intel_pm.c 166 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <drm/i915_powerwell.h>
  33. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  34. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  35. * during in-memory transfers and, therefore, reduce the power packet.
  36. *
  37. * The benefits of FBC are mostly visible with solid backgrounds and
  38. * variation-less patterns.
  39. *
  40. * FBC-related functionality can be enabled by the means of the
  41. * i915.i915_enable_fbc parameter
  42. */
  43. static void i8xx_disable_fbc(struct drm_device *dev)
  44. {
  45. struct drm_i915_private *dev_priv = dev->dev_private;
  46. u32 fbc_ctl;
  47. /* Disable compression */
  48. fbc_ctl = I915_READ(FBC_CONTROL);
  49. if ((fbc_ctl & FBC_CTL_EN) == 0)
  50. return;
  51. fbc_ctl &= ~FBC_CTL_EN;
  52. I915_WRITE(FBC_CONTROL, fbc_ctl);
  53. /* Wait for compressing bit to clear */
  54. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  55. DRM_DEBUG_KMS("FBC idle timed out\n");
  56. return;
  57. }
  58. DRM_DEBUG_KMS("disabled FBC\n");
  59. }
  60. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  61. {
  62. struct drm_device *dev = crtc->dev;
  63. struct drm_i915_private *dev_priv = dev->dev_private;
  64. struct drm_framebuffer *fb = crtc->fb;
  65. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  66. struct drm_i915_gem_object *obj = intel_fb->obj;
  67. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  68. int cfb_pitch;
  69. int plane, i;
  70. u32 fbc_ctl, fbc_ctl2;
  71. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  72. if (fb->pitches[0] < cfb_pitch)
  73. cfb_pitch = fb->pitches[0];
  74. /* FBC_CTL wants 64B units */
  75. cfb_pitch = (cfb_pitch / 64) - 1;
  76. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  77. /* Clear old tags */
  78. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  79. I915_WRITE(FBC_TAG + (i * 4), 0);
  80. /* Set it up... */
  81. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  82. fbc_ctl2 |= plane;
  83. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  84. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  85. /* enable it... */
  86. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  87. if (IS_I945GM(dev))
  88. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  89. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  90. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  91. fbc_ctl |= obj->fence_reg;
  92. I915_WRITE(FBC_CONTROL, fbc_ctl);
  93. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
  94. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  95. }
  96. static bool i8xx_fbc_enabled(struct drm_device *dev)
  97. {
  98. struct drm_i915_private *dev_priv = dev->dev_private;
  99. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  100. }
  101. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  102. {
  103. struct drm_device *dev = crtc->dev;
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. struct drm_framebuffer *fb = crtc->fb;
  106. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  107. struct drm_i915_gem_object *obj = intel_fb->obj;
  108. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  109. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  110. unsigned long stall_watermark = 200;
  111. u32 dpfc_ctl;
  112. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  113. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  114. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  115. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  116. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  117. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  118. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  119. /* enable it... */
  120. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  121. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  122. }
  123. static void g4x_disable_fbc(struct drm_device *dev)
  124. {
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. u32 dpfc_ctl;
  127. /* Disable compression */
  128. dpfc_ctl = I915_READ(DPFC_CONTROL);
  129. if (dpfc_ctl & DPFC_CTL_EN) {
  130. dpfc_ctl &= ~DPFC_CTL_EN;
  131. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  132. DRM_DEBUG_KMS("disabled FBC\n");
  133. }
  134. }
  135. static bool g4x_fbc_enabled(struct drm_device *dev)
  136. {
  137. struct drm_i915_private *dev_priv = dev->dev_private;
  138. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  139. }
  140. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  141. {
  142. struct drm_i915_private *dev_priv = dev->dev_private;
  143. u32 blt_ecoskpd;
  144. /* Make sure blitter notifies FBC of writes */
  145. gen6_gt_force_wake_get(dev_priv);
  146. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  147. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  148. GEN6_BLITTER_LOCK_SHIFT;
  149. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  150. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  151. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  152. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  153. GEN6_BLITTER_LOCK_SHIFT);
  154. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  155. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  156. gen6_gt_force_wake_put(dev_priv);
  157. }
  158. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  159. {
  160. struct drm_device *dev = crtc->dev;
  161. struct drm_i915_private *dev_priv = dev->dev_private;
  162. struct drm_framebuffer *fb = crtc->fb;
  163. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  164. struct drm_i915_gem_object *obj = intel_fb->obj;
  165. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  166. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  167. unsigned long stall_watermark = 200;
  168. u32 dpfc_ctl;
  169. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  170. dpfc_ctl &= DPFC_RESERVED;
  171. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  172. /* Set persistent mode for front-buffer rendering, ala X. */
  173. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  174. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  175. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  176. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  177. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  178. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  179. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  180. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  181. /* enable it... */
  182. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  183. if (IS_GEN6(dev)) {
  184. I915_WRITE(SNB_DPFC_CTL_SA,
  185. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  186. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  187. sandybridge_blit_fbc_update(dev);
  188. }
  189. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  190. }
  191. static void ironlake_disable_fbc(struct drm_device *dev)
  192. {
  193. struct drm_i915_private *dev_priv = dev->dev_private;
  194. u32 dpfc_ctl;
  195. /* Disable compression */
  196. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  197. if (dpfc_ctl & DPFC_CTL_EN) {
  198. dpfc_ctl &= ~DPFC_CTL_EN;
  199. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  200. if (IS_IVYBRIDGE(dev))
  201. /* WaFbcDisableDpfcClockGating:ivb */
  202. I915_WRITE(ILK_DSPCLK_GATE_D,
  203. I915_READ(ILK_DSPCLK_GATE_D) &
  204. ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
  205. if (IS_HASWELL(dev))
  206. /* WaFbcDisableDpfcClockGating:hsw */
  207. I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
  208. I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
  209. ~HSW_DPFC_GATING_DISABLE);
  210. DRM_DEBUG_KMS("disabled FBC\n");
  211. }
  212. }
  213. static bool ironlake_fbc_enabled(struct drm_device *dev)
  214. {
  215. struct drm_i915_private *dev_priv = dev->dev_private;
  216. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  217. }
  218. static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  219. {
  220. struct drm_device *dev = crtc->dev;
  221. struct drm_i915_private *dev_priv = dev->dev_private;
  222. struct drm_framebuffer *fb = crtc->fb;
  223. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  224. struct drm_i915_gem_object *obj = intel_fb->obj;
  225. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  226. I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
  227. I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
  228. IVB_DPFC_CTL_FENCE_EN |
  229. intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
  230. if (IS_IVYBRIDGE(dev)) {
  231. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  232. I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
  233. /* WaFbcDisableDpfcClockGating:ivb */
  234. I915_WRITE(ILK_DSPCLK_GATE_D,
  235. I915_READ(ILK_DSPCLK_GATE_D) |
  236. ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
  237. } else {
  238. /* WaFbcAsynchFlipDisableFbcQueue:hsw */
  239. I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
  240. HSW_BYPASS_FBC_QUEUE);
  241. /* WaFbcDisableDpfcClockGating:hsw */
  242. I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
  243. I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
  244. HSW_DPFC_GATING_DISABLE);
  245. }
  246. I915_WRITE(SNB_DPFC_CTL_SA,
  247. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  248. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  249. sandybridge_blit_fbc_update(dev);
  250. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  251. }
  252. bool intel_fbc_enabled(struct drm_device *dev)
  253. {
  254. struct drm_i915_private *dev_priv = dev->dev_private;
  255. if (!dev_priv->display.fbc_enabled)
  256. return false;
  257. return dev_priv->display.fbc_enabled(dev);
  258. }
  259. static void intel_fbc_work_fn(struct work_struct *__work)
  260. {
  261. struct intel_fbc_work *work =
  262. container_of(to_delayed_work(__work),
  263. struct intel_fbc_work, work);
  264. struct drm_device *dev = work->crtc->dev;
  265. struct drm_i915_private *dev_priv = dev->dev_private;
  266. mutex_lock(&dev->struct_mutex);
  267. if (work == dev_priv->fbc.fbc_work) {
  268. /* Double check that we haven't switched fb without cancelling
  269. * the prior work.
  270. */
  271. if (work->crtc->fb == work->fb) {
  272. dev_priv->display.enable_fbc(work->crtc,
  273. work->interval);
  274. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  275. dev_priv->fbc.fb_id = work->crtc->fb->base.id;
  276. dev_priv->fbc.y = work->crtc->y;
  277. }
  278. dev_priv->fbc.fbc_work = NULL;
  279. }
  280. mutex_unlock(&dev->struct_mutex);
  281. kfree(work);
  282. }
  283. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  284. {
  285. if (dev_priv->fbc.fbc_work == NULL)
  286. return;
  287. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  288. /* Synchronisation is provided by struct_mutex and checking of
  289. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  290. * entirely asynchronously.
  291. */
  292. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  293. /* tasklet was killed before being run, clean up */
  294. kfree(dev_priv->fbc.fbc_work);
  295. /* Mark the work as no longer wanted so that if it does
  296. * wake-up (because the work was already running and waiting
  297. * for our mutex), it will discover that is no longer
  298. * necessary to run.
  299. */
  300. dev_priv->fbc.fbc_work = NULL;
  301. }
  302. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  303. {
  304. struct intel_fbc_work *work;
  305. struct drm_device *dev = crtc->dev;
  306. struct drm_i915_private *dev_priv = dev->dev_private;
  307. if (!dev_priv->display.enable_fbc)
  308. return;
  309. intel_cancel_fbc_work(dev_priv);
  310. work = kzalloc(sizeof(*work), GFP_KERNEL);
  311. if (work == NULL) {
  312. DRM_ERROR("Failed to allocate FBC work structure\n");
  313. dev_priv->display.enable_fbc(crtc, interval);
  314. return;
  315. }
  316. work->crtc = crtc;
  317. work->fb = crtc->fb;
  318. work->interval = interval;
  319. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  320. dev_priv->fbc.fbc_work = work;
  321. /* Delay the actual enabling to let pageflipping cease and the
  322. * display to settle before starting the compression. Note that
  323. * this delay also serves a second purpose: it allows for a
  324. * vblank to pass after disabling the FBC before we attempt
  325. * to modify the control registers.
  326. *
  327. * A more complicated solution would involve tracking vblanks
  328. * following the termination of the page-flipping sequence
  329. * and indeed performing the enable as a co-routine and not
  330. * waiting synchronously upon the vblank.
  331. *
  332. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  333. */
  334. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  335. }
  336. void intel_disable_fbc(struct drm_device *dev)
  337. {
  338. struct drm_i915_private *dev_priv = dev->dev_private;
  339. intel_cancel_fbc_work(dev_priv);
  340. if (!dev_priv->display.disable_fbc)
  341. return;
  342. dev_priv->display.disable_fbc(dev);
  343. dev_priv->fbc.plane = -1;
  344. }
  345. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  346. enum no_fbc_reason reason)
  347. {
  348. if (dev_priv->fbc.no_fbc_reason == reason)
  349. return false;
  350. dev_priv->fbc.no_fbc_reason = reason;
  351. return true;
  352. }
  353. /**
  354. * intel_update_fbc - enable/disable FBC as needed
  355. * @dev: the drm_device
  356. *
  357. * Set up the framebuffer compression hardware at mode set time. We
  358. * enable it if possible:
  359. * - plane A only (on pre-965)
  360. * - no pixel mulitply/line duplication
  361. * - no alpha buffer discard
  362. * - no dual wide
  363. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  364. *
  365. * We can't assume that any compression will take place (worst case),
  366. * so the compressed buffer has to be the same size as the uncompressed
  367. * one. It also must reside (along with the line length buffer) in
  368. * stolen memory.
  369. *
  370. * We need to enable/disable FBC on a global basis.
  371. */
  372. void intel_update_fbc(struct drm_device *dev)
  373. {
  374. struct drm_i915_private *dev_priv = dev->dev_private;
  375. struct drm_crtc *crtc = NULL, *tmp_crtc;
  376. struct intel_crtc *intel_crtc;
  377. struct drm_framebuffer *fb;
  378. struct intel_framebuffer *intel_fb;
  379. struct drm_i915_gem_object *obj;
  380. const struct drm_display_mode *adjusted_mode;
  381. unsigned int max_width, max_height;
  382. if (!I915_HAS_FBC(dev)) {
  383. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  384. return;
  385. }
  386. if (!i915_powersave) {
  387. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  388. DRM_DEBUG_KMS("fbc disabled per module param\n");
  389. return;
  390. }
  391. /*
  392. * If FBC is already on, we just have to verify that we can
  393. * keep it that way...
  394. * Need to disable if:
  395. * - more than one pipe is active
  396. * - changing FBC params (stride, fence, mode)
  397. * - new fb is too large to fit in compressed buffer
  398. * - going to an unsupported config (interlace, pixel multiply, etc.)
  399. */
  400. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  401. if (intel_crtc_active(tmp_crtc) &&
  402. to_intel_crtc(tmp_crtc)->primary_enabled) {
  403. if (crtc) {
  404. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  405. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  406. goto out_disable;
  407. }
  408. crtc = tmp_crtc;
  409. }
  410. }
  411. if (!crtc || crtc->fb == NULL) {
  412. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  413. DRM_DEBUG_KMS("no output, disabling\n");
  414. goto out_disable;
  415. }
  416. intel_crtc = to_intel_crtc(crtc);
  417. fb = crtc->fb;
  418. intel_fb = to_intel_framebuffer(fb);
  419. obj = intel_fb->obj;
  420. adjusted_mode = &intel_crtc->config.adjusted_mode;
  421. if (i915_enable_fbc < 0 &&
  422. INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
  423. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  424. DRM_DEBUG_KMS("disabled per chip default\n");
  425. goto out_disable;
  426. }
  427. if (!i915_enable_fbc) {
  428. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  429. DRM_DEBUG_KMS("fbc disabled per module param\n");
  430. goto out_disable;
  431. }
  432. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  433. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  434. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  435. DRM_DEBUG_KMS("mode incompatible with compression, "
  436. "disabling\n");
  437. goto out_disable;
  438. }
  439. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  440. max_width = 4096;
  441. max_height = 2048;
  442. } else {
  443. max_width = 2048;
  444. max_height = 1536;
  445. }
  446. if (intel_crtc->config.pipe_src_w > max_width ||
  447. intel_crtc->config.pipe_src_h > max_height) {
  448. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  449. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  450. goto out_disable;
  451. }
  452. if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
  453. intel_crtc->plane != 0) {
  454. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  455. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  456. goto out_disable;
  457. }
  458. /* The use of a CPU fence is mandatory in order to detect writes
  459. * by the CPU to the scanout and trigger updates to the FBC.
  460. */
  461. if (obj->tiling_mode != I915_TILING_X ||
  462. obj->fence_reg == I915_FENCE_REG_NONE) {
  463. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  464. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  465. goto out_disable;
  466. }
  467. /* If the kernel debugger is active, always disable compression */
  468. if (in_dbg_master())
  469. goto out_disable;
  470. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  471. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  472. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  473. goto out_disable;
  474. }
  475. /* If the scanout has not changed, don't modify the FBC settings.
  476. * Note that we make the fundamental assumption that the fb->obj
  477. * cannot be unpinned (and have its GTT offset and fence revoked)
  478. * without first being decoupled from the scanout and FBC disabled.
  479. */
  480. if (dev_priv->fbc.plane == intel_crtc->plane &&
  481. dev_priv->fbc.fb_id == fb->base.id &&
  482. dev_priv->fbc.y == crtc->y)
  483. return;
  484. if (intel_fbc_enabled(dev)) {
  485. /* We update FBC along two paths, after changing fb/crtc
  486. * configuration (modeswitching) and after page-flipping
  487. * finishes. For the latter, we know that not only did
  488. * we disable the FBC at the start of the page-flip
  489. * sequence, but also more than one vblank has passed.
  490. *
  491. * For the former case of modeswitching, it is possible
  492. * to switch between two FBC valid configurations
  493. * instantaneously so we do need to disable the FBC
  494. * before we can modify its control registers. We also
  495. * have to wait for the next vblank for that to take
  496. * effect. However, since we delay enabling FBC we can
  497. * assume that a vblank has passed since disabling and
  498. * that we can safely alter the registers in the deferred
  499. * callback.
  500. *
  501. * In the scenario that we go from a valid to invalid
  502. * and then back to valid FBC configuration we have
  503. * no strict enforcement that a vblank occurred since
  504. * disabling the FBC. However, along all current pipe
  505. * disabling paths we do need to wait for a vblank at
  506. * some point. And we wait before enabling FBC anyway.
  507. */
  508. DRM_DEBUG_KMS("disabling active FBC for update\n");
  509. intel_disable_fbc(dev);
  510. }
  511. intel_enable_fbc(crtc, 500);
  512. dev_priv->fbc.no_fbc_reason = FBC_OK;
  513. return;
  514. out_disable:
  515. /* Multiple disables should be harmless */
  516. if (intel_fbc_enabled(dev)) {
  517. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  518. intel_disable_fbc(dev);
  519. }
  520. i915_gem_stolen_cleanup_compression(dev);
  521. }
  522. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  523. {
  524. drm_i915_private_t *dev_priv = dev->dev_private;
  525. u32 tmp;
  526. tmp = I915_READ(CLKCFG);
  527. switch (tmp & CLKCFG_FSB_MASK) {
  528. case CLKCFG_FSB_533:
  529. dev_priv->fsb_freq = 533; /* 133*4 */
  530. break;
  531. case CLKCFG_FSB_800:
  532. dev_priv->fsb_freq = 800; /* 200*4 */
  533. break;
  534. case CLKCFG_FSB_667:
  535. dev_priv->fsb_freq = 667; /* 167*4 */
  536. break;
  537. case CLKCFG_FSB_400:
  538. dev_priv->fsb_freq = 400; /* 100*4 */
  539. break;
  540. }
  541. switch (tmp & CLKCFG_MEM_MASK) {
  542. case CLKCFG_MEM_533:
  543. dev_priv->mem_freq = 533;
  544. break;
  545. case CLKCFG_MEM_667:
  546. dev_priv->mem_freq = 667;
  547. break;
  548. case CLKCFG_MEM_800:
  549. dev_priv->mem_freq = 800;
  550. break;
  551. }
  552. /* detect pineview DDR3 setting */
  553. tmp = I915_READ(CSHRDDR3CTL);
  554. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  555. }
  556. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  557. {
  558. drm_i915_private_t *dev_priv = dev->dev_private;
  559. u16 ddrpll, csipll;
  560. ddrpll = I915_READ16(DDRMPLL1);
  561. csipll = I915_READ16(CSIPLL0);
  562. switch (ddrpll & 0xff) {
  563. case 0xc:
  564. dev_priv->mem_freq = 800;
  565. break;
  566. case 0x10:
  567. dev_priv->mem_freq = 1066;
  568. break;
  569. case 0x14:
  570. dev_priv->mem_freq = 1333;
  571. break;
  572. case 0x18:
  573. dev_priv->mem_freq = 1600;
  574. break;
  575. default:
  576. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  577. ddrpll & 0xff);
  578. dev_priv->mem_freq = 0;
  579. break;
  580. }
  581. dev_priv->ips.r_t = dev_priv->mem_freq;
  582. switch (csipll & 0x3ff) {
  583. case 0x00c:
  584. dev_priv->fsb_freq = 3200;
  585. break;
  586. case 0x00e:
  587. dev_priv->fsb_freq = 3733;
  588. break;
  589. case 0x010:
  590. dev_priv->fsb_freq = 4266;
  591. break;
  592. case 0x012:
  593. dev_priv->fsb_freq = 4800;
  594. break;
  595. case 0x014:
  596. dev_priv->fsb_freq = 5333;
  597. break;
  598. case 0x016:
  599. dev_priv->fsb_freq = 5866;
  600. break;
  601. case 0x018:
  602. dev_priv->fsb_freq = 6400;
  603. break;
  604. default:
  605. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  606. csipll & 0x3ff);
  607. dev_priv->fsb_freq = 0;
  608. break;
  609. }
  610. if (dev_priv->fsb_freq == 3200) {
  611. dev_priv->ips.c_m = 0;
  612. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  613. dev_priv->ips.c_m = 1;
  614. } else {
  615. dev_priv->ips.c_m = 2;
  616. }
  617. }
  618. static const struct cxsr_latency cxsr_latency_table[] = {
  619. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  620. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  621. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  622. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  623. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  624. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  625. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  626. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  627. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  628. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  629. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  630. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  631. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  632. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  633. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  634. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  635. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  636. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  637. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  638. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  639. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  640. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  641. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  642. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  643. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  644. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  645. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  646. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  647. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  648. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  649. };
  650. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  651. int is_ddr3,
  652. int fsb,
  653. int mem)
  654. {
  655. const struct cxsr_latency *latency;
  656. int i;
  657. if (fsb == 0 || mem == 0)
  658. return NULL;
  659. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  660. latency = &cxsr_latency_table[i];
  661. if (is_desktop == latency->is_desktop &&
  662. is_ddr3 == latency->is_ddr3 &&
  663. fsb == latency->fsb_freq && mem == latency->mem_freq)
  664. return latency;
  665. }
  666. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  667. return NULL;
  668. }
  669. static void pineview_disable_cxsr(struct drm_device *dev)
  670. {
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. /* deactivate cxsr */
  673. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  674. }
  675. /*
  676. * Latency for FIFO fetches is dependent on several factors:
  677. * - memory configuration (speed, channels)
  678. * - chipset
  679. * - current MCH state
  680. * It can be fairly high in some situations, so here we assume a fairly
  681. * pessimal value. It's a tradeoff between extra memory fetches (if we
  682. * set this value too high, the FIFO will fetch frequently to stay full)
  683. * and power consumption (set it too low to save power and we might see
  684. * FIFO underruns and display "flicker").
  685. *
  686. * A value of 5us seems to be a good balance; safe for very low end
  687. * platforms but not overly aggressive on lower latency configs.
