intel_hdmi.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333
  1. /*
  2. * Copyright 2006 Dave Airlie <airlied@linux.ie>
  3. * Copyright © 2006-2009 Intel Corporation
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining a
  6. * copy of this software and associated documentation files (the "Software"),
  7. * to deal in the Software without restriction, including without limitation
  8. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9. * and/or sell copies of the Software, and to permit persons to whom the
  10. * Software is furnished to do so, subject to the following conditions:
  11. *
  12. * The above copyright notice and this permission notice (including the next
  13. * paragraph) shall be included in all copies or substantial portions of the
  14. * Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22. * DEALINGS IN THE SOFTWARE.
  23. *
  24. * Authors:
  25. * Eric Anholt <eric@anholt.net>
  26. * Jesse Barnes <jesse.barnes@intel.com>
  27. */
  28. #include <linux/i2c.h>
  29. #include <linux/slab.h>
  30. #include <linux/delay.h>
  31. #include <linux/hdmi.h>
  32. #include <drm/drmP.h>
  33. #include <drm/drm_crtc.h>
  34. #include <drm/drm_edid.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
  39. {
  40. return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
  41. }
  42. static void
  43. assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
  44. {
  45. struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
  46. struct drm_i915_private *dev_priv = dev->dev_private;
  47. uint32_t enabled_bits;
  48. enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
  49. WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
  50. "HDMI port enabled, expecting disabled\n");
  51. }
  52. struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
  53. {
  54. struct intel_digital_port *intel_dig_port =
  55. container_of(encoder, struct intel_digital_port, base.base);
  56. return &intel_dig_port->hdmi;
  57. }
  58. static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
  59. {
  60. return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
  61. }
  62. static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
  63. {
  64. switch (type) {
  65. case HDMI_INFOFRAME_TYPE_AVI:
  66. return VIDEO_DIP_SELECT_AVI;
  67. case HDMI_INFOFRAME_TYPE_SPD:
  68. return VIDEO_DIP_SELECT_SPD;
  69. case HDMI_INFOFRAME_TYPE_VENDOR:
  70. return VIDEO_DIP_SELECT_VENDOR;
  71. default:
  72. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  73. return 0;
  74. }
  75. }
  76. static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
  77. {
  78. switch (type) {
  79. case HDMI_INFOFRAME_TYPE_AVI:
  80. return VIDEO_DIP_ENABLE_AVI;
  81. case HDMI_INFOFRAME_TYPE_SPD:
  82. return VIDEO_DIP_ENABLE_SPD;
  83. case HDMI_INFOFRAME_TYPE_VENDOR:
  84. return VIDEO_DIP_ENABLE_VENDOR;
  85. default:
  86. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  87. return 0;
  88. }
  89. }
  90. static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
  91. {
  92. switch (type) {
  93. case HDMI_INFOFRAME_TYPE_AVI:
  94. return VIDEO_DIP_ENABLE_AVI_HSW;
  95. case HDMI_INFOFRAME_TYPE_SPD:
  96. return VIDEO_DIP_ENABLE_SPD_HSW;
  97. case HDMI_INFOFRAME_TYPE_VENDOR:
  98. return VIDEO_DIP_ENABLE_VS_HSW;
  99. default:
  100. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  101. return 0;
  102. }
  103. }
  104. static u32 hsw_infoframe_data_reg(enum hdmi_infoframe_type type,
  105. enum transcoder cpu_transcoder)
  106. {
  107. switch (type) {
  108. case HDMI_INFOFRAME_TYPE_AVI:
  109. return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder);
  110. case HDMI_INFOFRAME_TYPE_SPD:
  111. return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder);
  112. case HDMI_INFOFRAME_TYPE_VENDOR:
  113. return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder);
  114. default:
  115. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  116. return 0;
  117. }
  118. }
  119. static void g4x_write_infoframe(struct drm_encoder *encoder,
  120. enum hdmi_infoframe_type type,
  121. const uint8_t *frame, ssize_t len)
  122. {
  123. uint32_t *data = (uint32_t *)frame;
  124. struct drm_device *dev = encoder->dev;
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. u32 val = I915_READ(VIDEO_DIP_CTL);
  127. int i;
  128. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  129. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  130. val |= g4x_infoframe_index(type);
  131. val &= ~g4x_infoframe_enable(type);
  132. I915_WRITE(VIDEO_DIP_CTL, val);
  133. mmiowb();
  134. for (i = 0; i < len; i += 4) {
  135. I915_WRITE(VIDEO_DIP_DATA, *data);
  136. data++;
  137. }
  138. /* Write every possible data byte to force correct ECC calculation. */
  139. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  140. I915_WRITE(VIDEO_DIP_DATA, 0);
  141. mmiowb();
  142. val |= g4x_infoframe_enable(type);
  143. val &= ~VIDEO_DIP_FREQ_MASK;
  144. val |= VIDEO_DIP_FREQ_VSYNC;
  145. I915_WRITE(VIDEO_DIP_CTL, val);
  146. POSTING_READ(VIDEO_DIP_CTL);
  147. }
  148. static void ibx_write_infoframe(struct drm_encoder *encoder,
  149. enum hdmi_infoframe_type type,
  150. const uint8_t *frame, ssize_t len)
  151. {
  152. uint32_t *data = (uint32_t *)frame;
  153. struct drm_device *dev = encoder->dev;
