intel_dp.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. struct dp_link_dpll {
  39. int link_bw;
  40. struct dpll dpll;
  41. };
  42. static const struct dp_link_dpll gen4_dpll[] = {
  43. { DP_LINK_BW_1_62,
  44. { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
  45. { DP_LINK_BW_2_7,
  46. { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
  47. };
  48. static const struct dp_link_dpll pch_dpll[] = {
  49. { DP_LINK_BW_1_62,
  50. { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
  51. { DP_LINK_BW_2_7,
  52. { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
  53. };
  54. static const struct dp_link_dpll vlv_dpll[] = {
  55. { DP_LINK_BW_1_62,
  56. { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
  57. { DP_LINK_BW_2_7,
  58. { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
  59. };
  60. /**
  61. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  62. * @intel_dp: DP struct
  63. *
  64. * If a CPU or PCH DP output is attached to an eDP panel, this function
  65. * will return true, and false otherwise.
  66. */
  67. static bool is_edp(struct intel_dp *intel_dp)
  68. {
  69. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  70. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  71. }
  72. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  73. {
  74. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  75. return intel_dig_port->base.base.dev;
  76. }
  77. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  78. {
  79. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  80. }
  81. static void intel_dp_link_down(struct intel_dp *intel_dp);
  82. static int
  83. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  84. {
  85. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  86. switch (max_link_bw) {
  87. case DP_LINK_BW_1_62:
  88. case DP_LINK_BW_2_7:
  89. break;
  90. case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
  91. max_link_bw = DP_LINK_BW_2_7;
  92. break;
  93. default:
  94. WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
  95. max_link_bw);
  96. max_link_bw = DP_LINK_BW_1_62;
  97. break;
  98. }
  99. return max_link_bw;
  100. }
  101. /*
  102. * The units on the numbers in the next two are... bizarre. Examples will
  103. * make it clearer; this one parallels an example in the eDP spec.
  104. *
  105. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  106. *
  107. * 270000 * 1 * 8 / 10 == 216000
  108. *
  109. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  110. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  111. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  112. * 119000. At 18bpp that's 2142000 kilobits per second.
  113. *
  114. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  115. * get the result in decakilobits instead of kilobits.
  116. */
  117. static int
  118. intel_dp_link_required(int pixel_clock, int bpp)
  119. {
  120. return (pixel_clock * bpp + 9) / 10;
  121. }
  122. static int
  123. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  124. {
  125. return (max_link_clock * max_lanes * 8) / 10;
  126. }
  127. static int
  128. intel_dp_mode_valid(struct drm_connector *connector,
  129. struct drm_display_mode *mode)
  130. {
  131. struct intel_dp *intel_dp = intel_attached_dp(connector);
  132. struct intel_connector *intel_connector = to_intel_connector(connector);
  133. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  134. int target_clock = mode->clock;
  135. int max_rate, mode_rate, max_lanes, max_link_clock;
  136. if (is_edp(intel_dp) && fixed_mode) {
  137. if (mode->hdisplay > fixed_mode->hdisplay)
  138. return MODE_PANEL;
  139. if (mode->vdisplay > fixed_mode->vdisplay)
  140. return MODE_PANEL;
  141. target_clock = fixed_mode->clock;
  142. }
  143. max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  144. max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
  145. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  146. mode_rate = intel_dp_link_required(target_clock, 18);
  147. if (mode_rate > max_rate)
  148. return MODE_CLOCK_HIGH;
  149. if (mode->clock < 10000)
  150. return MODE_CLOCK_LOW;
  151. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  152. return MODE_H_ILLEGAL;
  153. return MODE_OK;
  154. }
  155. static uint32_t
  156. pack_aux(uint8_t *src, int src_bytes)
  157. {
  158. int i;
  159. uint32_t v = 0;
  160. if (src_bytes > 4)
  161. src_bytes = 4;
  162. for (i = 0; i < src_bytes; i++)
  163. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  164. return v;
  165. }
  166. static void
  167. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  168. {
  169. int i;
  170. if (dst_bytes > 4)
  171. dst_bytes = 4;
  172. for (i = 0; i < dst_bytes; i++)
  173. dst[i] = src >> ((3-i) * 8);
  174. }
  175. /* hrawclock is 1/4 the FSB frequency */
  176. static int
  177. intel_hrawclk(struct drm_device *dev)
  178. {
  179. struct drm_i915_private *dev_priv = dev->dev_private;
  180. uint32_t clkcfg;
  181. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  182. if (IS_VALLEYVIEW(dev))
  183. return 200;
  184. clkcfg = I915_READ(CLKCFG);
  185. switch (clkcfg & CLKCFG_FSB_MASK) {
  186. case CLKCFG_FSB_400:
  187. return 100;
  188. case CLKCFG_FSB_533:
  189. return 133;
  190. case CLKCFG_FSB_667:
  191. return 166;
  192. case CLKCFG_FSB_800:
  193. return 200;
  194. case CLKCFG_FSB_1067:
  195. return 266;
  196. case CLKCFG_FSB_1333:
  197. return 333;
  198. /* these two are just a guess; one of them might be right */
  199. case CLKCFG_FSB_1600:
  200. case CLKCFG_FSB_1600_ALT:
  201. return 400;
  202. default:
  203. return 133;
  204. }
  205. }
  206. static void
  207. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  208. struct intel_dp *intel_dp,
  209. struct edp_power_seq *out);
  210. static void
  211. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  212. struct intel_dp *intel_dp,
  213. struct edp_power_seq *out);
  214. static enum pipe
  215. vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
  216. {
  217. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  218. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  219. struct drm_device *dev = intel_dig_port->base.base.dev;
  220. struct drm_i915_private *dev_priv = dev->dev_private;
  221. enum port port = intel_dig_port->port;
  222. enum pipe pipe;
  223. /* modeset should have pipe */
  224. if (crtc)
  225. return to_intel_crtc(crtc)->pipe;
  226. /* init time, try to find a pipe with this port selected */
  227. for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
  228. u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
  229. PANEL_PORT_SELECT_MASK;
  230. if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
  231. return pipe;
  232. if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
  233. return pipe;
  234. }
  235. /* shrug */
  236. return PIPE_A;
  237. }
  238. static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
  239. {
  240. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  241. if (HAS_PCH_SPLIT(dev))
  242. return PCH_PP_CONTROL;
  243. else
  244. return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
  245. }
  246. static u32 _pp_stat_reg(struct intel_dp *intel_dp)
  247. {
  248. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  249. if (HAS_PCH_SPLIT(dev))
  250. return PCH_PP_STATUS;
  251. else
  252. return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
  253. }
  254. static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
  255. {
  256. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  257. struct drm_i915_private *dev_priv = dev->dev_private;
  258. return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
  259. }
  260. static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
  261. {
  262. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  263. struct drm_i915_private *dev_priv = dev->dev_private;
  264. return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
  265. }
  266. static void
  267. intel_dp_check_edp(struct intel_dp *intel_dp)
  268. {
  269. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  270. struct drm_i915_private *dev_priv = dev->dev_private;
  271. if (!is_edp(intel_dp))
  272. return;
  273. if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
  274. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  275. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  276. I915_READ(_pp_stat_reg(intel_dp)),
  277. I915_READ(_pp_ctrl_reg(intel_dp)));
  278. }
  279. }
  280. static uint32_t
  281. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  282. {
  283. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  284. struct drm_device *dev = intel_dig_port->base.base.dev;
  285. struct drm_i915_private *dev_priv = dev->dev_private;
  286. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  287. uint32_t status;
  288. bool done;
  289. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  290. if (has_aux_irq)
  291. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
  292. msecs_to_jiffies_timeout(10));
  293. else
  294. done = wait_for_atomic(C, 10) == 0;
  295. if (!done)
  296. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  297. has_aux_irq);
  298. #undef C
  299. return status;
  300. }
  301. static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
  302. int index)
  303. {
  304. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  305. struct drm_device *dev = intel_dig_port->base.base.dev;
  306. struct drm_i915_private *dev_priv = dev->dev_private;
  307. /* The clock divider is based off the hrawclk,
  308. * and would like to run at 2MHz. So, take the
  309. * hrawclk value and divide by 2 and use that
  310. *
  311. * Note that PCH attached eDP panels should use a 125MHz input
  312. * clock divider.
  313. */
  314. if (IS_VALLEYVIEW(dev)) {
  315. return index ? 0 : 100;
  316. } else if (intel_dig_port->port == PORT_A) {
  317. if (index)
  318. return 0;
  319. if (HAS_DDI(dev))
  320. return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
  321. else if (IS_GEN6(dev) || IS_GEN7(dev))
  322. return 200; /* SNB & IVB eDP input clock at 400Mhz */
  323. else
  324. return 225; /* eDP input clock at 450Mhz */
  325. } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
  326. /* Workaround for non-ULT HSW */
  327. switch (index) {
  328. case 0: return 63;
  329. case 1: return 72;
  330. default: return 0;
  331. }
  332. } else if (HAS_PCH_SPLIT(dev)) {
  333. return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  334. } else {
  335. return index ? 0 :intel_hrawclk(dev) / 2;
  336. }
  337. }
  338. static int
  339. intel_dp_aux_ch(struct intel_dp *intel_dp,
  340. uint8_t *send, int send_bytes,
  341. uint8_t *recv, int recv_size)
  342. {
  343. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  344. struct drm_device *dev = intel_dig_port->base.base.dev;
  345. struct drm_i915_private *dev_priv = dev->dev_private;
  346. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  347. uint32_t ch_data = ch_ctl + 4;
  348. uint32_t aux_clock_divider;
  349. int i, ret, recv_bytes;
  350. uint32_t status;
  351. int try, precharge, clock = 0;
  352. bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
  353. /* dp aux is extremely sensitive to irq latency, hence request the
  354. * lowest possible wakeup latency and so prevent the cpu from going into
  355. * deep sleep states.