  688. */
  689. static const int latency_ns = 5000;
  690. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  691. {
  692. struct drm_i915_private *dev_priv = dev->dev_private;
  693. uint32_t dsparb = I915_READ(DSPARB);
  694. int size;
  695. size = dsparb & 0x7f;
  696. if (plane)
  697. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  698. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  699. plane ? "B" : "A", size);
  700. return size;
  701. }
  702. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  703. {
  704. struct drm_i915_private *dev_priv = dev->dev_private;
  705. uint32_t dsparb = I915_READ(DSPARB);
  706. int size;
  707. size = dsparb & 0x1ff;
  708. if (plane)
  709. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  710. size >>= 1; /* Convert to cachelines */
  711. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  712. plane ? "B" : "A", size);
  713. return size;
  714. }
  715. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  716. {
  717. struct drm_i915_private *dev_priv = dev->dev_private;
  718. uint32_t dsparb = I915_READ(DSPARB);
  719. int size;
  720. size = dsparb & 0x7f;
  721. size >>= 2; /* Convert to cachelines */
  722. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  723. plane ? "B" : "A",
  724. size);
  725. return size;
  726. }
  727. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  728. {
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. uint32_t dsparb = I915_READ(DSPARB);
  731. int size;
  732. size = dsparb & 0x7f;
  733. size >>= 1; /* Convert to cachelines */
  734. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  735. plane ? "B" : "A", size);
  736. return size;
  737. }
  738. /* Pineview has different values for various configs */
  739. static const struct intel_watermark_params pineview_display_wm = {
  740. PINEVIEW_DISPLAY_FIFO,
  741. PINEVIEW_MAX_WM,
  742. PINEVIEW_DFT_WM,
  743. PINEVIEW_GUARD_WM,
  744. PINEVIEW_FIFO_LINE_SIZE
  745. };
  746. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  747. PINEVIEW_DISPLAY_FIFO,
  748. PINEVIEW_MAX_WM,
  749. PINEVIEW_DFT_HPLLOFF_WM,
  750. PINEVIEW_GUARD_WM,
  751. PINEVIEW_FIFO_LINE_SIZE
  752. };
  753. static const struct intel_watermark_params pineview_cursor_wm = {
  754. PINEVIEW_CURSOR_FIFO,
  755. PINEVIEW_CURSOR_MAX_WM,
  756. PINEVIEW_CURSOR_DFT_WM,
  757. PINEVIEW_CURSOR_GUARD_WM,
  758. PINEVIEW_FIFO_LINE_SIZE,
  759. };
  760. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  761. PINEVIEW_CURSOR_FIFO,
  762. PINEVIEW_CURSOR_MAX_WM,
  763. PINEVIEW_CURSOR_DFT_WM,
  764. PINEVIEW_CURSOR_GUARD_WM,
  765. PINEVIEW_FIFO_LINE_SIZE
  766. };
  767. static const struct intel_watermark_params g4x_wm_info = {
  768. G4X_FIFO_SIZE,
  769. G4X_MAX_WM,
  770. G4X_MAX_WM,
  771. 2,
  772. G4X_FIFO_LINE_SIZE,
  773. };
  774. static const struct intel_watermark_params g4x_cursor_wm_info = {
  775. I965_CURSOR_FIFO,
  776. I965_CURSOR_MAX_WM,
  777. I965_CURSOR_DFT_WM,
  778. 2,
  779. G4X_FIFO_LINE_SIZE,
  780. };
  781. static const struct intel_watermark_params valleyview_wm_info = {
  782. VALLEYVIEW_FIFO_SIZE,
  783. VALLEYVIEW_MAX_WM,
  784. VALLEYVIEW_MAX_WM,
  785. 2,
  786. G4X_FIFO_LINE_SIZE,
  787. };
  788. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  789. I965_CURSOR_FIFO,
  790. VALLEYVIEW_CURSOR_MAX_WM,
  791. I965_CURSOR_DFT_WM,
  792. 2,
  793. G4X_FIFO_LINE_SIZE,
  794. };
  795. static const struct intel_watermark_params i965_cursor_wm_info = {
  796. I965_CURSOR_FIFO,
  797. I965_CURSOR_MAX_WM,
  798. I965_CURSOR_DFT_WM,
  799. 2,
  800. I915_FIFO_LINE_SIZE,
  801. };
  802. static const struct intel_watermark_params i945_wm_info = {
  803. I945_FIFO_SIZE,
  804. I915_MAX_WM,
  805. 1,
  806. 2,
  807. I915_FIFO_LINE_SIZE
  808. };
  809. static const struct intel_watermark_params i915_wm_info = {
  810. I915_FIFO_SIZE,
  811. I915_MAX_WM,
  812. 1,
  813. 2,
  814. I915_FIFO_LINE_SIZE
  815. };
  816. static const struct intel_watermark_params i855_wm_info = {
  817. I855GM_FIFO_SIZE,
  818. I915_MAX_WM,
  819. 1,
  820. 2,
  821. I830_FIFO_LINE_SIZE
  822. };
  823. static const struct intel_watermark_params i830_wm_info = {
  824. I830_FIFO_SIZE,
  825. I915_MAX_WM,
  826. 1,
  827. 2,
  828. I830_FIFO_LINE_SIZE
  829. };
  830. static const struct intel_watermark_params ironlake_display_wm_info = {
  831. ILK_DISPLAY_FIFO,
  832. ILK_DISPLAY_MAXWM,
  833. ILK_DISPLAY_DFTWM,
  834. 2,
  835. ILK_FIFO_LINE_SIZE
  836. };
  837. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  838. ILK_CURSOR_FIFO,
  839. ILK_CURSOR_MAXWM,
  840. ILK_CURSOR_DFTWM,
  841. 2,
  842. ILK_FIFO_LINE_SIZE
  843. };
  844. static const struct intel_watermark_params ironlake_display_srwm_info = {
  845. ILK_DISPLAY_SR_FIFO,
  846. ILK_DISPLAY_MAX_SRWM,
  847. ILK_DISPLAY_DFT_SRWM,
  848. 2,
  849. ILK_FIFO_LINE_SIZE
  850. };
  851. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  852. ILK_CURSOR_SR_FIFO,
  853. ILK_CURSOR_MAX_SRWM,
  854. ILK_CURSOR_DFT_SRWM,
  855. 2,
  856. ILK_FIFO_LINE_SIZE
  857. };
  858. static const struct intel_watermark_params sandybridge_display_wm_info = {
  859. SNB_DISPLAY_FIFO,
  860. SNB_DISPLAY_MAXWM,
  861. SNB_DISPLAY_DFTWM,
  862. 2,
  863. SNB_FIFO_LINE_SIZE
  864. };
  865. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  866. SNB_CURSOR_FIFO,
  867. SNB_CURSOR_MAXWM,
  868. SNB_CURSOR_DFTWM,
  869. 2,
  870. SNB_FIFO_LINE_SIZE
  871. };
  872. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  873. SNB_DISPLAY_SR_FIFO,
  874. SNB_DISPLAY_MAX_SRWM,
  875. SNB_DISPLAY_DFT_SRWM,
  876. 2,
  877. SNB_FIFO_LINE_SIZE
  878. };
  879. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  880. SNB_CURSOR_SR_FIFO,
  881. SNB_CURSOR_MAX_SRWM,
  882. SNB_CURSOR_DFT_SRWM,
  883. 2,
  884. SNB_FIFO_LINE_SIZE
  885. };
  886. /**
  887. * intel_calculate_wm - calculate watermark level
  888. * @clock_in_khz: pixel clock
  889. * @wm: chip FIFO params
  890. * @pixel_size: display pixel size
  891. * @latency_ns: memory latency for the platform
  892. *
  893. * Calculate the watermark level (the level at which the display plane will
  894. * start fetching from memory again). Each chip has a different display
  895. * FIFO size and allocation, so the caller needs to figure that out and pass
  896. * in the correct intel_watermark_params structure.
  897. *
  898. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  899. * on the pixel size. When it reaches the watermark level, it'll start
  900. * fetching FIFO line sized based chunks from memory until the FIFO fills
  901. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  902. * will occur, and a display engine hang could result.
  903. */
  904. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  905. const struct intel_watermark_params *wm,
  906. int fifo_size,
  907. int pixel_size,
  908. unsigned long latency_ns)
  909. {
  910. long entries_required, wm_size;
  911. /*
  912. * Note: we need to make sure we don't overflow for various clock &
  913. * latency values.
  914. * clocks go from a few thousand to several hundred thousand.
  915. * latency is usually a few thousand
  916. */
  917. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  918. 1000;
  919. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  920. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  921. wm_size = fifo_size - (entries_required + wm->guard_size);
  922. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  923. /* Don't promote wm_size to unsigned... */
  924. if (wm_size > (long)wm->max_wm)
  925. wm_size = wm->max_wm;
  926. if (wm_size <= 0)
  927. wm_size = wm->default_wm;
  928. return wm_size;
  929. }
  930. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  931. {
  932. struct drm_crtc *crtc, *enabled = NULL;
  933. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  934. if (intel_crtc_active(crtc)) {
  935. if (enabled)
  936. return NULL;
  937. enabled = crtc;
  938. }
  939. }
  940. return enabled;
  941. }
  942. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  943. {
  944. struct drm_device *dev = unused_crtc->dev;
  945. struct drm_i915_private *dev_priv = dev->dev_private;
  946. struct drm_crtc *crtc;
  947. const struct cxsr_latency *latency;
  948. u32 reg;
  949. unsigned long wm;
  950. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  951. dev_priv->fsb_freq, dev_priv->mem_freq);
  952. if (!latency) {
  953. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  954. pineview_disable_cxsr(dev);
  955. return;
  956. }
  957. crtc = single_enabled_crtc(dev);
  958. if (crtc) {
  959. const struct drm_display_mode *adjusted_mode;
  960. int pixel_size = crtc->fb->bits_per_pixel / 8;
  961. int clock;
  962. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  963. clock = adjusted_mode->crtc_clock;
  964. /* Display SR */
  965. wm = intel_calculate_wm(clock, &pineview_display_wm,
  966. pineview_display_wm.fifo_size,
  967. pixel_size, latency->display_sr);
  968. reg = I915_READ(DSPFW1);
  969. reg &= ~DSPFW_SR_MASK;
  970. reg |= wm << DSPFW_SR_SHIFT;
  971. I915_WRITE(DSPFW1, reg);
  972. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  973. /* cursor SR */
  974. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  975. pineview_display_wm.fifo_size,
  976. pixel_size, latency->cursor_sr);
  977. reg = I915_READ(DSPFW3);
  978. reg &= ~DSPFW_CURSOR_SR_MASK;
  979. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  980. I915_WRITE(DSPFW3, reg);
  981. /* Display HPLL off SR */
  982. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  983. pineview_display_hplloff_wm.fifo_size,
  984. pixel_size, latency->display_hpll_disable);
  985. reg = I915_READ(DSPFW3);
  986. reg &= ~DSPFW_HPLL_SR_MASK;
  987. reg |= wm & DSPFW_HPLL_SR_MASK;
  988. I915_WRITE(DSPFW3, reg);
  989. /* cursor HPLL off SR */
  990. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  991. pineview_display_hplloff_wm.fifo_size,
  992. pixel_size, latency->cursor_hpll_disable);
  993. reg = I915_READ(DSPFW3);
  994. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  995. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  996. I915_WRITE(DSPFW3, reg);
  997. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  998. /* activate cxsr */
  999. I915_WRITE(DSPFW3,
  1000. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  1001. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  1002. } else {
  1003. pineview_disable_cxsr(dev);
  1004. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  1005. }
  1006. }
  1007. static bool g4x_compute_wm0(struct drm_device *dev,
  1008. int plane,
  1009. const struct intel_watermark_params *display,
  1010. int display_latency_ns,
  1011. const struct intel_watermark_params *cursor,
  1012. int cursor_latency_ns,
  1013. int *plane_wm,
  1014. int *cursor_wm)
  1015. {
  1016. struct drm_crtc *crtc;
  1017. const struct drm_display_mode *adjusted_mode;
  1018. int htotal, hdisplay, clock, pixel_size;
  1019. int line_time_us, line_count;
  1020. int entries, tlb_miss;
  1021. crtc = intel_get_crtc_for_plane(dev, plane);
  1022. if (!intel_crtc_active(crtc)) {
  1023. *cursor_wm = cursor->guard_size;
  1024. *plane_wm = display->guard_size;
  1025. return false;
  1026. }
  1027. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1028. clock = adjusted_mode->crtc_clock;
  1029. htotal = adjusted_mode->htotal;
  1030. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1031. pixel_size = crtc->fb->bits_per_pixel / 8;
  1032. /* Use the small buffer method to calculate plane watermark */
  1033. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1034. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1035. if (tlb_miss > 0)
  1036. entries += tlb_miss;
  1037. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1038. *plane_wm = entries + display->guard_size;
  1039. if (*plane_wm > (int)display->max_wm)
  1040. *plane_wm = display->max_wm;
  1041. /* Use the large buffer method to calculate cursor watermark */
  1042. line_time_us = ((htotal * 1000) / clock);
  1043. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1044. entries = line_count * 64 * pixel_size;
  1045. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1046. if (tlb_miss > 0)
  1047. entries += tlb_miss;
  1048. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1049. *cursor_wm = entries + cursor->guard_size;
  1050. if (*cursor_wm > (int)cursor->max_wm)
  1051. *cursor_wm = (int)cursor->max_wm;
  1052. return true;
  1053. }
  1054. /*
  1055. * Check the wm result.
  1056. *
  1057. * If any calculated watermark values is larger than the maximum value that
  1058. * can be programmed into the associated watermark register, that watermark
  1059. * must be disabled.
  1060. */
  1061. static bool g4x_check_srwm(struct drm_device *dev,
  1062. int display_wm, int cursor_wm,
  1063. const struct intel_watermark_params *display,
  1064. const struct intel_watermark_params *cursor)
  1065. {
  1066. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1067. display_wm, cursor_wm);
  1068. if (display_wm > display->max_wm) {
  1069. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1070. display_wm, display->max_wm);
  1071. return false;
  1072. }
  1073. if (cursor_wm > cursor->max_wm) {
  1074. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1075. cursor_wm, cursor->max_wm);
  1076. return false;
  1077. }
  1078. if (!(display_wm || cursor_wm)) {
  1079. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1080. return false;
  1081. }
  1082. return true;
  1083. }
  1084. static bool g4x_compute_srwm(struct drm_device *dev,
  1085. int plane,
  1086. int latency_ns,
  1087. const struct intel_watermark_params *display,
  1088. const struct intel_watermark_params *cursor,
  1089. int *display_wm, int *cursor_wm)
  1090. {
  1091. struct drm_crtc *crtc;
  1092. const struct drm_display_mode *adjusted_mode;
  1093. int hdisplay, htotal, pixel_size, clock;
  1094. unsigned long line_time_us;
  1095. int line_count, line_size;
  1096. int small, large;
  1097. int entries;
  1098. if (!latency_ns) {
  1099. *display_wm = *cursor_wm = 0;
  1100. return false;
  1101. }
  1102. crtc = intel_get_crtc_for_plane(dev, plane);
  1103. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1104. clock = adjusted_mode->crtc_clock;
  1105. htotal = adjusted_mode->htotal;
  1106. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1107. pixel_size = crtc->fb->bits_per_pixel / 8;
  1108. line_time_us = (htotal * 1000) / clock;
  1109. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1110. line_size = hdisplay * pixel_size;
  1111. /* Use the minimum of the small and large buffer method for primary */
  1112. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1113. large = line_count * line_size;
  1114. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1115. *display_wm = entries + display->guard_size;
  1116. /* calculate the self-refresh watermark for display cursor */
  1117. entries = line_count * pixel_size * 64;
  1118. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1119. *cursor_wm = entries + cursor->guard_size;
  1120. return g4x_check_srwm(dev,
  1121. *display_wm, *cursor_wm,
  1122. display, cursor);
  1123. }
  1124. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1125. int plane,
  1126. int *plane_prec_mult,
  1127. int *plane_dl,
  1128. int *cursor_prec_mult,
  1129. int *cursor_dl)
  1130. {
  1131. struct drm_crtc *crtc;
  1132. int clock, pixel_size;
  1133. int entries;
  1134. crtc = intel_get_crtc_for_plane(dev, plane);
  1135. if (!intel_crtc_active(crtc))
  1136. return false;
  1137. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1138. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1139. entries = (clock / 1000) * pixel_size;
  1140. *plane_prec_mult = (entries > 256) ?
  1141. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1142. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1143. pixel_size);
  1144. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1145. *cursor_prec_mult = (entries > 256) ?
  1146. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1147. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1148. return true;
  1149. }
  1150. /*
  1151. * Update drain latency registers of memory arbiter
  1152. *
  1153. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1154. * to be programmed. Each plane has a drain latency multiplier and a drain
  1155. * latency value.
  1156. */
  1157. static void vlv_update_drain_latency(struct drm_device *dev)
  1158. {
  1159. struct drm_i915_private *dev_priv = dev->dev_private;
  1160. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1161. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1162. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1163. either 16 or 32 */
  1164. /* For plane A, Cursor A */
  1165. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1166. &cursor_prec_mult, &cursora_dl)) {
  1167. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1168. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1169. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1170. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1171. I915_WRITE(VLV_DDL1, cursora_prec |
  1172. (cursora_dl << DDL_CURSORA_SHIFT) |
  1173. planea_prec | planea_dl);
  1174. }
  1175. /* For plane B, Cursor B */
  1176. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1177. &cursor_prec_mult, &cursorb_dl)) {
  1178. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1179. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1180. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1181. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1182. I915_WRITE(VLV_DDL2, cursorb_prec |
  1183. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1184. planeb_prec | planeb_dl);
  1185. }
  1186. }
  1187. #define single_plane_enabled(mask) is_power_of_2(mask)
  1188. static void valleyview_update_wm(struct drm_crtc *crtc)
  1189. {
  1190. struct drm_device *dev = crtc->dev;
  1191. static const int sr_latency_ns = 12000;
  1192. struct drm_i915_private *dev_priv = dev->dev_private;
  1193. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1194. int plane_sr, cursor_sr;
  1195. int ignore_plane_sr, ignore_cursor_sr;
  1196. unsigned int enabled = 0;
  1197. vlv_update_drain_latency(dev);
  1198. if (g4x_compute_wm0(dev, PIPE_A,
  1199. &valleyview_wm_info, latency_ns,
  1200. &valleyview_cursor_wm_info, latency_ns,
  1201. &planea_wm, &cursora_wm))
  1202. enabled |= 1 << PIPE_A;
  1203. if (g4x_compute_wm0(dev, PIPE_B,
  1204. &valleyview_wm_info, latency_ns,
  1205. &valleyview_cursor_wm_info, latency_ns,
  1206. &planeb_wm, &cursorb_wm))
  1207. enabled |= 1 << PIPE_B;
  1208. if (single_plane_enabled(enabled) &&
  1209. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1210. sr_latency_ns,
  1211. &valleyview_wm_info,
  1212. &valleyview_cursor_wm_info,
  1213. &plane_sr, &ignore_cursor_sr) &&
  1214. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1215. 2*sr_latency_ns,
  1216. &valleyview_wm_info,
  1217. &valleyview_cursor_wm_info,
  1218. &ignore_plane_sr, &cursor_sr)) {
  1219. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1220. } else {
  1221. I915_WRITE(FW_BLC_SELF_VLV,
  1222. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1223. plane_sr = cursor_sr = 0;
  1224. }
  1225. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1226. planea_wm, cursora_wm,
  1227. planeb_wm, cursorb_wm,
  1228. plane_sr, cursor_sr);
  1229. I915_WRITE(DSPFW1,
  1230. (plane_sr << DSPFW_SR_SHIFT) |
  1231. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1232. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1233. planea_wm);
  1234. I915_WRITE(DSPFW2,
  1235. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1236. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1237. I915_WRITE(DSPFW3,
  1238. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1239. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1240. }
  1241. static void g4x_update_wm(struct drm_crtc *crtc)
  1242. {
  1243. struct drm_device *dev = crtc->dev;
  1244. static const int sr_latency_ns = 12000;
  1245. struct drm_i915_private *dev_priv = dev->dev_private;
  1246. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1247. int plane_sr, cursor_sr;
  1248. unsigned int enabled = 0;
  1249. if (g4x_compute_wm0(dev, PIPE_A,
  1250. &g4x_wm_info, latency_ns,
  1251. &g4x_cursor_wm_info, latency_ns,
  1252. &planea_wm, &cursora_wm))
  1253. enabled |= 1 << PIPE_A;
  1254. if (g4x_compute_wm0(dev, PIPE_B,
  1255. &g4x_wm_info, latency_ns,
  1256. &g4x_cursor_wm_info, latency_ns,
  1257. &planeb_wm, &cursorb_wm))
  1258. enabled |= 1 << PIPE_B;
  1259. if (single_plane_enabled(enabled) &&
  1260. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1261. sr_latency_ns,
  1262. &g4x_wm_info,
  1263. &g4x_cursor_wm_info,
  1264. &plane_sr, &cursor_sr)) {
  1265. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1266. } else {
  1267. I915_WRITE(FW_BLC_SELF,
  1268. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1269. plane_sr = cursor_sr = 0;
  1270. }
  1271. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1272. planea_wm, cursora_wm,
  1273. planeb_wm, cursorb_wm,
  1274. plane_sr, cursor_sr);
  1275. I915_WRITE(DSPFW1,
  1276. (plane_sr << DSPFW_SR_SHIFT) |
  1277. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1278. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1279. planea_wm);
  1280. I915_WRITE(DSPFW2,
  1281. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1282. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1283. /* HPLL off in SR has some issues on G4x... disable it */
  1284. I915_WRITE(DSPFW3,
  1285. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1286. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1287. }
  1288. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1289. {
  1290. struct drm_device *dev = unused_crtc->dev;
  1291. struct drm_i915_private *dev_priv = dev->dev_private;
  1292. struct drm_crtc *crtc;
  1293. int srwm = 1;
  1294. int cursor_sr = 16;
  1295. /* Calc sr entries for one plane configs */
  1296. crtc = single_enabled_crtc(dev);
  1297. if (crtc) {
  1298. /* self-refresh has much higher latency */
  1299. static const int sr_latency_ns = 12000;
  1300. const struct drm_display_mode *adjusted_mode =
  1301. &to_intel_crtc(crtc)->config.adjusted_mode;
  1302. int clock = adjusted_mode->crtc_clock;
  1303. int htotal = adjusted_mode->htotal;
  1304. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1305. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1306. unsigned long line_time_us;
  1307. int entries;
  1308. line_time_us = ((htotal * 1000) / clock);
  1309. /* Use ns/us then divide to preserve precision */
  1310. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1311. pixel_size * hdisplay;
  1312. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1313. srwm = I965_FIFO_SIZE - entries;
  1314. if (srwm < 0)
  1315. srwm = 1;
  1316. srwm &= 0x1ff;
  1317. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1318. entries, srwm);
  1319. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1320. pixel_size * 64;
  1321. entries = DIV_ROUND_UP(entries,
  1322. i965_cursor_wm_info.cacheline_size);
  1323. cursor_sr = i965_cursor_wm_info.fifo_size -
  1324. (entries + i965_cursor_wm_info.guard_size);
  1325. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1326. cursor_sr = i965_cursor_wm_info.max_wm;
  1327. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1328. "cursor %d\n", srwm, cursor_sr);
  1329. if (IS_CRESTLINE(dev))
  1330. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1331. } else {
  1332. /* Turn off self refresh if both pipes are enabled */
  1333. if (IS_CRESTLINE(dev))
  1334. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1335. & ~FW_BLC_SELF_EN);
  1336. }
  1337. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1338. srwm);
  1339. /* 965 has limitations... */
  1340. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1341. (8 << 16) | (8 << 8) | (8 << 0));
  1342. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1343. /* update cursor SR watermark */
  1344. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1345. }
  1346. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1347. {
  1348. struct drm_device *dev = unused_crtc->dev;
  1349. struct drm_i915_private *dev_priv = dev->dev_private;
  1350. const struct intel_watermark_params *wm_info;
  1351. uint32_t fwater_lo;
  1352. uint32_t fwater_hi;
  1353. int cwm, srwm = 1;
  1354. int fifo_size;
  1355. int planea_wm, planeb_wm;
  1356. struct drm_crtc *crtc, *enabled = NULL;
  1357. if (IS_I945GM(dev))
  1358. wm_info = &i945_wm_info;
  1359. else if (!IS_GEN2(dev))
  1360. wm_info = &i915_wm_info;
  1361. else
  1362. wm_info = &i855_wm_info;
  1363. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1364. crtc = intel_get_crtc_for_plane(dev, 0);
  1365. if (intel_crtc_active(crtc)) {
  1366. const struct drm_display_mode *adjusted_mode;
  1367. int cpp = crtc->fb->bits_per_pixel / 8;
  1368. if (IS_GEN2(dev))
  1369. cpp = 4;
  1370. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1371. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1372. wm_info, fifo_size, cpp,
  1373. latency_ns);
  1374. enabled = crtc;
  1375. } else
  1376. planea_wm = fifo_size - wm_info->guard_size;
  1377. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1378. crtc = intel_get_crtc_for_plane(dev, 1);
  1379. if (intel_crtc_active(crtc)) {
  1380. const struct drm_display_mode *adjusted_mode;
  1381. int cpp = crtc->fb->bits_per_pixel / 8;
  1382. if (IS_GEN2(dev))
  1383. cpp = 4;
  1384. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1385. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1386. wm_info, fifo_size, cpp,
  1387. latency_ns);
  1388. if (enabled == NULL)
  1389. enabled = crtc;
  1390. else
  1391. enabled = NULL;
  1392. } else
  1393. planeb_wm = fifo_size - wm_info->guard_size;
  1394. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1395. /*
  1396. * Overlay gets an aggressive default since video jitter is bad.