  154. struct drm_i915_private *dev_priv = dev->dev_private;
  155. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  156. int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  157. u32 val = I915_READ(reg);
  158. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  159. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  160. val |= g4x_infoframe_index(type);
  161. val &= ~g4x_infoframe_enable(type);
  162. I915_WRITE(reg, val);
  163. mmiowb();
  164. for (i = 0; i < len; i += 4) {
  165. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  166. data++;
  167. }
  168. /* Write every possible data byte to force correct ECC calculation. */
  169. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  170. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  171. mmiowb();
  172. val |= g4x_infoframe_enable(type);
  173. val &= ~VIDEO_DIP_FREQ_MASK;
  174. val |= VIDEO_DIP_FREQ_VSYNC;
  175. I915_WRITE(reg, val);
  176. POSTING_READ(reg);
  177. }
  178. static void cpt_write_infoframe(struct drm_encoder *encoder,
  179. enum hdmi_infoframe_type type,
  180. const uint8_t *frame, ssize_t len)
  181. {
  182. uint32_t *data = (uint32_t *)frame;
  183. struct drm_device *dev = encoder->dev;
  184. struct drm_i915_private *dev_priv = dev->dev_private;
  185. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  186. int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  187. u32 val = I915_READ(reg);
  188. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  189. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  190. val |= g4x_infoframe_index(type);
  191. /* The DIP control register spec says that we need to update the AVI
  192. * infoframe without clearing its enable bit */
  193. if (type != HDMI_INFOFRAME_TYPE_AVI)
  194. val &= ~g4x_infoframe_enable(type);
  195. I915_WRITE(reg, val);
  196. mmiowb();
  197. for (i = 0; i < len; i += 4) {
  198. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  199. data++;
  200. }
  201. /* Write every possible data byte to force correct ECC calculation. */
  202. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  203. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  204. mmiowb();
  205. val |= g4x_infoframe_enable(type);
  206. val &= ~VIDEO_DIP_FREQ_MASK;
  207. val |= VIDEO_DIP_FREQ_VSYNC;
  208. I915_WRITE(reg, val);
  209. POSTING_READ(reg);
  210. }
  211. static void vlv_write_infoframe(struct drm_encoder *encoder,
  212. enum hdmi_infoframe_type type,
  213. const uint8_t *frame, ssize_t len)
  214. {
  215. uint32_t *data = (uint32_t *)frame;
  216. struct drm_device *dev = encoder->dev;
  217. struct drm_i915_private *dev_priv = dev->dev_private;
  218. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  219. int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  220. u32 val = I915_READ(reg);
  221. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  222. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  223. val |= g4x_infoframe_index(type);
  224. val &= ~g4x_infoframe_enable(type);
  225. I915_WRITE(reg, val);
  226. mmiowb();
  227. for (i = 0; i < len; i += 4) {
  228. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  229. data++;
  230. }
  231. /* Write every possible data byte to force correct ECC calculation. */
  232. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  233. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  234. mmiowb();
  235. val |= g4x_infoframe_enable(type);
  236. val &= ~VIDEO_DIP_FREQ_MASK;
  237. val |= VIDEO_DIP_FREQ_VSYNC;
  238. I915_WRITE(reg, val);
  239. POSTING_READ(reg);
  240. }
  241. static void hsw_write_infoframe(struct drm_encoder *encoder,
  242. enum hdmi_infoframe_type type,
  243. const uint8_t *frame, ssize_t len)
  244. {
  245. uint32_t *data = (uint32_t *)frame;
  246. struct drm_device *dev = encoder->dev;
  247. struct drm_i915_private *dev_priv = dev->dev_private;
  248. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  249. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
  250. u32 data_reg;
  251. int i;
  252. u32 val = I915_READ(ctl_reg);
  253. data_reg = hsw_infoframe_data_reg(type,
  254. intel_crtc->config.cpu_transcoder);
  255. if (data_reg == 0)
  256. return;
  257. val &= ~hsw_infoframe_enable(type);
  258. I915_WRITE(ctl_reg, val);
  259. mmiowb();
  260. for (i = 0; i < len; i += 4) {
  261. I915_WRITE(data_reg + i, *data);
  262. data++;
  263. }
  264. /* Write every possible data byte to force correct ECC calculation. */
  265. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  266. I915_WRITE(data_reg + i, 0);
  267. mmiowb();
  268. val |= hsw_infoframe_enable(type);
  269. I915_WRITE(ctl_reg, val);
  270. POSTING_READ(ctl_reg);
  271. }
  272. /*
  273. * The data we write to the DIP data buffer registers is 1 byte bigger than the
  274. * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
  275. * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
  276. * used for both technologies.
  277. *
  278. * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
  279. * DW1: DB3 | DB2 | DB1 | DB0
  280. * DW2: DB7 | DB6 | DB5 | DB4
  281. * DW3: ...
  282. *
  283. * (HB is Header Byte, DB is Data Byte)
  284. *
  285. * The hdmi pack() functions don't know about that hardware specific hole so we
  286. * trick them by giving an offset into the buffer and moving back the header
  287. * bytes by one.