  356. */
  357. pm_qos_update_request(&dev_priv->pm_qos, 0);
  358. intel_dp_check_edp(intel_dp);
  359. if (IS_GEN6(dev))
  360. precharge = 3;
  361. else
  362. precharge = 5;
  363. intel_aux_display_runtime_get(dev_priv);
  364. /* Try to wait for any previous AUX channel activity */
  365. for (try = 0; try < 3; try++) {
  366. status = I915_READ_NOTRACE(ch_ctl);
  367. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  368. break;
  369. msleep(1);
  370. }
  371. if (try == 3) {
  372. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  373. I915_READ(ch_ctl));
  374. ret = -EBUSY;
  375. goto out;
  376. }
  377. /* Only 5 data registers! */
  378. if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
  379. ret = -E2BIG;
  380. goto out;
  381. }
  382. while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
  383. /* Must try at least 3 times according to DP spec */
  384. for (try = 0; try < 5; try++) {
  385. /* Load the send data into the aux channel data registers */
  386. for (i = 0; i < send_bytes; i += 4)
  387. I915_WRITE(ch_data + i,
  388. pack_aux(send + i, send_bytes - i));
  389. /* Send the command and wait for it to complete */
  390. I915_WRITE(ch_ctl,
  391. DP_AUX_CH_CTL_SEND_BUSY |
  392. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  393. DP_AUX_CH_CTL_TIME_OUT_400us |
  394. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  395. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  396. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  397. DP_AUX_CH_CTL_DONE |
  398. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  399. DP_AUX_CH_CTL_RECEIVE_ERROR);
  400. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  401. /* Clear done status and any errors */
  402. I915_WRITE(ch_ctl,
  403. status |
  404. DP_AUX_CH_CTL_DONE |
  405. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  406. DP_AUX_CH_CTL_RECEIVE_ERROR);
  407. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  408. DP_AUX_CH_CTL_RECEIVE_ERROR))
  409. continue;
  410. if (status & DP_AUX_CH_CTL_DONE)
  411. break;
  412. }
  413. if (status & DP_AUX_CH_CTL_DONE)
  414. break;
  415. }
  416. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  417. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  418. ret = -EBUSY;
  419. goto out;
  420. }
  421. /* Check for timeout or receive error.
  422. * Timeouts occur when the sink is not connected
  423. */
  424. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  425. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  426. ret = -EIO;
  427. goto out;
  428. }
  429. /* Timeouts occur when the device isn't connected, so they're
  430. * "normal" -- don't fill the kernel log with these */
  431. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  432. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  433. ret = -ETIMEDOUT;
  434. goto out;
  435. }
  436. /* Unload any bytes sent back from the other side */
  437. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  438. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  439. if (recv_bytes > recv_size)
  440. recv_bytes = recv_size;
  441. for (i = 0; i < recv_bytes; i += 4)
  442. unpack_aux(I915_READ(ch_data + i),
  443. recv + i, recv_bytes - i);
  444. ret = recv_bytes;
  445. out:
  446. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  447. intel_aux_display_runtime_put(dev_priv);
  448. return ret;
  449. }
  450. /* Write data to the aux channel in native mode */
  451. static int
  452. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  453. uint16_t address, uint8_t *send, int send_bytes)
  454. {
  455. int ret;
  456. uint8_t msg[20];
  457. int msg_bytes;
  458. uint8_t ack;
  459. if (WARN_ON(send_bytes > 16))
  460. return -E2BIG;
  461. intel_dp_check_edp(intel_dp);
  462. msg[0] = AUX_NATIVE_WRITE << 4;
  463. msg[1] = address >> 8;
  464. msg[2] = address & 0xff;
  465. msg[3] = send_bytes - 1;
  466. memcpy(&msg[4], send, send_bytes);
  467. msg_bytes = send_bytes + 4;
  468. for (;;) {
  469. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  470. if (ret < 0)
  471. return ret;
  472. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  473. break;
  474. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  475. udelay(100);
  476. else
  477. return -EIO;
  478. }
  479. return send_bytes;
  480. }
  481. /* Write a single byte to the aux channel in native mode */
  482. static int
  483. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  484. uint16_t address, uint8_t byte)
  485. {
  486. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  487. }
  488. /* read bytes from a native aux channel */
  489. static int
  490. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  491. uint16_t address, uint8_t *recv, int recv_bytes)
  492. {
  493. uint8_t msg[4];
  494. int msg_bytes;
  495. uint8_t reply[20];
  496. int reply_bytes;
  497. uint8_t ack;
  498. int ret;
  499. if (WARN_ON(recv_bytes > 19))
  500. return -E2BIG;
  501. intel_dp_check_edp(intel_dp);
  502. msg[0] = AUX_NATIVE_READ << 4;
  503. msg[1] = address >> 8;
  504. msg[2] = address & 0xff;
  505. msg[3] = recv_bytes - 1;
  506. msg_bytes = 4;
  507. reply_bytes = recv_bytes + 1;
  508. for (;;) {
  509. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  510. reply, reply_bytes);
  511. if (ret == 0)
  512. return -EPROTO;
  513. if (ret < 0)
  514. return ret;
  515. ack = reply[0];
  516. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  517. memcpy(recv, reply + 1, ret - 1);
  518. return ret - 1;
  519. }
  520. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  521. udelay(100);
  522. else
  523. return -EIO;
  524. }
  525. }
  526. static int
  527. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  528. uint8_t write_byte, uint8_t *read_byte)
  529. {
  530. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  531. struct intel_dp *intel_dp = container_of(adapter,
  532. struct intel_dp,
  533. adapter);
  534. uint16_t address = algo_data->address;
  535. uint8_t msg[5];
  536. uint8_t reply[2];
  537. unsigned retry;
  538. int msg_bytes;
  539. int reply_bytes;
  540. int ret;
  541. intel_dp_check_edp(intel_dp);
  542. /* Set up the command byte */
  543. if (mode & MODE_I2C_READ)
  544. msg[0] = AUX_I2C_READ << 4;
  545. else
  546. msg[0] = AUX_I2C_WRITE << 4;
  547. if (!(mode & MODE_I2C_STOP))
  548. msg[0] |= AUX_I2C_MOT << 4;
  549. msg[1] = address >> 8;
  550. msg[2] = address;
  551. switch (mode) {
  552. case MODE_I2C_WRITE:
  553. msg[3] = 0;
  554. msg[4] = write_byte;
  555. msg_bytes = 5;
  556. reply_bytes = 1;
  557. break;
  558. case MODE_I2C_READ:
  559. msg[3] = 0;
  560. msg_bytes = 4;
  561. reply_bytes = 2;
  562. break;
  563. default:
  564. msg_bytes = 3;
  565. reply_bytes = 1;
  566. break;
  567. }
  568. /*
  569. * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
  570. * required to retry at least seven times upon receiving AUX_DEFER
  571. * before giving up the AUX transaction.
  572. */
  573. for (retry = 0; retry < 7; retry++) {
  574. ret = intel_dp_aux_ch(intel_dp,
  575. msg, msg_bytes,
  576. reply, reply_bytes);
  577. if (ret < 0) {
  578. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  579. return ret;
  580. }
  581. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  582. case AUX_NATIVE_REPLY_ACK:
  583. /* I2C-over-AUX Reply field is only valid
  584. * when paired with AUX ACK.
  585. */
  586. break;
  587. case AUX_NATIVE_REPLY_NACK:
  588. DRM_DEBUG_KMS("aux_ch native nack\n");
  589. return -EREMOTEIO;
  590. case AUX_NATIVE_REPLY_DEFER:
  591. /*
  592. * For now, just give more slack to branch devices. We
  593. * could check the DPCD for I2C bit rate capabilities,
  594. * and if available, adjust the interval. We could also
  595. * be more careful with DP-to-Legacy adapters where a
  596. * long legacy cable may force very low I2C bit rates.
  597. */
  598. if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  599. DP_DWN_STRM_PORT_PRESENT)
  600. usleep_range(500, 600);
  601. else
  602. usleep_range(300, 400);
  603. continue;
  604. default:
  605. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  606. reply[0]);
  607. return -EREMOTEIO;
  608. }
  609. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  610. case AUX_I2C_REPLY_ACK:
  611. if (mode == MODE_I2C_READ) {
  612. *read_byte = reply[1];
  613. }
  614. return reply_bytes - 1;
  615. case AUX_I2C_REPLY_NACK:
  616. DRM_DEBUG_KMS("aux_i2c nack\n");
  617. return -EREMOTEIO;
  618. case AUX_I2C_REPLY_DEFER:
  619. DRM_DEBUG_KMS("aux_i2c defer\n");
  620. udelay(100);
  621. break;
  622. default:
  623. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  624. return -EREMOTEIO;
  625. }
  626. }
  627. DRM_ERROR("too many retries, giving up\n");
  628. return -EREMOTEIO;
  629. }
  630. static int
  631. intel_dp_i2c_init(struct intel_dp *intel_dp,
  632. struct intel_connector *intel_connector, const char *name)
  633. {
  634. int ret;
  635. DRM_DEBUG_KMS("i2c_init %s\n", name);
  636. intel_dp->algo.running = false;
  637. intel_dp->algo.address = 0;
  638. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  639. memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
  640. intel_dp->adapter.owner = THIS_MODULE;
  641. intel_dp->adapter.class = I2C_CLASS_DDC;
  642. strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  643. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  644. intel_dp->adapter.algo_data = &intel_dp->algo;
  645. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  646. ironlake_edp_panel_vdd_on(intel_dp);
  647. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  648. ironlake_edp_panel_vdd_off(intel_dp, false);
  649. return ret;
  650. }
  651. static void
  652. intel_dp_set_clock(struct intel_encoder *encoder,
  653. struct intel_crtc_config *pipe_config, int link_bw)
  654. {
  655. struct drm_device *dev = encoder->base.dev;
  656. const struct dp_link_dpll *divisor = NULL;
  657. int i, count = 0;
  658. if (IS_G4X(dev)) {
  659. divisor = gen4_dpll;
  660. count = ARRAY_SIZE(gen4_dpll);
  661. } else if (IS_HASWELL(dev)) {
  662. /* Haswell has special-purpose DP DDI clocks. */
  663. } else if (HAS_PCH_SPLIT(dev)) {
  664. divisor = pch_dpll;
  665. count = ARRAY_SIZE(pch_dpll);
  666. } else if (IS_VALLEYVIEW(dev)) {
  667. divisor = vlv_dpll;
  668. count = ARRAY_SIZE(vlv_dpll);
  669. }
  670. if (divisor && count) {
  671. for (i = 0; i < count; i++) {
  672. if (link_bw == divisor[i].link_bw) {
  673. pipe_config->dpll = divisor[i].dpll;
  674. pipe_config->clock_set = true;
  675. break;
  676. }
  677. }
  678. }
  679. }
  680. bool
  681. intel_dp_compute_config(struct intel_encoder *encoder,
  682. struct intel_crtc_config *pipe_config)
  683. {
  684. struct drm_device *dev = encoder->base.dev;
  685. struct drm_i915_private *dev_priv = dev->dev_private;
  686. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  687. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  688. enum port port = dp_to_dig_port(intel_dp)->port;
  689. struct intel_crtc *intel_crtc = encoder->new_crtc;
  690. struct intel_connector *intel_connector = intel_dp->attached_connector;
  691. int lane_count, clock;
  692. int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
  693. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  694. int bpp, mode_rate;
  695. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  696. int link_avail, link_clock;
  697. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
  698. pipe_config->has_pch_encoder = true;
  699. pipe_config->has_dp_encoder = true;
  700. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  701. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  702. adjusted_mode);
  703. if (!HAS_PCH_SPLIT(dev))
  704. intel_gmch_panel_fitting(intel_crtc, pipe_config,
  705. intel_connector->panel.fitting_mode);
  706. else
  707. intel_pch_panel_fitting(intel_crtc, pipe_config,
  708. intel_connector->panel.fitting_mode);
  709. }
  710. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  711. return false;
  712. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  713. "max bw %02x pixel clock %iKHz\n",
  714. max_lane_count, bws[max_clock],
  715. adjusted_mode->crtc_clock);
  716. /* Walk through all bpp values. Luckily they're all nicely spaced with 2
  717. * bpc in between. */
  718. bpp = pipe_config->pipe_bpp;
  719. if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
  720. DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
  721. dev_priv->vbt.edp_bpp);
  722. bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
  723. }
  724. for (; bpp >= 6*3; bpp -= 2*3) {
  725. mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
  726. bpp);
  727. for (clock = 0; clock <= max_clock; clock++) {
  728. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  729. link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
  730. link_avail = intel_dp_max_data_rate(link_clock,
  731. lane_count);
  732. if (mode_rate <= link_avail) {
  733. goto found;
  734. }
  735. }
  736. }
  737. }
  738. return false;