  1397. */
  1398. cwm = 2;
  1399. /* Play safe and disable self-refresh before adjusting watermarks. */
  1400. if (IS_I945G(dev) || IS_I945GM(dev))
  1401. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1402. else if (IS_I915GM(dev))
  1403. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1404. /* Calc sr entries for one plane configs */
  1405. if (HAS_FW_BLC(dev) && enabled) {
  1406. /* self-refresh has much higher latency */
  1407. static const int sr_latency_ns = 6000;
  1408. const struct drm_display_mode *adjusted_mode =
  1409. &to_intel_crtc(enabled)->config.adjusted_mode;
  1410. int clock = adjusted_mode->crtc_clock;
  1411. int htotal = adjusted_mode->htotal;
  1412. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1413. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1414. unsigned long line_time_us;
  1415. int entries;
  1416. line_time_us = (htotal * 1000) / clock;
  1417. /* Use ns/us then divide to preserve precision */
  1418. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1419. pixel_size * hdisplay;
  1420. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1421. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1422. srwm = wm_info->fifo_size - entries;
  1423. if (srwm < 0)
  1424. srwm = 1;
  1425. if (IS_I945G(dev) || IS_I945GM(dev))
  1426. I915_WRITE(FW_BLC_SELF,
  1427. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1428. else if (IS_I915GM(dev))
  1429. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1430. }
  1431. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1432. planea_wm, planeb_wm, cwm, srwm);
  1433. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1434. fwater_hi = (cwm & 0x1f);
  1435. /* Set request length to 8 cachelines per fetch */
  1436. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1437. fwater_hi = fwater_hi | (1 << 8);
  1438. I915_WRITE(FW_BLC, fwater_lo);
  1439. I915_WRITE(FW_BLC2, fwater_hi);
  1440. if (HAS_FW_BLC(dev)) {
  1441. if (enabled) {
  1442. if (IS_I945G(dev) || IS_I945GM(dev))
  1443. I915_WRITE(FW_BLC_SELF,
  1444. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1445. else if (IS_I915GM(dev))
  1446. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1447. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1448. } else
  1449. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1450. }
  1451. }
  1452. static void i830_update_wm(struct drm_crtc *unused_crtc)
  1453. {
  1454. struct drm_device *dev = unused_crtc->dev;
  1455. struct drm_i915_private *dev_priv = dev->dev_private;
  1456. struct drm_crtc *crtc;
  1457. const struct drm_display_mode *adjusted_mode;
  1458. uint32_t fwater_lo;
  1459. int planea_wm;
  1460. crtc = single_enabled_crtc(dev);
  1461. if (crtc == NULL)
  1462. return;
  1463. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1464. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1465. &i830_wm_info,
  1466. dev_priv->display.get_fifo_size(dev, 0),
  1467. 4, latency_ns);
  1468. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1469. fwater_lo |= (3<<8) | planea_wm;
  1470. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1471. I915_WRITE(FW_BLC, fwater_lo);
  1472. }
  1473. /*
  1474. * Check the wm result.
  1475. *
  1476. * If any calculated watermark values is larger than the maximum value that
  1477. * can be programmed into the associated watermark register, that watermark
  1478. * must be disabled.
  1479. */
  1480. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1481. int fbc_wm, int display_wm, int cursor_wm,
  1482. const struct intel_watermark_params *display,
  1483. const struct intel_watermark_params *cursor)
  1484. {
  1485. struct drm_i915_private *dev_priv = dev->dev_private;
  1486. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1487. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1488. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1489. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1490. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1491. /* fbc has it's own way to disable FBC WM */
  1492. I915_WRITE(DISP_ARB_CTL,
  1493. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1494. return false;
  1495. } else if (INTEL_INFO(dev)->gen >= 6) {
  1496. /* enable FBC WM (except on ILK, where it must remain off) */
  1497. I915_WRITE(DISP_ARB_CTL,
  1498. I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
  1499. }
  1500. if (display_wm > display->max_wm) {
  1501. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1502. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1503. return false;
  1504. }
  1505. if (cursor_wm > cursor->max_wm) {
  1506. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1507. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1508. return false;
  1509. }
  1510. if (!(fbc_wm || display_wm || cursor_wm)) {
  1511. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1512. return false;
  1513. }
  1514. return true;
  1515. }
  1516. /*
  1517. * Compute watermark values of WM[1-3],
  1518. */
  1519. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1520. int latency_ns,
  1521. const struct intel_watermark_params *display,
  1522. const struct intel_watermark_params *cursor,
  1523. int *fbc_wm, int *display_wm, int *cursor_wm)
  1524. {
  1525. struct drm_crtc *crtc;
  1526. const struct drm_display_mode *adjusted_mode;
  1527. unsigned long line_time_us;
  1528. int hdisplay, htotal, pixel_size, clock;
  1529. int line_count, line_size;
  1530. int small, large;
  1531. int entries;
  1532. if (!latency_ns) {
  1533. *fbc_wm = *display_wm = *cursor_wm = 0;
  1534. return false;
  1535. }
  1536. crtc = intel_get_crtc_for_plane(dev, plane);
  1537. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1538. clock = adjusted_mode->crtc_clock;
  1539. htotal = adjusted_mode->htotal;
  1540. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1541. pixel_size = crtc->fb->bits_per_pixel / 8;
  1542. line_time_us = (htotal * 1000) / clock;
  1543. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1544. line_size = hdisplay * pixel_size;
  1545. /* Use the minimum of the small and large buffer method for primary */
  1546. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1547. large = line_count * line_size;
  1548. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1549. *display_wm = entries + display->guard_size;
  1550. /*
  1551. * Spec says:
  1552. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1553. */
  1554. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1555. /* calculate the self-refresh watermark for display cursor */
  1556. entries = line_count * pixel_size * 64;
  1557. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1558. *cursor_wm = entries + cursor->guard_size;
  1559. return ironlake_check_srwm(dev, level,
  1560. *fbc_wm, *display_wm, *cursor_wm,
  1561. display, cursor);
  1562. }
  1563. static void ironlake_update_wm(struct drm_crtc *crtc)
  1564. {
  1565. struct drm_device *dev = crtc->dev;
  1566. struct drm_i915_private *dev_priv = dev->dev_private;
  1567. int fbc_wm, plane_wm, cursor_wm;
  1568. unsigned int enabled;
  1569. enabled = 0;
  1570. if (g4x_compute_wm0(dev, PIPE_A,
  1571. &ironlake_display_wm_info,
  1572. dev_priv->wm.pri_latency[0] * 100,
  1573. &ironlake_cursor_wm_info,
  1574. dev_priv->wm.cur_latency[0] * 100,
  1575. &plane_wm, &cursor_wm)) {
  1576. I915_WRITE(WM0_PIPEA_ILK,
  1577. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1578. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1579. " plane %d, " "cursor: %d\n",
  1580. plane_wm, cursor_wm);
  1581. enabled |= 1 << PIPE_A;
  1582. }
  1583. if (g4x_compute_wm0(dev, PIPE_B,
  1584. &ironlake_display_wm_info,
  1585. dev_priv->wm.pri_latency[0] * 100,
  1586. &ironlake_cursor_wm_info,
  1587. dev_priv->wm.cur_latency[0] * 100,
  1588. &plane_wm, &cursor_wm)) {
  1589. I915_WRITE(WM0_PIPEB_ILK,
  1590. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1591. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1592. " plane %d, cursor: %d\n",
  1593. plane_wm, cursor_wm);
  1594. enabled |= 1 << PIPE_B;
  1595. }
  1596. /*
  1597. * Calculate and update the self-refresh watermark only when one
  1598. * display plane is used.
  1599. */
  1600. I915_WRITE(WM3_LP_ILK, 0);
  1601. I915_WRITE(WM2_LP_ILK, 0);
  1602. I915_WRITE(WM1_LP_ILK, 0);
  1603. if (!single_plane_enabled(enabled))
  1604. return;
  1605. enabled = ffs(enabled) - 1;
  1606. /* WM1 */
  1607. if (!ironlake_compute_srwm(dev, 1, enabled,
  1608. dev_priv->wm.pri_latency[1] * 500,
  1609. &ironlake_display_srwm_info,
  1610. &ironlake_cursor_srwm_info,
  1611. &fbc_wm, &plane_wm, &cursor_wm))
  1612. return;
  1613. I915_WRITE(WM1_LP_ILK,
  1614. WM1_LP_SR_EN |
  1615. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1616. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1617. (plane_wm << WM1_LP_SR_SHIFT) |
  1618. cursor_wm);
  1619. /* WM2 */
  1620. if (!ironlake_compute_srwm(dev, 2, enabled,
  1621. dev_priv->wm.pri_latency[2] * 500,
  1622. &ironlake_display_srwm_info,
  1623. &ironlake_cursor_srwm_info,
  1624. &fbc_wm, &plane_wm, &cursor_wm))
  1625. return;
  1626. I915_WRITE(WM2_LP_ILK,
  1627. WM2_LP_EN |
  1628. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1629. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1630. (plane_wm << WM1_LP_SR_SHIFT) |
  1631. cursor_wm);
  1632. /*
  1633. * WM3 is unsupported on ILK, probably because we don't have latency
  1634. * data for that power state
  1635. */
  1636. }
  1637. static void sandybridge_update_wm(struct drm_crtc *crtc)
  1638. {
  1639. struct drm_device *dev = crtc->dev;
  1640. struct drm_i915_private *dev_priv = dev->dev_private;
  1641. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1642. u32 val;
  1643. int fbc_wm, plane_wm, cursor_wm;
  1644. unsigned int enabled;
  1645. enabled = 0;
  1646. if (g4x_compute_wm0(dev, PIPE_A,
  1647. &sandybridge_display_wm_info, latency,
  1648. &sandybridge_cursor_wm_info, latency,
  1649. &plane_wm, &cursor_wm)) {
  1650. val = I915_READ(WM0_PIPEA_ILK);
  1651. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1652. I915_WRITE(WM0_PIPEA_ILK, val |
  1653. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1654. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1655. " plane %d, " "cursor: %d\n",
  1656. plane_wm, cursor_wm);
  1657. enabled |= 1 << PIPE_A;
  1658. }
  1659. if (g4x_compute_wm0(dev, PIPE_B,
  1660. &sandybridge_display_wm_info, latency,
  1661. &sandybridge_cursor_wm_info, latency,
  1662. &plane_wm, &cursor_wm)) {
  1663. val = I915_READ(WM0_PIPEB_ILK);
  1664. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1665. I915_WRITE(WM0_PIPEB_ILK, val |
  1666. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1667. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1668. " plane %d, cursor: %d\n",
  1669. plane_wm, cursor_wm);
  1670. enabled |= 1 << PIPE_B;
  1671. }
  1672. /*
  1673. * Calculate and update the self-refresh watermark only when one
  1674. * display plane is used.
  1675. *
  1676. * SNB support 3 levels of watermark.
  1677. *
  1678. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1679. * and disabled in the descending order
  1680. *
  1681. */
  1682. I915_WRITE(WM3_LP_ILK, 0);
  1683. I915_WRITE(WM2_LP_ILK, 0);
  1684. I915_WRITE(WM1_LP_ILK, 0);
  1685. if (!single_plane_enabled(enabled) ||
  1686. dev_priv->sprite_scaling_enabled)
  1687. return;
  1688. enabled = ffs(enabled) - 1;
  1689. /* WM1 */
  1690. if (!ironlake_compute_srwm(dev, 1, enabled,
  1691. dev_priv->wm.pri_latency[1] * 500,
  1692. &sandybridge_display_srwm_info,
  1693. &sandybridge_cursor_srwm_info,
  1694. &fbc_wm, &plane_wm, &cursor_wm))
  1695. return;
  1696. I915_WRITE(WM1_LP_ILK,
  1697. WM1_LP_SR_EN |
  1698. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1699. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1700. (plane_wm << WM1_LP_SR_SHIFT) |
  1701. cursor_wm);
  1702. /* WM2 */
  1703. if (!ironlake_compute_srwm(dev, 2, enabled,
  1704. dev_priv->wm.pri_latency[2] * 500,
  1705. &sandybridge_display_srwm_info,
  1706. &sandybridge_cursor_srwm_info,
  1707. &fbc_wm, &plane_wm, &cursor_wm))
  1708. return;
  1709. I915_WRITE(WM2_LP_ILK,
  1710. WM2_LP_EN |
  1711. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1712. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1713. (plane_wm << WM1_LP_SR_SHIFT) |
  1714. cursor_wm);
  1715. /* WM3 */
  1716. if (!ironlake_compute_srwm(dev, 3, enabled,
  1717. dev_priv->wm.pri_latency[3] * 500,
  1718. &sandybridge_display_srwm_info,
  1719. &sandybridge_cursor_srwm_info,
  1720. &fbc_wm, &plane_wm, &cursor_wm))
  1721. return;
  1722. I915_WRITE(WM3_LP_ILK,
  1723. WM3_LP_EN |
  1724. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1725. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1726. (plane_wm << WM1_LP_SR_SHIFT) |
  1727. cursor_wm);
  1728. }
  1729. static void ivybridge_update_wm(struct drm_crtc *crtc)
  1730. {
  1731. struct drm_device *dev = crtc->dev;
  1732. struct drm_i915_private *dev_priv = dev->dev_private;
  1733. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1734. u32 val;
  1735. int fbc_wm, plane_wm, cursor_wm;
  1736. int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
  1737. unsigned int enabled;
  1738. enabled = 0;
  1739. if (g4x_compute_wm0(dev, PIPE_A,
  1740. &sandybridge_display_wm_info, latency,
  1741. &sandybridge_cursor_wm_info, latency,
  1742. &plane_wm, &cursor_wm)) {
  1743. val = I915_READ(WM0_PIPEA_ILK);
  1744. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1745. I915_WRITE(WM0_PIPEA_ILK, val |
  1746. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1747. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1748. " plane %d, " "cursor: %d\n",
  1749. plane_wm, cursor_wm);
  1750. enabled |= 1 << PIPE_A;
  1751. }
  1752. if (g4x_compute_wm0(dev, PIPE_B,
  1753. &sandybridge_display_wm_info, latency,
  1754. &sandybridge_cursor_wm_info, latency,
  1755. &plane_wm, &cursor_wm)) {
  1756. val = I915_READ(WM0_PIPEB_ILK);
  1757. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1758. I915_WRITE(WM0_PIPEB_ILK, val |
  1759. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1760. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1761. " plane %d, cursor: %d\n",
  1762. plane_wm, cursor_wm);
  1763. enabled |= 1 << PIPE_B;
  1764. }
  1765. if (g4x_compute_wm0(dev, PIPE_C,
  1766. &sandybridge_display_wm_info, latency,
  1767. &sandybridge_cursor_wm_info, latency,
  1768. &plane_wm, &cursor_wm)) {
  1769. val = I915_READ(WM0_PIPEC_IVB);
  1770. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1771. I915_WRITE(WM0_PIPEC_IVB, val |
  1772. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1773. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1774. " plane %d, cursor: %d\n",
  1775. plane_wm, cursor_wm);
  1776. enabled |= 1 << PIPE_C;
  1777. }
  1778. /*
  1779. * Calculate and update the self-refresh watermark only when one
  1780. * display plane is used.
  1781. *
  1782. * SNB support 3 levels of watermark.
  1783. *
  1784. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1785. * and disabled in the descending order
  1786. *
  1787. */
  1788. I915_WRITE(WM3_LP_ILK, 0);
  1789. I915_WRITE(WM2_LP_ILK, 0);
  1790. I915_WRITE(WM1_LP_ILK, 0);
  1791. if (!single_plane_enabled(enabled) ||
  1792. dev_priv->sprite_scaling_enabled)
  1793. return;
  1794. enabled = ffs(enabled) - 1;
  1795. /* WM1 */
  1796. if (!ironlake_compute_srwm(dev, 1, enabled,
  1797. dev_priv->wm.pri_latency[1] * 500,
  1798. &sandybridge_display_srwm_info,
  1799. &sandybridge_cursor_srwm_info,
  1800. &fbc_wm, &plane_wm, &cursor_wm))
  1801. return;
  1802. I915_WRITE(WM1_LP_ILK,
  1803. WM1_LP_SR_EN |
  1804. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1805. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1806. (plane_wm << WM1_LP_SR_SHIFT) |
  1807. cursor_wm);
  1808. /* WM2 */
  1809. if (!ironlake_compute_srwm(dev, 2, enabled,
  1810. dev_priv->wm.pri_latency[2] * 500,
  1811. &sandybridge_display_srwm_info,
  1812. &sandybridge_cursor_srwm_info,
  1813. &fbc_wm, &plane_wm, &cursor_wm))
  1814. return;
  1815. I915_WRITE(WM2_LP_ILK,
  1816. WM2_LP_EN |
  1817. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1818. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1819. (plane_wm << WM1_LP_SR_SHIFT) |
  1820. cursor_wm);
  1821. /* WM3, note we have to correct the cursor latency */
  1822. if (!ironlake_compute_srwm(dev, 3, enabled,
  1823. dev_priv->wm.pri_latency[3] * 500,
  1824. &sandybridge_display_srwm_info,
  1825. &sandybridge_cursor_srwm_info,
  1826. &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
  1827. !ironlake_compute_srwm(dev, 3, enabled,
  1828. dev_priv->wm.cur_latency[3] * 500,
  1829. &sandybridge_display_srwm_info,
  1830. &sandybridge_cursor_srwm_info,
  1831. &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
  1832. return;
  1833. I915_WRITE(WM3_LP_ILK,
  1834. WM3_LP_EN |
  1835. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1836. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1837. (plane_wm << WM1_LP_SR_SHIFT) |
  1838. cursor_wm);
  1839. }
  1840. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1841. struct drm_crtc *crtc)
  1842. {
  1843. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1844. uint32_t pixel_rate;
  1845. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1846. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1847. * adjust the pixel_rate here. */
  1848. if (intel_crtc->config.pch_pfit.enabled) {
  1849. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1850. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1851. pipe_w = intel_crtc->config.pipe_src_w;
  1852. pipe_h = intel_crtc->config.pipe_src_h;
  1853. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1854. pfit_h = pfit_size & 0xFFFF;
  1855. if (pipe_w < pfit_w)
  1856. pipe_w = pfit_w;
  1857. if (pipe_h < pfit_h)
  1858. pipe_h = pfit_h;
  1859. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1860. pfit_w * pfit_h);
  1861. }
  1862. return pixel_rate;
  1863. }
  1864. /* latency must be in 0.1us units. */
  1865. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1866. uint32_t latency)
  1867. {
  1868. uint64_t ret;
  1869. if (WARN(latency == 0, "Latency value missing\n"))
  1870. return UINT_MAX;
  1871. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1872. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1873. return ret;
  1874. }
  1875. /* latency must be in 0.1us units. */
  1876. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1877. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1878. uint32_t latency)
  1879. {
  1880. uint32_t ret;
  1881. if (WARN(latency == 0, "Latency value missing\n"))
  1882. return UINT_MAX;
  1883. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1884. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1885. ret = DIV_ROUND_UP(ret, 64) + 2;
  1886. return ret;
  1887. }
  1888. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1889. uint8_t bytes_per_pixel)
  1890. {
  1891. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1892. }
  1893. struct hsw_pipe_wm_parameters {
  1894. bool active;
  1895. uint32_t pipe_htotal;
  1896. uint32_t pixel_rate;
  1897. struct intel_plane_wm_parameters pri;
  1898. struct intel_plane_wm_parameters spr;
  1899. struct intel_plane_wm_parameters cur;
  1900. };
  1901. struct hsw_wm_maximums {
  1902. uint16_t pri;
  1903. uint16_t spr;
  1904. uint16_t cur;
  1905. uint16_t fbc;
  1906. };
  1907. /* used in computing the new watermarks state */
  1908. struct intel_wm_config {
  1909. unsigned int num_pipes_active;
  1910. bool sprites_enabled;
  1911. bool sprites_scaled;
  1912. };
  1913. /*
  1914. * For both WM_PIPE and WM_LP.
  1915. * mem_value must be in 0.1us units.
  1916. */
  1917. static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
  1918. uint32_t mem_value,
  1919. bool is_lp)
  1920. {
  1921. uint32_t method1, method2;
  1922. if (!params->active || !params->pri.enabled)
  1923. return 0;
  1924. method1 = ilk_wm_method1(params->pixel_rate,
  1925. params->pri.bytes_per_pixel,
  1926. mem_value);
  1927. if (!is_lp)
  1928. return method1;
  1929. method2 = ilk_wm_method2(params->pixel_rate,
  1930. params->pipe_htotal,
  1931. params->pri.horiz_pixels,
  1932. params->pri.bytes_per_pixel,
  1933. mem_value);
  1934. return min(method1, method2);
  1935. }
  1936. /*
  1937. * For both WM_PIPE and WM_LP.
