DpmTable, AcpLevelCount),
  832. (u8 *)&pi->acp_level_count,
  833. sizeof(u8),
  834. pi->sram_end);
  835. if (ret)
  836. return ret;
  837. pi->acp_interval = 1;
  838. ret = kv_copy_bytes_to_smc(rdev,
  839. pi->dpm_table_start +
  840. offsetof(SMU7_Fusion_DpmTable, ACPInterval),
  841. (u8 *)&pi->acp_interval,
  842. sizeof(u8),
  843. pi->sram_end);
  844. if (ret)
  845. return ret;
  846. ret = kv_copy_bytes_to_smc(rdev,
  847. pi->dpm_table_start +
  848. offsetof(SMU7_Fusion_DpmTable, AcpLevel),
  849. (u8 *)&pi->acp_level,
  850. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP,
  851. pi->sram_end);
  852. if (ret)
  853. return ret;
  854. return ret;
  855. }
  856. static void kv_calculate_dfs_bypass_settings(struct radeon_device *rdev)
  857. {
  858. struct kv_power_info *pi = kv_get_pi(rdev);
  859. u32 i;
  860. struct radeon_clock_voltage_dependency_table *table =
  861. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  862. if (table && table->count) {
  863. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  864. if (pi->caps_enable_dfs_bypass) {
  865. if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200)
  866. pi->graphics_level[i].ClkBypassCntl = 3;
  867. else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200)
  868. pi->graphics_level[i].ClkBypassCntl = 2;
  869. else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200)
  870. pi->graphics_level[i].ClkBypassCntl = 7;
  871. else if (kv_get_clock_difference(table->entries[i].clk , 20000) < 200)
  872. pi->graphics_level[i].ClkBypassCntl = 6;
  873. else if (kv_get_clock_difference(table->entries[i].clk , 10000) < 200)
  874. pi->graphics_level[i].ClkBypassCntl = 8;
  875. else
  876. pi->graphics_level[i].ClkBypassCntl = 0;
  877. } else {
  878. pi->graphics_level[i].ClkBypassCntl = 0;
  879. }
  880. }
  881. } else {
  882. struct sumo_sclk_voltage_mapping_table *table =
  883. &pi->sys_info.sclk_voltage_mapping_table;
  884. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  885. if (pi->caps_enable_dfs_bypass) {
  886. if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200)
  887. pi->graphics_level[i].ClkBypassCntl = 3;
  888. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200)
  889. pi->graphics_level[i].ClkBypassCntl = 2;
  890. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200)
  891. pi->graphics_level[i].ClkBypassCntl = 7;
  892. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200)
  893. pi->graphics_level[i].ClkBypassCntl = 6;
  894. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200)
  895. pi->graphics_level[i].ClkBypassCntl = 8;
  896. else
  897. pi->graphics_level[i].ClkBypassCntl = 0;
  898. } else {
  899. pi->graphics_level[i].ClkBypassCntl = 0;
  900. }
  901. }
  902. }
  903. }
  904. static int kv_enable_ulv(struct radeon_device *rdev, bool enable)
  905. {
  906. return kv_notify_message_to_smu(rdev, enable ?
  907. PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV);
  908. }
  909. static void kv_reset_acp_boot_level(struct radeon_device *rdev)
  910. {
  911. struct kv_power_info *pi = kv_get_pi(rdev);
  912. pi->acp_boot_level = 0xff;
  913. }
  914. static void kv_update_current_ps(struct radeon_device *rdev,
  915. struct radeon_ps *rps)
  916. {
  917. struct kv_ps *new_ps = kv_get_ps(rps);
  918. struct kv_power_info *pi = kv_get_pi(rdev);
  919. pi->current_rps = *rps;
  920. pi->current_ps = *new_ps;
  921. pi->current_rps.ps_priv = &pi->current_ps;
  922. }
  923. static void kv_update_requested_ps(struct radeon_device *rdev,
  924. struct radeon_ps *rps)
  925. {
  926. struct kv_ps *new_ps = kv_get_ps(rps);
  927. struct kv_power_info *pi = kv_get_pi(rdev);
  928. pi->requested_rps = *rps;
  929. pi->requested_ps = *new_ps;
  930. pi->requested_rps.ps_priv = &pi->requested_ps;
  931. }
  932. void kv_dpm_enable_bapm(struct radeon_device *rdev, bool enable)
  933. {
  934. struct kv_power_info *pi = kv_get_pi(rdev);
  935. int ret;
  936. if (pi->bapm_enable) {
  937. ret = kv_smc_bapm_enable(rdev, enable);
  938. if (ret)
  939. DRM_ERROR("kv_smc_bapm_enable failed\n");
  940. }
  941. }
  942. int kv_dpm_enable(struct radeon_device *rdev)
  943. {
  944. struct kv_power_info *pi = kv_get_pi(rdev);
  945. int ret;
  946. cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
  947. RADEON_CG_BLOCK_SDMA |
  948. RADEON_CG_BLOCK_BIF |
  949. RADEON_CG_BLOCK_HDP), false);
  950. ret = kv_process_firmware_header(rdev);
  951. if (ret) {
  952. DRM_ERROR("kv_process_firmware_header failed\n");
  953. return ret;
  954. }
  955. kv_init_fps_limits(rdev);
  956. kv_init_graphics_levels(rdev);
  957. ret = kv_program_bootup_state(rdev);
  958. if (ret) {
  959. DRM_ERROR("kv_program_bootup_state failed\n");
  960. return ret;
  961. }
  962. kv_calculate_dfs_bypass_settings(rdev);
  963. ret = kv_upload_dpm_settings(rdev);
  964. if (ret) {
  965. DRM_ERROR("kv_upload_dpm_settings failed\n");
  966. return ret;
  967. }
  968. ret = kv_populate_uvd_table(rdev);
  969. if (ret) {
  970. DRM_ERROR("kv_populate_uvd_table failed\n");
  971. return ret;
  972. }
  973. ret = kv_populate_vce_table(rdev);
  974. if (ret) {
  975. DRM_ERROR("kv_populate_vce_table failed\n");
  976. return ret;
  977. }
  978. ret = kv_populate_samu_table(rdev);
  979. if (ret) {
  980. DRM_ERROR("kv_populate_samu_table failed\n");
  981. return ret;
  982. }
  983. ret = kv_populate_acp_table(rdev);
  984. if (ret) {
  985. DRM_ERROR("kv_populate_acp_table failed\n");
  986. return ret;
  987. }
  988. kv_program_vc(rdev);
  989. #if 0