  739. found:
  740. if (intel_dp->color_range_auto) {
  741. /*
  742. * See:
  743. * CEA-861-E - 5.1 Default Encoding Parameters
  744. * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
  745. */
  746. if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
  747. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  748. else
  749. intel_dp->color_range = 0;
  750. }
  751. if (intel_dp->color_range)
  752. pipe_config->limited_color_range = true;
  753. intel_dp->link_bw = bws[clock];
  754. intel_dp->lane_count = lane_count;
  755. pipe_config->pipe_bpp = bpp;
  756. pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  757. DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
  758. intel_dp->link_bw, intel_dp->lane_count,
  759. pipe_config->port_clock, bpp);
  760. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  761. mode_rate, link_avail);
  762. intel_link_compute_m_n(bpp, lane_count,
  763. adjusted_mode->crtc_clock,
  764. pipe_config->port_clock,
  765. &pipe_config->dp_m_n);
  766. intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
  767. return true;
  768. }
  769. static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
  770. {
  771. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  772. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  773. struct drm_device *dev = crtc->base.dev;
  774. struct drm_i915_private *dev_priv = dev->dev_private;
  775. u32 dpa_ctl;
  776. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
  777. dpa_ctl = I915_READ(DP_A);
  778. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  779. if (crtc->config.port_clock == 162000) {
  780. /* For a long time we've carried around a ILK-DevA w/a for the
  781. * 160MHz clock. If we're really unlucky, it's still required.
  782. */
  783. DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
  784. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  785. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  786. } else {
  787. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  788. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  789. }
  790. I915_WRITE(DP_A, dpa_ctl);
  791. POSTING_READ(DP_A);
  792. udelay(500);
  793. }
  794. static void intel_dp_mode_set(struct intel_encoder *encoder)
  795. {
  796. struct drm_device *dev = encoder->base.dev;
  797. struct drm_i915_private *dev_priv = dev->dev_private;
  798. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  799. enum port port = dp_to_dig_port(intel_dp)->port;
  800. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  801. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  802. /*
  803. * There are four kinds of DP registers:
  804. *
  805. * IBX PCH
  806. * SNB CPU
  807. * IVB CPU
  808. * CPT PCH
  809. *
  810. * IBX PCH and CPU are the same for almost everything,
  811. * except that the CPU DP PLL is configured in this
  812. * register
  813. *
  814. * CPT PCH is quite different, having many bits moved
  815. * to the TRANS_DP_CTL register instead. That
  816. * configuration happens (oddly) in ironlake_pch_enable
  817. */
  818. /* Preserve the BIOS-computed detected bit. This is
  819. * supposed to be read-only.
  820. */
  821. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  822. /* Handle DP bits in common between all three register formats */
  823. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  824. intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
  825. if (intel_dp->has_audio) {
  826. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  827. pipe_name(crtc->pipe));
  828. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  829. intel_write_eld(&encoder->base, adjusted_mode);
  830. }
  831. /* Split out the IBX/CPU vs CPT settings */
  832. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  833. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  834. intel_dp->DP |= DP_SYNC_HS_HIGH;
  835. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  836. intel_dp->DP |= DP_SYNC_VS_HIGH;
  837. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  838. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  839. intel_dp->DP |= DP_ENHANCED_FRAMING;
  840. intel_dp->DP |= crtc->pipe << 29;
  841. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  842. if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
  843. intel_dp->DP |= intel_dp->color_range;
  844. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  845. intel_dp->DP |= DP_SYNC_HS_HIGH;
  846. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  847. intel_dp->DP |= DP_SYNC_VS_HIGH;
  848. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  849. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  850. intel_dp->DP |= DP_ENHANCED_FRAMING;
  851. if (crtc->pipe == 1)
  852. intel_dp->DP |= DP_PIPEB_SELECT;
  853. } else {
  854. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  855. }
  856. if (port == PORT_A && !IS_VALLEYVIEW(dev))
  857. ironlake_set_pll_cpu_edp(intel_dp);
  858. }
  859. #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  860. #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  861. #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  862. #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  863. #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  864. #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  865. static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
  866. u32 mask,
  867. u32 value)
  868. {
  869. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  870. struct drm_i915_private *dev_priv = dev->dev_private;
  871. u32 pp_stat_reg, pp_ctrl_reg;
  872. pp_stat_reg = _pp_stat_reg(intel_dp);
  873. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  874. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  875. mask, value,
  876. I915_READ(pp_stat_reg),
  877. I915_READ(pp_ctrl_reg));
  878. if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
  879. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  880. I915_READ(pp_stat_reg),
  881. I915_READ(pp_ctrl_reg));
  882. }
  883. }
  884. static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
  885. {
  886. DRM_DEBUG_KMS("Wait for panel power on\n");
  887. ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  888. }
  889. static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
  890. {
  891. DRM_DEBUG_KMS("Wait for panel power off time\n");
  892. ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  893. }
  894. static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
  895. {
  896. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  897. ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  898. }
  899. /* Read the current pp_control value, unlocking the register if it
  900. * is locked
  901. */
  902. static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
  903. {
  904. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  905. struct drm_i915_private *dev_priv = dev->dev_private;
  906. u32 control;
  907. control = I915_READ(_pp_ctrl_reg(intel_dp));
  908. control &= ~PANEL_UNLOCK_MASK;
  909. control |= PANEL_UNLOCK_REGS;
  910. return control;
  911. }
  912. void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  913. {
  914. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  915. struct drm_i915_private *dev_priv = dev->dev_private;
  916. u32 pp;
  917. u32 pp_stat_reg, pp_ctrl_reg;
  918. if (!is_edp(intel_dp))
  919. return;
  920. DRM_DEBUG_KMS("Turn eDP VDD on\n");
  921. WARN(intel_dp->want_panel_vdd,
  922. "eDP VDD already requested on\n");
  923. intel_dp->want_panel_vdd = true;
  924. if (ironlake_edp_have_panel_vdd(intel_dp)) {
  925. DRM_DEBUG_KMS("eDP VDD already on\n");
  926. return;
  927. }
  928. if (!ironlake_edp_have_panel_power(intel_dp))
  929. ironlake_wait_panel_power_cycle(intel_dp);
  930. pp = ironlake_get_pp_control(intel_dp);
  931. pp |= EDP_FORCE_VDD;
  932. pp_stat_reg = _pp_stat_reg(intel_dp);
  933. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  934. I915_WRITE(pp_ctrl_reg, pp);
  935. POSTING_READ(pp_ctrl_reg);
  936. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  937. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  938. /*
  939. * If the panel wasn't on, delay before accessing aux channel
  940. */
  941. if (!ironlake_edp_have_panel_power(intel_dp)) {
  942. DRM_DEBUG_KMS("eDP was not running\n");
  943. msleep(intel_dp->panel_power_up_delay);
  944. }
  945. }
  946. static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
  947. {
  948. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  949. struct drm_i915_private *dev_priv = dev->dev_private;
  950. u32 pp;
  951. u32 pp_stat_reg, pp_ctrl_reg;
  952. WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
  953. if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
  954. pp = ironlake_get_pp_control(intel_dp);
  955. pp &= ~EDP_FORCE_VDD;
  956. pp_stat_reg = _pp_ctrl_reg(intel_dp);
  957. pp_ctrl_reg = _pp_stat_reg(intel_dp);
  958. I915_WRITE(pp_ctrl_reg, pp);
  959. POSTING_READ(pp_ctrl_reg);
  960. /* Make sure sequencer is idle before allowing subsequent activity */
  961. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  962. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  963. msleep(intel_dp->panel_power_down_delay);
  964. }
  965. }
  966. static void ironlake_panel_vdd_work(struct work_struct *__work)
  967. {
  968. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  969. struct intel_dp, panel_vdd_work);
  970. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  971. mutex_lock(&dev->mode_config.mutex);
  972. ironlake_panel_vdd_off_sync(intel_dp);
  973. mutex_unlock(&dev->mode_config.mutex);
  974. }
  975. void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  976. {
  977. if (!is_edp(intel_dp))
  978. return;
  979. DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
  980. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  981. intel_dp->want_panel_vdd = false;
  982. if (sync) {
  983. ironlake_panel_vdd_off_sync(intel_dp);
  984. } else {
  985. /*
  986. * Queue the timer to fire a long
  987. * time from now (relative to the power down delay)
  988. * to keep the panel power up across a sequence of operations
  989. */
  990. schedule_delayed_work(&intel_dp->panel_vdd_work,
  991. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  992. }
  993. }
  994. void ironlake_edp_panel_on(struct intel_dp *intel_dp)
  995. {
  996. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  997. struct drm_i915_private *dev_priv = dev->dev_private;
  998. u32 pp;
  999. u32 pp_ctrl_reg;
  1000. if (!is_edp(intel_dp))
  1001. return;
  1002. DRM_DEBUG_KMS("Turn eDP power on\n");
  1003. if (ironlake_edp_have_panel_power(intel_dp)) {
  1004. DRM_DEBUG_KMS("eDP power already on\n");
  1005. return;
  1006. }
  1007. ironlake_wait_panel_power_cycle(intel_dp);
  1008. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1009. pp = ironlake_get_pp_control(intel_dp);
  1010. if (IS_GEN5(dev)) {
  1011. /* ILK workaround: disable reset around power sequence */
  1012. pp &= ~PANEL_POWER_RESET;
  1013. I915_WRITE(pp_ctrl_reg, pp);
  1014. POSTING_READ(pp_ctrl_reg);
  1015. }
  1016. pp |= POWER_TARGET_ON;
  1017. if (!IS_GEN5(dev))
  1018. pp |= PANEL_POWER_RESET;
  1019. I915_WRITE(pp_ctrl_reg, pp);
  1020. POSTING_READ(pp_ctrl_reg);
  1021. ironlake_wait_panel_on(intel_dp);
  1022. if (IS_GEN5(dev)) {
  1023. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  1024. I915_WRITE(pp_ctrl_reg, pp);
  1025. POSTING_READ(pp_ctrl_reg);
  1026. }
  1027. }
  1028. void ironlake_edp_panel_off(struct intel_dp *intel_dp)
  1029. {
  1030. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1031. struct drm_i915_private *dev_priv = dev->dev_private;
  1032. u32 pp;
  1033. u32 pp_ctrl_reg;
  1034. if (!is_edp(intel_dp))
  1035. return;
  1036. DRM_DEBUG_KMS("Turn eDP power off\n");
  1037. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  1038. pp = ironlake_get_pp_control(intel_dp);
  1039. /* We need to switch off panel power _and_ force vdd, for otherwise some
  1040. * panels get very unhappy and cease to work. */
  1041. pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
  1042. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1043. I915_WRITE(pp_ctrl_reg, pp);
  1044. POSTING_READ(pp_ctrl_reg);
  1045. intel_dp->want_panel_vdd = false;
  1046. ironlake_wait_panel_off(intel_dp);
  1047. }
  1048. void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
  1049. {
  1050. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1051. struct drm_device *dev = intel_dig_port->base.base.dev;
  1052. struct drm_i915_private *dev_priv = dev->dev_private;
  1053. int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
  1054. u32 pp;
  1055. u32 pp_ctrl_reg;
  1056. if (!is_edp(intel_dp))
  1057. return;
  1058. DRM_DEBUG_KMS("\n");
  1059. /*
  1060. * If we enable the backlight right away following a panel power
  1061. * on, we may see slight flicker as the panel syncs with the eDP
  1062. * link. So delay a bit to make sure the image is solid before
  1063. * allowing it to appear.