  1938. * mem_value must be in 0.1us units.
  1939. */
  1940. static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
  1941. uint32_t mem_value)
  1942. {
  1943. uint32_t method1, method2;
  1944. if (!params->active || !params->spr.enabled)
  1945. return 0;
  1946. method1 = ilk_wm_method1(params->pixel_rate,
  1947. params->spr.bytes_per_pixel,
  1948. mem_value);
  1949. method2 = ilk_wm_method2(params->pixel_rate,
  1950. params->pipe_htotal,
  1951. params->spr.horiz_pixels,
  1952. params->spr.bytes_per_pixel,
  1953. mem_value);
  1954. return min(method1, method2);
  1955. }
  1956. /*
  1957. * For both WM_PIPE and WM_LP.
  1958. * mem_value must be in 0.1us units.
  1959. */
  1960. static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
  1961. uint32_t mem_value)
  1962. {
  1963. if (!params->active || !params->cur.enabled)
  1964. return 0;
  1965. return ilk_wm_method2(params->pixel_rate,
  1966. params->pipe_htotal,
  1967. params->cur.horiz_pixels,
  1968. params->cur.bytes_per_pixel,
  1969. mem_value);
  1970. }
  1971. /* Only for WM_LP. */
  1972. static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
  1973. uint32_t pri_val)
  1974. {
  1975. if (!params->active || !params->pri.enabled)
  1976. return 0;
  1977. return ilk_wm_fbc(pri_val,
  1978. params->pri.horiz_pixels,
  1979. params->pri.bytes_per_pixel);
  1980. }
  1981. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1982. {
  1983. if (INTEL_INFO(dev)->gen >= 7)
  1984. return 768;
  1985. else
  1986. return 512;
  1987. }
  1988. /* Calculate the maximum primary/sprite plane watermark */
  1989. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1990. int level,
  1991. const struct intel_wm_config *config,
  1992. enum intel_ddb_partitioning ddb_partitioning,
  1993. bool is_sprite)
  1994. {
  1995. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1996. unsigned int max;
  1997. /* if sprites aren't enabled, sprites get nothing */
  1998. if (is_sprite && !config->sprites_enabled)
  1999. return 0;
  2000. /* HSW allows LP1+ watermarks even with multiple pipes */
  2001. if (level == 0 || config->num_pipes_active > 1) {
  2002. fifo_size /= INTEL_INFO(dev)->num_pipes;
  2003. /*
  2004. * For some reason the non self refresh
  2005. * FIFO size is only half of the self
  2006. * refresh FIFO size on ILK/SNB.
  2007. */
  2008. if (INTEL_INFO(dev)->gen <= 6)
  2009. fifo_size /= 2;
  2010. }
  2011. if (config->sprites_enabled) {
  2012. /* level 0 is always calculated with 1:1 split */
  2013. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  2014. if (is_sprite)
  2015. fifo_size *= 5;
  2016. fifo_size /= 6;
  2017. } else {
  2018. fifo_size /= 2;
  2019. }
  2020. }
  2021. /* clamp to max that the registers can hold */
  2022. if (INTEL_INFO(dev)->gen >= 7)
  2023. /* IVB/HSW primary/sprite plane watermarks */
  2024. max = level == 0 ? 127 : 1023;
  2025. else if (!is_sprite)
  2026. /* ILK/SNB primary plane watermarks */
  2027. max = level == 0 ? 127 : 511;
  2028. else
  2029. /* ILK/SNB sprite plane watermarks */
  2030. max = level == 0 ? 63 : 255;
  2031. return min(fifo_size, max);
  2032. }
  2033. /* Calculate the maximum cursor plane watermark */
  2034. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  2035. int level,
  2036. const struct intel_wm_config *config)
  2037. {
  2038. /* HSW LP1+ watermarks w/ multiple pipes */
  2039. if (level > 0 && config->num_pipes_active > 1)
  2040. return 64;
  2041. /* otherwise just report max that registers can hold */
  2042. if (INTEL_INFO(dev)->gen >= 7)
  2043. return level == 0 ? 63 : 255;
  2044. else
  2045. return level == 0 ? 31 : 63;
  2046. }
  2047. /* Calculate the maximum FBC watermark */
  2048. static unsigned int ilk_fbc_wm_max(void)
  2049. {
  2050. /* max that registers can hold */
  2051. return 15;
  2052. }
  2053. static void ilk_compute_wm_maximums(struct drm_device *dev,
  2054. int level,
  2055. const struct intel_wm_config *config,
  2056. enum intel_ddb_partitioning ddb_partitioning,
  2057. struct hsw_wm_maximums *max)
  2058. {
  2059. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  2060. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  2061. max->cur = ilk_cursor_wm_max(dev, level, config);
  2062. max->fbc = ilk_fbc_wm_max();
  2063. }
  2064. static bool ilk_validate_wm_level(int level,
  2065. const struct hsw_wm_maximums *max,
  2066. struct intel_wm_level *result)
  2067. {
  2068. bool ret;
  2069. /* already determined to be invalid? */
  2070. if (!result->enable)
  2071. return false;
  2072. result->enable = result->pri_val <= max->pri &&
  2073. result->spr_val <= max->spr &&
  2074. result->cur_val <= max->cur;
  2075. ret = result->enable;
  2076. /*
  2077. * HACK until we can pre-compute everything,
  2078. * and thus fail gracefully if LP0 watermarks
  2079. * are exceeded...
  2080. */
  2081. if (level == 0 && !result->enable) {
  2082. if (result->pri_val > max->pri)
  2083. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  2084. level, result->pri_val, max->pri);
  2085. if (result->spr_val > max->spr)
  2086. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  2087. level, result->spr_val, max->spr);
  2088. if (result->cur_val > max->cur)
  2089. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  2090. level, result->cur_val, max->cur);
  2091. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  2092. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  2093. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  2094. result->enable = true;
  2095. }
  2096. return ret;
  2097. }
  2098. static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
  2099. int level,
  2100. const struct hsw_pipe_wm_parameters *p,
  2101. struct intel_wm_level *result)
  2102. {
  2103. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  2104. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  2105. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  2106. /* WM1+ latency values stored in 0.5us units */
  2107. if (level > 0) {
  2108. pri_latency *= 5;
  2109. spr_latency *= 5;
  2110. cur_latency *= 5;
  2111. }
  2112. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  2113. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  2114. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  2115. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  2116. result->enable = true;
  2117. }
  2118. static uint32_t
  2119. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  2120. {
  2121. struct drm_i915_private *dev_priv = dev->dev_private;
  2122. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2123. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  2124. u32 linetime, ips_linetime;
  2125. if (!intel_crtc_active(crtc))
  2126. return 0;
  2127. /* The WM are computed with base on how long it takes to fill a single
  2128. * row at the given clock rate, multiplied by 8.
  2129. * */
  2130. linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
  2131. ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
  2132. intel_ddi_get_cdclk_freq(dev_priv));
  2133. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  2134. PIPE_WM_LINETIME_TIME(linetime);
  2135. }
  2136. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2137. {
  2138. struct drm_i915_private *dev_priv = dev->dev_private;
  2139. if (IS_HASWELL(dev)) {
  2140. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  2141. wm[0] = (sskpd >> 56) & 0xFF;
  2142. if (wm[0] == 0)
  2143. wm[0] = sskpd & 0xF;
  2144. wm[1] = (sskpd >> 4) & 0xFF;
  2145. wm[2] = (sskpd >> 12) & 0xFF;
  2146. wm[3] = (sskpd >> 20) & 0x1FF;
  2147. wm[4] = (sskpd >> 32) & 0x1FF;
  2148. } else if (INTEL_INFO(dev)->gen >= 6) {
  2149. uint32_t sskpd = I915_READ(MCH_SSKPD);
  2150. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  2151. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  2152. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  2153. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  2154. } else if (INTEL_INFO(dev)->gen >= 5) {
  2155. uint32_t mltr = I915_READ(MLTR_ILK);
  2156. /* ILK primary LP0 latency is 700 ns */
  2157. wm[0] = 7;
  2158. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  2159. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  2160. }
  2161. }
  2162. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2163. {
  2164. /* ILK sprite LP0 latency is 1300 ns */
  2165. if (INTEL_INFO(dev)->gen == 5)
  2166. wm[0] = 13;
  2167. }
  2168. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2169. {
  2170. /* ILK cursor LP0 latency is 1300 ns */
  2171. if (INTEL_INFO(dev)->gen == 5)
  2172. wm[0] = 13;
  2173. /* WaDoubleCursorLP3Latency:ivb */
  2174. if (IS_IVYBRIDGE(dev))
  2175. wm[3] *= 2;
  2176. }
  2177. static int ilk_wm_max_level(const struct drm_device *dev)
  2178. {
  2179. /* how many WM levels are we expecting */
  2180. if (IS_HASWELL(dev))
  2181. return 4;
  2182. else if (INTEL_INFO(dev)->gen >= 6)
  2183. return 3;
  2184. else
  2185. return 2;
  2186. }
  2187. static void intel_print_wm_latency(struct drm_device *dev,
  2188. const char *name,
  2189. const uint16_t wm[5])
  2190. {
  2191. int level, max_level = ilk_wm_max_level(dev);
  2192. for (level = 0; level <= max_level; level++) {
  2193. unsigned int latency = wm[level];
  2194. if (latency == 0) {
  2195. DRM_ERROR("%s WM%d latency not provided\n",
  2196. name, level);
  2197. continue;
  2198. }
  2199. /* WM1+ latency values in 0.5us units */
  2200. if (level > 0)
  2201. latency *= 5;
  2202. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  2203. name, level, wm[level],
  2204. latency / 10, latency % 10);
  2205. }
  2206. }
  2207. static void intel_setup_wm_latency(struct drm_device *dev)
  2208. {
  2209. struct drm_i915_private *dev_priv = dev->dev_private;
  2210. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  2211. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2212. sizeof(dev_priv->wm.pri_latency));
  2213. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2214. sizeof(dev_priv->wm.pri_latency));
  2215. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  2216. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  2217. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2218. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2219. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2220. }
  2221. static void hsw_compute_wm_parameters(struct drm_crtc *crtc,
  2222. struct hsw_pipe_wm_parameters *p,
  2223. struct intel_wm_config *config)
  2224. {
  2225. struct drm_device *dev = crtc->dev;
  2226. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2227. enum pipe pipe = intel_crtc->pipe;
  2228. struct drm_plane *plane;
  2229. p->active = intel_crtc_active(crtc);
  2230. if (p->active) {
  2231. p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
  2232. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  2233. p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
  2234. p->cur.bytes_per_pixel = 4;
  2235. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  2236. p->cur.horiz_pixels = 64;
  2237. /* TODO: for now, assume primary and cursor planes are always enabled. */
  2238. p->pri.enabled = true;
  2239. p->cur.enabled = true;
  2240. }
  2241. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2242. config->num_pipes_active += intel_crtc_active(crtc);
  2243. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2244. struct intel_plane *intel_plane = to_intel_plane(plane);
  2245. if (intel_plane->pipe == pipe)
  2246. p->spr = intel_plane->wm;
  2247. config->sprites_enabled |= intel_plane->wm.enabled;
  2248. config->sprites_scaled |= intel_plane->wm.scaled;
  2249. }
  2250. }
  2251. /* Compute new watermarks for the pipe */
  2252. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  2253. const struct hsw_pipe_wm_parameters *params,
  2254. struct intel_pipe_wm *pipe_wm)
  2255. {
  2256. struct drm_device *dev = crtc->dev;
  2257. struct drm_i915_private *dev_priv = dev->dev_private;
  2258. int level, max_level = ilk_wm_max_level(dev);
  2259. /* LP0 watermark maximums depend on this pipe alone */
  2260. struct intel_wm_config config = {
  2261. .num_pipes_active = 1,
  2262. .sprites_enabled = params->spr.enabled,
  2263. .sprites_scaled = params->spr.scaled,
  2264. };
  2265. struct hsw_wm_maximums max;
  2266. /* LP0 watermarks always use 1/2 DDB partitioning */
  2267. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2268. for (level = 0; level <= max_level; level++)
  2269. ilk_compute_wm_level(dev_priv, level, params,
  2270. &pipe_wm->wm[level]);
  2271. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  2272. /* At least LP0 must be valid */
  2273. return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
  2274. }
  2275. /*
  2276. * Merge the watermarks from all active pipes for a specific level.
  2277. */
  2278. static void ilk_merge_wm_level(struct drm_device *dev,
  2279. int level,
  2280. struct intel_wm_level *ret_wm)
  2281. {
  2282. const struct intel_crtc *intel_crtc;
  2283. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  2284. const struct intel_wm_level *wm =
  2285. &intel_crtc->wm.active.wm[level];
  2286. if (!wm->enable)
  2287. return;
  2288. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2289. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2290. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2291. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2292. }
  2293. ret_wm->enable = true;
  2294. }
  2295. /*
  2296. * Merge all low power watermarks for all active pipes.
  2297. */
  2298. static void ilk_wm_merge(struct drm_device *dev,
  2299. const struct hsw_wm_maximums *max,
  2300. struct intel_pipe_wm *merged)
  2301. {
  2302. int level, max_level = ilk_wm_max_level(dev);
  2303. merged->fbc_wm_enabled = true;
  2304. /* merge each WM1+ level */
  2305. for (level = 1; level <= max_level; level++) {
  2306. struct intel_wm_level *wm = &merged->wm[level];
  2307. ilk_merge_wm_level(dev, level, wm);
  2308. if (!ilk_validate_wm_level(level, max, wm))
  2309. break;
  2310. /*
  2311. * The spec says it is preferred to disable
  2312. * FBC WMs instead of disabling a WM level.
  2313. */
  2314. if (wm->fbc_val > max->fbc) {
  2315. merged->fbc_wm_enabled = false;
  2316. wm->fbc_val = 0;
  2317. }
  2318. }
  2319. }
  2320. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2321. {
  2322. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2323. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2324. }
  2325. static void hsw_compute_wm_results(struct drm_device *dev,
  2326. const struct intel_pipe_wm *merged,
  2327. enum intel_ddb_partitioning partitioning,
  2328. struct hsw_wm_values *results)
  2329. {
  2330. struct intel_crtc *intel_crtc;
  2331. int level, wm_lp;
  2332. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2333. results->partitioning = partitioning;
  2334. /* LP1+ register values */
  2335. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2336. const struct intel_wm_level *r;
  2337. level = ilk_wm_lp_to_level(wm_lp, merged);
  2338. r = &merged->wm[level];
  2339. if (!r->enable)
  2340. break;
  2341. results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
  2342. r->fbc_val,
  2343. r->pri_val,
  2344. r->cur_val);
  2345. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2346. }
  2347. /* LP0 register values */
  2348. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  2349. enum pipe pipe = intel_crtc->pipe;
  2350. const struct intel_wm_level *r =
  2351. &intel_crtc->wm.active.wm[0];
  2352. if (WARN_ON(!r->enable))
  2353. continue;
  2354. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2355. results->wm_pipe[pipe] =
  2356. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2357. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2358. r->cur_val;
  2359. }
  2360. }
  2361. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2362. * case both are at the same level. Prefer r1 in case they're the same. */
  2363. static struct intel_pipe_wm *hsw_find_best_result(struct drm_device *dev,
  2364. struct intel_pipe_wm *r1,
  2365. struct intel_pipe_wm *r2)
  2366. {
  2367. int level, max_level = ilk_wm_max_level(dev);
  2368. int level1 = 0, level2 = 0;
  2369. for (level = 1; level <= max_level; level++) {
  2370. if (r1->wm[level].enable)
  2371. level1 = level;
  2372. if (r2->wm[level].enable)
  2373. level2 = level;
  2374. }
  2375. if (level1 == level2) {
  2376. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2377. return r2;
  2378. else
  2379. return r1;
  2380. } else if (level1 > level2) {
  2381. return r1;
  2382. } else {
  2383. return r2;
  2384. }
  2385. }
  2386. /* dirty bits used to track which watermarks need changes */
  2387. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2388. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2389. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2390. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2391. #define WM_DIRTY_FBC (1 << 24)
  2392. #define WM_DIRTY_DDB (1 << 25)
  2393. static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
  2394. const struct hsw_wm_values *old,
  2395. const struct hsw_wm_values *new)
  2396. {
  2397. unsigned int dirty = 0;
  2398. enum pipe pipe;
  2399. int wm_lp;
  2400. for_each_pipe(pipe) {
  2401. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2402. dirty |= WM_DIRTY_LINETIME(pipe);
  2403. /* Must disable LP1+ watermarks too */
  2404. dirty |= WM_DIRTY_LP_ALL;
  2405. }
  2406. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2407. dirty |= WM_DIRTY_PIPE(pipe);
  2408. /* Must disable LP1+ watermarks too */
  2409. dirty |= WM_DIRTY_LP_ALL;
  2410. }
  2411. }
  2412. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2413. dirty |= WM_DIRTY_FBC;
  2414. /* Must disable LP1+ watermarks too */
  2415. dirty |= WM_DIRTY_LP_ALL;
  2416. }
  2417. if (old->partitioning != new->partitioning) {
  2418. dirty |= WM_DIRTY_DDB;
  2419. /* Must disable LP1+ watermarks too */
  2420. dirty |= WM_DIRTY_LP_ALL;
  2421. }
  2422. /* LP1+ watermarks already deemed dirty, no need to continue */
  2423. if (dirty & WM_DIRTY_LP_ALL)
  2424. return dirty;
  2425. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2426. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2427. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2428. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2429. break;
  2430. }
  2431. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2432. for (; wm_lp <= 3; wm_lp++)
  2433. dirty |= WM_DIRTY_LP(wm_lp);
  2434. return dirty;
  2435. }
  2436. /*
  2437. * The spec says we shouldn't write when we don't need, because every write
  2438. * causes WMs to be re-evaluated, expending some power.
  2439. */
  2440. static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
  2441. struct hsw_wm_values *results)
  2442. {
  2443. struct hsw_wm_values *previous = &dev_priv->wm.hw;
  2444. unsigned int dirty;
  2445. uint32_t val;
  2446. dirty = ilk_compute_wm_dirty(dev_priv->dev, previous, results);
  2447. if (!dirty)
  2448. return;
  2449. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != 0)
  2450. I915_WRITE(WM3_LP_ILK, 0);
  2451. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != 0)
  2452. I915_WRITE(WM2_LP_ILK, 0);
  2453. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != 0)
  2454. I915_WRITE(WM1_LP_ILK, 0);
  2455. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2456. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2457. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2458. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2459. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2460. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2461. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2462. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2463. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2464. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2465. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2466. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2467. if (dirty & WM_DIRTY_DDB) {
  2468. val = I915_READ(WM_MISC);
  2469. if (results->partitioning == INTEL_DDB_PART_1_2)
  2470. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2471. else
  2472. val |= WM_MISC_DATA_PARTITION_5_6;
  2473. I915_WRITE(WM_MISC, val);
  2474. }
  2475. if (dirty & WM_DIRTY_FBC) {
  2476. val = I915_READ(DISP_ARB_CTL);
  2477. if (results->enable_fbc_wm)
  2478. val &= ~DISP_FBC_WM_DIS;
  2479. else
  2480. val |= DISP_FBC_WM_DIS;
  2481. I915_WRITE(DISP_ARB_CTL, val);
  2482. }
  2483. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2484. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2485. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2486. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2487. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2488. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2489. if (dirty & WM_DIRTY_LP(1) && results->wm_lp[0] != 0)
  2490. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2491. if (dirty & WM_DIRTY_LP(2) && results->wm_lp[1] != 0)
  2492. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2493. if (dirty & WM_DIRTY_LP(3) && results->wm_lp[2] != 0)
  2494. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2495. dev_priv->wm.hw = *results;
  2496. }
  2497. static void haswell_update_wm(struct drm_crtc *crtc)
  2498. {
  2499. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2500. struct drm_device *dev = crtc->dev;
  2501. struct drm_i915_private *dev_priv = dev->dev_private;
  2502. struct hsw_wm_maximums max;
  2503. struct hsw_pipe_wm_parameters params = {};
  2504. struct hsw_wm_values results = {};
  2505. enum intel_ddb_partitioning partitioning;
  2506. struct intel_pipe_wm pipe_wm = {};
  2507. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2508. struct intel_wm_config config = {};
  2509. hsw_compute_wm_parameters(crtc, &params, &config);
  2510. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2511. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2512. return;
  2513. intel_crtc->wm.active = pipe_wm;
  2514. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2515. ilk_wm_merge(dev, &max, &lp_wm_1_2);
  2516. /* 5/6 split only in single pipe config on IVB+ */
  2517. if (INTEL_INFO(dev)->gen >= 7 && config.num_pipes_active == 1) {
  2518. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2519. ilk_wm_merge(dev, &max, &lp_wm_5_6);
  2520. best_lp_wm = hsw_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2521. } else {
  2522. best_lp_wm = &lp_wm_1_2;
  2523. }
  2524. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2525. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2526. hsw_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2527. hsw_write_wm_values(dev_priv, &results);
  2528. }
  2529. static void haswell_update_sprite_wm(struct drm_plane *plane,
  2530. struct drm_crtc *crtc,
  2531. uint32_t sprite_width, int pixel_size,
  2532. bool enabled, bool scaled)
  2533. {
  2534. struct intel_plane *intel_plane = to_intel_plane(plane);
  2535. intel_plane->wm.enabled = enabled;
  2536. intel_plane->wm.scaled = scaled;
  2537. intel_plane->wm.horiz_pixels = sprite_width;
  2538. intel_plane->wm.bytes_per_pixel = pixel_size;
  2539. haswell_update_wm(crtc);
  2540. }
  2541. static bool
  2542. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  2543. uint32_t sprite_width, int pixel_size,
  2544. const struct intel_watermark_params *display,
  2545. int display_latency_ns, int *sprite_wm)
  2546. {
  2547. struct drm_crtc *crtc;
  2548. int clock;
  2549. int entries, tlb_miss;
  2550. crtc = intel_get_crtc_for_plane(dev, plane);
  2551. if (!intel_crtc_active(crtc)) {
  2552. *sprite_wm = display->guard_size;
  2553. return false;
  2554. }
  2555. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2556. /* Use the small buffer method to calculate the sprite watermark */
  2557. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  2558. tlb_miss = display->fifo_size*display->cacheline_size -
  2559. sprite_width * 8;
  2560. if (tlb_miss > 0)
  2561. entries += tlb_miss;
  2562. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  2563. *sprite_wm = entries + display->guard_size;
  2564. if (*sprite_wm > (int)display->max_wm)
  2565. *sprite_wm = display->max_wm;
  2566. return true;
  2567. }
  2568. static bool
  2569. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  2570. uint32_t sprite_width, int pixel_size,
  2571. const struct intel_watermark_params *display,
  2572. int latency_ns, int *sprite_wm)
  2573. {
  2574. struct drm_crtc *crtc;
  2575. unsigned long line_time_us;
  2576. int clock;
  2577. int line_count, line_size;
  2578. int small, large;
  2579. int entries;
  2580. if (!latency_ns) {
  2581. *sprite_wm = 0;
  2582. return false;
  2583. }
  2584. crtc = intel_get_crtc_for_plane(dev, plane);
  2585. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2586. if (!clock) {
  2587. *sprite_wm = 0;
  2588. return false;
  2589. }
  2590. line_time_us = (sprite_width * 1000) / clock;
  2591. if (!line_time_us) {
  2592. *sprite_wm = 0;
  2593. return false;
  2594. }
  2595. line_count = (latency_ns / line_time_us + 1000) / 1000;
  2596. line_size = sprite_width * pixel_size;
  2597. /* Use the minimum of the small and large buffer method for primary */
  2598. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  2599. large = line_count * line_size;
  2600. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  2601. *sprite_wm = entries + display->guard_size;
  2602. return *sprite_wm > 0x3ff ? false : true;
  2603. }
  2604. static void sandybridge_update_sprite_wm(struct drm_plane *plane,
  2605. struct drm_crtc *crtc,
  2606. uint32_t sprite_width, int pixel_size,
  2607. bool enabled, bool scaled)
  2608. {
  2609. struct drm_device *dev = plane->dev;
  2610. struct drm_i915_private *dev_priv = dev->dev_private;
  2611. int pipe = to_intel_plane(plane)->pipe;
  2612. int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
  2613. u32 val;
  2614. int sprite_wm, reg;
  2615. int ret;
  2616. if (!enabled)
  2617. return;
  2618. switch (pipe) {
  2619. case 0:
  2620. reg = WM0_PIPEA_ILK;
  2621. break;
  2622. case 1:
  2623. reg = WM0_PIPEB_ILK;
  2624. break;
  2625. case 2:
  2626. reg = WM0_PIPEC_IVB;
  2627. break;
  2628. default:
  2629. return; /* bad pipe */
  2630. }
  2631. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  2632. &sandybridge_display_wm_info,
  2633. latency, &sprite_wm);
  2634. if (!ret) {
  2635. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
  2636. pipe_name(pipe));
  2637. return;
  2638. }
  2639. val = I915_READ(reg);
  2640. val &= ~WM0_PIPE_SPRITE_MASK;
  2641. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  2642. DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
  2643. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2644. pixel_size,
  2645. &sandybridge_display_srwm_info,
  2646. dev_priv->wm.spr_latency[1] * 500,
  2647. &sprite_wm);
  2648. if (!ret) {
  2649. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
  2650. pipe_name(pipe));
  2651. return;
  2652. }
  2653. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  2654. /* Only IVB has two more LP watermarks for sprite */
  2655. if (!IS_IVYBRIDGE(dev))
  2656. return;
  2657. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2658. pixel_size,
  2659. &sandybridge_display_srwm_info,
  2660. dev_priv->wm.spr_latency[2] * 500,
  2661. &sprite_wm);
  2662. if (!ret) {
  2663. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
  2664. pipe_name(pipe));
  2665. return;
  2666. }
  2667. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  2668. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2669. pixel_size,
  2670. &sandybridge_display_srwm_info,
  2671. dev_priv->wm.spr_latency[3] * 500,
  2672. &sprite_wm);
  2673. if (!ret) {
  2674. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
  2675. pipe_name(pipe));
  2676. return;
  2677. }
  2678. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  2679. }
  2680. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2681. {
  2682. struct drm_device *dev = crtc->dev;
  2683. struct drm_i915_private *dev_priv = dev->dev_private;
  2684. struct hsw_wm_values *hw = &dev_priv->wm.hw;
  2685. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2686. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2687. enum pipe pipe = intel_crtc->pipe;
  2688. static const unsigned int wm0_pipe_reg[] = {
  2689. [PIPE_A] = WM0_PIPEA_ILK,
  2690. [PIPE_B] = WM0_PIPEB_ILK,
  2691. [PIPE_C] = WM0_PIPEC_IVB,
  2692. };
  2693. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  2694. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2695. if (intel_crtc_active(crtc)) {
  2696. u32 tmp = hw->wm_pipe[pipe];
  2697. /*
  2698. * For active pipes LP0 watermark is marked as
  2699. * enabled, and LP1+ watermaks as disabled since
  2700. * we can't really reverse compute them in case
  2701. * multiple pipes are active.