  990. kv_initialize_hardware_cac_manager(rdev);
  991. #endif
  992. kv_start_am(rdev);
  993. if (pi->enable_auto_thermal_throttling) {
  994. ret = kv_enable_auto_thermal_throttling(rdev);
  995. if (ret) {
  996. DRM_ERROR("kv_enable_auto_thermal_throttling failed\n");
  997. return ret;
  998. }
  999. }
  1000. ret = kv_enable_dpm_voltage_scaling(rdev);
  1001. if (ret) {
  1002. DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n");
  1003. return ret;
  1004. }
  1005. ret = kv_set_dpm_interval(rdev);
  1006. if (ret) {
  1007. DRM_ERROR("kv_set_dpm_interval failed\n");
  1008. return ret;
  1009. }
  1010. ret = kv_set_dpm_boot_state(rdev);
  1011. if (ret) {
  1012. DRM_ERROR("kv_set_dpm_boot_state failed\n");
  1013. return ret;
  1014. }
  1015. ret = kv_enable_ulv(rdev, true);
  1016. if (ret) {
  1017. DRM_ERROR("kv_enable_ulv failed\n");
  1018. return ret;
  1019. }
  1020. kv_start_dpm(rdev);
  1021. ret = kv_enable_didt(rdev, true);
  1022. if (ret) {
  1023. DRM_ERROR("kv_enable_didt failed\n");
  1024. return ret;
  1025. }
  1026. ret = kv_enable_smc_cac(rdev, true);
  1027. if (ret) {
  1028. DRM_ERROR("kv_enable_smc_cac failed\n");
  1029. return ret;
  1030. }
  1031. kv_reset_acp_boot_level(rdev);
  1032. if (rdev->irq.installed &&
  1033. r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
  1034. ret = kv_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
  1035. if (ret) {
  1036. DRM_ERROR("kv_set_thermal_temperature_range failed\n");
  1037. return ret;
  1038. }
  1039. rdev->irq.dpm_thermal = true;
  1040. radeon_irq_set(rdev);
  1041. }
  1042. ret = kv_smc_bapm_enable(rdev, false);
  1043. if (ret) {
  1044. DRM_ERROR("kv_smc_bapm_enable failed\n");
  1045. return ret;
  1046. }
  1047. /* powerdown unused blocks for now */
  1048. kv_dpm_powergate_acp(rdev, true);
  1049. kv_dpm_powergate_samu(rdev, true);
  1050. kv_dpm_powergate_vce(rdev, true);
  1051. kv_dpm_powergate_uvd(rdev, true);
  1052. cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
  1053. RADEON_CG_BLOCK_SDMA |
  1054. RADEON_CG_BLOCK_BIF |
  1055. RADEON_CG_BLOCK_HDP), true);
  1056. kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
  1057. return ret;
  1058. }
  1059. void kv_dpm_disable(struct radeon_device *rdev)
  1060. {
  1061. cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
  1062. RADEON_CG_BLOCK_SDMA |
  1063. RADEON_CG_BLOCK_BIF |
  1064. RADEON_CG_BLOCK_HDP), false);
  1065. kv_smc_bapm_enable(rdev, false);
  1066. /* powerup blocks */
  1067. kv_dpm_powergate_acp(rdev, false);
  1068. kv_dpm_powergate_samu(rdev, false);
  1069. kv_dpm_powergate_vce(rdev, false);
  1070. kv_dpm_powergate_uvd(rdev, false);
  1071. kv_enable_smc_cac(rdev, false);
  1072. kv_enable_didt(rdev, false);
  1073. kv_clear_vc(rdev);
  1074. kv_stop_dpm(rdev);
  1075. kv_enable_ulv(rdev, false);
  1076. kv_reset_am(rdev);
  1077. kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
  1078. }
  1079. #if 0
  1080. static int kv_write_smc_soft_register(struct radeon_device *rdev,
  1081. u16 reg_offset, u32 value)
  1082. {
  1083. struct kv_power_info *pi = kv_get_pi(rdev);
  1084. return kv_copy_bytes_to_smc(rdev, pi->soft_regs_start + reg_offset,
  1085. (u8 *)&value, sizeof(u16), pi->sram_end);
  1086. }
  1087. static int kv_read_smc_soft_register(struct radeon_device *rdev,
  1088. u16 reg_offset, u32 *value)
  1089. {
  1090. struct kv_power_info *pi = kv_get_pi(rdev);
  1091. return kv_read_smc_sram_dword(rdev, pi->soft_regs_start + reg_offset,
  1092. value, pi->sram_end);
  1093. }
  1094. #endif
  1095. static void kv_init_sclk_t(struct radeon_device *rdev)
  1096. {
  1097. struct kv_power_info *pi = kv_get_pi(rdev);
  1098. pi->low_sclk_interrupt_t = 0;
  1099. }
  1100. static int kv_init_fps_limits(struct radeon_device *rdev)
  1101. {
  1102. struct kv_power_info *pi = kv_get_pi(rdev);
  1103. int ret = 0;
  1104. if (pi->caps_fps) {
  1105. u16 tmp;
  1106. tmp = 45;
  1107. pi->fps_high_t = cpu_to_be16(tmp);
  1108. ret = kv_copy_bytes_to_smc(rdev,
  1109. pi->dpm_table_start +
  1110. offsetof(SMU7_Fusion_DpmTable, FpsHighT),
  1111. (u8 *)&pi->fps_high_t,
  1112. sizeof(u16), pi->sram_end);
  1113. tmp = 30;
  1114. pi->fps_low_t = cpu_to_be16(tmp);
  1115. ret = kv_copy_bytes_to_smc(rdev,
  1116. pi->dpm_table_start +
  1117. offsetof(SMU7_Fusion_DpmTable, FpsLowT),
  1118. (u8 *)&pi->fps_low_t,
  1119. sizeof(u16), pi->sram_end);
  1120. }
  1121. return ret;
  1122. }
  1123. static void kv_init_powergate_state(struct radeon_device *rdev)
  1124. {
  1125. struct kv_power_info *pi = kv_get_pi(rdev);
  1126. pi->uvd_power_gated = false;
  1127. pi->vce_power_gated = false;
  1128. pi->samu_power_gated = false;
  1129. pi->acp_power_gated = false;
  1130. }
  1131. static int kv_enable_uvd_dpm(struct radeon_device *rdev, bool enable)
  1132. {
  1133. return kv_notify_message_to_smu(rdev, enable ?
  1134. PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable);
  1135. }
  1136. #if 0
  1137. static int kv_enable_vce_dpm(struct radeon_device *rdev, bool enable)
  1138. {
  1139. return kv_notify_message_to_smu(rdev, enable ?
  1140. PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable);
  1141. }
  1142. #endif
  1143. static int kv_enable_samu_dpm(struct radeon_device *rdev, bool enable)
  1144. {
  1145. return kv_notify_message_to_smu(rdev, enable ?
  1146. PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable);
  1147. }
  1148. static int kv_enable_acp_dpm(struct radeon_device *rdev, bool enable)
  1149. {
  1150. return kv_notify_message_to_smu(rdev, enable ?