  1064. */
  1065. msleep(intel_dp->backlight_on_delay);
  1066. pp = ironlake_get_pp_control(intel_dp);
  1067. pp |= EDP_BLC_ENABLE;
  1068. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1069. I915_WRITE(pp_ctrl_reg, pp);
  1070. POSTING_READ(pp_ctrl_reg);
  1071. intel_panel_enable_backlight(dev, pipe);
  1072. }
  1073. void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
  1074. {
  1075. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1076. struct drm_i915_private *dev_priv = dev->dev_private;
  1077. u32 pp;
  1078. u32 pp_ctrl_reg;
  1079. if (!is_edp(intel_dp))
  1080. return;
  1081. intel_panel_disable_backlight(dev);
  1082. DRM_DEBUG_KMS("\n");
  1083. pp = ironlake_get_pp_control(intel_dp);
  1084. pp &= ~EDP_BLC_ENABLE;
  1085. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1086. I915_WRITE(pp_ctrl_reg, pp);
  1087. POSTING_READ(pp_ctrl_reg);
  1088. msleep(intel_dp->backlight_off_delay);
  1089. }
  1090. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1091. {
  1092. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1093. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1094. struct drm_device *dev = crtc->dev;
  1095. struct drm_i915_private *dev_priv = dev->dev_private;
  1096. u32 dpa_ctl;
  1097. assert_pipe_disabled(dev_priv,
  1098. to_intel_crtc(crtc)->pipe);
  1099. DRM_DEBUG_KMS("\n");
  1100. dpa_ctl = I915_READ(DP_A);
  1101. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1102. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1103. /* We don't adjust intel_dp->DP while tearing down the link, to
  1104. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1105. * enable bits here to ensure that we don't enable too much. */
  1106. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1107. intel_dp->DP |= DP_PLL_ENABLE;
  1108. I915_WRITE(DP_A, intel_dp->DP);
  1109. POSTING_READ(DP_A);
  1110. udelay(200);
  1111. }
  1112. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1113. {
  1114. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1115. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1116. struct drm_device *dev = crtc->dev;
  1117. struct drm_i915_private *dev_priv = dev->dev_private;
  1118. u32 dpa_ctl;
  1119. assert_pipe_disabled(dev_priv,
  1120. to_intel_crtc(crtc)->pipe);
  1121. dpa_ctl = I915_READ(DP_A);
  1122. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1123. "dp pll off, should be on\n");
  1124. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1125. /* We can't rely on the value tracked for the DP register in
  1126. * intel_dp->DP because link_down must not change that (otherwise link
  1127. * re-training will fail. */
  1128. dpa_ctl &= ~DP_PLL_ENABLE;
  1129. I915_WRITE(DP_A, dpa_ctl);
  1130. POSTING_READ(DP_A);
  1131. udelay(200);
  1132. }
  1133. /* If the sink supports it, try to set the power state appropriately */
  1134. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1135. {
  1136. int ret, i;
  1137. /* Should have a valid DPCD by this point */
  1138. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1139. return;
  1140. if (mode != DRM_MODE_DPMS_ON) {
  1141. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  1142. DP_SET_POWER_D3);
  1143. if (ret != 1)
  1144. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1145. } else {
  1146. /*
  1147. * When turning on, we need to retry for 1ms to give the sink
  1148. * time to wake up.
  1149. */
  1150. for (i = 0; i < 3; i++) {
  1151. ret = intel_dp_aux_native_write_1(intel_dp,
  1152. DP_SET_POWER,
  1153. DP_SET_POWER_D0);
  1154. if (ret == 1)
  1155. break;
  1156. msleep(1);
  1157. }
  1158. }
  1159. }
  1160. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1161. enum pipe *pipe)
  1162. {
  1163. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1164. enum port port = dp_to_dig_port(intel_dp)->port;
  1165. struct drm_device *dev = encoder->base.dev;
  1166. struct drm_i915_private *dev_priv = dev->dev_private;
  1167. u32 tmp = I915_READ(intel_dp->output_reg);
  1168. if (!(tmp & DP_PORT_EN))
  1169. return false;
  1170. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  1171. *pipe = PORT_TO_PIPE_CPT(tmp);
  1172. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  1173. *pipe = PORT_TO_PIPE(tmp);
  1174. } else {
  1175. u32 trans_sel;
  1176. u32 trans_dp;
  1177. int i;
  1178. switch (intel_dp->output_reg) {
  1179. case PCH_DP_B:
  1180. trans_sel = TRANS_DP_PORT_SEL_B;
  1181. break;
  1182. case PCH_DP_C:
  1183. trans_sel = TRANS_DP_PORT_SEL_C;
  1184. break;
  1185. case PCH_DP_D:
  1186. trans_sel = TRANS_DP_PORT_SEL_D;
  1187. break;
  1188. default:
  1189. return true;
  1190. }
  1191. for_each_pipe(i) {
  1192. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1193. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1194. *pipe = i;
  1195. return true;
  1196. }
  1197. }
  1198. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1199. intel_dp->output_reg);
  1200. }
  1201. return true;
  1202. }
  1203. static void intel_dp_get_config(struct intel_encoder *encoder,
  1204. struct intel_crtc_config *pipe_config)
  1205. {
  1206. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1207. u32 tmp, flags = 0;
  1208. struct drm_device *dev = encoder->base.dev;
  1209. struct drm_i915_private *dev_priv = dev->dev_private;
  1210. enum port port = dp_to_dig_port(intel_dp)->port;
  1211. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  1212. int dotclock;
  1213. if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
  1214. tmp = I915_READ(intel_dp->output_reg);
  1215. if (tmp & DP_SYNC_HS_HIGH)
  1216. flags |= DRM_MODE_FLAG_PHSYNC;
  1217. else
  1218. flags |= DRM_MODE_FLAG_NHSYNC;
  1219. if (tmp & DP_SYNC_VS_HIGH)
  1220. flags |= DRM_MODE_FLAG_PVSYNC;
  1221. else
  1222. flags |= DRM_MODE_FLAG_NVSYNC;
  1223. } else {
  1224. tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
  1225. if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
  1226. flags |= DRM_MODE_FLAG_PHSYNC;
  1227. else
  1228. flags |= DRM_MODE_FLAG_NHSYNC;
  1229. if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
  1230. flags |= DRM_MODE_FLAG_PVSYNC;
  1231. else
  1232. flags |= DRM_MODE_FLAG_NVSYNC;
  1233. }
  1234. pipe_config->adjusted_mode.flags |= flags;
  1235. pipe_config->has_dp_encoder = true;
  1236. intel_dp_get_m_n(crtc, pipe_config);
  1237. if (port == PORT_A) {
  1238. if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
  1239. pipe_config->port_clock = 162000;
  1240. else
  1241. pipe_config->port_clock = 270000;
  1242. }
  1243. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  1244. &pipe_config->dp_m_n);
  1245. if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
  1246. ironlake_check_encoder_dotclock(pipe_config, dotclock);
  1247. pipe_config->adjusted_mode.crtc_clock = dotclock;
  1248. }
  1249. static bool is_edp_psr(struct drm_device *dev)
  1250. {
  1251. struct drm_i915_private *dev_priv = dev->dev_private;
  1252. return dev_priv->psr.sink_support;
  1253. }
  1254. static bool intel_edp_is_psr_enabled(struct drm_device *dev)
  1255. {
  1256. struct drm_i915_private *dev_priv = dev->dev_private;
  1257. if (!HAS_PSR(dev))
  1258. return false;
  1259. return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
  1260. }
  1261. static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
  1262. struct edp_vsc_psr *vsc_psr)
  1263. {
  1264. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1265. struct drm_device *dev = dig_port->base.base.dev;
  1266. struct drm_i915_private *dev_priv = dev->dev_private;
  1267. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  1268. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
  1269. u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
  1270. uint32_t *data = (uint32_t *) vsc_psr;
  1271. unsigned int i;
  1272. /* As per BSPec (Pipe Video Data Island Packet), we need to disable
  1273. the video DIP being updated before program video DIP data buffer
  1274. registers for DIP being updated. */
  1275. I915_WRITE(ctl_reg, 0);
  1276. POSTING_READ(ctl_reg);
  1277. for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
  1278. if (i < sizeof(struct edp_vsc_psr))
  1279. I915_WRITE(data_reg + i, *data++);
  1280. else
  1281. I915_WRITE(data_reg + i, 0);
  1282. }
  1283. I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
  1284. POSTING_READ(ctl_reg);
  1285. }
  1286. static void intel_edp_psr_setup(struct intel_dp *intel_dp)
  1287. {
  1288. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1289. struct drm_i915_private *dev_priv = dev->dev_private;
  1290. struct edp_vsc_psr psr_vsc;
  1291. if (intel_dp->psr_setup_done)
  1292. return;
  1293. /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
  1294. memset(&psr_vsc, 0, sizeof(psr_vsc));
  1295. psr_vsc.sdp_header.HB0 = 0;
  1296. psr_vsc.sdp_header.HB1 = 0x7;
  1297. psr_vsc.sdp_header.HB2 = 0x2;
  1298. psr_vsc.sdp_header.HB3 = 0x8;
  1299. intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
  1300. /* Avoid continuous PSR exit by masking memup and hpd */
  1301. I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
  1302. EDP_PSR_DEBUG_MASK_HPD);
  1303. intel_dp->psr_setup_done = true;
  1304. }
  1305. static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
  1306. {
  1307. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1308. struct drm_i915_private *dev_priv = dev->dev_private;
  1309. uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
  1310. int precharge = 0x3;
  1311. int msg_size = 5; /* Header(4) + Message(1) */
  1312. /* Enable PSR in sink */
  1313. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
  1314. intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
  1315. DP_PSR_ENABLE &
  1316. ~DP_PSR_MAIN_LINK_ACTIVE);
  1317. else
  1318. intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
  1319. DP_PSR_ENABLE |
  1320. DP_PSR_MAIN_LINK_ACTIVE);
  1321. /* Setup AUX registers */
  1322. I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
  1323. I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
  1324. I915_WRITE(EDP_PSR_AUX_CTL(dev),
  1325. DP_AUX_CH_CTL_TIME_OUT_400us |