  288. */
  289. static void intel_write_infoframe(struct drm_encoder *encoder,
  290. union hdmi_infoframe *frame)
  291. {
  292. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  293. uint8_t buffer[VIDEO_DIP_DATA_SIZE];
  294. ssize_t len;
  295. /* see comment above for the reason for this offset */
  296. len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
  297. if (len < 0)
  298. return;
  299. /* Insert the 'hole' (see big comment above) at position 3 */
  300. buffer[0] = buffer[1];
  301. buffer[1] = buffer[2];
  302. buffer[2] = buffer[3];
  303. buffer[3] = 0;
  304. len++;
  305. intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
  306. }
  307. static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
  308. struct drm_display_mode *adjusted_mode)
  309. {
  310. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  311. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  312. union hdmi_infoframe frame;
  313. int ret;
  314. ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
  315. adjusted_mode);
  316. if (ret < 0) {
  317. DRM_ERROR("couldn't fill AVI infoframe\n");
  318. return;
  319. }
  320. if (intel_hdmi->rgb_quant_range_selectable) {
  321. if (intel_crtc->config.limited_color_range)
  322. frame.avi.quantization_range =
  323. HDMI_QUANTIZATION_RANGE_LIMITED;
  324. else
  325. frame.avi.quantization_range =
  326. HDMI_QUANTIZATION_RANGE_FULL;
  327. }
  328. intel_write_infoframe(encoder, &frame);
  329. }
  330. static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
  331. {
  332. union hdmi_infoframe frame;
  333. int ret;
  334. ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
  335. if (ret < 0) {
  336. DRM_ERROR("couldn't fill SPD infoframe\n");
  337. return;
  338. }
  339. frame.spd.sdi = HDMI_SPD_SDI_PC;
  340. intel_write_infoframe(encoder, &frame);
  341. }
  342. static void
  343. intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
  344. struct drm_display_mode *adjusted_mode)
  345. {
  346. union hdmi_infoframe frame;
  347. int ret;
  348. ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
  349. adjusted_mode);
  350. if (ret < 0)
  351. return;
  352. intel_write_infoframe(encoder, &frame);
  353. }
  354. static void g4x_set_infoframes(struct drm_encoder *encoder,
  355. struct drm_display_mode *adjusted_mode)
  356. {
  357. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  358. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  359. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  360. u32 reg = VIDEO_DIP_CTL;
  361. u32 val = I915_READ(reg);
  362. u32 port;
  363. assert_hdmi_port_disabled(intel_hdmi);
  364. /* If the registers were not initialized yet, they might be zeroes,
  365. * which means we're selecting the AVI DIP and we're setting its
  366. * frequency to once. This seems to really confuse the HW and make
  367. * things stop working (the register spec says the AVI always needs to
  368. * be sent every VSync). So here we avoid writing to the register more
  369. * than we need and also explicitly select the AVI DIP and explicitly
  370. * set its frequency to every VSync. Avoiding to write it twice seems to
  371. * be enough to solve the problem, but being defensive shouldn't hurt us
  372. * either. */
  373. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  374. if (!intel_hdmi->has_hdmi_sink) {
  375. if (!(val & VIDEO_DIP_ENABLE))
  376. return;
  377. val &= ~VIDEO_DIP_ENABLE;
  378. I915_WRITE(reg, val);
  379. POSTING_READ(reg);
  380. return;
  381. }
  382. switch (intel_dig_port->port) {
  383. case PORT_B:
  384. port = VIDEO_DIP_PORT_B;
  385. break;
  386. case PORT_C:
  387. port = VIDEO_DIP_PORT_C;
  388. break;
  389. default:
  390. BUG();
  391. return;
  392. }
  393. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  394. if (val & VIDEO_DIP_ENABLE) {
  395. val &= ~VIDEO_DIP_ENABLE;
  396. I915_WRITE(reg, val);
  397. POSTING_READ(reg);
  398. }
  399. val &= ~VIDEO_DIP_PORT_MASK;
  400. val |= port;
  401. }
  402. val |= VIDEO_DIP_ENABLE;
  403. val &= ~VIDEO_DIP_ENABLE_VENDOR;
  404. I915_WRITE(reg, val);
  405. POSTING_READ(reg);
  406. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  407. intel_hdmi_set_spd_infoframe(encoder);
  408. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  409. }
  410. static void ibx_set_infoframes(struct drm_encoder *encoder,
  411. struct drm_display_mode *adjusted_mode)
  412. {
  413. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  414. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  415. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  416. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  417. u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  418. u32 val = I915_READ(reg);
  419. u32 port;
  420. assert_hdmi_port_disabled(intel_hdmi);
  421. /* See the big comment in g4x_set_infoframes() */
  422. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  423. if (!intel_hdmi->has_hdmi_sink) {
  424. if (!(val & VIDEO_DIP_ENABLE))
  425. return;
  426. val &= ~VIDEO_DIP_ENABLE;
  427. I915_WRITE(reg, val);
  428. POSTING_READ(reg);
  429. return;
  430. }
  431. switch (intel_dig_port->port) {
  432. case PORT_B:
  433. port = VIDEO_DIP_PORT_B;
  434. break;
  435. case PORT_C:
  436. port = VIDEO_DIP_PORT_C;
  437. break;
  438. case PORT_D:
  439. port = VIDEO_DIP_PORT_D;
  440. break;
  441. default:
  442. BUG();
  443. return;
  444. }
  445. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  446. if (val & VIDEO_DIP_ENABLE) {
  447. val &= ~VIDEO_DIP_ENABLE;
  448. I915_WRITE(reg, val);
  449. POSTING_READ(reg);
  450. }
  451. val &= ~VIDEO_DIP_PORT_MASK;
  452. val |= port;
  453. }
  454. val |= VIDEO_DIP_ENABLE;
  455. val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  456. VIDEO_DIP_ENABLE_GCP);
  457. I915_WRITE(reg, val);
  458. POSTING_READ(reg);