  1151. PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable);
  1152. }
  1153. static int kv_update_uvd_dpm(struct radeon_device *rdev, bool gate)
  1154. {
  1155. struct kv_power_info *pi = kv_get_pi(rdev);
  1156. struct radeon_uvd_clock_voltage_dependency_table *table =
  1157. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1158. int ret;
  1159. if (!gate) {
  1160. if (!pi->caps_uvd_dpm || table->count || pi->caps_stable_p_state)
  1161. pi->uvd_boot_level = table->count - 1;
  1162. else
  1163. pi->uvd_boot_level = 0;
  1164. ret = kv_copy_bytes_to_smc(rdev,
  1165. pi->dpm_table_start +
  1166. offsetof(SMU7_Fusion_DpmTable, UvdBootLevel),
  1167. (uint8_t *)&pi->uvd_boot_level,
  1168. sizeof(u8), pi->sram_end);
  1169. if (ret)
  1170. return ret;
  1171. if (!pi->caps_uvd_dpm ||
  1172. pi->caps_stable_p_state)
  1173. kv_send_msg_to_smc_with_parameter(rdev,
  1174. PPSMC_MSG_UVDDPM_SetEnabledMask,
  1175. (1 << pi->uvd_boot_level));
  1176. }
  1177. return kv_enable_uvd_dpm(rdev, !gate);
  1178. }
  1179. #if 0
  1180. static u8 kv_get_vce_boot_level(struct radeon_device *rdev)
  1181. {
  1182. u8 i;
  1183. struct radeon_vce_clock_voltage_dependency_table *table =
  1184. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1185. for (i = 0; i < table->count; i++) {
  1186. if (table->entries[i].evclk >= 0) /* XXX */
  1187. break;
  1188. }
  1189. return i;
  1190. }
  1191. static int kv_update_vce_dpm(struct radeon_device *rdev,
  1192. struct radeon_ps *radeon_new_state,
  1193. struct radeon_ps *radeon_current_state)
  1194. {
  1195. struct kv_power_info *pi = kv_get_pi(rdev);
  1196. struct radeon_vce_clock_voltage_dependency_table *table =
  1197. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1198. int ret;
  1199. if (radeon_new_state->evclk > 0 && radeon_current_state->evclk == 0) {
  1200. if (pi->caps_stable_p_state)
  1201. pi->vce_boot_level = table->count - 1;
  1202. else
  1203. pi->vce_boot_level = kv_get_vce_boot_level(rdev);
  1204. ret = kv_copy_bytes_to_smc(rdev,
  1205. pi->dpm_table_start +
  1206. offsetof(SMU7_Fusion_DpmTable, VceBootLevel),
  1207. (u8 *)&pi->vce_boot_level,
  1208. sizeof(u8),
  1209. pi->sram_end);
  1210. if (ret)
  1211. return ret;
  1212. if (pi->caps_stable_p_state)
  1213. kv_send_msg_to_smc_with_parameter(rdev,
  1214. PPSMC_MSG_VCEDPM_SetEnabledMask,
  1215. (1 << pi->vce_boot_level));
  1216. kv_enable_vce_dpm(rdev, true);
  1217. } else if (radeon_new_state->evclk == 0 && radeon_current_state->evclk > 0) {
  1218. kv_enable_vce_dpm(rdev, false);
  1219. }
  1220. return 0;
  1221. }
  1222. #endif
  1223. static int kv_update_samu_dpm(struct radeon_device *rdev, bool gate)
  1224. {
  1225. struct kv_power_info *pi = kv_get_pi(rdev);
  1226. struct radeon_clock_voltage_dependency_table *table =
  1227. &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  1228. int ret;
  1229. if (!gate) {
  1230. if (pi->caps_stable_p_state)
  1231. pi->samu_boot_level = table->count - 1;
  1232. else
  1233. pi->samu_boot_level = 0;
  1234. ret = kv_copy_bytes_to_smc(rdev,
  1235. pi->dpm_table_start +
  1236. offsetof(SMU7_Fusion_DpmTable, SamuBootLevel),
  1237. (u8 *)&pi->samu_boot_level,
  1238. sizeof(u8),
  1239. pi->sram_end);
  1240. if (ret)
  1241. return ret;
  1242. if (pi->caps_stable_p_state)
  1243. kv_send_msg_to_smc_with_parameter(rdev,
  1244. PPSMC_MSG_SAMUDPM_SetEnabledMask,
  1245. (1 << pi->samu_boot_level));
  1246. }
  1247. return kv_enable_samu_dpm(rdev, !gate);
  1248. }
  1249. static u8 kv_get_acp_boot_level(struct radeon_device *rdev)
  1250. {
  1251. u8 i;
  1252. struct radeon_clock_voltage_dependency_table *table =
  1253. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1254. for (i = 0; i < table->count; i++) {
  1255. if (table->entries[i].clk >= 0) /* XXX */
  1256. break;
  1257. }
  1258. if (i >= table->count)
  1259. i = table->count - 1;
  1260. return i;
  1261. }
  1262. static void kv_update_acp_boot_level(struct radeon_device *rdev)
  1263. {
  1264. struct kv_power_info *pi = kv_get_pi(rdev);
  1265. u8 acp_boot_level;
  1266. if (!pi->caps_stable_p_state) {
  1267. acp_boot_level = kv_get_acp_boot_level(rdev);
  1268. if (acp_boot_level != pi->acp_boot_level) {
  1269. pi->acp_boot_level = acp_boot_level;
  1270. kv_send_msg_to_smc_with_parameter(rdev,
  1271. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1272. (1 << pi->acp_boot_level));
  1273. }
  1274. }
  1275. }
  1276. static int kv_update_acp_dpm(struct radeon_device *rdev, bool gate)
  1277. {
  1278. struct kv_power_info *pi = kv_get_pi(rdev);
  1279. struct radeon_clock_voltage_dependency_table *table =
  1280. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1281. int ret;
  1282. if (!gate) {
  1283. if (pi->caps_stable_p_state)
  1284. pi->acp_boot_level = table->count - 1;
  1285. else
  1286. pi->acp_boot_level = kv_get_acp_boot_level(rdev);
  1287. ret = kv_copy_bytes_to_smc(rdev,
  1288. pi->dpm_table_start +
  1289. offsetof(SMU7_Fusion_DpmTable, AcpBootLevel),
  1290. (u8 *)&pi->acp_boot_level,
  1291. sizeof(u8),
  1292. pi->sram_end);
  1293. if (ret)
  1294. return ret;
  1295. if (pi->caps_stable_p_state)
  1296. kv_send_msg_to_smc_with_parameter(rdev,
  1297. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1298. (1 << pi->acp_boot_level));
  1299. }
  1300. return kv_enable_acp_dpm(rdev, !gate);
  1301. }
  1302. void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate)
  1303. {
  1304. struct kv_power_info *pi = kv_get_pi(rdev);
  1305. if (pi->uvd_power_gated == gate)
  1306. return;
  1307. pi->uvd_power_gated = gate;
  1308. if (gate) {
  1309. if (pi->caps_uvd_pg) {
  1310. uvd_v1_0_stop(rdev);
  1311. cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, false);
  1312. }
  1313. kv_update_uvd_dpm(rdev, gate);
  1314. if (pi->caps_uvd_pg)
  1315. kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerOFF);
  1316. } else {
  1317. if (pi->caps_uvd_pg) {
  1318. kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerON);
  1319. uvd_v4_2_resume(rdev);
  1320. uvd_v1_0_start(rdev);
  1321. cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, true);
  1322. }
  1323. kv_update_uvd_dpm(rdev, gate);
  1324. }
  1325. }
  1326. static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate)
  1327. {
  1328. struct kv_power_info *pi = kv_get_pi(rdev);
  1329. if (pi->vce_power_gated == gate)
  1330. return;
  1331. pi->vce_power_gated = gate;
  1332. if (gate) {
  1333. if (pi->caps_vce_pg)
  1334. kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerOFF);
  1335. } else {
  1336. if (pi->caps_vce_pg)
  1337. kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerON);
  1338. }
  1339. }
  1340. static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate)
  1341. {
  1342. struct kv_power_info *pi = kv_get_pi(rdev);
  1343. if (pi->samu_power_gated == gate)
  1344. return;
  1345. pi->samu_power_gated = gate;
  1346. if (gate) {
  1347. kv_update_samu_dpm(rdev, true);
  1348. if (pi->caps_samu_pg)
  1349. kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerOFF);
  1350. } else {
  1351. if (pi->caps_samu_pg)
  1352. kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerON);
  1353. kv_update_samu_dpm(rdev, false);
  1354. }
  1355. }
  1356. static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate)
  1357. {
  1358. struct kv_power_info *pi = kv_get_pi(rdev);
  1359. if (pi->acp_power_gated == gate)
  1360. return;
  1361. if (rdev->family == CHIP_KABINI)
  1362. return;
  1363. pi->acp_power_gated = gate;
  1364. if (gate) {
  1365. kv_update_acp_dpm(rdev, true);
  1366. if (pi->caps_acp_pg)
  1367. kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerOFF);
  1368. } else {
  1369. if (pi->caps_acp_pg)
  1370. kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerON);
  1371. kv_update_acp_dpm(rdev, false);
  1372. }
  1373. }
  1374. static void kv_set_valid_clock_range(struct radeon_device *rdev,
  1375. struct radeon_ps *new_rps)
  1376. {
  1377. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1378. struct kv_power_info *pi = kv_get_pi(rdev);
  1379. u32 i;
  1380. struct radeon_clock_voltage_dependency_table *table =
  1381. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1382. if (table && table->count) {
  1383. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  1384. if ((table->entries[i].clk >= new_ps->levels[0].sclk) ||
  1385. (i == (pi->graphics_dpm_level_count - 1))) {
  1386. pi->lowest_valid = i;
  1387. break;
  1388. }
  1389. }
  1390. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  1391. if (table->entries[i].clk <= new_ps->levels[new_ps->num_levels - 1].sclk)
  1392. break;
  1393. }
  1394. pi->highest_valid = i;
  1395. if (pi->lowest_valid > pi->highest_valid) {
  1396. if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) >
  1397. (table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk))
  1398. pi->highest_valid = pi->lowest_valid;
  1399. else
  1400. pi->lowest_valid = pi->highest_valid;
  1401. }
  1402. } else {
  1403. struct sumo_sclk_voltage_mapping_table *table =
  1404. &pi->sys_info.sclk_voltage_mapping_table;
  1405. for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) {
  1406. if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk ||
  1407. i == (int)(pi->graphics_dpm_level_count - 1)) {
  1408. pi->lowest_valid = i;
  1409. break;
  1410. }
  1411. }
  1412. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  1413. if (table->entries[i].sclk_frequency <=
  1414. new_ps->levels[new_ps->num_levels - 1].sclk)
  1415. break;
  1416. }
  1417. pi->highest_valid = i;
  1418. if (pi->lowest_valid > pi->highest_valid) {
  1419. if ((new_ps->levels[0].sclk -
  1420. table->entries[pi->highest_valid].sclk_frequency) >
  1421. (table->entries[pi->lowest_valid].sclk_frequency -
  1422. new_ps->levels[new_ps->num_levels -1].sclk))
  1423. pi->highest_valid = pi->lowest_valid;
  1424. else
  1425. pi->lowest_valid = pi->highest_valid;
  1426. }
  1427. }
  1428. }
  1429. static int kv_update_dfs_bypass_settings(struct radeon_device *rdev,
  1430. struct radeon_ps *new_rps)
  1431. {
  1432. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1433. struct kv_power_info *pi = kv_get_pi(rdev);
  1434. int ret = 0;
  1435. u8 clk_bypass_cntl;
  1436. if (pi->caps_enable_dfs_bypass) {
  1437. clk_bypass_cntl = new_ps->need_dfs_bypass ?