  1326. (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  1327. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  1328. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
  1329. }
  1330. static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
  1331. {
  1332. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1333. struct drm_i915_private *dev_priv = dev->dev_private;
  1334. uint32_t max_sleep_time = 0x1f;
  1335. uint32_t idle_frames = 1;
  1336. uint32_t val = 0x0;
  1337. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
  1338. val |= EDP_PSR_LINK_STANDBY;
  1339. val |= EDP_PSR_TP2_TP3_TIME_0us;
  1340. val |= EDP_PSR_TP1_TIME_0us;
  1341. val |= EDP_PSR_SKIP_AUX_EXIT;
  1342. } else
  1343. val |= EDP_PSR_LINK_DISABLE;
  1344. I915_WRITE(EDP_PSR_CTL(dev), val |
  1345. EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
  1346. max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
  1347. idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
  1348. EDP_PSR_ENABLE);
  1349. }
  1350. static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
  1351. {
  1352. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1353. struct drm_device *dev = dig_port->base.base.dev;
  1354. struct drm_i915_private *dev_priv = dev->dev_private;
  1355. struct drm_crtc *crtc = dig_port->base.base.crtc;
  1356. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1357. struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
  1358. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1359. dev_priv->psr.source_ok = false;
  1360. if (!HAS_PSR(dev)) {
  1361. DRM_DEBUG_KMS("PSR not supported on this platform\n");
  1362. return false;
  1363. }
  1364. if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
  1365. (dig_port->port != PORT_A)) {
  1366. DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
  1367. return false;
  1368. }
  1369. if (!i915_enable_psr) {
  1370. DRM_DEBUG_KMS("PSR disable by flag\n");
  1371. return false;
  1372. }
  1373. crtc = dig_port->base.base.crtc;
  1374. if (crtc == NULL) {
  1375. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1376. return false;
  1377. }
  1378. intel_crtc = to_intel_crtc(crtc);
  1379. if (!intel_crtc_active(crtc)) {
  1380. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1381. return false;
  1382. }
  1383. obj = to_intel_framebuffer(crtc->fb)->obj;
  1384. if (obj->tiling_mode != I915_TILING_X ||
  1385. obj->fence_reg == I915_FENCE_REG_NONE) {
  1386. DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
  1387. return false;
  1388. }
  1389. if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
  1390. DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
  1391. return false;
  1392. }
  1393. if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
  1394. S3D_ENABLE) {
  1395. DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
  1396. return false;
  1397. }
  1398. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
  1399. DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
  1400. return false;
  1401. }
  1402. dev_priv->psr.source_ok = true;
  1403. return true;
  1404. }
  1405. static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
  1406. {
  1407. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1408. if (!intel_edp_psr_match_conditions(intel_dp) ||
  1409. intel_edp_is_psr_enabled(dev))
  1410. return;
  1411. /* Setup PSR once */
  1412. intel_edp_psr_setup(intel_dp);
  1413. /* Enable PSR on the panel */
  1414. intel_edp_psr_enable_sink(intel_dp);
  1415. /* Enable PSR on the host */
  1416. intel_edp_psr_enable_source(intel_dp);
  1417. }
  1418. void intel_edp_psr_enable(struct intel_dp *intel_dp)
  1419. {
  1420. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1421. if (intel_edp_psr_match_conditions(intel_dp) &&
  1422. !intel_edp_is_psr_enabled(dev))
  1423. intel_edp_psr_do_enable(intel_dp);
  1424. }
  1425. void intel_edp_psr_disable(struct intel_dp *intel_dp)
  1426. {
  1427. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1428. struct drm_i915_private *dev_priv = dev->dev_private;
  1429. if (!intel_edp_is_psr_enabled(dev))
  1430. return;
  1431. I915_WRITE(EDP_PSR_CTL(dev),
  1432. I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
  1433. /* Wait till PSR is idle */
  1434. if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
  1435. EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
  1436. DRM_ERROR("Timed out waiting for PSR Idle State\n");
  1437. }
  1438. void intel_edp_psr_update(struct drm_device *dev)
  1439. {
  1440. struct intel_encoder *encoder;
  1441. struct intel_dp *intel_dp = NULL;
  1442. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
  1443. if (encoder->type == INTEL_OUTPUT_EDP) {
  1444. intel_dp = enc_to_intel_dp(&encoder->base);
  1445. if (!is_edp_psr(dev))
  1446. return;
  1447. if (!intel_edp_psr_match_conditions(intel_dp))
  1448. intel_edp_psr_disable(intel_dp);
  1449. else
  1450. if (!intel_edp_is_psr_enabled(dev))
  1451. intel_edp_psr_do_enable(intel_dp);
  1452. }
  1453. }
  1454. static void intel_disable_dp(struct intel_encoder *encoder)
  1455. {
  1456. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1457. enum port port = dp_to_dig_port(intel_dp)->port;
  1458. struct drm_device *dev = encoder->base.dev;
  1459. /* Make sure the panel is off before trying to change the mode. But also
  1460. * ensure that we have vdd while we switch off the panel. */
  1461. ironlake_edp_panel_vdd_on(intel_dp);
  1462. ironlake_edp_backlight_off(intel_dp);
  1463. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1464. ironlake_edp_panel_off(intel_dp);
  1465. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1466. if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
  1467. intel_dp_link_down(intel_dp);
  1468. }
  1469. static void intel_post_disable_dp(struct intel_encoder *encoder)
  1470. {
  1471. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1472. enum port port = dp_to_dig_port(intel_dp)->port;
  1473. struct drm_device *dev = encoder->base.dev;
  1474. if (port == PORT_A || IS_VALLEYVIEW(dev)) {
  1475. intel_dp_link_down(intel_dp);
  1476. if (!IS_VALLEYVIEW(dev))
  1477. ironlake_edp_pll_off(intel_dp);
  1478. }
  1479. }
  1480. static void intel_enable_dp(struct intel_encoder *encoder)
  1481. {
  1482. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1483. struct drm_device *dev = encoder->base.dev;
  1484. struct drm_i915_private *dev_priv = dev->dev_private;
  1485. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1486. if (WARN_ON(dp_reg & DP_PORT_EN))
  1487. return;
  1488. ironlake_edp_panel_vdd_on(intel_dp);
  1489. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1490. intel_dp_start_link_train(intel_dp);
  1491. ironlake_edp_panel_on(intel_dp);
  1492. ironlake_edp_panel_vdd_off(intel_dp, true);
  1493. intel_dp_complete_link_train(intel_dp);
  1494. intel_dp_stop_link_train(intel_dp);
  1495. }
  1496. static void g4x_enable_dp(struct intel_encoder *encoder)
  1497. {
  1498. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1499. intel_enable_dp(encoder);
  1500. ironlake_edp_backlight_on(intel_dp);
  1501. }
  1502. static void vlv_enable_dp(struct intel_encoder *encoder)
  1503. {
  1504. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1505. ironlake_edp_backlight_on(intel_dp);
  1506. }
  1507. static void g4x_pre_enable_dp(struct intel_encoder *encoder)
  1508. {
  1509. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1510. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1511. if (dport->port == PORT_A)
  1512. ironlake_edp_pll_on(intel_dp);
  1513. }
  1514. static void vlv_pre_enable_dp(struct intel_encoder *encoder)
  1515. {
  1516. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1517. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1518. struct drm_device *dev = encoder->base.dev;
  1519. struct drm_i915_private *dev_priv = dev->dev_private;
  1520. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1521. int port = vlv_dport_to_channel(dport);
  1522. int pipe = intel_crtc->pipe;
  1523. struct edp_power_seq power_seq;
  1524. u32 val;
  1525. mutex_lock(&dev_priv->dpio_lock);
  1526. val = vlv_dpio_read(dev_priv, pipe, DPIO_DATA_LANE_A(port));
  1527. val = 0;
  1528. if (pipe)
  1529. val |= (1<<21);
  1530. else
  1531. val &= ~(1<<21);
  1532. val |= 0x001000c4;
  1533. vlv_dpio_write(dev_priv, pipe, DPIO_DATA_CHANNEL(port), val);
  1534. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
  1535. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
  1536. mutex_unlock(&dev_priv->dpio_lock);
  1537. /* init power sequencer on this pipe and port */
  1538. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  1539. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  1540. &power_seq);
  1541. intel_enable_dp(encoder);
  1542. vlv_wait_port_ready(dev_priv, port);
  1543. }
  1544. static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
  1545. {
  1546. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1547. struct drm_device *dev = encoder->base.dev;
  1548. struct drm_i915_private *dev_priv = dev->dev_private;
  1549. struct intel_crtc *intel_crtc =
  1550. to_intel_crtc(encoder->base.crtc);
  1551. int port = vlv_dport_to_channel(dport);
  1552. int pipe = intel_crtc->pipe;
  1553. /* Program Tx lane resets to default */
  1554. mutex_lock(&dev_priv->dpio_lock);
  1555. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_TX(port),
  1556. DPIO_PCS_TX_LANE2_RESET |
  1557. DPIO_PCS_TX_LANE1_RESET);
  1558. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLK(port),
  1559. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1560. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1561. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1562. DPIO_PCS_CLK_SOFT_RESET);
  1563. /* Fix up inter-pair skew failure */
  1564. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER1(port), 0x00750f00);
  1565. vlv_dpio_write(dev_priv, pipe, DPIO_TX_CTL(port), 0x00001500);
  1566. vlv_dpio_write(dev_priv, pipe, DPIO_TX_LANE(port), 0x40400000);
  1567. mutex_unlock(&dev_priv->dpio_lock);
  1568. }
  1569. /*
  1570. * Native read with retry for link status and receiver capability reads for
  1571. * cases where the sink may still be asleep.