  2702. */
  2703. active->wm[0].enable = true;
  2704. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  2705. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  2706. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  2707. active->linetime = hw->wm_linetime[pipe];
  2708. } else {
  2709. int level, max_level = ilk_wm_max_level(dev);
  2710. /*
  2711. * For inactive pipes, all watermark levels
  2712. * should be marked as enabled but zeroed,
  2713. * which is what we'd compute them to.
  2714. */
  2715. for (level = 0; level <= max_level; level++)
  2716. active->wm[level].enable = true;
  2717. }
  2718. }
  2719. void ilk_wm_get_hw_state(struct drm_device *dev)
  2720. {
  2721. struct drm_i915_private *dev_priv = dev->dev_private;
  2722. struct hsw_wm_values *hw = &dev_priv->wm.hw;
  2723. struct drm_crtc *crtc;
  2724. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2725. ilk_pipe_wm_get_hw_state(crtc);
  2726. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  2727. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  2728. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  2729. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2730. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2731. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2732. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2733. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2734. hw->enable_fbc_wm =
  2735. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2736. }
  2737. /**
  2738. * intel_update_watermarks - update FIFO watermark values based on current modes
  2739. *
  2740. * Calculate watermark values for the various WM regs based on current mode
  2741. * and plane configuration.
  2742. *
  2743. * There are several cases to deal with here:
  2744. * - normal (i.e. non-self-refresh)
  2745. * - self-refresh (SR) mode
  2746. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2747. * - lines are small relative to FIFO size (buffer can hold more than 2
  2748. * lines), so need to account for TLB latency
  2749. *
  2750. * The normal calculation is:
  2751. * watermark = dotclock * bytes per pixel * latency
  2752. * where latency is platform & configuration dependent (we assume pessimal
  2753. * values here).
  2754. *
  2755. * The SR calculation is:
  2756. * watermark = (trunc(latency/line time)+1) * surface width *
  2757. * bytes per pixel
  2758. * where
  2759. * line time = htotal / dotclock
  2760. * surface width = hdisplay for normal plane and 64 for cursor
  2761. * and latency is assumed to be high, as above.
  2762. *
  2763. * The final value programmed to the register should always be rounded up,
  2764. * and include an extra 2 entries to account for clock crossings.
  2765. *
  2766. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2767. * to set the non-SR watermarks to 8.
  2768. */
  2769. void intel_update_watermarks(struct drm_crtc *crtc)
  2770. {
  2771. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2772. if (dev_priv->display.update_wm)
  2773. dev_priv->display.update_wm(crtc);
  2774. }
  2775. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2776. struct drm_crtc *crtc,
  2777. uint32_t sprite_width, int pixel_size,
  2778. bool enabled, bool scaled)
  2779. {
  2780. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2781. if (dev_priv->display.update_sprite_wm)
  2782. dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
  2783. pixel_size, enabled, scaled);
  2784. }
  2785. static struct drm_i915_gem_object *
  2786. intel_alloc_context_page(struct drm_device *dev)
  2787. {
  2788. struct drm_i915_gem_object *ctx;
  2789. int ret;
  2790. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2791. ctx = i915_gem_alloc_object(dev, 4096);
  2792. if (!ctx) {
  2793. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2794. return NULL;
  2795. }
  2796. ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
  2797. if (ret) {
  2798. DRM_ERROR("failed to pin power context: %d\n", ret);
  2799. goto err_unref;
  2800. }
  2801. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2802. if (ret) {
  2803. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2804. goto err_unpin;
  2805. }
  2806. return ctx;
  2807. err_unpin:
  2808. i915_gem_object_unpin(ctx);
  2809. err_unref:
  2810. drm_gem_object_unreference(&ctx->base);
  2811. return NULL;
  2812. }
  2813. /**
  2814. * Lock protecting IPS related data structures
  2815. */
  2816. DEFINE_SPINLOCK(mchdev_lock);
  2817. /* Global for IPS driver to get at the current i915 device. Protected by
  2818. * mchdev_lock. */
  2819. static struct drm_i915_private *i915_mch_dev;
  2820. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2821. {
  2822. struct drm_i915_private *dev_priv = dev->dev_private;
  2823. u16 rgvswctl;
  2824. assert_spin_locked(&mchdev_lock);
  2825. rgvswctl = I915_READ16(MEMSWCTL);
  2826. if (rgvswctl & MEMCTL_CMD_STS) {
  2827. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2828. return false; /* still busy with another command */
  2829. }
  2830. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2831. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2832. I915_WRITE16(MEMSWCTL, rgvswctl);
  2833. POSTING_READ16(MEMSWCTL);
  2834. rgvswctl |= MEMCTL_CMD_STS;
  2835. I915_WRITE16(MEMSWCTL, rgvswctl);
  2836. return true;
  2837. }
  2838. static void ironlake_enable_drps(struct drm_device *dev)
  2839. {
  2840. struct drm_i915_private *dev_priv = dev->dev_private;
  2841. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2842. u8 fmax, fmin, fstart, vstart;
  2843. spin_lock_irq(&mchdev_lock);
  2844. /* Enable temp reporting */
  2845. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2846. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2847. /* 100ms RC evaluation intervals */
  2848. I915_WRITE(RCUPEI, 100000);
  2849. I915_WRITE(RCDNEI, 100000);
  2850. /* Set max/min thresholds to 90ms and 80ms respectively */
  2851. I915_WRITE(RCBMAXAVG, 90000);
  2852. I915_WRITE(RCBMINAVG, 80000);
  2853. I915_WRITE(MEMIHYST, 1);
  2854. /* Set up min, max, and cur for interrupt handling */
  2855. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2856. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2857. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2858. MEMMODE_FSTART_SHIFT;
  2859. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2860. PXVFREQ_PX_SHIFT;
  2861. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2862. dev_priv->ips.fstart = fstart;
  2863. dev_priv->ips.max_delay = fstart;
  2864. dev_priv->ips.min_delay = fmin;
  2865. dev_priv->ips.cur_delay = fstart;
  2866. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2867. fmax, fmin, fstart);
  2868. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2869. /*
  2870. * Interrupts will be enabled in ironlake_irq_postinstall
  2871. */
  2872. I915_WRITE(VIDSTART, vstart);
  2873. POSTING_READ(VIDSTART);
  2874. rgvmodectl |= MEMMODE_SWMODE_EN;
  2875. I915_WRITE(MEMMODECTL, rgvmodectl);
  2876. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2877. DRM_ERROR("stuck trying to change perf mode\n");
  2878. mdelay(1);
  2879. ironlake_set_drps(dev, fstart);
  2880. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2881. I915_READ(0x112e0);
  2882. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2883. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2884. getrawmonotonic(&dev_priv->ips.last_time2);
  2885. spin_unlock_irq(&mchdev_lock);
  2886. }
  2887. static void ironlake_disable_drps(struct drm_device *dev)
  2888. {
  2889. struct drm_i915_private *dev_priv = dev->dev_private;
  2890. u16 rgvswctl;
  2891. spin_lock_irq(&mchdev_lock);
  2892. rgvswctl = I915_READ16(MEMSWCTL);
  2893. /* Ack interrupts, disable EFC interrupt */
  2894. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2895. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2896. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2897. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2898. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2899. /* Go back to the starting frequency */
  2900. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2901. mdelay(1);
  2902. rgvswctl |= MEMCTL_CMD_STS;
  2903. I915_WRITE(MEMSWCTL, rgvswctl);
  2904. mdelay(1);
  2905. spin_unlock_irq(&mchdev_lock);
  2906. }
  2907. /* There's a funny hw issue where the hw returns all 0 when reading from
  2908. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2909. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2910. * all limits and the gpu stuck at whatever frequency it is at atm).
  2911. */
  2912. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
  2913. {
  2914. u32 limits;
  2915. limits = 0;
  2916. if (*val >= dev_priv->rps.max_delay)
  2917. *val = dev_priv->rps.max_delay;
  2918. limits |= dev_priv->rps.max_delay << 24;
  2919. /* Only set the down limit when we've reached the lowest level to avoid
  2920. * getting more interrupts, otherwise leave this clear. This prevents a
  2921. * race in the hw when coming out of rc6: There's a tiny window where
  2922. * the hw runs at the minimal clock before selecting the desired
  2923. * frequency, if the down threshold expires in that window we will not
  2924. * receive a down interrupt. */
  2925. if (*val <= dev_priv->rps.min_delay) {
  2926. *val = dev_priv->rps.min_delay;
  2927. limits |= dev_priv->rps.min_delay << 16;
  2928. }
  2929. return limits;
  2930. }
  2931. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2932. {
  2933. int new_power;
  2934. new_power = dev_priv->rps.power;
  2935. switch (dev_priv->rps.power) {
  2936. case LOW_POWER:
  2937. if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
  2938. new_power = BETWEEN;
  2939. break;
  2940. case BETWEEN:
  2941. if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
  2942. new_power = LOW_POWER;
  2943. else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
  2944. new_power = HIGH_POWER;
  2945. break;
  2946. case HIGH_POWER:
  2947. if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
  2948. new_power = BETWEEN;
  2949. break;
  2950. }
  2951. /* Max/min bins are special */
  2952. if (val == dev_priv->rps.min_delay)
  2953. new_power = LOW_POWER;
  2954. if (val == dev_priv->rps.max_delay)
  2955. new_power = HIGH_POWER;
  2956. if (new_power == dev_priv->rps.power)
  2957. return;
  2958. /* Note the units here are not exactly 1us, but 1280ns. */
  2959. switch (new_power) {
  2960. case LOW_POWER:
  2961. /* Upclock if more than 95% busy over 16ms */
  2962. I915_WRITE(GEN6_RP_UP_EI, 12500);
  2963. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  2964. /* Downclock if less than 85% busy over 32ms */
  2965. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2966. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  2967. I915_WRITE(GEN6_RP_CONTROL,
  2968. GEN6_RP_MEDIA_TURBO |
  2969. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2970. GEN6_RP_MEDIA_IS_GFX |
  2971. GEN6_RP_ENABLE |
  2972. GEN6_RP_UP_BUSY_AVG |
  2973. GEN6_RP_DOWN_IDLE_AVG);
  2974. break;
  2975. case BETWEEN:
  2976. /* Upclock if more than 90% busy over 13ms */
  2977. I915_WRITE(GEN6_RP_UP_EI, 10250);
  2978. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  2979. /* Downclock if less than 75% busy over 32ms */
  2980. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2981. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  2982. I915_WRITE(GEN6_RP_CONTROL,
  2983. GEN6_RP_MEDIA_TURBO |
  2984. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2985. GEN6_RP_MEDIA_IS_GFX |
  2986. GEN6_RP_ENABLE |
  2987. GEN6_RP_UP_BUSY_AVG |
  2988. GEN6_RP_DOWN_IDLE_AVG);
  2989. break;
  2990. case HIGH_POWER:
  2991. /* Upclock if more than 85% busy over 10ms */
  2992. I915_WRITE(GEN6_RP_UP_EI, 8000);
  2993. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  2994. /* Downclock if less than 60% busy over 32ms */
  2995. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2996. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  2997. I915_WRITE(GEN6_RP_CONTROL,
  2998. GEN6_RP_MEDIA_TURBO |
  2999. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3000. GEN6_RP_MEDIA_IS_GFX |
  3001. GEN6_RP_ENABLE |
  3002. GEN6_RP_UP_BUSY_AVG |
  3003. GEN6_RP_DOWN_IDLE_AVG);
  3004. break;
  3005. }
  3006. dev_priv->rps.power = new_power;
  3007. dev_priv->rps.last_adj = 0;
  3008. }
  3009. void gen6_set_rps(struct drm_device *dev, u8 val)
  3010. {
  3011. struct drm_i915_private *dev_priv = dev->dev_private;
  3012. u32 limits = gen6_rps_limits(dev_priv, &val);
  3013. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3014. WARN_ON(val > dev_priv->rps.max_delay);
  3015. WARN_ON(val < dev_priv->rps.min_delay);
  3016. if (val == dev_priv->rps.cur_delay)
  3017. return;
  3018. gen6_set_rps_thresholds(dev_priv, val);
  3019. if (IS_HASWELL(dev))
  3020. I915_WRITE(GEN6_RPNSWREQ,
  3021. HSW_FREQUENCY(val));
  3022. else
  3023. I915_WRITE(GEN6_RPNSWREQ,
  3024. GEN6_FREQUENCY(val) |
  3025. GEN6_OFFSET(0) |
  3026. GEN6_AGGRESSIVE_TURBO);
  3027. /* Make sure we continue to get interrupts
  3028. * until we hit the minimum or maximum frequencies.
  3029. */
  3030. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  3031. POSTING_READ(GEN6_RPNSWREQ);
  3032. dev_priv->rps.cur_delay = val;
  3033. trace_intel_gpu_freq_change(val * 50);
  3034. }
  3035. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  3036. {
  3037. mutex_lock(&dev_priv->rps.hw_lock);
  3038. if (dev_priv->rps.enabled) {
  3039. if (dev_priv->info->is_valleyview)
  3040. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3041. else
  3042. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3043. dev_priv->rps.last_adj = 0;
  3044. }
  3045. mutex_unlock(&dev_priv->rps.hw_lock);
  3046. }
  3047. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  3048. {
  3049. mutex_lock(&dev_priv->rps.hw_lock);
  3050. if (dev_priv->rps.enabled) {
  3051. if (dev_priv->info->is_valleyview)
  3052. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  3053. else
  3054. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  3055. dev_priv->rps.last_adj = 0;
  3056. }
  3057. mutex_unlock(&dev_priv->rps.hw_lock);
  3058. }
  3059. /*
  3060. * Wait until the previous freq change has completed,
  3061. * or the timeout elapsed, and then update our notion
  3062. * of the current GPU frequency.
  3063. */
  3064. static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
  3065. {
  3066. u32 pval;
  3067. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3068. if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
  3069. DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
  3070. pval >>= 8;
  3071. if (pval != dev_priv->rps.cur_delay)
  3072. DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
  3073. vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
  3074. dev_priv->rps.cur_delay,
  3075. vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
  3076. dev_priv->rps.cur_delay = pval;
  3077. }
  3078. void valleyview_set_rps(struct drm_device *dev, u8 val)
  3079. {
  3080. struct drm_i915_private *dev_priv = dev->dev_private;
  3081. gen6_rps_limits(dev_priv, &val);
  3082. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3083. WARN_ON(val > dev_priv->rps.max_delay);
  3084. WARN_ON(val < dev_priv->rps.min_delay);
  3085. vlv_update_rps_cur_delay(dev_priv);
  3086. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  3087. vlv_gpu_freq(dev_priv->mem_freq,
  3088. dev_priv->rps.cur_delay),
  3089. dev_priv->rps.cur_delay,
  3090. vlv_gpu_freq(dev_priv->mem_freq, val), val);
  3091. if (val == dev_priv->rps.cur_delay)
  3092. return;
  3093. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3094. dev_priv->rps.cur_delay = val;
  3095. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
  3096. }
  3097. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  3098. {
  3099. struct drm_i915_private *dev_priv = dev->dev_private;
  3100. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3101. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
  3102. /* Complete PM interrupt masking here doesn't race with the rps work
  3103. * item again unmasking PM interrupts because that is using a different
  3104. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  3105. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  3106. spin_lock_irq(&dev_priv->irq_lock);
  3107. dev_priv->rps.pm_iir = 0;
  3108. spin_unlock_irq(&dev_priv->irq_lock);
  3109. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3110. }
  3111. static void gen6_disable_rps(struct drm_device *dev)
  3112. {
  3113. struct drm_i915_private *dev_priv = dev->dev_private;
  3114. I915_WRITE(GEN6_RC_CONTROL, 0);
  3115. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3116. gen6_disable_rps_interrupts(dev);
  3117. }
  3118. static void valleyview_disable_rps(struct drm_device *dev)
  3119. {
  3120. struct drm_i915_private *dev_priv = dev->dev_private;
  3121. I915_WRITE(GEN6_RC_CONTROL, 0);
  3122. gen6_disable_rps_interrupts(dev);
  3123. if (dev_priv->vlv_pctx) {
  3124. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3125. dev_priv->vlv_pctx = NULL;
  3126. }
  3127. }
  3128. int intel_enable_rc6(const struct drm_device *dev)
  3129. {
  3130. /* No RC6 before Ironlake */
  3131. if (INTEL_INFO(dev)->gen < 5)
  3132. return 0;
  3133. /* Respect the kernel parameter if it is set */
  3134. if (i915_enable_rc6 >= 0)
  3135. return i915_enable_rc6;
  3136. /* Disable RC6 on Ironlake */
  3137. if (INTEL_INFO(dev)->gen == 5)
  3138. return 0;
  3139. if (IS_HASWELL(dev)) {
  3140. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  3141. return INTEL_RC6_ENABLE;
  3142. }
  3143. /* snb/ivb have more than one rc6 state. */
  3144. if (INTEL_INFO(dev)->gen == 6) {
  3145. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  3146. return INTEL_RC6_ENABLE;
  3147. }
  3148. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  3149. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3150. }
  3151. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  3152. {
  3153. struct drm_i915_private *dev_priv = dev->dev_private;
  3154. u32 enabled_intrs;
  3155. spin_lock_irq(&dev_priv->irq_lock);
  3156. WARN_ON(dev_priv->rps.pm_iir);
  3157. snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
  3158. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3159. spin_unlock_irq(&dev_priv->irq_lock);
  3160. /* only unmask PM interrupts we need. Mask all others. */
  3161. enabled_intrs = GEN6_PM_RPS_EVENTS;
  3162. /* IVB and SNB hard hangs on looping batchbuffer
  3163. * if GEN6_PM_UP_EI_EXPIRED is masked.
  3164. */
  3165. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  3166. enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
  3167. I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
  3168. }
  3169. static void gen6_enable_rps(struct drm_device *dev)
  3170. {
  3171. struct drm_i915_private *dev_priv = dev->dev_private;
  3172. struct intel_ring_buffer *ring;
  3173. u32 rp_state_cap;
  3174. u32 gt_perf_status;
  3175. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  3176. u32 gtfifodbg;
  3177. int rc6_mode;
  3178. int i, ret;
  3179. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3180. /* Here begins a magic sequence of register writes to enable
  3181. * auto-downclocking.
  3182. *
  3183. * Perhaps there might be some value in exposing these to
  3184. * userspace...