  1438. pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0;
  1439. ret = kv_copy_bytes_to_smc(rdev,
  1440. (pi->dpm_table_start +
  1441. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) +
  1442. (pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) +
  1443. offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)),
  1444. &clk_bypass_cntl,
  1445. sizeof(u8), pi->sram_end);
  1446. }
  1447. return ret;
  1448. }
  1449. static int kv_enable_nb_dpm(struct radeon_device *rdev)
  1450. {
  1451. struct kv_power_info *pi = kv_get_pi(rdev);
  1452. int ret = 0;
  1453. if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) {
  1454. ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_NBDPM_Enable);
  1455. if (ret == 0)
  1456. pi->nb_dpm_enabled = true;
  1457. }
  1458. return ret;
  1459. }
  1460. int kv_dpm_force_performance_level(struct radeon_device *rdev,
  1461. enum radeon_dpm_forced_level level)
  1462. {
  1463. int ret;
  1464. if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
  1465. ret = kv_force_dpm_highest(rdev);
  1466. if (ret)
  1467. return ret;
  1468. } else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
  1469. ret = kv_force_dpm_lowest(rdev);
  1470. if (ret)
  1471. return ret;
  1472. } else if (level == RADEON_DPM_FORCED_LEVEL_AUTO) {
  1473. ret = kv_unforce_levels(rdev);
  1474. if (ret)
  1475. return ret;
  1476. }
  1477. rdev->pm.dpm.forced_level = level;
  1478. return 0;
  1479. }
  1480. int kv_dpm_pre_set_power_state(struct radeon_device *rdev)
  1481. {
  1482. struct kv_power_info *pi = kv_get_pi(rdev);
  1483. struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps;
  1484. struct radeon_ps *new_ps = &requested_ps;
  1485. kv_update_requested_ps(rdev, new_ps);
  1486. kv_apply_state_adjust_rules(rdev,
  1487. &pi->requested_rps,
  1488. &pi->current_rps);
  1489. return 0;
  1490. }
  1491. int kv_dpm_set_power_state(struct radeon_device *rdev)
  1492. {
  1493. struct kv_power_info *pi = kv_get_pi(rdev);
  1494. struct radeon_ps *new_ps = &pi->requested_rps;
  1495. /*struct radeon_ps *old_ps = &pi->current_rps;*/
  1496. int ret;
  1497. cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
  1498. RADEON_CG_BLOCK_SDMA |
  1499. RADEON_CG_BLOCK_BIF |
  1500. RADEON_CG_BLOCK_HDP), false);
  1501. if (pi->bapm_enable) {
  1502. ret = kv_smc_bapm_enable(rdev, rdev->pm.dpm.ac_power);
  1503. if (ret) {
  1504. DRM_ERROR("kv_smc_bapm_enable failed\n");
  1505. return ret;
  1506. }
  1507. }
  1508. if (rdev->family == CHIP_KABINI) {
  1509. if (pi->enable_dpm) {
  1510. kv_set_valid_clock_range(rdev, new_ps);
  1511. kv_update_dfs_bypass_settings(rdev, new_ps);
  1512. ret = kv_calculate_ds_divider(rdev);
  1513. if (ret) {
  1514. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1515. return ret;
  1516. }
  1517. kv_calculate_nbps_level_settings(rdev);
  1518. kv_calculate_dpm_settings(rdev);
  1519. kv_force_lowest_valid(rdev);
  1520. kv_enable_new_levels(rdev);
  1521. kv_upload_dpm_settings(rdev);
  1522. kv_program_nbps_index_settings(rdev, new_ps);
  1523. kv_unforce_levels(rdev);
  1524. kv_set_enabled_levels(rdev);
  1525. kv_force_lowest_valid(rdev);
  1526. kv_unforce_levels(rdev);
  1527. #if 0
  1528. ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
  1529. if (ret) {
  1530. DRM_ERROR("kv_update_vce_dpm failed\n");
  1531. return ret;
  1532. }
  1533. #endif
  1534. kv_update_sclk_t(rdev);
  1535. }
  1536. } else {
  1537. if (pi->enable_dpm) {
  1538. kv_set_valid_clock_range(rdev, new_ps);
  1539. kv_update_dfs_bypass_settings(rdev, new_ps);
  1540. ret = kv_calculate_ds_divider(rdev);
  1541. if (ret) {
  1542. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1543. return ret;
  1544. }
  1545. kv_calculate_nbps_level_settings(rdev);
  1546. kv_calculate_dpm_settings(rdev);
  1547. kv_freeze_sclk_dpm(rdev, true);
  1548. kv_upload_dpm_settings(rdev);
  1549. kv_program_nbps_index_settings(rdev, new_ps);
  1550. kv_freeze_sclk_dpm(rdev, false);
  1551. kv_set_enabled_levels(rdev);
  1552. #if 0
  1553. ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
  1554. if (ret) {
  1555. DRM_ERROR("kv_update_vce_dpm failed\n");
  1556. return ret;
  1557. }
  1558. #endif
  1559. kv_update_acp_boot_level(rdev);
  1560. kv_update_sclk_t(rdev);
  1561. kv_enable_nb_dpm(rdev);
  1562. }
  1563. }
  1564. cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
  1565. RADEON_CG_BLOCK_SDMA |
  1566. RADEON_CG_BLOCK_BIF |
  1567. RADEON_CG_BLOCK_HDP), true);
  1568. return 0;
  1569. }
  1570. void kv_dpm_post_set_power_state(struct radeon_device *rdev)
  1571. {
  1572. struct kv_power_info *pi = kv_get_pi(rdev);
  1573. struct radeon_ps *new_ps = &pi->requested_rps;
  1574. kv_update_current_ps(rdev, new_ps);
  1575. }
  1576. void kv_dpm_setup_asic(struct radeon_device *rdev)
  1577. {
  1578. sumo_take_smu_control(rdev, true);
  1579. kv_init_powergate_state(rdev);
  1580. kv_init_sclk_t(rdev);
  1581. }
  1582. void kv_dpm_reset_asic(struct radeon_device *rdev)
  1583. {
  1584. struct kv_power_info *pi = kv_get_pi(rdev);
  1585. if (rdev->family == CHIP_KABINI) {
  1586. kv_force_lowest_valid(rdev);
  1587. kv_init_graphics_levels(rdev);
  1588. kv_program_bootup_state(rdev);
  1589. kv_upload_dpm_settings(rdev);
  1590. kv_force_lowest_valid(rdev);
  1591. kv_unforce_levels(rdev);
  1592. } else {
  1593. kv_init_graphics_levels(rdev);
  1594. kv_program_bootup_state(rdev);
  1595. kv_freeze_sclk_dpm(rdev, true);
  1596. kv_upload_dpm_settings(rdev);
  1597. kv_freeze_sclk_dpm(rdev, false);
  1598. kv_set_enabled_level(rdev, pi->graphics_boot_level);
  1599. }
  1600. }
  1601. //XXX use sumo_dpm_display_configuration_changed
  1602. static void kv_construct_max_power_limits_table(struct radeon_device *rdev,
  1603. struct radeon_clock_and_voltage_limits *table)
  1604. {
  1605. struct kv_power_info *pi = kv_get_pi(rdev);
  1606. if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) {
  1607. int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1;
  1608. table->sclk =
  1609. pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency;
  1610. table->vddc =
  1611. kv_convert_2bit_index_to_voltage(rdev,
  1612. pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit);
  1613. }
  1614. table->mclk = pi->sys_info.nbp_memory_clock[0];
  1615. }
  1616. static void kv_patch_voltage_values(struct radeon_device *rdev)
  1617. {
  1618. int i;
  1619. struct radeon_uvd_clock_voltage_dependency_table *table =
  1620. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1621. if (table->count) {
  1622. for (i = 0; i < table->count; i++)
  1623. table->entries[i].v =