  1572. */
  1573. static bool
  1574. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  1575. uint8_t *recv, int recv_bytes)
  1576. {
  1577. int ret, i;
  1578. /*
  1579. * Sinks are *supposed* to come up within 1ms from an off state,
  1580. * but we're also supposed to retry 3 times per the spec.
  1581. */
  1582. for (i = 0; i < 3; i++) {
  1583. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  1584. recv_bytes);
  1585. if (ret == recv_bytes)
  1586. return true;
  1587. msleep(1);
  1588. }
  1589. return false;
  1590. }
  1591. /*
  1592. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1593. * link status information
  1594. */
  1595. static bool
  1596. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1597. {
  1598. return intel_dp_aux_native_read_retry(intel_dp,
  1599. DP_LANE0_1_STATUS,
  1600. link_status,
  1601. DP_LINK_STATUS_SIZE);
  1602. }
  1603. #if 0
  1604. static char *voltage_names[] = {
  1605. "0.4V", "0.6V", "0.8V", "1.2V"
  1606. };
  1607. static char *pre_emph_names[] = {
  1608. "0dB", "3.5dB", "6dB", "9.5dB"
  1609. };
  1610. static char *link_train_names[] = {
  1611. "pattern 1", "pattern 2", "idle", "off"
  1612. };
  1613. #endif
  1614. /*
  1615. * These are source-specific values; current Intel hardware supports
  1616. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1617. */
  1618. static uint8_t
  1619. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1620. {
  1621. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1622. enum port port = dp_to_dig_port(intel_dp)->port;
  1623. if (IS_VALLEYVIEW(dev))
  1624. return DP_TRAIN_VOLTAGE_SWING_1200;
  1625. else if (IS_GEN7(dev) && port == PORT_A)
  1626. return DP_TRAIN_VOLTAGE_SWING_800;
  1627. else if (HAS_PCH_CPT(dev) && port != PORT_A)
  1628. return DP_TRAIN_VOLTAGE_SWING_1200;
  1629. else
  1630. return DP_TRAIN_VOLTAGE_SWING_800;
  1631. }
  1632. static uint8_t
  1633. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1634. {
  1635. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1636. enum port port = dp_to_dig_port(intel_dp)->port;
  1637. if (HAS_DDI(dev)) {
  1638. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1639. case DP_TRAIN_VOLTAGE_SWING_400:
  1640. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1641. case DP_TRAIN_VOLTAGE_SWING_600:
  1642. return DP_TRAIN_PRE_EMPHASIS_6;
  1643. case DP_TRAIN_VOLTAGE_SWING_800:
  1644. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1645. case DP_TRAIN_VOLTAGE_SWING_1200:
  1646. default:
  1647. return DP_TRAIN_PRE_EMPHASIS_0;
  1648. }
  1649. } else if (IS_VALLEYVIEW(dev)) {
  1650. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1651. case DP_TRAIN_VOLTAGE_SWING_400:
  1652. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1653. case DP_TRAIN_VOLTAGE_SWING_600:
  1654. return DP_TRAIN_PRE_EMPHASIS_6;
  1655. case DP_TRAIN_VOLTAGE_SWING_800:
  1656. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1657. case DP_TRAIN_VOLTAGE_SWING_1200:
  1658. default:
  1659. return DP_TRAIN_PRE_EMPHASIS_0;
  1660. }
  1661. } else if (IS_GEN7(dev) && port == PORT_A) {
  1662. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1663. case DP_TRAIN_VOLTAGE_SWING_400:
  1664. return DP_TRAIN_PRE_EMPHASIS_6;
  1665. case DP_TRAIN_VOLTAGE_SWING_600:
  1666. case DP_TRAIN_VOLTAGE_SWING_800:
  1667. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1668. default:
  1669. return DP_TRAIN_PRE_EMPHASIS_0;
  1670. }
  1671. } else {
  1672. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1673. case DP_TRAIN_VOLTAGE_SWING_400:
  1674. return DP_TRAIN_PRE_EMPHASIS_6;
  1675. case DP_TRAIN_VOLTAGE_SWING_600:
  1676. return DP_TRAIN_PRE_EMPHASIS_6;
  1677. case DP_TRAIN_VOLTAGE_SWING_800:
  1678. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1679. case DP_TRAIN_VOLTAGE_SWING_1200:
  1680. default:
  1681. return DP_TRAIN_PRE_EMPHASIS_0;
  1682. }
  1683. }
  1684. }
  1685. static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
  1686. {
  1687. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1688. struct drm_i915_private *dev_priv = dev->dev_private;
  1689. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1690. struct intel_crtc *intel_crtc =
  1691. to_intel_crtc(dport->base.base.crtc);
  1692. unsigned long demph_reg_value, preemph_reg_value,
  1693. uniqtranscale_reg_value;
  1694. uint8_t train_set = intel_dp->train_set[0];
  1695. int port = vlv_dport_to_channel(dport);
  1696. int pipe = intel_crtc->pipe;
  1697. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1698. case DP_TRAIN_PRE_EMPHASIS_0:
  1699. preemph_reg_value = 0x0004000;
  1700. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1701. case DP_TRAIN_VOLTAGE_SWING_400:
  1702. demph_reg_value = 0x2B405555;
  1703. uniqtranscale_reg_value = 0x552AB83A;
  1704. break;
  1705. case DP_TRAIN_VOLTAGE_SWING_600:
  1706. demph_reg_value = 0x2B404040;
  1707. uniqtranscale_reg_value = 0x5548B83A;
  1708. break;
  1709. case DP_TRAIN_VOLTAGE_SWING_800:
  1710. demph_reg_value = 0x2B245555;
  1711. uniqtranscale_reg_value = 0x5560B83A;
  1712. break;
  1713. case DP_TRAIN_VOLTAGE_SWING_1200:
  1714. demph_reg_value = 0x2B405555;
  1715. uniqtranscale_reg_value = 0x5598DA3A;
  1716. break;
  1717. default:
  1718. return 0;
  1719. }
  1720. break;
  1721. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1722. preemph_reg_value = 0x0002000;
  1723. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1724. case DP_TRAIN_VOLTAGE_SWING_400:
  1725. demph_reg_value = 0x2B404040;
  1726. uniqtranscale_reg_value = 0x5552B83A;
  1727. break;
  1728. case DP_TRAIN_VOLTAGE_SWING_600:
  1729. demph_reg_value = 0x2B404848;
  1730. uniqtranscale_reg_value = 0x5580B83A;
  1731. break;
  1732. case DP_TRAIN_VOLTAGE_SWING_800:
  1733. demph_reg_value = 0x2B404040;
  1734. uniqtranscale_reg_value = 0x55ADDA3A;
  1735. break;
  1736. default:
  1737. return 0;
  1738. }
  1739. break;
  1740. case DP_TRAIN_PRE_EMPHASIS_6:
  1741. preemph_reg_value = 0x0000000;
  1742. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1743. case DP_TRAIN_VOLTAGE_SWING_400:
  1744. demph_reg_value = 0x2B305555;
  1745. uniqtranscale_reg_value = 0x5570B83A;
  1746. break;
  1747. case DP_TRAIN_VOLTAGE_SWING_600:
  1748. demph_reg_value = 0x2B2B4040;
  1749. uniqtranscale_reg_value = 0x55ADDA3A;
  1750. break;
  1751. default:
  1752. return 0;
  1753. }
  1754. break;
  1755. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1756. preemph_reg_value = 0x0006000;
  1757. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1758. case DP_TRAIN_VOLTAGE_SWING_400:
  1759. demph_reg_value = 0x1B405555;
  1760. uniqtranscale_reg_value = 0x55ADDA3A;
  1761. break;
  1762. default:
  1763. return 0;
  1764. }
  1765. break;
  1766. default:
  1767. return 0;
  1768. }
  1769. mutex_lock(&dev_priv->dpio_lock);
  1770. vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x00000000);
  1771. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL4(port), demph_reg_value);
  1772. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL2(port),
  1773. uniqtranscale_reg_value);
  1774. vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL3(port), 0x0C782040);
  1775. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER0(port), 0x00030000);
  1776. vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
  1777. vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x80000000);
  1778. mutex_unlock(&dev_priv->dpio_lock);
  1779. return 0;
  1780. }
  1781. static void
  1782. intel_get_adjust_train(struct intel_dp *intel_dp,
  1783. const uint8_t link_status[DP_LINK_STATUS_SIZE])
  1784. {
  1785. uint8_t v = 0;
  1786. uint8_t p = 0;
  1787. int lane;
  1788. uint8_t voltage_max;
  1789. uint8_t preemph_max;
  1790. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1791. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  1792. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  1793. if (this_v > v)
  1794. v = this_v;
  1795. if (this_p > p)
  1796. p = this_p;
  1797. }
  1798. voltage_max = intel_dp_voltage_max(intel_dp);
  1799. if (v >= voltage_max)
  1800. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1801. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1802. if (p >= preemph_max)
  1803. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1804. for (lane = 0; lane < 4; lane++)
  1805. intel_dp->train_set[lane] = v | p;
  1806. }
  1807. static uint32_t
  1808. intel_gen4_signal_levels(uint8_t train_set)
  1809. {
  1810. uint32_t signal_levels = 0;
  1811. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1812. case DP_TRAIN_VOLTAGE_SWING_400:
  1813. default:
  1814. signal_levels |= DP_VOLTAGE_0_4;
  1815. break;
  1816. case DP_TRAIN_VOLTAGE_SWING_600:
  1817. signal_levels |= DP_VOLTAGE_0_6;
  1818. break;
  1819. case DP_TRAIN_VOLTAGE_SWING_800:
  1820. signal_levels |= DP_VOLTAGE_0_8;
  1821. break;
  1822. case DP_TRAIN_VOLTAGE_SWING_1200:
  1823. signal_levels |= DP_VOLTAGE_1_2;
  1824. break;
  1825. }
  1826. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1827. case DP_TRAIN_PRE_EMPHASIS_0:
  1828. default:
  1829. signal_levels |= DP_PRE_EMPHASIS_0;
  1830. break;
  1831. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1832. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1833. break;
  1834. case DP_TRAIN_PRE_EMPHASIS_6:
  1835. signal_levels |= DP_PRE_EMPHASIS_6;
  1836. break;
  1837. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1838. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1839. break;
  1840. }
  1841. return signal_levels;
  1842. }
  1843. /* Gen6's DP voltage swing and pre-emphasis control */
  1844. static uint32_t
  1845. intel_gen6_edp_signal_levels(uint8_t train_set)
  1846. {
  1847. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1848. DP_TRAIN_PRE_EMPHASIS_MASK);
  1849. switch (signal_levels) {