  3185. */
  3186. I915_WRITE(GEN6_RC_STATE, 0);
  3187. /* Clear the DBG now so we don't confuse earlier errors */
  3188. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3189. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3190. I915_WRITE(GTFIFODBG, gtfifodbg);
  3191. }
  3192. gen6_gt_force_wake_get(dev_priv);
  3193. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3194. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  3195. /* In units of 50MHz */
  3196. dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
  3197. dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
  3198. dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
  3199. dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
  3200. dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
  3201. dev_priv->rps.cur_delay = 0;
  3202. /* disable the counters and set deterministic thresholds */
  3203. I915_WRITE(GEN6_RC_CONTROL, 0);
  3204. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3205. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3206. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3207. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3208. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3209. for_each_ring(ring, dev_priv, i)
  3210. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3211. I915_WRITE(GEN6_RC_SLEEP, 0);
  3212. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3213. if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
  3214. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3215. else
  3216. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3217. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3218. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3219. /* Check if we are enabling RC6 */
  3220. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3221. if (rc6_mode & INTEL_RC6_ENABLE)
  3222. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3223. /* We don't use those on Haswell */
  3224. if (!IS_HASWELL(dev)) {
  3225. if (rc6_mode & INTEL_RC6p_ENABLE)
  3226. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3227. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3228. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3229. }
  3230. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  3231. (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3232. (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3233. (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3234. I915_WRITE(GEN6_RC_CONTROL,
  3235. rc6_mask |
  3236. GEN6_RC_CTL_EI_MODE(1) |
  3237. GEN6_RC_CTL_HW_ENABLE);
  3238. /* Power down if completely idle for over 50ms */
  3239. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3240. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3241. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3242. if (!ret) {
  3243. pcu_mbox = 0;
  3244. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3245. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3246. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3247. (dev_priv->rps.max_delay & 0xff) * 50,
  3248. (pcu_mbox & 0xff) * 50);
  3249. dev_priv->rps.hw_max = pcu_mbox & 0xff;
  3250. }
  3251. } else {
  3252. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3253. }
  3254. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3255. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3256. gen6_enable_rps_interrupts(dev);
  3257. rc6vids = 0;
  3258. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3259. if (IS_GEN6(dev) && ret) {
  3260. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3261. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3262. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3263. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3264. rc6vids &= 0xffff00;
  3265. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3266. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3267. if (ret)
  3268. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3269. }
  3270. gen6_gt_force_wake_put(dev_priv);
  3271. }
  3272. void gen6_update_ring_freq(struct drm_device *dev)
  3273. {
  3274. struct drm_i915_private *dev_priv = dev->dev_private;
  3275. int min_freq = 15;
  3276. unsigned int gpu_freq;
  3277. unsigned int max_ia_freq, min_ring_freq;
  3278. int scaling_factor = 180;
  3279. struct cpufreq_policy *policy;
  3280. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3281. policy = cpufreq_cpu_get(0);
  3282. if (policy) {
  3283. max_ia_freq = policy->cpuinfo.max_freq;
  3284. cpufreq_cpu_put(policy);
  3285. } else {
  3286. /*
  3287. * Default to measured freq if none found, PCU will ensure we
  3288. * don't go over
  3289. */
  3290. max_ia_freq = tsc_khz;
  3291. }
  3292. /* Convert from kHz to MHz */
  3293. max_ia_freq /= 1000;
  3294. min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK) & 0xf;
  3295. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3296. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3297. /*
  3298. * For each potential GPU frequency, load a ring frequency we'd like
  3299. * to use for memory access. We do this by specifying the IA frequency
  3300. * the PCU should use as a reference to determine the ring frequency.
  3301. */
  3302. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  3303. gpu_freq--) {
  3304. int diff = dev_priv->rps.max_delay - gpu_freq;
  3305. unsigned int ia_freq = 0, ring_freq = 0;
  3306. if (IS_HASWELL(dev)) {
  3307. ring_freq = mult_frac(gpu_freq, 5, 4);
  3308. ring_freq = max(min_ring_freq, ring_freq);
  3309. /* leave ia_freq as the default, chosen by cpufreq */
  3310. } else {
  3311. /* On older processors, there is no separate ring
  3312. * clock domain, so in order to boost the bandwidth
  3313. * of the ring, we need to upclock the CPU (ia_freq).
  3314. *
  3315. * For GPU frequencies less than 750MHz,
  3316. * just use the lowest ring freq.
  3317. */
  3318. if (gpu_freq < min_freq)
  3319. ia_freq = 800;
  3320. else
  3321. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3322. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3323. }
  3324. sandybridge_pcode_write(dev_priv,
  3325. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3326. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3327. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3328. gpu_freq);
  3329. }
  3330. }
  3331. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3332. {
  3333. u32 val, rp0;
  3334. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3335. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3336. /* Clamp to max */
  3337. rp0 = min_t(u32, rp0, 0xea);
  3338. return rp0;
  3339. }
  3340. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3341. {
  3342. u32 val, rpe;
  3343. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3344. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3345. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3346. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3347. return rpe;
  3348. }
  3349. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3350. {
  3351. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3352. }
  3353. static void valleyview_setup_pctx(struct drm_device *dev)
  3354. {
  3355. struct drm_i915_private *dev_priv = dev->dev_private;
  3356. struct drm_i915_gem_object *pctx;
  3357. unsigned long pctx_paddr;
  3358. u32 pcbr;
  3359. int pctx_size = 24*1024;
  3360. pcbr = I915_READ(VLV_PCBR);
  3361. if (pcbr) {
  3362. /* BIOS set it up already, grab the pre-alloc'd space */
  3363. int pcbr_offset;
  3364. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3365. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3366. pcbr_offset,
  3367. I915_GTT_OFFSET_NONE,
  3368. pctx_size);
  3369. goto out;
  3370. }
  3371. /*
  3372. * From the Gunit register HAS:
  3373. * The Gfx driver is expected to program this register and ensure
  3374. * proper allocation within Gfx stolen memory. For example, this
  3375. * register should be programmed such than the PCBR range does not
  3376. * overlap with other ranges, such as the frame buffer, protected
  3377. * memory, or any other relevant ranges.
  3378. */
  3379. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3380. if (!pctx) {
  3381. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3382. return;
  3383. }
  3384. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3385. I915_WRITE(VLV_PCBR, pctx_paddr);
  3386. out:
  3387. dev_priv->vlv_pctx = pctx;
  3388. }
  3389. static void valleyview_enable_rps(struct drm_device *dev)
  3390. {
  3391. struct drm_i915_private *dev_priv = dev->dev_private;
  3392. struct intel_ring_buffer *ring;
  3393. u32 gtfifodbg, val, rc6_mode = 0;
  3394. int i;
  3395. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3396. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3397. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3398. gtfifodbg);
  3399. I915_WRITE(GTFIFODBG, gtfifodbg);
  3400. }
  3401. valleyview_setup_pctx(dev);
  3402. gen6_gt_force_wake_get(dev_priv);
  3403. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3404. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3405. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3406. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3407. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3408. I915_WRITE(GEN6_RP_CONTROL,
  3409. GEN6_RP_MEDIA_TURBO |
  3410. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3411. GEN6_RP_MEDIA_IS_GFX |
  3412. GEN6_RP_ENABLE |
  3413. GEN6_RP_UP_BUSY_AVG |
  3414. GEN6_RP_DOWN_IDLE_CONT);
  3415. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3416. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3417. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3418. for_each_ring(ring, dev_priv, i)
  3419. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3420. I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
  3421. /* allows RC6 residency counter to work */
  3422. I915_WRITE(VLV_COUNTER_CONTROL,
  3423. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3424. VLV_MEDIA_RC6_COUNT_EN |
  3425. VLV_RENDER_RC6_COUNT_EN));
  3426. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3427. rc6_mode = GEN7_RC_CTL_TO_MODE;
  3428. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3429. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3430. switch ((val >> 6) & 3) {
  3431. case 0:
  3432. case 1:
  3433. dev_priv->mem_freq = 800;
  3434. break;
  3435. case 2:
  3436. dev_priv->mem_freq = 1066;
  3437. break;
  3438. case 3:
  3439. dev_priv->mem_freq = 1333;
  3440. break;
  3441. }
  3442. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  3443. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3444. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3445. dev_priv->rps.cur_delay = (val >> 8) & 0xff;
  3446. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3447. vlv_gpu_freq(dev_priv->mem_freq,
  3448. dev_priv->rps.cur_delay),
  3449. dev_priv->rps.cur_delay);
  3450. dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
  3451. dev_priv->rps.hw_max = dev_priv->rps.max_delay;
  3452. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3453. vlv_gpu_freq(dev_priv->mem_freq,
  3454. dev_priv->rps.max_delay),
  3455. dev_priv->rps.max_delay);
  3456. dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
  3457. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3458. vlv_gpu_freq(dev_priv->mem_freq,
  3459. dev_priv->rps.rpe_delay),
  3460. dev_priv->rps.rpe_delay);
  3461. dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
  3462. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3463. vlv_gpu_freq(dev_priv->mem_freq,
  3464. dev_priv->rps.min_delay),
  3465. dev_priv->rps.min_delay);
  3466. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3467. vlv_gpu_freq(dev_priv->mem_freq,
  3468. dev_priv->rps.rpe_delay),
  3469. dev_priv->rps.rpe_delay);
  3470. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  3471. gen6_enable_rps_interrupts(dev);
  3472. gen6_gt_force_wake_put(dev_priv);
  3473. }
  3474. void ironlake_teardown_rc6(struct drm_device *dev)
  3475. {
  3476. struct drm_i915_private *dev_priv = dev->dev_private;
  3477. if (dev_priv->ips.renderctx) {
  3478. i915_gem_object_unpin(dev_priv->ips.renderctx);
  3479. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3480. dev_priv->ips.renderctx = NULL;
  3481. }
  3482. if (dev_priv->ips.pwrctx) {
  3483. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  3484. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3485. dev_priv->ips.pwrctx = NULL;
  3486. }
  3487. }
  3488. static void ironlake_disable_rc6(struct drm_device *dev)
  3489. {
  3490. struct drm_i915_private *dev_priv = dev->dev_private;
  3491. if (I915_READ(PWRCTXA)) {
  3492. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3493. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3494. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3495. 50);
  3496. I915_WRITE(PWRCTXA, 0);
  3497. POSTING_READ(PWRCTXA);
  3498. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3499. POSTING_READ(RSTDBYCTL);
  3500. }
  3501. }
  3502. static int ironlake_setup_rc6(struct drm_device *dev)
  3503. {
  3504. struct drm_i915_private *dev_priv = dev->dev_private;
  3505. if (dev_priv->ips.renderctx == NULL)
  3506. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3507. if (!dev_priv->ips.renderctx)
  3508. return -ENOMEM;
  3509. if (dev_priv->ips.pwrctx == NULL)
  3510. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3511. if (!dev_priv->ips.pwrctx) {
  3512. ironlake_teardown_rc6(dev);
  3513. return -ENOMEM;
  3514. }
  3515. return 0;
  3516. }
  3517. static void ironlake_enable_rc6(struct drm_device *dev)
  3518. {
  3519. struct drm_i915_private *dev_priv = dev->dev_private;
  3520. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  3521. bool was_interruptible;
  3522. int ret;
  3523. /* rc6 disabled by default due to repeated reports of hanging during
  3524. * boot and resume.
  3525. */
  3526. if (!intel_enable_rc6(dev))
  3527. return;
  3528. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3529. ret = ironlake_setup_rc6(dev);
  3530. if (ret)
  3531. return;
  3532. was_interruptible = dev_priv->mm.interruptible;
  3533. dev_priv->mm.interruptible = false;
  3534. /*
  3535. * GPU can automatically power down the render unit if given a page
  3536. * to save state.
  3537. */
  3538. ret = intel_ring_begin(ring, 6);
  3539. if (ret) {
  3540. ironlake_teardown_rc6(dev);
  3541. dev_priv->mm.interruptible = was_interruptible;
  3542. return;
  3543. }
  3544. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3545. intel_ring_emit(ring, MI_SET_CONTEXT);
  3546. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3547. MI_MM_SPACE_GTT |
  3548. MI_SAVE_EXT_STATE_EN |
  3549. MI_RESTORE_EXT_STATE_EN |
  3550. MI_RESTORE_INHIBIT);
  3551. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3552. intel_ring_emit(ring, MI_NOOP);
  3553. intel_ring_emit(ring, MI_FLUSH);
  3554. intel_ring_advance(ring);
  3555. /*
  3556. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3557. * does an implicit flush, combined with MI_FLUSH above, it should be
  3558. * safe to assume that renderctx is valid
  3559. */
  3560. ret = intel_ring_idle(ring);
  3561. dev_priv->mm.interruptible = was_interruptible;
  3562. if (ret) {
  3563. DRM_ERROR("failed to enable ironlake power savings\n");
  3564. ironlake_teardown_rc6(dev);
  3565. return;
  3566. }
  3567. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3568. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3569. }
  3570. static unsigned long intel_pxfreq(u32 vidfreq)
  3571. {
  3572. unsigned long freq;
  3573. int div = (vidfreq & 0x3f0000) >> 16;
  3574. int post = (vidfreq & 0x3000) >> 12;
  3575. int pre = (vidfreq & 0x7);
  3576. if (!pre)
  3577. return 0;
  3578. freq = ((div * 133333) / ((1<<post) * pre));
  3579. return freq;
  3580. }
  3581. static const struct cparams {
  3582. u16 i;
  3583. u16 t;
  3584. u16 m;
  3585. u16 c;
  3586. } cparams[] = {
  3587. { 1, 1333, 301, 28664 },
  3588. { 1, 1066, 294, 24460 },
  3589. { 1, 800, 294, 25192 },
  3590. { 0, 1333, 276, 27605 },
  3591. { 0, 1066, 276, 27605 },
  3592. { 0, 800, 231, 23784 },
  3593. };
  3594. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3595. {
  3596. u64 total_count, diff, ret;
  3597. u32 count1, count2, count3, m = 0, c = 0;
  3598. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3599. int i;
  3600. assert_spin_locked(&mchdev_lock);
  3601. diff1 = now - dev_priv->ips.last_time1;
  3602. /* Prevent division-by-zero if we are asking too fast.
  3603. * Also, we don't get interesting results if we are polling
  3604. * faster than once in 10ms, so just return the saved value
  3605. * in such cases.
  3606. */
  3607. if (diff1 <= 10)
  3608. return dev_priv->ips.chipset_power;
  3609. count1 = I915_READ(DMIEC);
  3610. count2 = I915_READ(DDREC);
  3611. count3 = I915_READ(CSIEC);
  3612. total_count = count1 + count2 + count3;
  3613. /* FIXME: handle per-counter overflow */
  3614. if (total_count < dev_priv->ips.last_count1) {
  3615. diff = ~0UL - dev_priv->ips.last_count1;
  3616. diff += total_count;
  3617. } else {
  3618. diff = total_count - dev_priv->ips.last_count1;
  3619. }
  3620. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3621. if (cparams[i].i == dev_priv->ips.c_m &&
  3622. cparams[i].t == dev_priv->ips.r_t) {
  3623. m = cparams[i].m;
  3624. c = cparams[i].c;
  3625. break;
  3626. }
  3627. }
  3628. diff = div_u64(diff, diff1);
  3629. ret = ((m * diff) + c);
  3630. ret = div_u64(ret, 10);
  3631. dev_priv->ips.last_count1 = total_count;
  3632. dev_priv->ips.last_time1 = now;
  3633. dev_priv->ips.chipset_power = ret;
  3634. return ret;
  3635. }
  3636. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3637. {
  3638. unsigned long val;
  3639. if (dev_priv->info->gen != 5)
  3640. return 0;
  3641. spin_lock_irq(&mchdev_lock);
  3642. val = __i915_chipset_val(dev_priv);
  3643. spin_unlock_irq(&mchdev_lock);
  3644. return val;
  3645. }
  3646. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3647. {
  3648. unsigned long m, x, b;
  3649. u32 tsfs;
  3650. tsfs = I915_READ(TSFS);
  3651. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3652. x = I915_READ8(TR1);
  3653. b = tsfs & TSFS_INTR_MASK;
  3654. return ((m * x) / 127) - b;
  3655. }
  3656. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3657. {
  3658. static const struct v_table {
  3659. u16 vd; /* in .1 mil */
  3660. u16 vm; /* in .1 mil */
  3661. } v_table[] = {
  3662. { 0, 0, },
  3663. { 375, 0, },
  3664. { 500, 0, },
  3665. { 625, 0, },
  3666. { 750, 0, },
  3667. { 875, 0, },
  3668. { 1000, 0, },
  3669. { 1125, 0, },
  3670. { 4125, 3000, },
  3671. { 4125, 3000, },
  3672. { 4125, 3000, },
  3673. { 4125, 3000, },
  3674. { 4125, 3000, },
  3675. { 4125, 3000, },
  3676. { 4125, 3000, },
  3677. { 4125, 3000, },
  3678. { 4125, 3000, },
  3679. { 4125, 3000, },
  3680. { 4125, 3000, },
  3681. { 4125, 3000, },
  3682. { 4125, 3000, },
  3683. { 4125, 3000, },
  3684. { 4125, 3000, },
  3685. { 4125, 3000, },
  3686. { 4125, 3000, },
  3687. { 4125, 3000, },
  3688. { 4125, 3000, },
  3689. { 4125, 3000, },
  3690. { 4125, 3000, },
  3691. { 4125, 3000, },
  3692. { 4125, 3000, },
  3693. { 4125, 3000, },
  3694. { 4250, 3125, },
  3695. { 4375, 3250, },
  3696. { 4500, 3375, },
  3697. { 4625, 3500, },
  3698. { 4750, 3625, },
  3699. { 4875, 3750, },
  3700. { 5000, 3875, },
  3701. { 5125, 4000, },
  3702. { 5250, 4125, },
  3703. { 5375, 4250, },
  3704. { 5500, 4375, },
  3705. { 5625, 4500, },
  3706. { 5750, 4625, },
  3707. { 5875, 4750, },
  3708. { 6000, 4875, },
  3709. { 6125, 5000, },
  3710. { 6250, 5125, },
  3711. { 6375, 5250, },
  3712. { 6500, 5375, },
  3713. { 6625, 5500, },
  3714. { 6750, 5625, },
  3715. { 6875, 5750, },
  3716. { 7000, 5875, },
  3717. { 7125, 6000, },
  3718. { 7250, 6125, },
  3719. { 7375, 6250, },
  3720. { 7500, 6375, },
  3721. { 7625, 6500, },
  3722. { 7750, 6625, },
  3723. { 7875, 6750, },
  3724. { 8000, 6875, },
  3725. { 8125, 7000, },
  3726. { 8250, 7125, },
  3727. { 8375, 7250, },
  3728. { 8500, 7375, },
  3729. { 8625, 7500, },
  3730. { 8750, 7625, },
  3731. { 8875, 7750, },
  3732. { 9000, 7875, },
  3733. { 9125, 8000, },
  3734. { 9250, 8125, },
  3735. { 9375, 8250, },
  3736. { 9500, 8375, },
  3737. { 9625, 8500, },
  3738. { 9750, 8625, },
  3739. { 9875, 8750, },
  3740. { 10000, 8875, },
  3741. { 10125, 9000, },
  3742. { 10250, 9125, },
  3743. { 10375, 9250, },
  3744. { 10500, 9375, },
  3745. { 10625, 9500, },
  3746. { 10750, 9625, },
  3747. { 10875, 9750, },
  3748. { 11000, 9875, },
  3749. { 11125, 10000, },
  3750. { 11250, 10125, },
  3751. { 11375, 10250, },
  3752. { 11500, 10375, },
  3753. { 11625, 10500, },
  3754. { 11750, 10625, },
  3755. { 11875, 10750, },
  3756. { 12000, 10875, },
  3757. { 12125, 11000, },
  3758. { 12250, 11125, },
  3759. { 12375, 11250, },
  3760. { 12500, 11375, },
  3761. { 12625, 11500, },
  3762. { 12750, 11625, },
  3763. { 12875, 11750, },
  3764. { 13000, 11875, },
  3765. { 13125, 12000, },
  3766. { 13250, 12125, },
  3767. { 13375, 12250, },
  3768. { 13500, 12375, },
  3769. { 13625, 12500, },
  3770. { 13750, 12625, },
  3771. { 13875, 12750, },
  3772. { 14000, 12875, },
  3773. { 14125, 13000, },
  3774. { 14250, 13125, },
  3775. { 14375, 13250, },
  3776. { 14500, 13375, },
  3777. { 14625, 13500, },
  3778. { 14750, 13625, },
  3779. { 14875, 13750, },
  3780. { 15000, 13875, },
  3781. { 15125, 14000, },
  3782. { 15250, 14125, },
  3783. { 15375, 14250, },
  3784. { 15500, 14375, },
  3785. { 15625, 14500, },
  3786. { 15750, 14625, },
  3787. { 15875, 14750, },
  3788. { 16000, 14875, },
  3789. { 16125, 15000, },
  3790. };
  3791. if (dev_priv->info->is_mobile)
  3792. return v_table[pxvid].vm;
  3793. else
  3794. return v_table[pxvid].vd;
  3795. }
  3796. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3797. {
  3798. struct timespec now, diff1;
  3799. u64 diff;
  3800. unsigned long diffms;
  3801. u32 count;
  3802. assert_spin_locked(&mchdev_lock);
  3803. getrawmonotonic(&now);
  3804. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  3805. /* Don't divide by 0 */
  3806. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  3807. if (!diffms)
  3808. return;
  3809. count = I915_READ(GFXEC);
  3810. if (count < dev_priv->ips.last_count2) {
  3811. diff = ~0UL - dev_priv->ips.last_count2;
  3812. diff += count;
  3813. } else {
  3814. diff = count - dev_priv->ips.last_count2;
  3815. }
  3816. dev_priv->ips.last_count2 = count;
  3817. dev_priv->ips.last_time2 = now;
  3818. /* More magic constants... */
  3819. diff = diff * 1181;
  3820. diff = div_u64(diff, diffms * 10);
  3821. dev_priv->ips.gfx_power = diff;
  3822. }
  3823. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3824. {
  3825. if (dev_priv->info->gen != 5)
  3826. return;
  3827. spin_lock_irq(&mchdev_lock);
  3828. __i915_update_gfx_val(dev_priv);
  3829. spin_unlock_irq(&mchdev_lock);
  3830. }
  3831. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3832. {
  3833. unsigned long t, corr, state1, corr2, state2;
  3834. u32 pxvid, ext_v;
  3835. assert_spin_locked(&mchdev_lock);
  3836. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  3837. pxvid = (pxvid >> 24) & 0x7f;
  3838. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3839. state1 = ext_v;
  3840. t = i915_mch_val(dev_priv);
  3841. /* Revel in the empirically derived constants */
  3842. /* Correction factor in 1/100000 units */
  3843. if (t > 80)
  3844. corr = ((t * 2349) + 135940);
  3845. else if (t >= 50)
  3846. corr = ((t * 964) + 29317);
  3847. else /* < 50 */
  3848. corr = ((t * 301) + 1004);
  3849. corr = corr * ((150142 * state1) / 10000 - 78642);
  3850. corr /= 100000;
  3851. corr2 = (corr * dev_priv->ips.corr);
  3852. state2 = (corr2 * state1) / 10000;
  3853. state2 /= 100; /* convert to mW */
  3854. __i915_update_gfx_val(dev_priv);
  3855. return dev_priv->ips.gfx_power + state2;
  3856. }
  3857. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3858. {
  3859. unsigned long val;
  3860. if (dev_priv->info->gen != 5)
  3861. return 0;
  3862. spin_lock_irq(&mchdev_lock);
  3863. val = __i915_gfx_val(dev_priv);
  3864. spin_unlock_irq(&mchdev_lock);
  3865. return val;
  3866. }
  3867. /**
  3868. * i915_read_mch_val - return value for IPS use
  3869. *
  3870. * Calculate and return a value for the IPS driver to use when deciding whether
  3871. * we have thermal and power headroom to increase CPU or GPU power budget.