  459. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  460. intel_hdmi_set_spd_infoframe(encoder);
  461. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  462. }
  463. static void cpt_set_infoframes(struct drm_encoder *encoder,
  464. struct drm_display_mode *adjusted_mode)
  465. {
  466. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  467. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  468. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  469. u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  470. u32 val = I915_READ(reg);
  471. assert_hdmi_port_disabled(intel_hdmi);
  472. /* See the big comment in g4x_set_infoframes() */
  473. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  474. if (!intel_hdmi->has_hdmi_sink) {
  475. if (!(val & VIDEO_DIP_ENABLE))
  476. return;
  477. val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI);
  478. I915_WRITE(reg, val);
  479. POSTING_READ(reg);
  480. return;
  481. }
  482. /* Set both together, unset both together: see the spec. */
  483. val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
  484. val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  485. VIDEO_DIP_ENABLE_GCP);
  486. I915_WRITE(reg, val);
  487. POSTING_READ(reg);
  488. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  489. intel_hdmi_set_spd_infoframe(encoder);
  490. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  491. }
  492. static void vlv_set_infoframes(struct drm_encoder *encoder,
  493. struct drm_display_mode *adjusted_mode)
  494. {
  495. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  496. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  497. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  498. u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  499. u32 val = I915_READ(reg);
  500. assert_hdmi_port_disabled(intel_hdmi);
  501. /* See the big comment in g4x_set_infoframes() */
  502. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  503. if (!intel_hdmi->has_hdmi_sink) {
  504. if (!(val & VIDEO_DIP_ENABLE))
  505. return;
  506. val &= ~VIDEO_DIP_ENABLE;
  507. I915_WRITE(reg, val);
  508. POSTING_READ(reg);
  509. return;
  510. }
  511. val |= VIDEO_DIP_ENABLE;
  512. val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  513. VIDEO_DIP_ENABLE_GCP);
  514. I915_WRITE(reg, val);
  515. POSTING_READ(reg);
  516. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  517. intel_hdmi_set_spd_infoframe(encoder);
  518. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  519. }
  520. static void hsw_set_infoframes(struct drm_encoder *encoder,
  521. struct drm_display_mode *adjusted_mode)
  522. {
  523. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  524. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  525. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  526. u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
  527. u32 val = I915_READ(reg);
  528. assert_hdmi_port_disabled(intel_hdmi);
  529. if (!intel_hdmi->has_hdmi_sink) {
  530. I915_WRITE(reg, 0);
  531. POSTING_READ(reg);
  532. return;
  533. }
  534. val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
  535. VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW);
  536. I915_WRITE(reg, val);
  537. POSTING_READ(reg);
  538. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  539. intel_hdmi_set_spd_infoframe(encoder);
  540. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  541. }
  542. static void intel_hdmi_mode_set(struct intel_encoder *encoder)
  543. {
  544. struct drm_device *dev = encoder->base.dev;
  545. struct drm_i915_private *dev_priv = dev->dev_private;
  546. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  547. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  548. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  549. u32 hdmi_val;
  550. hdmi_val = SDVO_ENCODING_HDMI;
  551. if (!HAS_PCH_SPLIT(dev))
  552. hdmi_val |= intel_hdmi->color_range;
  553. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  554. hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
  555. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  556. hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
  557. if (crtc->config.pipe_bpp > 24)
  558. hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
  559. else
  560. hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
  561. /* Required on CPT */
  562. if (intel_hdmi->has_hdmi_sink && HAS_PCH_CPT(dev))
  563. hdmi_val |= HDMI_MODE_SELECT_HDMI;
  564. if (intel_hdmi->has_audio) {
  565. DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
  566. pipe_name(crtc->pipe));
  567. hdmi_val |= SDVO_AUDIO_ENABLE;
  568. hdmi_val |= HDMI_MODE_SELECT_HDMI;
  569. intel_write_eld(&encoder->base, adjusted_mode);
  570. }
  571. if (HAS_PCH_CPT(dev))
  572. hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
  573. else
  574. hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
  575. I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
  576. POSTING_READ(intel_hdmi->hdmi_reg);
  577. intel_hdmi->set_infoframes(&encoder->base, adjusted_mode);
  578. }
  579. static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
  580. enum pipe *pipe)
  581. {
  582. struct drm_device *dev = encoder->base.dev;
  583. struct drm_i915_private *dev_priv = dev->dev_private;
  584. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  585. u32 tmp;
  586. tmp = I915_READ(intel_hdmi->hdmi_reg);
  587. if (!(tmp & SDVO_ENABLE))
  588. return false;
  589. if (HAS_PCH_CPT(dev))
  590. *pipe = PORT_TO_PIPE_CPT(tmp);
  591. else
  592. *pipe = PORT_TO_PIPE(tmp);
  593. return true;
  594. }
  595. static void intel_hdmi_get_config(struct intel_encoder *encoder,
  596. struct intel_crtc_config *pipe_config)
  597. {
  598. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  599. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  600. u32 tmp, flags = 0;
  601. int dotclock;
  602. tmp = I915_READ(intel_hdmi->hdmi_reg);