  1850. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1851. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1852. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1853. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1854. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1855. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1856. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1857. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1858. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1859. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1860. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1861. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1862. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1863. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1864. default:
  1865. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1866. "0x%x\n", signal_levels);
  1867. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1868. }
  1869. }
  1870. /* Gen7's DP voltage swing and pre-emphasis control */
  1871. static uint32_t
  1872. intel_gen7_edp_signal_levels(uint8_t train_set)
  1873. {
  1874. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1875. DP_TRAIN_PRE_EMPHASIS_MASK);
  1876. switch (signal_levels) {
  1877. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1878. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1879. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1880. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1881. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1882. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1883. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1884. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1885. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1886. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1887. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1888. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1889. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1890. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1891. default:
  1892. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1893. "0x%x\n", signal_levels);
  1894. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1895. }
  1896. }
  1897. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  1898. static uint32_t
  1899. intel_hsw_signal_levels(uint8_t train_set)
  1900. {
  1901. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1902. DP_TRAIN_PRE_EMPHASIS_MASK);
  1903. switch (signal_levels) {
  1904. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1905. return DDI_BUF_EMP_400MV_0DB_HSW;
  1906. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1907. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  1908. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1909. return DDI_BUF_EMP_400MV_6DB_HSW;
  1910. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  1911. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  1912. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1913. return DDI_BUF_EMP_600MV_0DB_HSW;
  1914. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1915. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  1916. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1917. return DDI_BUF_EMP_600MV_6DB_HSW;
  1918. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1919. return DDI_BUF_EMP_800MV_0DB_HSW;
  1920. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1921. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  1922. default:
  1923. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1924. "0x%x\n", signal_levels);
  1925. return DDI_BUF_EMP_400MV_0DB_HSW;
  1926. }
  1927. }
  1928. /* Properly updates "DP" with the correct signal levels. */
  1929. static void
  1930. intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
  1931. {
  1932. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1933. enum port port = intel_dig_port->port;
  1934. struct drm_device *dev = intel_dig_port->base.base.dev;
  1935. uint32_t signal_levels, mask;
  1936. uint8_t train_set = intel_dp->train_set[0];
  1937. if (HAS_DDI(dev)) {
  1938. signal_levels = intel_hsw_signal_levels(train_set);
  1939. mask = DDI_BUF_EMP_MASK;
  1940. } else if (IS_VALLEYVIEW(dev)) {
  1941. signal_levels = intel_vlv_signal_levels(intel_dp);
  1942. mask = 0;
  1943. } else if (IS_GEN7(dev) && port == PORT_A) {
  1944. signal_levels = intel_gen7_edp_signal_levels(train_set);
  1945. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
  1946. } else if (IS_GEN6(dev) && port == PORT_A) {
  1947. signal_levels = intel_gen6_edp_signal_levels(train_set);
  1948. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
  1949. } else {
  1950. signal_levels = intel_gen4_signal_levels(train_set);
  1951. mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
  1952. }
  1953. DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
  1954. *DP = (*DP & ~mask) | signal_levels;
  1955. }
  1956. static bool
  1957. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1958. uint32_t *DP,
  1959. uint8_t dp_train_pat)
  1960. {
  1961. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1962. struct drm_device *dev = intel_dig_port->base.base.dev;
  1963. struct drm_i915_private *dev_priv = dev->dev_private;
  1964. enum port port = intel_dig_port->port;
  1965. uint8_t buf[sizeof(intel_dp->train_set) + 1];
  1966. int ret, len;
  1967. if (HAS_DDI(dev)) {
  1968. uint32_t temp = I915_READ(DP_TP_CTL(port));
  1969. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  1970. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  1971. else
  1972. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  1973. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  1974. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1975. case DP_TRAINING_PATTERN_DISABLE:
  1976. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  1977. break;
  1978. case DP_TRAINING_PATTERN_1:
  1979. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1980. break;
  1981. case DP_TRAINING_PATTERN_2:
  1982. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  1983. break;
  1984. case DP_TRAINING_PATTERN_3:
  1985. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  1986. break;
  1987. }
  1988. I915_WRITE(DP_TP_CTL(port), temp);
  1989. } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  1990. *DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1991. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  1992. case DP_TRAINING_PATTERN_DISABLE:
  1993. *DP |= DP_LINK_TRAIN_OFF_CPT;
  1994. break;
  1995. case DP_TRAINING_PATTERN_1:
  1996. *DP |= DP_LINK_TRAIN_PAT_1_CPT;
  1997. break;
  1998. case DP_TRAINING_PATTERN_2:
  1999. *DP |= DP_LINK_TRAIN_PAT_2_CPT;
  2000. break;
  2001. case DP_TRAINING_PATTERN_3:
  2002. DRM_ERROR("DP training pattern 3 not supported\n");
  2003. *DP |= DP_LINK_TRAIN_PAT_2_CPT;
  2004. break;
  2005. }
  2006. } else {
  2007. *DP &= ~DP_LINK_TRAIN_MASK;
  2008. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2009. case DP_TRAINING_PATTERN_DISABLE:
  2010. *DP |= DP_LINK_TRAIN_OFF;
  2011. break;
  2012. case DP_TRAINING_PATTERN_1:
  2013. *DP |= DP_LINK_TRAIN_PAT_1;
  2014. break;
  2015. case DP_TRAINING_PATTERN_2:
  2016. *DP |= DP_LINK_TRAIN_PAT_2;
  2017. break;
  2018. case DP_TRAINING_PATTERN_3:
  2019. DRM_ERROR("DP training pattern 3 not supported\n");
  2020. *DP |= DP_LINK_TRAIN_PAT_2;
  2021. break;
  2022. }
  2023. }
  2024. I915_WRITE(intel_dp->output_reg, *DP);
  2025. POSTING_READ(intel_dp->output_reg);
  2026. buf[0] = dp_train_pat;
  2027. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
  2028. DP_TRAINING_PATTERN_DISABLE) {
  2029. /* don't write DP_TRAINING_LANEx_SET on disable */
  2030. len = 1;
  2031. } else {
  2032. /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
  2033. memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
  2034. len = intel_dp->lane_count + 1;
  2035. }
  2036. ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
  2037. buf, len);
  2038. return ret == len;
  2039. }
  2040. static bool
  2041. intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
  2042. uint8_t dp_train_pat)
  2043. {
  2044. memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
  2045. intel_dp_set_signal_levels(intel_dp, DP);
  2046. return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
  2047. }
  2048. static bool
  2049. intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
  2050. const uint8_t link_status[DP_LINK_STATUS_SIZE])
  2051. {
  2052. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2053. struct drm_device *dev = intel_dig_port->base.base.dev;
  2054. struct drm_i915_private *dev_priv = dev->dev_private;
  2055. int ret;
  2056. intel_get_adjust_train(intel_dp, link_status);
  2057. intel_dp_set_signal_levels(intel_dp, DP);
  2058. I915_WRITE(intel_dp->output_reg, *DP);
  2059. POSTING_READ(intel_dp->output_reg);
  2060. ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
  2061. intel_dp->train_set,
  2062. intel_dp->lane_count);
  2063. return ret == intel_dp->lane_count;
  2064. }
  2065. static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
  2066. {
  2067. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2068. struct drm_device *dev = intel_dig_port->base.base.dev;
  2069. struct drm_i915_private *dev_priv = dev->dev_private;
  2070. enum port port = intel_dig_port->port;
  2071. uint32_t val;
  2072. if (!HAS_DDI(dev))
  2073. return;
  2074. val = I915_READ(DP_TP_CTL(port));
  2075. val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  2076. val |= DP_TP_CTL_LINK_TRAIN_IDLE;
  2077. I915_WRITE(DP_TP_CTL(port), val);
  2078. /*
  2079. * On PORT_A we can have only eDP in SST mode. There the only reason
  2080. * we need to set idle transmission mode is to work around a HW issue
  2081. * where we enable the pipe while not in idle link-training mode.
  2082. * In this case there is requirement to wait for a minimum number of
  2083. * idle patterns to be sent.