  3872. */
  3873. unsigned long i915_read_mch_val(void)
  3874. {
  3875. struct drm_i915_private *dev_priv;
  3876. unsigned long chipset_val, graphics_val, ret = 0;
  3877. spin_lock_irq(&mchdev_lock);
  3878. if (!i915_mch_dev)
  3879. goto out_unlock;
  3880. dev_priv = i915_mch_dev;
  3881. chipset_val = __i915_chipset_val(dev_priv);
  3882. graphics_val = __i915_gfx_val(dev_priv);
  3883. ret = chipset_val + graphics_val;
  3884. out_unlock:
  3885. spin_unlock_irq(&mchdev_lock);
  3886. return ret;
  3887. }
  3888. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3889. /**
  3890. * i915_gpu_raise - raise GPU frequency limit
  3891. *
  3892. * Raise the limit; IPS indicates we have thermal headroom.
  3893. */
  3894. bool i915_gpu_raise(void)
  3895. {
  3896. struct drm_i915_private *dev_priv;
  3897. bool ret = true;
  3898. spin_lock_irq(&mchdev_lock);
  3899. if (!i915_mch_dev) {
  3900. ret = false;
  3901. goto out_unlock;
  3902. }
  3903. dev_priv = i915_mch_dev;
  3904. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3905. dev_priv->ips.max_delay--;
  3906. out_unlock:
  3907. spin_unlock_irq(&mchdev_lock);
  3908. return ret;
  3909. }
  3910. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3911. /**
  3912. * i915_gpu_lower - lower GPU frequency limit
  3913. *
  3914. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3915. * frequency maximum.
  3916. */
  3917. bool i915_gpu_lower(void)
  3918. {
  3919. struct drm_i915_private *dev_priv;
  3920. bool ret = true;
  3921. spin_lock_irq(&mchdev_lock);
  3922. if (!i915_mch_dev) {
  3923. ret = false;
  3924. goto out_unlock;
  3925. }
  3926. dev_priv = i915_mch_dev;
  3927. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  3928. dev_priv->ips.max_delay++;
  3929. out_unlock:
  3930. spin_unlock_irq(&mchdev_lock);
  3931. return ret;
  3932. }
  3933. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  3934. /**
  3935. * i915_gpu_busy - indicate GPU business to IPS
  3936. *
  3937. * Tell the IPS driver whether or not the GPU is busy.
  3938. */
  3939. bool i915_gpu_busy(void)
  3940. {
  3941. struct drm_i915_private *dev_priv;
  3942. struct intel_ring_buffer *ring;
  3943. bool ret = false;
  3944. int i;
  3945. spin_lock_irq(&mchdev_lock);
  3946. if (!i915_mch_dev)
  3947. goto out_unlock;
  3948. dev_priv = i915_mch_dev;
  3949. for_each_ring(ring, dev_priv, i)
  3950. ret |= !list_empty(&ring->request_list);
  3951. out_unlock:
  3952. spin_unlock_irq(&mchdev_lock);
  3953. return ret;
  3954. }
  3955. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  3956. /**
  3957. * i915_gpu_turbo_disable - disable graphics turbo
  3958. *
  3959. * Disable graphics turbo by resetting the max frequency and setting the
  3960. * current frequency to the default.
  3961. */
  3962. bool i915_gpu_turbo_disable(void)
  3963. {
  3964. struct drm_i915_private *dev_priv;
  3965. bool ret = true;
  3966. spin_lock_irq(&mchdev_lock);
  3967. if (!i915_mch_dev) {
  3968. ret = false;
  3969. goto out_unlock;
  3970. }
  3971. dev_priv = i915_mch_dev;
  3972. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  3973. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  3974. ret = false;
  3975. out_unlock:
  3976. spin_unlock_irq(&mchdev_lock);
  3977. return ret;
  3978. }
  3979. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  3980. /**
  3981. * Tells the intel_ips driver that the i915 driver is now loaded, if
  3982. * IPS got loaded first.
  3983. *
  3984. * This awkward dance is so that neither module has to depend on the
  3985. * other in order for IPS to do the appropriate communication of
  3986. * GPU turbo limits to i915.
  3987. */
  3988. static void
  3989. ips_ping_for_i915_load(void)
  3990. {
  3991. void (*link)(void);
  3992. link = symbol_get(ips_link_to_i915_driver);
  3993. if (link) {
  3994. link();
  3995. symbol_put(ips_link_to_i915_driver);
  3996. }
  3997. }
  3998. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  3999. {
  4000. /* We only register the i915 ips part with intel-ips once everything is
  4001. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4002. spin_lock_irq(&mchdev_lock);
  4003. i915_mch_dev = dev_priv;
  4004. spin_unlock_irq(&mchdev_lock);
  4005. ips_ping_for_i915_load();
  4006. }
  4007. void intel_gpu_ips_teardown(void)
  4008. {
  4009. spin_lock_irq(&mchdev_lock);
  4010. i915_mch_dev = NULL;
  4011. spin_unlock_irq(&mchdev_lock);
  4012. }
  4013. static void intel_init_emon(struct drm_device *dev)
  4014. {
  4015. struct drm_i915_private *dev_priv = dev->dev_private;
  4016. u32 lcfuse;
  4017. u8 pxw[16];
  4018. int i;
  4019. /* Disable to program */
  4020. I915_WRITE(ECR, 0);
  4021. POSTING_READ(ECR);
  4022. /* Program energy weights for various events */
  4023. I915_WRITE(SDEW, 0x15040d00);
  4024. I915_WRITE(CSIEW0, 0x007f0000);
  4025. I915_WRITE(CSIEW1, 0x1e220004);
  4026. I915_WRITE(CSIEW2, 0x04000004);
  4027. for (i = 0; i < 5; i++)
  4028. I915_WRITE(PEW + (i * 4), 0);
  4029. for (i = 0; i < 3; i++)
  4030. I915_WRITE(DEW + (i * 4), 0);
  4031. /* Program P-state weights to account for frequency power adjustment */
  4032. for (i = 0; i < 16; i++) {
  4033. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4034. unsigned long freq = intel_pxfreq(pxvidfreq);
  4035. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4036. PXVFREQ_PX_SHIFT;
  4037. unsigned long val;
  4038. val = vid * vid;
  4039. val *= (freq / 1000);
  4040. val *= 255;
  4041. val /= (127*127*900);
  4042. if (val > 0xff)
  4043. DRM_ERROR("bad pxval: %ld\n", val);
  4044. pxw[i] = val;
  4045. }
  4046. /* Render standby states get 0 weight */
  4047. pxw[14] = 0;
  4048. pxw[15] = 0;
  4049. for (i = 0; i < 4; i++) {
  4050. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4051. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4052. I915_WRITE(PXW + (i * 4), val);
  4053. }
  4054. /* Adjust magic regs to magic values (more experimental results) */
  4055. I915_WRITE(OGW0, 0);
  4056. I915_WRITE(OGW1, 0);
  4057. I915_WRITE(EG0, 0x00007f00);
  4058. I915_WRITE(EG1, 0x0000000e);
  4059. I915_WRITE(EG2, 0x000e0000);
  4060. I915_WRITE(EG3, 0x68000300);
  4061. I915_WRITE(EG4, 0x42000000);
  4062. I915_WRITE(EG5, 0x00140031);
  4063. I915_WRITE(EG6, 0);
  4064. I915_WRITE(EG7, 0);
  4065. for (i = 0; i < 8; i++)
  4066. I915_WRITE(PXWL + (i * 4), 0);
  4067. /* Enable PMON + select events */
  4068. I915_WRITE(ECR, 0x80000019);
  4069. lcfuse = I915_READ(LCFUSE02);
  4070. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4071. }
  4072. void intel_disable_gt_powersave(struct drm_device *dev)
  4073. {
  4074. struct drm_i915_private *dev_priv = dev->dev_private;
  4075. /* Interrupts should be disabled already to avoid re-arming. */
  4076. WARN_ON(dev->irq_enabled);
  4077. if (IS_IRONLAKE_M(dev)) {
  4078. ironlake_disable_drps(dev);
  4079. ironlake_disable_rc6(dev);
  4080. } else if (INTEL_INFO(dev)->gen >= 6) {
  4081. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  4082. cancel_work_sync(&dev_priv->rps.work);
  4083. mutex_lock(&dev_priv->rps.hw_lock);
  4084. if (IS_VALLEYVIEW(dev))
  4085. valleyview_disable_rps(dev);
  4086. else
  4087. gen6_disable_rps(dev);
  4088. dev_priv->rps.enabled = false;
  4089. mutex_unlock(&dev_priv->rps.hw_lock);
  4090. }
  4091. }
  4092. static void intel_gen6_powersave_work(struct work_struct *work)
  4093. {
  4094. struct drm_i915_private *dev_priv =
  4095. container_of(work, struct drm_i915_private,
  4096. rps.delayed_resume_work.work);
  4097. struct drm_device *dev = dev_priv->dev;
  4098. mutex_lock(&dev_priv->rps.hw_lock);
  4099. if (IS_VALLEYVIEW(dev)) {
  4100. valleyview_enable_rps(dev);
  4101. } else {
  4102. gen6_enable_rps(dev);
  4103. gen6_update_ring_freq(dev);
  4104. }
  4105. dev_priv->rps.enabled = true;
  4106. mutex_unlock(&dev_priv->rps.hw_lock);
  4107. }
  4108. void intel_enable_gt_powersave(struct drm_device *dev)
  4109. {
  4110. struct drm_i915_private *dev_priv = dev->dev_private;
  4111. if (IS_IRONLAKE_M(dev)) {
  4112. ironlake_enable_drps(dev);
  4113. ironlake_enable_rc6(dev);
  4114. intel_init_emon(dev);
  4115. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  4116. /*
  4117. * PCU communication is slow and this doesn't need to be
  4118. * done at any specific time, so do this out of our fast path
  4119. * to make resume and init faster.
  4120. */
  4121. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4122. round_jiffies_up_relative(HZ));
  4123. }
  4124. }
  4125. static void ibx_init_clock_gating(struct drm_device *dev)
  4126. {
  4127. struct drm_i915_private *dev_priv = dev->dev_private;
  4128. /*
  4129. * On Ibex Peak and Cougar Point, we need to disable clock
  4130. * gating for the panel power sequencer or it will fail to
  4131. * start up when no ports are active.
  4132. */
  4133. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4134. }
  4135. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4136. {
  4137. struct drm_i915_private *dev_priv = dev->dev_private;
  4138. int pipe;
  4139. for_each_pipe(pipe) {
  4140. I915_WRITE(DSPCNTR(pipe),
  4141. I915_READ(DSPCNTR(pipe)) |
  4142. DISPPLANE_TRICKLE_FEED_DISABLE);
  4143. intel_flush_primary_plane(dev_priv, pipe);
  4144. }
  4145. }
  4146. static void ironlake_init_clock_gating(struct drm_device *dev)
  4147. {
  4148. struct drm_i915_private *dev_priv = dev->dev_private;
  4149. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4150. /*
  4151. * Required for FBC
  4152. * WaFbcDisableDpfcClockGating:ilk
  4153. */
  4154. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4155. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4156. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4157. I915_WRITE(PCH_3DCGDIS0,
  4158. MARIUNIT_CLOCK_GATE_DISABLE |
  4159. SVSMUNIT_CLOCK_GATE_DISABLE);
  4160. I915_WRITE(PCH_3DCGDIS1,
  4161. VFMUNIT_CLOCK_GATE_DISABLE);
  4162. /*
  4163. * According to the spec the following bits should be set in
  4164. * order to enable memory self-refresh
  4165. * The bit 22/21 of 0x42004
  4166. * The bit 5 of 0x42020
  4167. * The bit 15 of 0x45000
  4168. */
  4169. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4170. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4171. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4172. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4173. I915_WRITE(DISP_ARB_CTL,
  4174. (I915_READ(DISP_ARB_CTL) |
  4175. DISP_FBC_WM_DIS));
  4176. I915_WRITE(WM3_LP_ILK, 0);
  4177. I915_WRITE(WM2_LP_ILK, 0);
  4178. I915_WRITE(WM1_LP_ILK, 0);
  4179. /*
  4180. * Based on the document from hardware guys the following bits
  4181. * should be set unconditionally in order to enable FBC.
  4182. * The bit 22 of 0x42000
  4183. * The bit 22 of 0x42004
  4184. * The bit 7,8,9 of 0x42020.
  4185. */
  4186. if (IS_IRONLAKE_M(dev)) {
  4187. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4188. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4189. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4190. ILK_FBCQ_DIS);
  4191. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4192. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4193. ILK_DPARB_GATE);
  4194. }
  4195. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4196. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4197. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4198. ILK_ELPIN_409_SELECT);
  4199. I915_WRITE(_3D_CHICKEN2,
  4200. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4201. _3D_CHICKEN2_WM_READ_PIPELINED);
  4202. /* WaDisableRenderCachePipelinedFlush:ilk */
  4203. I915_WRITE(CACHE_MODE_0,
  4204. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4205. g4x_disable_trickle_feed(dev);
  4206. ibx_init_clock_gating(dev);
  4207. }
  4208. static void cpt_init_clock_gating(struct drm_device *dev)
  4209. {
  4210. struct drm_i915_private *dev_priv = dev->dev_private;
  4211. int pipe;
  4212. uint32_t val;
  4213. /*
  4214. * On Ibex Peak and Cougar Point, we need to disable clock
  4215. * gating for the panel power sequencer or it will fail to
  4216. * start up when no ports are active.
  4217. */
  4218. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4219. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4220. DPLS_EDP_PPS_FIX_DIS);
  4221. /* The below fixes the weird display corruption, a few pixels shifted
  4222. * downward, on (only) LVDS of some HP laptops with IVY.
  4223. */
  4224. for_each_pipe(pipe) {
  4225. val = I915_READ(TRANS_CHICKEN2(pipe));
  4226. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4227. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4228. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4229. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4230. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4231. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4232. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4233. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4234. }
  4235. /* WADP0ClockGatingDisable */
  4236. for_each_pipe(pipe) {
  4237. I915_WRITE(TRANS_CHICKEN1(pipe),
  4238. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4239. }
  4240. }
  4241. static void gen6_check_mch_setup(struct drm_device *dev)
  4242. {
  4243. struct drm_i915_private *dev_priv = dev->dev_private;
  4244. uint32_t tmp;
  4245. tmp = I915_READ(MCH_SSKPD);
  4246. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  4247. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  4248. DRM_INFO("This can cause pipe underruns and display issues.\n");
  4249. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  4250. }
  4251. }
  4252. static void gen6_init_clock_gating(struct drm_device *dev)
  4253. {
  4254. struct drm_i915_private *dev_priv = dev->dev_private;
  4255. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4256. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4257. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4258. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4259. ILK_ELPIN_409_SELECT);
  4260. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4261. I915_WRITE(_3D_CHICKEN,
  4262. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4263. /* WaSetupGtModeTdRowDispatch:snb */
  4264. if (IS_SNB_GT1(dev))
  4265. I915_WRITE(GEN6_GT_MODE,
  4266. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4267. I915_WRITE(WM3_LP_ILK, 0);
  4268. I915_WRITE(WM2_LP_ILK, 0);
  4269. I915_WRITE(WM1_LP_ILK, 0);
  4270. I915_WRITE(CACHE_MODE_0,
  4271. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4272. I915_WRITE(GEN6_UCGCTL1,
  4273. I915_READ(GEN6_UCGCTL1) |
  4274. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4275. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4276. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4277. * gating disable must be set. Failure to set it results in
  4278. * flickering pixels due to Z write ordering failures after
  4279. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4280. * Sanctuary and Tropics, and apparently anything else with
  4281. * alpha test or pixel discard.
  4282. *
  4283. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4284. * but we didn't debug actual testcases to find it out.
  4285. *
  4286. * Also apply WaDisableVDSUnitClockGating:snb and
  4287. * WaDisableRCPBUnitClockGating:snb.
  4288. */
  4289. I915_WRITE(GEN6_UCGCTL2,
  4290. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4291. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4292. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4293. /* Bspec says we need to always set all mask bits. */
  4294. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  4295. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  4296. /*
  4297. * According to the spec the following bits should be
  4298. * set in order to enable memory self-refresh and fbc:
  4299. * The bit21 and bit22 of 0x42000
  4300. * The bit21 and bit22 of 0x42004
  4301. * The bit5 and bit7 of 0x42020
  4302. * The bit14 of 0x70180
  4303. * The bit14 of 0x71180
  4304. *
  4305. * WaFbcAsynchFlipDisableFbcQueue:snb
  4306. */
  4307. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4308. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4309. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4310. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4311. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4312. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4313. I915_WRITE(ILK_DSPCLK_GATE_D,
  4314. I915_READ(ILK_DSPCLK_GATE_D) |
  4315. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4316. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4317. g4x_disable_trickle_feed(dev);
  4318. /* The default value should be 0x200 according to docs, but the two
  4319. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  4320. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  4321. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  4322. cpt_init_clock_gating(dev);
  4323. gen6_check_mch_setup(dev);
  4324. }
  4325. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4326. {
  4327. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4328. reg &= ~GEN7_FF_SCHED_MASK;
  4329. reg |= GEN7_FF_TS_SCHED_HW;
  4330. reg |= GEN7_FF_VS_SCHED_HW;
  4331. reg |= GEN7_FF_DS_SCHED_HW;
  4332. if (IS_HASWELL(dev_priv->dev))
  4333. reg &= ~GEN7_FF_VS_REF_CNT_FFME;
  4334. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4335. }
  4336. static void lpt_init_clock_gating(struct drm_device *dev)
  4337. {
  4338. struct drm_i915_private *dev_priv = dev->dev_private;
  4339. /*
  4340. * TODO: this bit should only be enabled when really needed, then
  4341. * disabled when not needed anymore in order to save power.
  4342. */
  4343. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4344. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4345. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4346. PCH_LP_PARTITION_LEVEL_DISABLE);
  4347. /* WADPOClockGatingDisable:hsw */
  4348. I915_WRITE(_TRANSA_CHICKEN1,
  4349. I915_READ(_TRANSA_CHICKEN1) |
  4350. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4351. }
  4352. static void lpt_suspend_hw(struct drm_device *dev)
  4353. {
  4354. struct drm_i915_private *dev_priv = dev->dev_private;
  4355. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4356. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4357. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4358. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4359. }
  4360. }
  4361. static void haswell_init_clock_gating(struct drm_device *dev)
  4362. {
  4363. struct drm_i915_private *dev_priv = dev->dev_private;
  4364. I915_WRITE(WM3_LP_ILK, 0);
  4365. I915_WRITE(WM2_LP_ILK, 0);
  4366. I915_WRITE(WM1_LP_ILK, 0);
  4367. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4368. * This implements the WaDisableRCZUnitClockGating:hsw workaround.
  4369. */
  4370. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4371. /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
  4372. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4373. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4374. /* WaApplyL3ControlAndL3ChickenMode:hsw */
  4375. I915_WRITE(GEN7_L3CNTLREG1,
  4376. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4377. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4378. GEN7_WA_L3_CHICKEN_MODE);
  4379. /* This is required by WaCatErrorRejectionIssue:hsw */
  4380. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4381. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4382. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4383. /* WaVSRefCountFullforceMissDisable:hsw */
  4384. gen7_setup_fixed_func_scheduler(dev_priv);
  4385. /* WaDisable4x2SubspanOptimization:hsw */
  4386. I915_WRITE(CACHE_MODE_1,
  4387. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4388. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4389. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4390. /* WaRsPkgCStateDisplayPMReq:hsw */
  4391. I915_WRITE(CHICKEN_PAR1_1,
  4392. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4393. lpt_init_clock_gating(dev);
  4394. }
  4395. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4396. {
  4397. struct drm_i915_private *dev_priv = dev->dev_private;
  4398. uint32_t snpcr;
  4399. I915_WRITE(WM3_LP_ILK, 0);
  4400. I915_WRITE(WM2_LP_ILK, 0);
  4401. I915_WRITE(WM1_LP_ILK, 0);
  4402. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4403. /* WaDisableEarlyCull:ivb */
  4404. I915_WRITE(_3D_CHICKEN3,
  4405. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4406. /* WaDisableBackToBackFlipFix:ivb */
  4407. I915_WRITE(IVB_CHICKEN3,
  4408. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4409. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4410. /* WaDisablePSDDualDispatchEnable:ivb */
  4411. if (IS_IVB_GT1(dev))
  4412. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4413. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4414. else
  4415. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  4416. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4417. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4418. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4419. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4420. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4421. I915_WRITE(GEN7_L3CNTLREG1,
  4422. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4423. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4424. GEN7_WA_L3_CHICKEN_MODE);
  4425. if (IS_IVB_GT1(dev))
  4426. I915_WRITE(GEN7_ROW_CHICKEN2,
  4427. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4428. else
  4429. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4430. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4431. /* WaForceL3Serialization:ivb */
  4432. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4433. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4434. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4435. * gating disable must be set. Failure to set it results in
  4436. * flickering pixels due to Z write ordering failures after
  4437. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4438. * Sanctuary and Tropics, and apparently anything else with
  4439. * alpha test or pixel discard.
  4440. *
  4441. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4442. * but we didn't debug actual testcases to find it out.