  603. if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
  604. flags |= DRM_MODE_FLAG_PHSYNC;
  605. else
  606. flags |= DRM_MODE_FLAG_NHSYNC;
  607. if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
  608. flags |= DRM_MODE_FLAG_PVSYNC;
  609. else
  610. flags |= DRM_MODE_FLAG_NVSYNC;
  611. pipe_config->adjusted_mode.flags |= flags;
  612. if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
  613. dotclock = pipe_config->port_clock * 2 / 3;
  614. else
  615. dotclock = pipe_config->port_clock;
  616. if (HAS_PCH_SPLIT(dev_priv->dev))
  617. ironlake_check_encoder_dotclock(pipe_config, dotclock);
  618. pipe_config->adjusted_mode.crtc_clock = dotclock;
  619. }
  620. static void intel_enable_hdmi(struct intel_encoder *encoder)
  621. {
  622. struct drm_device *dev = encoder->base.dev;
  623. struct drm_i915_private *dev_priv = dev->dev_private;
  624. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  625. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  626. u32 temp;
  627. u32 enable_bits = SDVO_ENABLE;
  628. if (intel_hdmi->has_audio)
  629. enable_bits |= SDVO_AUDIO_ENABLE;
  630. temp = I915_READ(intel_hdmi->hdmi_reg);
  631. /* HW workaround for IBX, we need to move the port to transcoder A
  632. * before disabling it, so restore the transcoder select bit here. */
  633. if (HAS_PCH_IBX(dev))
  634. enable_bits |= SDVO_PIPE_SEL(intel_crtc->pipe);
  635. /* HW workaround, need to toggle enable bit off and on for 12bpc, but
  636. * we do this anyway which shows more stable in testing.
  637. */
  638. if (HAS_PCH_SPLIT(dev)) {
  639. I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
  640. POSTING_READ(intel_hdmi->hdmi_reg);
  641. }
  642. temp |= enable_bits;
  643. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  644. POSTING_READ(intel_hdmi->hdmi_reg);
  645. /* HW workaround, need to write this twice for issue that may result
  646. * in first write getting masked.
  647. */
  648. if (HAS_PCH_SPLIT(dev)) {
  649. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  650. POSTING_READ(intel_hdmi->hdmi_reg);
  651. }
  652. }
  653. static void vlv_enable_hdmi(struct intel_encoder *encoder)
  654. {
  655. }
  656. static void intel_disable_hdmi(struct intel_encoder *encoder)
  657. {
  658. struct drm_device *dev = encoder->base.dev;
  659. struct drm_i915_private *dev_priv = dev->dev_private;
  660. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  661. u32 temp;
  662. u32 enable_bits = SDVO_ENABLE | SDVO_AUDIO_ENABLE;
  663. temp = I915_READ(intel_hdmi->hdmi_reg);
  664. /* HW workaround for IBX, we need to move the port to transcoder A
  665. * before disabling it. */
  666. if (HAS_PCH_IBX(dev)) {
  667. struct drm_crtc *crtc = encoder->base.crtc;
  668. int pipe = crtc ? to_intel_crtc(crtc)->pipe : -1;
  669. if (temp & SDVO_PIPE_B_SELECT) {
  670. temp &= ~SDVO_PIPE_B_SELECT;
  671. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  672. POSTING_READ(intel_hdmi->hdmi_reg);
  673. /* Again we need to write this twice. */
  674. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  675. POSTING_READ(intel_hdmi->hdmi_reg);
  676. /* Transcoder selection bits only update
  677. * effectively on vblank. */
  678. if (crtc)
  679. intel_wait_for_vblank(dev, pipe);
  680. else
  681. msleep(50);
  682. }
  683. }
  684. /* HW workaround, need to toggle enable bit off and on for 12bpc, but
  685. * we do this anyway which shows more stable in testing.
  686. */
  687. if (HAS_PCH_SPLIT(dev)) {
  688. I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
  689. POSTING_READ(intel_hdmi->hdmi_reg);
  690. }
  691. temp &= ~enable_bits;
  692. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  693. POSTING_READ(intel_hdmi->hdmi_reg);
  694. /* HW workaround, need to write this twice for issue that may result
  695. * in first write getting masked.
  696. */
  697. if (HAS_PCH_SPLIT(dev)) {
  698. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  699. POSTING_READ(intel_hdmi->hdmi_reg);
  700. }
  701. }
  702. static int hdmi_portclock_limit(struct intel_hdmi *hdmi)
  703. {
  704. struct drm_device *dev = intel_hdmi_to_dev(hdmi);
  705. if (IS_G4X(dev))
  706. return 165000;
  707. else if (IS_HASWELL(dev))
  708. return 300000;
  709. else
  710. return 225000;
  711. }
  712. static int intel_hdmi_mode_valid(struct drm_connector *connector,
  713. struct drm_display_mode *mode)
  714. {
  715. if (mode->clock > hdmi_portclock_limit(intel_attached_hdmi(connector)))
  716. return MODE_CLOCK_HIGH;
  717. if (mode->clock < 20000)
  718. return MODE_CLOCK_LOW;
  719. if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
  720. return MODE_NO_DBLESCAN;
  721. return MODE_OK;
  722. }
  723. bool intel_hdmi_compute_config(struct intel_encoder *encoder,
  724. struct intel_crtc_config *pipe_config)
  725. {
  726. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  727. struct drm_device *dev = encoder->base.dev;
  728. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  729. int clock_12bpc = pipe_config->adjusted_mode.crtc_clock * 3 / 2;
  730. int portclock_limit = hdmi_portclock_limit(intel_hdmi);
  731. int desired_bpp;
  732. if (intel_hdmi->color_range_auto) {
  733. /* See CEA-861-E - 5.1 Default Encoding Parameters */
  734. if (intel_hdmi->has_hdmi_sink &&
  735. drm_match_cea_mode(adjusted_mode) > 1)
  736. intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
  737. else
  738. intel_hdmi->color_range = 0;
  739. }
  740. if (intel_hdmi->color_range)
  741. pipe_config->limited_color_range = true;
  742. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
  743. pipe_config->has_pch_encoder = true;
  744. /*
  745. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  746. * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
  747. * outputs. We also need to check that the higher clock still fits
  748. * within limits.