  1624. kv_convert_8bit_index_to_voltage(rdev,
  1625. table->entries[i].v);
  1626. }
  1627. }
  1628. static void kv_construct_boot_state(struct radeon_device *rdev)
  1629. {
  1630. struct kv_power_info *pi = kv_get_pi(rdev);
  1631. pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
  1632. pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
  1633. pi->boot_pl.ds_divider_index = 0;
  1634. pi->boot_pl.ss_divider_index = 0;
  1635. pi->boot_pl.allow_gnb_slow = 1;
  1636. pi->boot_pl.force_nbp_state = 0;
  1637. pi->boot_pl.display_wm = 0;
  1638. pi->boot_pl.vce_wm = 0;
  1639. }
  1640. static int kv_force_dpm_highest(struct radeon_device *rdev)
  1641. {
  1642. int ret;
  1643. u32 enable_mask, i;
  1644. ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
  1645. if (ret)
  1646. return ret;
  1647. for (i = SMU7_MAX_LEVELS_GRAPHICS - 1; i > 0; i--) {
  1648. if (enable_mask & (1 << i))
  1649. break;
  1650. }
  1651. if (rdev->family == CHIP_KABINI)
  1652. return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
  1653. else
  1654. return kv_set_enabled_level(rdev, i);
  1655. }
  1656. static int kv_force_dpm_lowest(struct radeon_device *rdev)
  1657. {
  1658. int ret;
  1659. u32 enable_mask, i;
  1660. ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
  1661. if (ret)
  1662. return ret;
  1663. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  1664. if (enable_mask & (1 << i))
  1665. break;
  1666. }
  1667. if (rdev->family == CHIP_KABINI)
  1668. return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
  1669. else
  1670. return kv_set_enabled_level(rdev, i);
  1671. }
  1672. static u8 kv_get_sleep_divider_id_from_clock(struct radeon_device *rdev,
  1673. u32 sclk, u32 min_sclk_in_sr)
  1674. {
  1675. struct kv_power_info *pi = kv_get_pi(rdev);
  1676. u32 i;
  1677. u32 temp;
  1678. u32 min = (min_sclk_in_sr > KV_MINIMUM_ENGINE_CLOCK) ?
  1679. min_sclk_in_sr : KV_MINIMUM_ENGINE_CLOCK;
  1680. if (sclk < min)
  1681. return 0;
  1682. if (!pi->caps_sclk_ds)
  1683. return 0;
  1684. for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i > 0; i--) {
  1685. temp = sclk / sumo_get_sleep_divider_from_id(i);
  1686. if (temp >= min)
  1687. break;
  1688. }
  1689. return (u8)i;
  1690. }
  1691. static int kv_get_high_voltage_limit(struct radeon_device *rdev, int *limit)
  1692. {
  1693. struct kv_power_info *pi = kv_get_pi(rdev);
  1694. struct radeon_clock_voltage_dependency_table *table =
  1695. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1696. int i;
  1697. if (table && table->count) {
  1698. for (i = table->count - 1; i >= 0; i--) {
  1699. if (pi->high_voltage_t &&
  1700. (kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v) <=
  1701. pi->high_voltage_t)) {
  1702. *limit = i;
  1703. return 0;
  1704. }
  1705. }
  1706. } else {
  1707. struct sumo_sclk_voltage_mapping_table *table =
  1708. &pi->sys_info.sclk_voltage_mapping_table;
  1709. for (i = table->num_max_dpm_entries - 1; i >= 0; i--) {
  1710. if (pi->high_voltage_t &&
  1711. (kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit) <=
  1712. pi->high_voltage_t)) {
  1713. *limit = i;
  1714. return 0;
  1715. }
  1716. }
  1717. }
  1718. *limit = 0;
  1719. return 0;
  1720. }
  1721. static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
  1722. struct radeon_ps *new_rps,
  1723. struct radeon_ps *old_rps)
  1724. {
  1725. struct kv_ps *ps = kv_get_ps(new_rps);
  1726. struct kv_power_info *pi = kv_get_pi(rdev);
  1727. u32 min_sclk = 10000; /* ??? */
  1728. u32 sclk, mclk = 0;
  1729. int i, limit;
  1730. bool force_high;
  1731. struct radeon_clock_voltage_dependency_table *table =
  1732. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1733. u32 stable_p_state_sclk = 0;
  1734. struct radeon_clock_and_voltage_limits *max_limits =
  1735. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1736. mclk = max_limits->mclk;
  1737. sclk = min_sclk;
  1738. if (pi->caps_stable_p_state) {
  1739. stable_p_state_sclk = (max_limits->sclk * 75) / 100;
  1740. for (i = table->count - 1; i >= 0; i++) {
  1741. if (stable_p_state_sclk >= table->entries[i].clk) {
  1742. stable_p_state_sclk = table->entries[i].clk;
  1743. break;
  1744. }
  1745. }
  1746. if (i > 0)
  1747. stable_p_state_sclk = table->entries[0].clk;
  1748. sclk = stable_p_state_sclk;
  1749. }
  1750. ps->need_dfs_bypass = true;
  1751. for (i = 0; i < ps->num_levels; i++) {
  1752. if (ps->levels[i].sclk < sclk)
  1753. ps->levels[i].sclk = sclk;
  1754. }
  1755. if (table && table->count) {
  1756. for (i = 0; i < ps->num_levels; i++) {
  1757. if (pi->high_voltage_t &&
  1758. (pi->high_voltage_t <
  1759. kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
  1760. kv_get_high_voltage_limit(rdev, &limit);
  1761. ps->levels[i].sclk = table->entries[limit].clk;
  1762. }
  1763. }
  1764. } else {
  1765. struct sumo_sclk_voltage_mapping_table *table =
  1766. &pi->sys_info.sclk_voltage_mapping_table;
  1767. for (i = 0; i < ps->num_levels; i++) {
  1768. if (pi->high_voltage_t &&
  1769. (pi->high_voltage_t <
  1770. kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
  1771. kv_get_high_voltage_limit(rdev, &limit);
  1772. ps->levels[i].sclk = table->entries[limit].sclk_frequency;
  1773. }
  1774. }
  1775. }
  1776. if (pi->caps_stable_p_state) {
  1777. for (i = 0; i < ps->num_levels; i++) {
  1778. ps->levels[i].sclk = stable_p_state_sclk;
  1779. }
  1780. }
  1781. pi->video_start = new_rps->dclk || new_rps->vclk;
  1782. if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
  1783. ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
  1784. pi->battery_state = true;
  1785. else
  1786. pi->battery_state = false;
  1787. if (rdev->family == CHIP_KABINI) {
  1788. ps->dpm0_pg_nb_ps_lo = 0x1;
  1789. ps->dpm0_pg_nb_ps_hi = 0x0;
  1790. ps->dpmx_nb_ps_lo = 0x1;
  1791. ps->dpmx_nb_ps_hi = 0x0;
  1792. } else {
  1793. ps->dpm0_pg_nb_ps_lo = 0x3;
  1794. ps->dpm0_pg_nb_ps_hi = 0x0;
  1795. ps->dpmx_nb_ps_lo = 0x3;
  1796. ps->dpmx_nb_ps_hi = 0x0;
  1797. if (pi->sys_info.nb_dpm_enable) {
  1798. force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1799. pi->video_start || (rdev->pm.dpm.new_active_crtc_count >= 3) ||
  1800. pi->disable_nb_ps3_in_battery;
  1801. ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3;
  1802. ps->dpm0_pg_nb_ps_hi = 0x2;
  1803. ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3;
  1804. ps->dpmx_nb_ps_hi = 0x2;
  1805. }
  1806. }
  1807. }
  1808. static void kv_dpm_power_level_enabled_for_throttle(struct radeon_device *rdev,
  1809. u32 index, bool enable)
  1810. {
  1811. struct kv_power_info *pi = kv_get_pi(rdev);