  4443. *
  4444. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4445. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4446. */
  4447. I915_WRITE(GEN6_UCGCTL2,
  4448. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4449. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4450. /* This is required by WaCatErrorRejectionIssue:ivb */
  4451. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4452. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4453. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4454. g4x_disable_trickle_feed(dev);
  4455. /* WaVSRefCountFullforceMissDisable:ivb */
  4456. gen7_setup_fixed_func_scheduler(dev_priv);
  4457. /* WaDisable4x2SubspanOptimization:ivb */
  4458. I915_WRITE(CACHE_MODE_1,
  4459. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4460. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4461. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4462. snpcr |= GEN6_MBC_SNPCR_MED;
  4463. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4464. if (!HAS_PCH_NOP(dev))
  4465. cpt_init_clock_gating(dev);
  4466. gen6_check_mch_setup(dev);
  4467. }
  4468. static void valleyview_init_clock_gating(struct drm_device *dev)
  4469. {
  4470. struct drm_i915_private *dev_priv = dev->dev_private;
  4471. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4472. /* WaDisableEarlyCull:vlv */
  4473. I915_WRITE(_3D_CHICKEN3,
  4474. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4475. /* WaDisableBackToBackFlipFix:vlv */
  4476. I915_WRITE(IVB_CHICKEN3,
  4477. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4478. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4479. /* WaDisablePSDDualDispatchEnable:vlv */
  4480. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4481. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4482. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4483. /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
  4484. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4485. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4486. /* WaApplyL3ControlAndL3ChickenMode:vlv */
  4487. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  4488. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  4489. /* WaForceL3Serialization:vlv */
  4490. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4491. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4492. /* WaDisableDopClockGating:vlv */
  4493. I915_WRITE(GEN7_ROW_CHICKEN2,
  4494. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4495. /* This is required by WaCatErrorRejectionIssue:vlv */
  4496. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4497. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4498. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4499. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4500. * gating disable must be set. Failure to set it results in
  4501. * flickering pixels due to Z write ordering failures after
  4502. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4503. * Sanctuary and Tropics, and apparently anything else with
  4504. * alpha test or pixel discard.
  4505. *
  4506. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4507. * but we didn't debug actual testcases to find it out.
  4508. *
  4509. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4510. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4511. *
  4512. * Also apply WaDisableVDSUnitClockGating:vlv and
  4513. * WaDisableRCPBUnitClockGating:vlv.
  4514. */
  4515. I915_WRITE(GEN6_UCGCTL2,
  4516. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4517. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  4518. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4519. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4520. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4521. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4522. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4523. I915_WRITE(CACHE_MODE_1,
  4524. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4525. /*
  4526. * WaDisableVLVClockGating_VBIIssue:vlv
  4527. * Disable clock gating on th GCFG unit to prevent a delay
  4528. * in the reporting of vblank events.
  4529. */
  4530. I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
  4531. /* Conservative clock gating settings for now */
  4532. I915_WRITE(0x9400, 0xffffffff);
  4533. I915_WRITE(0x9404, 0xffffffff);
  4534. I915_WRITE(0x9408, 0xffffffff);
  4535. I915_WRITE(0x940c, 0xffffffff);
  4536. I915_WRITE(0x9410, 0xffffffff);
  4537. I915_WRITE(0x9414, 0xffffffff);
  4538. I915_WRITE(0x9418, 0xffffffff);
  4539. }
  4540. static void g4x_init_clock_gating(struct drm_device *dev)
  4541. {
  4542. struct drm_i915_private *dev_priv = dev->dev_private;
  4543. uint32_t dspclk_gate;
  4544. I915_WRITE(RENCLK_GATE_D1, 0);
  4545. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4546. GS_UNIT_CLOCK_GATE_DISABLE |
  4547. CL_UNIT_CLOCK_GATE_DISABLE);
  4548. I915_WRITE(RAMCLK_GATE_D, 0);
  4549. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4550. OVRUNIT_CLOCK_GATE_DISABLE |
  4551. OVCUNIT_CLOCK_GATE_DISABLE;
  4552. if (IS_GM45(dev))
  4553. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4554. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4555. /* WaDisableRenderCachePipelinedFlush */
  4556. I915_WRITE(CACHE_MODE_0,
  4557. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4558. g4x_disable_trickle_feed(dev);
  4559. }
  4560. static void crestline_init_clock_gating(struct drm_device *dev)
  4561. {
  4562. struct drm_i915_private *dev_priv = dev->dev_private;
  4563. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4564. I915_WRITE(RENCLK_GATE_D2, 0);
  4565. I915_WRITE(DSPCLK_GATE_D, 0);
  4566. I915_WRITE(RAMCLK_GATE_D, 0);
  4567. I915_WRITE16(DEUC, 0);
  4568. I915_WRITE(MI_ARB_STATE,
  4569. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4570. }
  4571. static void broadwater_init_clock_gating(struct drm_device *dev)
  4572. {
  4573. struct drm_i915_private *dev_priv = dev->dev_private;
  4574. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4575. I965_RCC_CLOCK_GATE_DISABLE |
  4576. I965_RCPB_CLOCK_GATE_DISABLE |
  4577. I965_ISC_CLOCK_GATE_DISABLE |
  4578. I965_FBC_CLOCK_GATE_DISABLE);
  4579. I915_WRITE(RENCLK_GATE_D2, 0);
  4580. I915_WRITE(MI_ARB_STATE,
  4581. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4582. }
  4583. static void gen3_init_clock_gating(struct drm_device *dev)
  4584. {
  4585. struct drm_i915_private *dev_priv = dev->dev_private;
  4586. u32 dstate = I915_READ(D_STATE);
  4587. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4588. DSTATE_DOT_CLOCK_GATING;
  4589. I915_WRITE(D_STATE, dstate);
  4590. if (IS_PINEVIEW(dev))
  4591. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4592. /* IIR "flip pending" means done if this bit is set */
  4593. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4594. }
  4595. static void i85x_init_clock_gating(struct drm_device *dev)
  4596. {
  4597. struct drm_i915_private *dev_priv = dev->dev_private;
  4598. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4599. }
  4600. static void i830_init_clock_gating(struct drm_device *dev)
  4601. {
  4602. struct drm_i915_private *dev_priv = dev->dev_private;
  4603. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4604. }
  4605. void intel_init_clock_gating(struct drm_device *dev)
  4606. {
  4607. struct drm_i915_private *dev_priv = dev->dev_private;
  4608. dev_priv->display.init_clock_gating(dev);
  4609. }
  4610. void intel_suspend_hw(struct drm_device *dev)
  4611. {
  4612. if (HAS_PCH_LPT(dev))
  4613. lpt_suspend_hw(dev);
  4614. }
  4615. /**
  4616. * We should only use the power well if we explicitly asked the hardware to
  4617. * enable it, so check if it's enabled and also check if we've requested it to
  4618. * be enabled.
  4619. */
  4620. bool intel_display_power_enabled(struct drm_device *dev,
  4621. enum intel_display_power_domain domain)
  4622. {
  4623. struct drm_i915_private *dev_priv = dev->dev_private;
  4624. if (!HAS_POWER_WELL(dev))
  4625. return true;
  4626. switch (domain) {
  4627. case POWER_DOMAIN_PIPE_A:
  4628. case POWER_DOMAIN_TRANSCODER_EDP:
  4629. return true;
  4630. case POWER_DOMAIN_VGA:
  4631. case POWER_DOMAIN_PIPE_B:
  4632. case POWER_DOMAIN_PIPE_C:
  4633. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  4634. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  4635. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  4636. case POWER_DOMAIN_TRANSCODER_A:
  4637. case POWER_DOMAIN_TRANSCODER_B:
  4638. case POWER_DOMAIN_TRANSCODER_C:
  4639. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4640. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4641. default:
  4642. BUG();
  4643. }
  4644. }
  4645. static void __intel_set_power_well(struct drm_device *dev, bool enable)
  4646. {
  4647. struct drm_i915_private *dev_priv = dev->dev_private;
  4648. bool is_enabled, enable_requested;
  4649. uint32_t tmp;
  4650. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4651. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4652. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4653. if (enable) {
  4654. if (!enable_requested)
  4655. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4656. HSW_PWR_WELL_ENABLE_REQUEST);
  4657. if (!is_enabled) {
  4658. DRM_DEBUG_KMS("Enabling power well\n");
  4659. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4660. HSW_PWR_WELL_STATE_ENABLED), 20))
  4661. DRM_ERROR("Timeout enabling power well\n");
  4662. }
  4663. } else {
  4664. if (enable_requested) {
  4665. unsigned long irqflags;
  4666. enum pipe p;
  4667. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4668. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4669. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4670. /*
  4671. * After this, the registers on the pipes that are part
  4672. * of the power well will become zero, so we have to
  4673. * adjust our counters according to that.
  4674. *
  4675. * FIXME: Should we do this in general in
  4676. * drm_vblank_post_modeset?
  4677. */
  4678. spin_lock_irqsave(&dev->vbl_lock, irqflags);
  4679. for_each_pipe(p)
  4680. if (p != PIPE_A)
  4681. dev->vblank[p].last = 0;
  4682. spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
  4683. }
  4684. }
  4685. }
  4686. static void __intel_power_well_get(struct i915_power_well *power_well)
  4687. {
  4688. if (!power_well->count++)
  4689. __intel_set_power_well(power_well->device, true);
  4690. }
  4691. static void __intel_power_well_put(struct i915_power_well *power_well)
  4692. {
  4693. WARN_ON(!power_well->count);
  4694. if (!--power_well->count)
  4695. __intel_set_power_well(power_well->device, false);
  4696. }
  4697. void intel_display_power_get(struct drm_device *dev,
  4698. enum intel_display_power_domain domain)
  4699. {
  4700. struct drm_i915_private *dev_priv = dev->dev_private;
  4701. struct i915_power_well *power_well = &dev_priv->power_well;
  4702. if (!HAS_POWER_WELL(dev))
  4703. return;
  4704. switch (domain) {
  4705. case POWER_DOMAIN_PIPE_A:
  4706. case POWER_DOMAIN_TRANSCODER_EDP:
  4707. return;
  4708. case POWER_DOMAIN_VGA:
  4709. case POWER_DOMAIN_PIPE_B:
  4710. case POWER_DOMAIN_PIPE_C:
  4711. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  4712. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  4713. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  4714. case POWER_DOMAIN_TRANSCODER_A:
  4715. case POWER_DOMAIN_TRANSCODER_B:
  4716. case POWER_DOMAIN_TRANSCODER_C:
  4717. spin_lock_irq(&power_well->lock);
  4718. __intel_power_well_get(power_well);
  4719. spin_unlock_irq(&power_well->lock);
  4720. return;
  4721. default:
  4722. BUG();
  4723. }
  4724. }
  4725. void intel_display_power_put(struct drm_device *dev,
  4726. enum intel_display_power_domain domain)
  4727. {
  4728. struct drm_i915_private *dev_priv = dev->dev_private;
  4729. struct i915_power_well *power_well = &dev_priv->power_well;
  4730. if (!HAS_POWER_WELL(dev))
  4731. return;
  4732. switch (domain) {
  4733. case POWER_DOMAIN_PIPE_A:
  4734. case POWER_DOMAIN_TRANSCODER_EDP:
  4735. return;
  4736. case POWER_DOMAIN_VGA:
  4737. case POWER_DOMAIN_PIPE_B:
  4738. case POWER_DOMAIN_PIPE_C:
  4739. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  4740. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  4741. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  4742. case POWER_DOMAIN_TRANSCODER_A:
  4743. case POWER_DOMAIN_TRANSCODER_B:
  4744. case POWER_DOMAIN_TRANSCODER_C:
  4745. spin_lock_irq(&power_well->lock);
  4746. __intel_power_well_put(power_well);
  4747. spin_unlock_irq(&power_well->lock);
  4748. return;
  4749. default:
  4750. BUG();
  4751. }
  4752. }
  4753. static struct i915_power_well *hsw_pwr;
  4754. /* Display audio driver power well request */
  4755. void i915_request_power_well(void)
  4756. {
  4757. if (WARN_ON(!hsw_pwr))
  4758. return;
  4759. spin_lock_irq(&hsw_pwr->lock);
  4760. __intel_power_well_get(hsw_pwr);
  4761. spin_unlock_irq(&hsw_pwr->lock);
  4762. }
  4763. EXPORT_SYMBOL_GPL(i915_request_power_well);
  4764. /* Display audio driver power well release */
  4765. void i915_release_power_well(void)
  4766. {
  4767. if (WARN_ON(!hsw_pwr))
  4768. return;
  4769. spin_lock_irq(&hsw_pwr->lock);
  4770. __intel_power_well_put(hsw_pwr);
  4771. spin_unlock_irq(&hsw_pwr->lock);
  4772. }
  4773. EXPORT_SYMBOL_GPL(i915_release_power_well);
  4774. int i915_init_power_well(struct drm_device *dev)
  4775. {
  4776. struct drm_i915_private *dev_priv = dev->dev_private;
  4777. hsw_pwr = &dev_priv->power_well;
  4778. hsw_pwr->device = dev;
  4779. spin_lock_init(&hsw_pwr->lock);
  4780. hsw_pwr->count = 0;
  4781. return 0;
  4782. }
  4783. void i915_remove_power_well(struct drm_device *dev)
  4784. {
  4785. hsw_pwr = NULL;
  4786. }
  4787. void intel_set_power_well(struct drm_device *dev, bool enable)
  4788. {
  4789. struct drm_i915_private *dev_priv = dev->dev_private;
  4790. struct i915_power_well *power_well = &dev_priv->power_well;
  4791. if (!HAS_POWER_WELL(dev))
  4792. return;
  4793. if (!i915_disable_power_well && !enable)
  4794. return;
  4795. spin_lock_irq(&power_well->lock);
  4796. /*
  4797. * This function will only ever contribute one
  4798. * to the power well reference count. i915_request
  4799. * is what tracks whether we have or have not
  4800. * added the one to the reference count.
  4801. */
  4802. if (power_well->i915_request == enable)
  4803. goto out;
  4804. power_well->i915_request = enable;
  4805. if (enable)
  4806. __intel_power_well_get(power_well);
  4807. else
  4808. __intel_power_well_put(power_well);
  4809. out:
  4810. spin_unlock_irq(&power_well->lock);
  4811. }
  4812. static void intel_resume_power_well(struct drm_device *dev)
  4813. {
  4814. struct drm_i915_private *dev_priv = dev->dev_private;
  4815. struct i915_power_well *power_well = &dev_priv->power_well;
  4816. if (!HAS_POWER_WELL(dev))
  4817. return;
  4818. spin_lock_irq(&power_well->lock);
  4819. __intel_set_power_well(dev, power_well->count > 0);
  4820. spin_unlock_irq(&power_well->lock);
  4821. }
  4822. /*
  4823. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  4824. * when not needed anymore. We have 4 registers that can request the power well
  4825. * to be enabled, and it will only be disabled if none of the registers is
  4826. * requesting it to be enabled.
  4827. */
  4828. void intel_init_power_well(struct drm_device *dev)
  4829. {
  4830. struct drm_i915_private *dev_priv = dev->dev_private;
  4831. if (!HAS_POWER_WELL(dev))
  4832. return;
  4833. /* For now, we need the power well to be always enabled. */
  4834. intel_set_power_well(dev, true);
  4835. intel_resume_power_well(dev);
  4836. /* We're taking over the BIOS, so clear any requests made by it since
  4837. * the driver is in charge now. */
  4838. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  4839. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  4840. }
  4841. /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
  4842. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  4843. {
  4844. hsw_disable_package_c8(dev_priv);
  4845. }
  4846. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  4847. {
  4848. hsw_enable_package_c8(dev_priv);
  4849. }
  4850. /* Set up chip specific power management-related functions */
  4851. void intel_init_pm(struct drm_device *dev)
  4852. {
  4853. struct drm_i915_private *dev_priv = dev->dev_private;
  4854. if (I915_HAS_FBC(dev)) {
  4855. if (HAS_PCH_SPLIT(dev)) {
  4856. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  4857. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4858. dev_priv->display.enable_fbc =
  4859. gen7_enable_fbc;
  4860. else
  4861. dev_priv->display.enable_fbc =
  4862. ironlake_enable_fbc;
  4863. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  4864. } else if (IS_GM45(dev)) {
  4865. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  4866. dev_priv->display.enable_fbc = g4x_enable_fbc;
  4867. dev_priv->display.disable_fbc = g4x_disable_fbc;
  4868. } else if (IS_CRESTLINE(dev)) {
  4869. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  4870. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  4871. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  4872. }
  4873. /* 855GM needs testing */
  4874. }
  4875. /* For cxsr */
  4876. if (IS_PINEVIEW(dev))
  4877. i915_pineview_get_mem_freq(dev);
  4878. else if (IS_GEN5(dev))
  4879. i915_ironlake_get_mem_freq(dev);
  4880. /* For FIFO watermark updates */
  4881. if (HAS_PCH_SPLIT(dev)) {
  4882. intel_setup_wm_latency(dev);
  4883. if (IS_GEN5(dev)) {
  4884. if (dev_priv->wm.pri_latency[1] &&
  4885. dev_priv->wm.spr_latency[1] &&
  4886. dev_priv->wm.cur_latency[1])
  4887. dev_priv->display.update_wm = ironlake_update_wm;
  4888. else {
  4889. DRM_DEBUG_KMS("Failed to get proper latency. "
  4890. "Disable CxSR\n");
  4891. dev_priv->display.update_wm = NULL;
  4892. }
  4893. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  4894. } else if (IS_GEN6(dev)) {
  4895. if (dev_priv->wm.pri_latency[0] &&
  4896. dev_priv->wm.spr_latency[0] &&
  4897. dev_priv->wm.cur_latency[0]) {
  4898. dev_priv->display.update_wm = sandybridge_update_wm;
  4899. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4900. } else {
  4901. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4902. "Disable CxSR\n");
  4903. dev_priv->display.update_wm = NULL;
  4904. }
  4905. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  4906. } else if (IS_IVYBRIDGE(dev)) {
  4907. if (dev_priv->wm.pri_latency[0] &&
  4908. dev_priv->wm.spr_latency[0] &&
  4909. dev_priv->wm.cur_latency[0]) {
  4910. dev_priv->display.update_wm = ivybridge_update_wm;
  4911. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4912. } else {
  4913. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4914. "Disable CxSR\n");
  4915. dev_priv->display.update_wm = NULL;
  4916. }
  4917. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  4918. } else if (IS_HASWELL(dev)) {
  4919. if (dev_priv->wm.pri_latency[0] &&
  4920. dev_priv->wm.spr_latency[0] &&
  4921. dev_priv->wm.cur_latency[0]) {
  4922. dev_priv->display.update_wm = haswell_update_wm;
  4923. dev_priv->display.update_sprite_wm =
  4924. haswell_update_sprite_wm;
  4925. } else {
  4926. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4927. "Disable CxSR\n");
  4928. dev_priv->display.update_wm = NULL;
  4929. }
  4930. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  4931. } else
  4932. dev_priv->display.update_wm = NULL;
  4933. } else if (IS_VALLEYVIEW(dev)) {
  4934. dev_priv->display.update_wm = valleyview_update_wm;
  4935. dev_priv->display.init_clock_gating =
  4936. valleyview_init_clock_gating;
  4937. } else if (IS_PINEVIEW(dev)) {
  4938. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  4939. dev_priv->is_ddr3,
  4940. dev_priv->fsb_freq,
  4941. dev_priv->mem_freq)) {
  4942. DRM_INFO("failed to find known CxSR latency "
  4943. "(found ddr%s fsb freq %d, mem freq %d), "
  4944. "disabling CxSR\n",
  4945. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  4946. dev_priv->fsb_freq, dev_priv->mem_freq);
  4947. /* Disable CxSR and never update its watermark again */
  4948. pineview_disable_cxsr(dev);
  4949. dev_priv->display.update_wm = NULL;
  4950. } else
  4951. dev_priv->display.update_wm = pineview_update_wm;
  4952. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  4953. } else if (IS_G4X(dev)) {
  4954. dev_priv->display.update_wm = g4x_update_wm;
  4955. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  4956. } else if (IS_GEN4(dev)) {
  4957. dev_priv->display.update_wm = i965_update_wm;
  4958. if (IS_CRESTLINE(dev))
  4959. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  4960. else if (IS_BROADWATER(dev))
  4961. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  4962. } else if (IS_GEN3(dev)) {
  4963. dev_priv->display.update_wm = i9xx_update_wm;
  4964. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  4965. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  4966. } else if (IS_I865G(dev)) {
  4967. dev_priv->display.update_wm = i830_update_wm;
  4968. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  4969. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4970. } else if (IS_I85X(dev)) {
  4971. dev_priv->display.update_wm = i9xx_update_wm;
  4972. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  4973. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  4974. } else {
  4975. dev_priv->display.update_wm = i830_update_wm;
  4976. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  4977. if (IS_845G(dev))
  4978. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  4979. else
  4980. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4981. }
  4982. }
  4983. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  4984. {
  4985. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4986. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4987. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  4988. return -EAGAIN;
  4989. }
  4990. I915_WRITE(GEN6_PCODE_DATA, *val);
  4991. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4992. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4993. 500)) {
  4994. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  4995. return -ETIMEDOUT;
  4996. }
  4997. *val = I915_READ(GEN6_PCODE_DATA);
  4998. I915_WRITE(GEN6_PCODE_DATA, 0);
  4999. return 0;
  5000. }
  5001. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  5002. {
  5003. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5004. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5005. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5006. return -EAGAIN;
  5007. }
  5008. I915_WRITE(GEN6_PCODE_DATA, val);
  5009. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5010. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5011. 500)) {
  5012. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5013. return -ETIMEDOUT;
  5014. }
  5015. I915_WRITE(GEN6_PCODE_DATA, 0);
  5016. return 0;
  5017. }
  5018. int vlv_gpu_freq(int ddr_freq, int val)
  5019. {
  5020. int mult, base;
  5021. switch (ddr_freq) {
  5022. case 800:
  5023. mult = 20;
  5024. base = 120;
  5025. break;
  5026. case 1066:
  5027. mult = 22;
  5028. base = 133;
  5029. break;
  5030. case 1333:
  5031. mult = 21;
  5032. base = 125;
  5033. break;
  5034. default:
  5035. return -1;
  5036. }
  5037. return ((val - 0xbd) * mult) + base;
  5038. }
  5039. int vlv_freq_opcode(int ddr_freq, int val)
  5040. {
  5041. int mult, base;
  5042. switch (ddr_freq) {
  5043. case 800:
  5044. mult = 20;
  5045. base = 120;
  5046. break;
  5047. case 1066:
  5048. mult = 22;
  5049. base = 133;
  5050. break;
  5051. case 1333:
  5052. mult = 21;
  5053. base = 125;
  5054. break;
  5055. default:
  5056. return -1;
  5057. }
  5058. val /= mult;
  5059. val -= base / mult;
  5060. val += 0xbd;
  5061. if (val > 0xea)
  5062. val = 0xea;
  5063. return val;
  5064. }
  5065. void intel_pm_init(struct drm_device *dev)
  5066. {
  5067. struct drm_i915_private *dev_priv = dev->dev_private;
  5068. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5069. intel_gen6_powersave_work);
  5070. }