  749. */
  750. if (pipe_config->pipe_bpp > 8*3 && clock_12bpc <= portclock_limit
  751. && HAS_PCH_SPLIT(dev)) {
  752. DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
  753. desired_bpp = 12*3;
  754. /* Need to adjust the port link by 1.5x for 12bpc. */
  755. pipe_config->port_clock = clock_12bpc;
  756. } else {
  757. DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
  758. desired_bpp = 8*3;
  759. }
  760. if (!pipe_config->bw_constrained) {
  761. DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
  762. pipe_config->pipe_bpp = desired_bpp;
  763. }
  764. if (adjusted_mode->crtc_clock > portclock_limit) {
  765. DRM_DEBUG_KMS("too high HDMI clock, rejecting mode\n");
  766. return false;
  767. }
  768. return true;
  769. }
  770. static enum drm_connector_status
  771. intel_hdmi_detect(struct drm_connector *connector, bool force)
  772. {
  773. struct drm_device *dev = connector->dev;
  774. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  775. struct intel_digital_port *intel_dig_port =
  776. hdmi_to_dig_port(intel_hdmi);
  777. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  778. struct drm_i915_private *dev_priv = dev->dev_private;
  779. struct edid *edid;
  780. enum drm_connector_status status = connector_status_disconnected;
  781. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  782. connector->base.id, drm_get_connector_name(connector));
  783. intel_hdmi->has_hdmi_sink = false;
  784. intel_hdmi->has_audio = false;
  785. intel_hdmi->rgb_quant_range_selectable = false;
  786. edid = drm_get_edid(connector,
  787. intel_gmbus_get_adapter(dev_priv,
  788. intel_hdmi->ddc_bus));
  789. if (edid) {
  790. if (edid->input & DRM_EDID_INPUT_DIGITAL) {
  791. status = connector_status_connected;
  792. if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
  793. intel_hdmi->has_hdmi_sink =
  794. drm_detect_hdmi_monitor(edid);
  795. intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
  796. intel_hdmi->rgb_quant_range_selectable =
  797. drm_rgb_quant_range_selectable(edid);
  798. }
  799. kfree(edid);
  800. }
  801. if (status == connector_status_connected) {
  802. if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
  803. intel_hdmi->has_audio =
  804. (intel_hdmi->force_audio == HDMI_AUDIO_ON);
  805. intel_encoder->type = INTEL_OUTPUT_HDMI;
  806. }
  807. return status;
  808. }
  809. static int intel_hdmi_get_modes(struct drm_connector *connector)
  810. {
  811. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  812. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  813. /* We should parse the EDID data and find out if it's an HDMI sink so
  814. * we can send audio to it.
  815. */
  816. return intel_ddc_get_modes(connector,
  817. intel_gmbus_get_adapter(dev_priv,
  818. intel_hdmi->ddc_bus));
  819. }
  820. static bool
  821. intel_hdmi_detect_audio(struct drm_connector *connector)
  822. {
  823. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  824. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  825. struct edid *edid;
  826. bool has_audio = false;
  827. edid = drm_get_edid(connector,
  828. intel_gmbus_get_adapter(dev_priv,
  829. intel_hdmi->ddc_bus));
  830. if (edid) {
  831. if (edid->input & DRM_EDID_INPUT_DIGITAL)
  832. has_audio = drm_detect_monitor_audio(edid);
  833. kfree(edid);
  834. }
  835. return has_audio;
  836. }
  837. static int
  838. intel_hdmi_set_property(struct drm_connector *connector,
  839. struct drm_property *property,
  840. uint64_t val)
  841. {
  842. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  843. struct intel_digital_port *intel_dig_port =
  844. hdmi_to_dig_port(intel_hdmi);
  845. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  846. int ret;
  847. ret = drm_object_property_set_value(&connector->base, property, val);
  848. if (ret)
  849. return ret;
  850. if (property == dev_priv->force_audio_property) {
  851. enum hdmi_force_audio i = val;
  852. bool has_audio;
  853. if (i == intel_hdmi->force_audio)
  854. return 0;
  855. intel_hdmi->force_audio = i;
  856. if (i == HDMI_AUDIO_AUTO)
  857. has_audio = intel_hdmi_detect_audio(connector);
  858. else
  859. has_audio = (i == HDMI_AUDIO_ON);
  860. if (i == HDMI_AUDIO_OFF_DVI)
  861. intel_hdmi->has_hdmi_sink = 0;
  862. intel_hdmi->has_audio = has_audio;
  863. goto done;
  864. }
  865. if (property == dev_priv->broadcast_rgb_property) {
  866. bool old_auto = intel_hdmi->color_range_auto;
  867. uint32_t old_range = intel_hdmi->color_range;
  868. switch (val) {
  869. case INTEL_BROADCAST_RGB_AUTO:
  870. intel_hdmi->color_range_auto = true;
  871. break;
  872. case INTEL_BROADCAST_RGB_FULL:
  873. intel_hdmi->color_range_auto = false;
  874. intel_hdmi->color_range = 0;
  875. break;
  876. case INTEL_BROADCAST_RGB_LIMITED:
  877. intel_hdmi->color_range_auto = false;
  878. intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
  879. break;