  1812. pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0;
  1813. }
  1814. static int kv_calculate_ds_divider(struct radeon_device *rdev)
  1815. {
  1816. struct kv_power_info *pi = kv_get_pi(rdev);
  1817. u32 sclk_in_sr = 10000; /* ??? */
  1818. u32 i;
  1819. if (pi->lowest_valid > pi->highest_valid)
  1820. return -EINVAL;
  1821. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1822. pi->graphics_level[i].DeepSleepDivId =
  1823. kv_get_sleep_divider_id_from_clock(rdev,
  1824. be32_to_cpu(pi->graphics_level[i].SclkFrequency),
  1825. sclk_in_sr);
  1826. }
  1827. return 0;
  1828. }
  1829. static int kv_calculate_nbps_level_settings(struct radeon_device *rdev)
  1830. {
  1831. struct kv_power_info *pi = kv_get_pi(rdev);
  1832. u32 i;
  1833. bool force_high;
  1834. struct radeon_clock_and_voltage_limits *max_limits =
  1835. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1836. u32 mclk = max_limits->mclk;
  1837. if (pi->lowest_valid > pi->highest_valid)
  1838. return -EINVAL;
  1839. if (rdev->family == CHIP_KABINI) {
  1840. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1841. pi->graphics_level[i].GnbSlow = 1;
  1842. pi->graphics_level[i].ForceNbPs1 = 0;
  1843. pi->graphics_level[i].UpH = 0;
  1844. }
  1845. if (!pi->sys_info.nb_dpm_enable)
  1846. return 0;
  1847. force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1848. (rdev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start);
  1849. if (force_high) {
  1850. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1851. pi->graphics_level[i].GnbSlow = 0;
  1852. } else {
  1853. if (pi->battery_state)
  1854. pi->graphics_level[0].ForceNbPs1 = 1;
  1855. pi->graphics_level[1].GnbSlow = 0;
  1856. pi->graphics_level[2].GnbSlow = 0;
  1857. pi->graphics_level[3].GnbSlow = 0;
  1858. pi->graphics_level[4].GnbSlow = 0;
  1859. }
  1860. } else {
  1861. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1862. pi->graphics_level[i].GnbSlow = 1;
  1863. pi->graphics_level[i].ForceNbPs1 = 0;
  1864. pi->graphics_level[i].UpH = 0;
  1865. }
  1866. if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
  1867. pi->graphics_level[pi->lowest_valid].UpH = 0x28;
  1868. pi->graphics_level[pi->lowest_valid].GnbSlow = 0;
  1869. if (pi->lowest_valid != pi->highest_valid)
  1870. pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1;
  1871. }
  1872. }
  1873. return 0;
  1874. }
  1875. static int kv_calculate_dpm_settings(struct radeon_device *rdev)
  1876. {
  1877. struct kv_power_info *pi = kv_get_pi(rdev);
  1878. u32 i;
  1879. if (pi->lowest_valid > pi->highest_valid)
  1880. return -EINVAL;
  1881. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1882. pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0;
  1883. return 0;
  1884. }
  1885. static void kv_init_graphics_levels(struct radeon_device *rdev)
  1886. {
  1887. struct kv_power_info *pi = kv_get_pi(rdev);
  1888. u32 i;
  1889. struct radeon_clock_voltage_dependency_table *table =
  1890. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1891. if (table && table->count) {
  1892. u32 vid_2bit;
  1893. pi->graphics_dpm_level_count = 0;
  1894. for (i = 0; i < table->count; i++) {
  1895. if (pi->high_voltage_t &&
  1896. (pi->high_voltage_t <
  1897. kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v)))
  1898. break;
  1899. kv_set_divider_value(rdev, i, table->entries[i].clk);
  1900. vid_2bit = sumo_convert_vid7_to_vid2(rdev,
  1901. &pi->sys_info.vid_mapping_table,
  1902. table->entries[i].v);
  1903. kv_set_vid(rdev, i, vid_2bit);
  1904. kv_set_at(rdev, i, pi->at[i]);
  1905. kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
  1906. pi->graphics_dpm_level_count++;
  1907. }
  1908. } else {
  1909. struct sumo_sclk_voltage_mapping_table *table =
  1910. &pi->sys_info.sclk_voltage_mapping_table;
  1911. pi->graphics_dpm_level_count = 0;
  1912. for (i = 0; i < table->num_max_dpm_entries; i++) {
  1913. if (pi->high_voltage_t &&
  1914. pi->high_voltage_t <
  1915. kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit))
  1916. break;
  1917. kv_set_divider_value(rdev, i, table->entries[i].sclk_frequency);
  1918. kv_set_vid(rdev, i, table->entries[i].vid_2bit);
  1919. kv_set_at(rdev, i, pi->at[i]);
  1920. kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
  1921. pi->graphics_dpm_level_count++;
  1922. }
  1923. }
  1924. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++)
  1925. kv_dpm_power_level_enable(rdev, i, false);
  1926. }
  1927. static void kv_enable_new_levels(struct radeon_device *rdev)
  1928. {
  1929. struct kv_power_info *pi = kv_get_pi(rdev);
  1930. u32 i;
  1931. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  1932. if (i >= pi->lowest_valid && i <= pi->highest_valid)
  1933. kv_dpm_power_level_enable(rdev, i, true);
  1934. }
  1935. }
  1936. static int kv_set_enabled_level(struct radeon_device *rdev, u32 level)
  1937. {
  1938. u32 new_mask = (1 << level);
  1939. return kv_send_msg_to_smc_with_parameter(rdev,
  1940. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  1941. new_mask);
  1942. }
  1943. static int kv_set_enabled_levels(struct radeon_device *rdev)
  1944. {
  1945. struct kv_power_info *pi = kv_get_pi(rdev);
  1946. u32 i, new_mask = 0;
  1947. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1948. new_mask |= (1 << i);
  1949. return kv_send_msg_to_smc_with_parameter(rdev,
  1950. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  1951. new_mask);
  1952. }
  1953. static void kv_program_nbps_index_settings(struct radeon_device *rdev,
  1954. struct radeon_ps *new_rps)
  1955. {
  1956. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1957. struct kv_power_info *pi = kv_get_pi(rdev);
  1958. u32 nbdpmconfig1;
  1959. if (rdev->family == CHIP_KABINI)
  1960. return;
  1961. if (pi->sys_info.nb_dpm_enable) {
  1962. nbdpmconfig1 = RREG32_SMC(NB_DPM_CONFIG_1);
  1963. nbdpmconfig1 &= ~(Dpm0PgNbPsLo_MASK | Dpm0PgNbPsHi_MASK |
  1964. DpmXNbPsLo_MASK | DpmXNbPsHi_MASK);
  1965. nbdpmconfig1 |= (Dpm0PgNbPsLo(new_ps->dpm0_pg_nb_ps_lo) |
  1966. Dpm0PgNbPsHi(new_ps->dpm0_pg_nb_ps_hi) |
  1967. DpmXNbPsLo(new_ps->dpmx_nb_ps_lo) |
  1968. DpmXNbPsHi(new_ps->dpmx_nb_ps_hi));
  1969. WREG32_SMC(NB_DPM_CONFIG_1, nbdpmconfig1);
  1970. }
  1971. }
  1972. static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
  1973. int min_temp, int max_temp)
  1974. {
  1975. int low_temp = 0 * 1000;
  1976. int high_temp = 255 * 1000;
  1977. u32 tmp;
  1978. if (low_temp < min_temp)
  1979. low_temp = min_temp;
  1980. if (high_temp > max_temp)
  1981. high_temp = max_temp;
  1982. if (high_temp < low_temp) {
  1983. DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