  880. default:
  881. return -EINVAL;
  882. }
  883. if (old_auto == intel_hdmi->color_range_auto &&
  884. old_range == intel_hdmi->color_range)
  885. return 0;
  886. goto done;
  887. }
  888. return -EINVAL;
  889. done:
  890. if (intel_dig_port->base.base.crtc)
  891. intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
  892. return 0;
  893. }
  894. static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
  895. {
  896. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  897. struct drm_device *dev = encoder->base.dev;
  898. struct drm_i915_private *dev_priv = dev->dev_private;
  899. struct intel_crtc *intel_crtc =
  900. to_intel_crtc(encoder->base.crtc);
  901. int port = vlv_dport_to_channel(dport);
  902. int pipe = intel_crtc->pipe;
  903. u32 val;
  904. if (!IS_VALLEYVIEW(dev))
  905. return;
  906. /* Enable clock channels for this port */
  907. mutex_lock(&dev_priv->dpio_lock);
  908. val = vlv_dpio_read(dev_priv, pipe, DPIO_DATA_LANE_A(port));
  909. val = 0;
  910. if (pipe)
  911. val |= (1<<21);
  912. else
  913. val &= ~(1<<21);
  914. val |= 0x001000c4;
  915. vlv_dpio_write(dev_priv, pipe, DPIO_DATA_CHANNEL(port), val);
  916. /* HDMI 1.0V-2dB */
  917. vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0);
  918. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL4(port),
  919. 0x2b245f5f);
  920. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL2(port),
  921. 0x5578b83a);
  922. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL3(port),
  923. 0x0c782040);
  924. vlv_dpio_write(dev_priv, pipe, DPIO_TX3_SWING_CTL4(port),
  925. 0x2b247878);
  926. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER0(port), 0x00030000);
  927. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CTL_OVER1(port),
  928. 0x00002000);
  929. vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port),
  930. DPIO_TX_OCALINIT_EN);
  931. /* Program lane clock */
  932. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF0(port),
  933. 0x00760018);
  934. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF8(port),
  935. 0x00400888);
  936. mutex_unlock(&dev_priv->dpio_lock);
  937. intel_enable_hdmi(encoder);
  938. vlv_wait_port_ready(dev_priv, port);
  939. }
  940. static void intel_hdmi_pre_pll_enable(struct intel_encoder *encoder)
  941. {
  942. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  943. struct drm_device *dev = encoder->base.dev;
  944. struct drm_i915_private *dev_priv = dev->dev_private;
  945. struct intel_crtc *intel_crtc =
  946. to_intel_crtc(encoder->base.crtc);
  947. int port = vlv_dport_to_channel(dport);
  948. int pipe = intel_crtc->pipe;
  949. if (!IS_VALLEYVIEW(dev))
  950. return;
  951. /* Program Tx lane resets to default */
  952. mutex_lock(&dev_priv->dpio_lock);
  953. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_TX(port),
  954. DPIO_PCS_TX_LANE2_RESET |
  955. DPIO_PCS_TX_LANE1_RESET);
  956. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLK(port),
  957. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  958. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  959. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  960. DPIO_PCS_CLK_SOFT_RESET);
  961. /* Fix up inter-pair skew failure */
  962. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER1(port), 0x00750f00);
  963. vlv_dpio_write(dev_priv, pipe, DPIO_TX_CTL(port), 0x00001500);
  964. vlv_dpio_write(dev_priv, pipe, DPIO_TX_LANE(port), 0x40400000);
  965. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CTL_OVER1(port),
  966. 0x00002000);
  967. vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port),
  968. DPIO_TX_OCALINIT_EN);
  969. mutex_unlock(&dev_priv->dpio_lock);
  970. }
  971. static void intel_hdmi_post_disable(struct intel_encoder *encoder)
  972. {
  973. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  974. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  975. struct intel_crtc *intel_crtc =
  976. to_intel_crtc(encoder->base.crtc);
  977. int port = vlv_dport_to_channel(dport);
  978. int pipe = intel_crtc->pipe;
  979. /* Reset lanes to avoid HDMI flicker (VLV w/a) */
  980. mutex_lock(&dev_priv->dpio_lock);
  981. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_TX(port), 0x00000000);
  982. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLK(port), 0x00e00060);
  983. mutex_unlock(&dev_priv->dpio_lock);
  984. }
  985. static void intel_hdmi_destroy(struct drm_connector *connector)
  986. {
  987. drm_connector_cleanup(connector);
  988. kfree(connector);
  989. }
  990. static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
  991. .dpms = intel_connector_dpms,
  992. .detect = intel_hdmi_detect,
  993. .fill_modes = drm_helper_probe_single_connector_modes,
  994. .set_property = intel_hdmi_set_property,
  995. .destroy = intel_hdmi_destroy,
  996. };
  997. static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