  1984. return -EINVAL;
  1985. }
  1986. tmp = RREG32_SMC(CG_THERMAL_INT_CTRL);
  1987. tmp &= ~(DIG_THERM_INTH_MASK | DIG_THERM_INTL_MASK);
  1988. tmp |= (DIG_THERM_INTH(49 + (high_temp / 1000)) |
  1989. DIG_THERM_INTL(49 + (low_temp / 1000)));
  1990. WREG32_SMC(CG_THERMAL_INT_CTRL, tmp);
  1991. rdev->pm.dpm.thermal.min_temp = low_temp;
  1992. rdev->pm.dpm.thermal.max_temp = high_temp;
  1993. return 0;
  1994. }
  1995. union igp_info {
  1996. struct _ATOM_INTEGRATED_SYSTEM_INFO info;
  1997. struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
  1998. struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
  1999. struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
  2000. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
  2001. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
  2002. };
  2003. static int kv_parse_sys_info_table(struct radeon_device *rdev)
  2004. {
  2005. struct kv_power_info *pi = kv_get_pi(rdev);
  2006. struct radeon_mode_info *mode_info = &rdev->mode_info;
  2007. int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
  2008. union igp_info *igp_info;
  2009. u8 frev, crev;
  2010. u16 data_offset;
  2011. int i;
  2012. if (atom_parse_data_header(mode_info->atom_context, index, NULL,
  2013. &frev, &crev, &data_offset)) {
  2014. igp_info = (union igp_info *)(mode_info->atom_context->bios +
  2015. data_offset);
  2016. if (crev != 8) {
  2017. DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
  2018. return -EINVAL;
  2019. }
  2020. pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock);
  2021. pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock);
  2022. pi->sys_info.bootup_nb_voltage_index =
  2023. le16_to_cpu(igp_info->info_8.usBootUpNBVoltage);
  2024. if (igp_info->info_8.ucHtcTmpLmt == 0)
  2025. pi->sys_info.htc_tmp_lmt = 203;
  2026. else
  2027. pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt;
  2028. if (igp_info->info_8.ucHtcHystLmt == 0)
  2029. pi->sys_info.htc_hyst_lmt = 5;
  2030. else
  2031. pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt;
  2032. if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
  2033. DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
  2034. }
  2035. if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3))
  2036. pi->sys_info.nb_dpm_enable = true;
  2037. else
  2038. pi->sys_info.nb_dpm_enable = false;
  2039. for (i = 0; i < KV_NUM_NBPSTATES; i++) {
  2040. pi->sys_info.nbp_memory_clock[i] =
  2041. le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]);
  2042. pi->sys_info.nbp_n_clock[i] =
  2043. le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]);
  2044. }
  2045. if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) &
  2046. SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
  2047. pi->caps_enable_dfs_bypass = true;
  2048. sumo_construct_sclk_voltage_mapping_table(rdev,
  2049. &pi->sys_info.sclk_voltage_mapping_table,
  2050. igp_info->info_8.sAvail_SCLK);
  2051. sumo_construct_vid_mapping_table(rdev,
  2052. &pi->sys_info.vid_mapping_table,
  2053. igp_info->info_8.sAvail_SCLK);
  2054. kv_construct_max_power_limits_table(rdev,
  2055. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
  2056. }
  2057. return 0;
  2058. }
  2059. union power_info {
  2060. struct _ATOM_POWERPLAY_INFO info;
  2061. struct _ATOM_POWERPLAY_INFO_V2 info_2;
  2062. struct _ATOM_POWERPLAY_INFO_V3 info_3;
  2063. struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
  2064. struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
  2065. struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
  2066. };
  2067. union pplib_clock_info {
  2068. struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
  2069. struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
  2070. struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
  2071. struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
  2072. };
  2073. union pplib_power_state {
  2074. struct _ATOM_PPLIB_STATE v1;
  2075. struct _ATOM_PPLIB_STATE_V2 v2;
  2076. };
  2077. static void kv_patch_boot_state(struct radeon_device *rdev,
  2078. struct kv_ps *ps)
  2079. {
  2080. struct kv_power_info *pi = kv_get_pi(rdev);
  2081. ps->num_levels = 1;
  2082. ps->levels[0] = pi->boot_pl;
  2083. }
  2084. static void kv_parse_pplib_non_clock_info(struct radeon_device *rdev,
  2085. struct radeon_ps *rps,
  2086. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
  2087. u8 table_rev)
  2088. {
  2089. struct kv_ps *ps = kv_get_ps(rps);
  2090. rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
  2091. rps->class = le16_to_cpu(non_clock_info->usClassification);
  2092. rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
  2093. if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
  2094. rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
  2095. rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
  2096. } else {
  2097. rps->vclk = 0;
  2098. rps->dclk = 0;
  2099. }
  2100. if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
  2101. rdev->pm.dpm.boot_ps = rps;
  2102. kv_patch_boot_state(rdev, ps);
  2103. }
  2104. if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  2105. rdev->pm.dpm.uvd_ps = rps;
  2106. }
  2107. static void kv_parse_pplib_clock_info(struct radeon_device *rdev,
  2108. struct radeon_ps *rps, int index,
  2109. union pplib_clock_info *clock_info)
  2110. {
  2111. struct kv_power_info *pi = kv_get_pi(rdev);
  2112. struct kv_ps *ps = kv_get_ps(rps);
  2113. struct kv_pl *pl = &ps->levels[index];
  2114. u32 sclk;
  2115. sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
  2116. sclk |= clock_info->sumo.ucEngineClockHigh << 16;
  2117. pl->sclk = sclk;
  2118. pl->vddc_index = clock_info->sumo.vddcIndex;
  2119. ps->num_levels = index + 1;
  2120. if (pi->caps_sclk_ds) {
  2121. pl->ds_divider_index = 5;
  2122. pl->ss_divider_index = 5;
  2123. }
  2124. }
  2125. static int kv_parse_power_table(struct radeon_device *rdev)
  2126. {
  2127. struct radeon_mode_info *mode_info = &rdev->mode_info;
  2128. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
  2129. union pplib_power_state *power_state;
  2130. int i, j, k, non_clock_array_index, clock_array_index;
  2131. union pplib_clock_info *clock_info;
  2132. struct _StateArray *state_array;
  2133. struct _ClockInfoArray *clock_info_array;
  2134. struct _NonClockInfoArray *non_clock_info_array;
  2135. union power_info *power_info;
  2136. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  2137. u16 data_offset;
  2138. u8 frev, crev;
  2139. u8 *power_state_offset;
  2140. struct kv_ps *ps;
  2141. if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