  998. .get_modes = intel_hdmi_get_modes,
  999. .mode_valid = intel_hdmi_mode_valid,
  1000. .best_encoder = intel_best_encoder,
  1001. };
  1002. static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
  1003. .destroy = intel_encoder_destroy,
  1004. };
  1005. static void
  1006. intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
  1007. {
  1008. intel_attach_force_audio_property(connector);
  1009. intel_attach_broadcast_rgb_property(connector);
  1010. intel_hdmi->color_range_auto = true;
  1011. }
  1012. void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
  1013. struct intel_connector *intel_connector)
  1014. {
  1015. struct drm_connector *connector = &intel_connector->base;
  1016. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  1017. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  1018. struct drm_device *dev = intel_encoder->base.dev;
  1019. struct drm_i915_private *dev_priv = dev->dev_private;
  1020. enum port port = intel_dig_port->port;
  1021. drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
  1022. DRM_MODE_CONNECTOR_HDMIA);
  1023. drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
  1024. connector->interlace_allowed = 1;
  1025. connector->doublescan_allowed = 0;
  1026. connector->stereo_allowed = 1;
  1027. switch (port) {
  1028. case PORT_B:
  1029. intel_hdmi->ddc_bus = GMBUS_PORT_DPB;
  1030. intel_encoder->hpd_pin = HPD_PORT_B;
  1031. break;
  1032. case PORT_C:
  1033. intel_hdmi->ddc_bus = GMBUS_PORT_DPC;
  1034. intel_encoder->hpd_pin = HPD_PORT_C;
  1035. break;
  1036. case PORT_D:
  1037. intel_hdmi->ddc_bus = GMBUS_PORT_DPD;
  1038. intel_encoder->hpd_pin = HPD_PORT_D;
  1039. break;
  1040. case PORT_A:
  1041. intel_encoder->hpd_pin = HPD_PORT_A;
  1042. /* Internal port only for eDP. */
  1043. default:
  1044. BUG();
  1045. }
  1046. if (IS_VALLEYVIEW(dev)) {
  1047. intel_hdmi->write_infoframe = vlv_write_infoframe;
  1048. intel_hdmi->set_infoframes = vlv_set_infoframes;
  1049. } else if (!HAS_PCH_SPLIT(dev)) {
  1050. intel_hdmi->write_infoframe = g4x_write_infoframe;
  1051. intel_hdmi->set_infoframes = g4x_set_infoframes;
  1052. } else if (HAS_DDI(dev)) {
  1053. intel_hdmi->write_infoframe = hsw_write_infoframe;
  1054. intel_hdmi->set_infoframes = hsw_set_infoframes;
  1055. } else if (HAS_PCH_IBX(dev)) {
  1056. intel_hdmi->write_infoframe = ibx_write_infoframe;
  1057. intel_hdmi->set_infoframes = ibx_set_infoframes;
  1058. } else {
  1059. intel_hdmi->write_infoframe = cpt_write_infoframe;
  1060. intel_hdmi->set_infoframes = cpt_set_infoframes;
  1061. }
  1062. if (HAS_DDI(dev))
  1063. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  1064. else
  1065. intel_connector->get_hw_state = intel_connector_get_hw_state;
  1066. intel_hdmi_add_properties(intel_hdmi, connector);
  1067. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1068. drm_sysfs_connector_add(connector);
  1069. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1070. * 0xd. Failure to do so will result in spurious interrupts being
  1071. * generated on the port when a cable is not attached.
  1072. */
  1073. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1074. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1075. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1076. }
  1077. }
  1078. void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
  1079. {
  1080. struct intel_digital_port *intel_dig_port;
  1081. struct intel_encoder *intel_encoder;
  1082. struct intel_connector *intel_connector;
  1083. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1084. if (!intel_dig_port)
  1085. return;
  1086. intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
  1087. if (!intel_connector) {
  1088. kfree(intel_dig_port);
  1089. return;
  1090. }
  1091. intel_encoder = &intel_dig_port->base;
  1092. drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
  1093. DRM_MODE_ENCODER_TMDS);
  1094. intel_encoder->compute_config = intel_hdmi_compute_config;
  1095. intel_encoder->mode_set = intel_hdmi_mode_set;
  1096. intel_encoder->disable = intel_disable_hdmi;
  1097. intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
  1098. intel_encoder->get_config = intel_hdmi_get_config;
  1099. if (IS_VALLEYVIEW(dev)) {
  1100. intel_encoder->pre_pll_enable = intel_hdmi_pre_pll_enable;
  1101. intel_encoder->pre_enable = intel_hdmi_pre_enable;
  1102. intel_encoder->enable = vlv_enable_hdmi;
  1103. intel_encoder->post_disable = intel_hdmi_post_disable;
  1104. } else {
  1105. intel_encoder->enable = intel_enable_hdmi;
  1106. }
  1107. intel_encoder->type = INTEL_OUTPUT_HDMI;
  1108. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1109. intel_encoder->cloneable = false;
  1110. intel_dig_port->port = port;
  1111. intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
  1112. intel_dig_port->dp.output_reg = 0;
  1113. intel_hdmi_init_connector(intel_dig_port, intel_connector);
  1114. }