  2142. &frev, &crev, &data_offset))
  2143. return -EINVAL;
  2144. power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
  2145. state_array = (struct _StateArray *)
  2146. (mode_info->atom_context->bios + data_offset +
  2147. le16_to_cpu(power_info->pplib.usStateArrayOffset));
  2148. clock_info_array = (struct _ClockInfoArray *)
  2149. (mode_info->atom_context->bios + data_offset +
  2150. le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
  2151. non_clock_info_array = (struct _NonClockInfoArray *)
  2152. (mode_info->atom_context->bios + data_offset +
  2153. le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
  2154. rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) *
  2155. state_array->ucNumEntries, GFP_KERNEL);
  2156. if (!rdev->pm.dpm.ps)
  2157. return -ENOMEM;
  2158. power_state_offset = (u8 *)state_array->states;
  2159. rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps);
  2160. rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime);
  2161. rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime);
  2162. for (i = 0; i < state_array->ucNumEntries; i++) {
  2163. u8 *idx;
  2164. power_state = (union pplib_power_state *)power_state_offset;
  2165. non_clock_array_index = power_state->v2.nonClockInfoIndex;
  2166. non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
  2167. &non_clock_info_array->nonClockInfo[non_clock_array_index];
  2168. if (!rdev->pm.power_state[i].clock_info)
  2169. return -EINVAL;
  2170. ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL);
  2171. if (ps == NULL) {
  2172. kfree(rdev->pm.dpm.ps);
  2173. return -ENOMEM;
  2174. }
  2175. rdev->pm.dpm.ps[i].ps_priv = ps;
  2176. k = 0;
  2177. idx = (u8 *)&power_state->v2.clockInfoIndex[0];
  2178. for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
  2179. clock_array_index = idx[j];
  2180. if (clock_array_index >= clock_info_array->ucNumEntries)
  2181. continue;
  2182. if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
  2183. break;
  2184. clock_info = (union pplib_clock_info *)
  2185. ((u8 *)&clock_info_array->clockInfo[0] +
  2186. (clock_array_index * clock_info_array->ucEntrySize));
  2187. kv_parse_pplib_clock_info(rdev,
  2188. &rdev->pm.dpm.ps[i], k,
  2189. clock_info);
  2190. k++;
  2191. }
  2192. kv_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
  2193. non_clock_info,
  2194. non_clock_info_array->ucEntrySize);
  2195. power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
  2196. }
  2197. rdev->pm.dpm.num_ps = state_array->ucNumEntries;
  2198. return 0;
  2199. }
  2200. int kv_dpm_init(struct radeon_device *rdev)
  2201. {
  2202. struct kv_power_info *pi;
  2203. int ret, i;
  2204. pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL);
  2205. if (pi == NULL)
  2206. return -ENOMEM;
  2207. rdev->pm.dpm.priv = pi;
  2208. ret = r600_parse_extended_power_table(rdev);
  2209. if (ret)
  2210. return ret;
  2211. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++)
  2212. pi->at[i] = TRINITY_AT_DFLT;
  2213. pi->sram_end = SMC_RAM_END;
  2214. if (rdev->family == CHIP_KABINI)
  2215. pi->high_voltage_t = 4001;
  2216. pi->enable_nb_dpm = true;
  2217. pi->caps_power_containment = true;
  2218. pi->caps_cac = true;
  2219. pi->enable_didt = false;
  2220. if (pi->enable_didt) {
  2221. pi->caps_sq_ramping = true;
  2222. pi->caps_db_ramping = true;
  2223. pi->caps_td_ramping = true;
  2224. pi->caps_tcp_ramping = true;
  2225. }
  2226. pi->caps_sclk_ds = true;
  2227. pi->enable_auto_thermal_throttling = true;
  2228. pi->disable_nb_ps3_in_battery = false;
  2229. pi->bapm_enable = true;
  2230. pi->voltage_drop_t = 0;
  2231. pi->caps_sclk_throttle_low_notification = false;
  2232. pi->caps_fps = false; /* true? */
  2233. pi->caps_uvd_pg = true;
  2234. pi->caps_uvd_dpm = true;
  2235. pi->caps_vce_pg = false;
  2236. pi->caps_samu_pg = false;
  2237. pi->caps_acp_pg = false;
  2238. pi->caps_stable_p_state = false;
  2239. ret = kv_parse_sys_info_table(rdev);
  2240. if (ret)
  2241. return ret;
  2242. kv_patch_voltage_values(rdev);
  2243. kv_construct_boot_state(rdev);
  2244. ret = kv_parse_power_table(rdev);
  2245. if (ret)
  2246. return ret;
  2247. pi->enable_dpm = true;
  2248. return 0;
  2249. }
  2250. void kv_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
  2251. struct seq_file *m)
  2252. {
  2253. struct kv_power_info *pi = kv_get_pi(rdev);
  2254. u32 current_index =
  2255. (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >>
  2256. CURR_SCLK_INDEX_SHIFT;
  2257. u32 sclk, tmp;
  2258. u16 vddc;
  2259. if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
  2260. seq_printf(m, "invalid dpm profile %d\n", current_index);
  2261. } else {
  2262. sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
  2263. tmp = (RREG32_SMC(SMU_VOLTAGE_STATUS) & SMU_VOLTAGE_CURRENT_LEVEL_MASK) >>
  2264. SMU_VOLTAGE_CURRENT_LEVEL_SHIFT;
  2265. vddc = kv_convert_8bit_index_to_voltage(rdev, (u16)tmp);
  2266. seq_printf(m, "power level %d sclk: %u vddc: %u\n",
  2267. current_index, sclk, vddc);
  2268. }
  2269. }
  2270. void kv_dpm_print_power_state(struct radeon_device *rdev,
  2271. struct radeon_ps *rps)
  2272. {
  2273. int i;
  2274. struct kv_ps *ps = kv_get_ps(rps);
  2275. r600_dpm_print_class_info(rps->class, rps->class2);
  2276. r600_dpm_print_cap_info(rps->caps);
  2277. printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
  2278. for (i = 0; i < ps->num_levels; i++) {
  2279. struct kv_pl *pl = &ps->levels[i];
  2280. printk("\t\tpower level %d sclk: %u vddc: %u\n",
  2281. i, pl->sclk,
  2282. kv_convert_8bit_index_to_voltage(rdev, pl->vddc_index));
  2283. }
  2284. r600_dpm_print_ps_status(rdev, rps);
  2285. }
  2286. void kv_dpm_fini(struct radeon_device *rdev)
  2287. {
  2288. int i;
  2289. for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
  2290. kfree(rdev->pm.dpm.ps[i].ps_priv);
  2291. }
  2292. kfree(rdev->pm.dpm.ps);
  2293. kfree(rdev->pm.dpm.priv);
  2294. r600_free_extended_power_table(rdev);
  2295. }
  2296. void kv_dpm_display_configuration_changed(struct radeon_device *rdev)
  2297. {
  2298. }
  2299. u32 kv_dpm_get_sclk(struct radeon_device *rdev, bool low)
  2300. {
  2301. struct kv_power_info *pi = kv_get_pi(rdev);
  2302. struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps);
  2303. if (low)
  2304. return requested_state->levels[0].sclk;
  2305. else
  2306. return requested_state->levels[requested_state->num_levels - 1].sclk;
  2307. }
  2308. u32 kv_dpm_get_mclk(struct radeon_device *rdev, bool low)
  2309. {
  2310. struct kv_power_info *pi = kv_get_pi(rdev);
  2311. return pi->sys_info.bootup_uma_clk;
  2312. }