  2084. */
  2085. if (port == PORT_A)
  2086. return;
  2087. if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
  2088. 1))
  2089. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  2090. }
  2091. /* Enable corresponding port and start training pattern 1 */
  2092. void
  2093. intel_dp_start_link_train(struct intel_dp *intel_dp)
  2094. {
  2095. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  2096. struct drm_device *dev = encoder->dev;
  2097. int i;
  2098. uint8_t voltage;
  2099. int voltage_tries, loop_tries;
  2100. uint32_t DP = intel_dp->DP;
  2101. uint8_t link_config[2];
  2102. if (HAS_DDI(dev))
  2103. intel_ddi_prepare_link_retrain(encoder);
  2104. /* Write the link configuration data */
  2105. link_config[0] = intel_dp->link_bw;
  2106. link_config[1] = intel_dp->lane_count;
  2107. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  2108. link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  2109. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
  2110. link_config[0] = 0;
  2111. link_config[1] = DP_SET_ANSI_8B10B;
  2112. intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
  2113. DP |= DP_PORT_EN;
  2114. /* clock recovery */
  2115. if (!intel_dp_reset_link_train(intel_dp, &DP,
  2116. DP_TRAINING_PATTERN_1 |
  2117. DP_LINK_SCRAMBLING_DISABLE)) {
  2118. DRM_ERROR("failed to enable link training\n");
  2119. return;
  2120. }
  2121. voltage = 0xff;
  2122. voltage_tries = 0;
  2123. loop_tries = 0;
  2124. for (;;) {
  2125. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2126. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  2127. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2128. DRM_ERROR("failed to get link status\n");
  2129. break;
  2130. }
  2131. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2132. DRM_DEBUG_KMS("clock recovery OK\n");
  2133. break;
  2134. }
  2135. /* Check to see if we've tried the max voltage */
  2136. for (i = 0; i < intel_dp->lane_count; i++)
  2137. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  2138. break;
  2139. if (i == intel_dp->lane_count) {
  2140. ++loop_tries;
  2141. if (loop_tries == 5) {
  2142. DRM_ERROR("too many full retries, give up\n");
  2143. break;
  2144. }
  2145. intel_dp_reset_link_train(intel_dp, &DP,
  2146. DP_TRAINING_PATTERN_1 |
  2147. DP_LINK_SCRAMBLING_DISABLE);
  2148. voltage_tries = 0;
  2149. continue;
  2150. }
  2151. /* Check to see if we've tried the same voltage 5 times */
  2152. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  2153. ++voltage_tries;
  2154. if (voltage_tries == 5) {
  2155. DRM_ERROR("too many voltage retries, give up\n");
  2156. break;
  2157. }
  2158. } else
  2159. voltage_tries = 0;
  2160. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  2161. /* Update training set as requested by target */
  2162. if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
  2163. DRM_ERROR("failed to update link training\n");
  2164. break;
  2165. }
  2166. }
  2167. intel_dp->DP = DP;
  2168. }
  2169. void
  2170. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  2171. {
  2172. bool channel_eq = false;
  2173. int tries, cr_tries;
  2174. uint32_t DP = intel_dp->DP;
  2175. /* channel equalization */
  2176. if (!intel_dp_set_link_train(intel_dp, &DP,
  2177. DP_TRAINING_PATTERN_2 |
  2178. DP_LINK_SCRAMBLING_DISABLE)) {
  2179. DRM_ERROR("failed to start channel equalization\n");
  2180. return;
  2181. }
  2182. tries = 0;
  2183. cr_tries = 0;
  2184. channel_eq = false;
  2185. for (;;) {
  2186. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2187. if (cr_tries > 5) {
  2188. DRM_ERROR("failed to train DP, aborting\n");
  2189. intel_dp_link_down(intel_dp);
  2190. break;
  2191. }
  2192. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  2193. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2194. DRM_ERROR("failed to get link status\n");
  2195. break;
  2196. }
  2197. /* Make sure clock is still ok */
  2198. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2199. intel_dp_start_link_train(intel_dp);
  2200. intel_dp_set_link_train(intel_dp, &DP,
  2201. DP_TRAINING_PATTERN_2 |
  2202. DP_LINK_SCRAMBLING_DISABLE);
  2203. cr_tries++;
  2204. continue;
  2205. }
  2206. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2207. channel_eq = true;
  2208. break;
  2209. }
  2210. /* Try 5 times, then try clock recovery if that fails */
  2211. if (tries > 5) {
  2212. intel_dp_link_down(intel_dp);
  2213. intel_dp_start_link_train(intel_dp);
  2214. intel_dp_set_link_train(intel_dp, &DP,
  2215. DP_TRAINING_PATTERN_2 |
  2216. DP_LINK_SCRAMBLING_DISABLE);
  2217. tries = 0;
  2218. cr_tries++;
  2219. continue;
  2220. }
  2221. /* Update training set as requested by target */
  2222. if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
  2223. DRM_ERROR("failed to update link training\n");
  2224. break;
  2225. }
  2226. ++tries;
  2227. }
  2228. intel_dp_set_idle_link_train(intel_dp);
  2229. intel_dp->DP = DP;
  2230. if (channel_eq)
  2231. DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
  2232. }
  2233. void intel_dp_stop_link_train(struct intel_dp *intel_dp)
  2234. {
  2235. intel_dp_set_link_train(intel_dp, &intel_dp->DP,
  2236. DP_TRAINING_PATTERN_DISABLE);
  2237. }
  2238. static void
  2239. intel_dp_link_down(struct intel_dp *intel_dp)
  2240. {
  2241. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2242. enum port port = intel_dig_port->port;
  2243. struct drm_device *dev = intel_dig_port->base.base.dev;
  2244. struct drm_i915_private *dev_priv = dev->dev_private;
  2245. struct intel_crtc *intel_crtc =
  2246. to_intel_crtc(intel_dig_port->base.base.crtc);
  2247. uint32_t DP = intel_dp->DP;
  2248. /*
  2249. * DDI code has a strict mode set sequence and we should try to respect
  2250. * it, otherwise we might hang the machine in many different ways. So we
  2251. * really should be disabling the port only on a complete crtc_disable
  2252. * sequence. This function is just called under two conditions on DDI
  2253. * code:
  2254. * - Link train failed while doing crtc_enable, and on this case we
  2255. * really should respect the mode set sequence and wait for a
  2256. * crtc_disable.
  2257. * - Someone turned the monitor off and intel_dp_check_link_status
  2258. * called us. We don't need to disable the whole port on this case, so
  2259. * when someone turns the monitor on again,
  2260. * intel_ddi_prepare_link_retrain will take care of redoing the link
  2261. * train.
  2262. */
  2263. if (HAS_DDI(dev))
  2264. return;
  2265. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  2266. return;
  2267. DRM_DEBUG_KMS("\n");
  2268. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2269. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  2270. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  2271. } else {
  2272. DP &= ~DP_LINK_TRAIN_MASK;
  2273. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  2274. }
  2275. POSTING_READ(intel_dp->output_reg);
  2276. /* We don't really know why we're doing this */
  2277. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2278. if (HAS_PCH_IBX(dev) &&
  2279. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  2280. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  2281. /* Hardware workaround: leaving our transcoder select
  2282. * set to transcoder B while it's off will prevent the
  2283. * corresponding HDMI output on transcoder A.
  2284. *
  2285. * Combine this with another hardware workaround:
  2286. * transcoder select bit can only be cleared while the
  2287. * port is enabled.
  2288. */
  2289. DP &= ~DP_PIPEB_SELECT;
  2290. I915_WRITE(intel_dp->output_reg, DP);
  2291. /* Changes to enable or select take place the vblank
  2292. * after being written.
  2293. */
  2294. if (WARN_ON(crtc == NULL)) {
  2295. /* We should never try to disable a port without a crtc
  2296. * attached. For paranoia keep the code around for a
  2297. * bit. */
  2298. POSTING_READ(intel_dp->output_reg);
  2299. msleep(50);
  2300. } else
  2301. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2302. }
  2303. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  2304. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  2305. POSTING_READ(intel_dp->output_reg);
  2306. msleep(intel_dp->panel_power_down_delay);
  2307. }
  2308. static bool
  2309. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  2310. {
  2311. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  2312. struct drm_device *dev = dig_port->base.base.dev;
  2313. struct drm_i915_private *dev_priv = dev->dev_private;
  2314. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  2315. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  2316. sizeof(intel_dp->dpcd)) == 0)
  2317. return false; /* aux transfer failed */
  2318. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  2319. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  2320. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  2321. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  2322. return false; /* DPCD not present */
  2323. /* Check if the panel supports PSR */
  2324. memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
  2325. if (is_edp(intel_dp)) {
  2326. intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
  2327. intel_dp->psr_dpcd,
  2328. sizeof(intel_dp->psr_dpcd));
  2329. if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
  2330. dev_priv->psr.sink_support = true;
  2331. DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
  2332. }
  2333. }
  2334. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  2335. DP_DWN_STRM_PORT_PRESENT))
  2336. return true; /* native DP sink */
  2337. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  2338. return true; /* no per-port downstream info */
  2339. if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
  2340. intel_dp->downstream_ports,
  2341. DP_MAX_DOWNSTREAM_PORTS) == 0)
  2342. return false; /* downstream port status fetch failed */
  2343. return true;
  2344. }
  2345. static void
  2346. intel_dp_probe_oui(struct intel_dp *intel_dp)
  2347. {
  2348. u8 buf[3];
  2349. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  2350. return;
  2351. ironlake_edp_panel_vdd_on(intel_dp);
  2352. if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
  2353. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  2354. buf[0], buf[1], buf[2]);
  2355. if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
  2356. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  2357. buf[0], buf[1], buf[2]);
  2358. ironlake_edp_panel_vdd_off(intel_dp, false);
  2359. }
  2360. static bool
  2361. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  2362. {
  2363. int ret;
  2364. ret = intel_dp_aux_native_read_retry(intel_dp,
  2365. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2366. sink_irq_vector, 1);
  2367. if (!ret)
  2368. return false;
  2369. return true;
  2370. }
  2371. static void
  2372. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  2373. {
  2374. /* NAK by default */
  2375. intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
  2376. }
  2377. /*
  2378. * According to DP spec
  2379. * 5.1.2:
  2380. * 1. Read DPCD
  2381. * 2. Configure link according to Receiver Capabilities
  2382. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  2383. * 4. Check link status on receipt of hot-plug interrupt
  2384. */
  2385. void
  2386. intel_dp_check_link_status(struct intel_dp *intel_dp)
  2387. {
  2388. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  2389. u8 sink_irq_vector;
  2390. u8 link_status[DP_LINK_STATUS_SIZE];
  2391. if (!intel_encoder->connectors_active)
  2392. return;
  2393. if (WARN_ON(!intel_encoder->base.crtc))
  2394. return;
  2395. /* Try to read receiver status if the link appears to be up */
  2396. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2397. intel_dp_link_down(intel_dp);
  2398. return;
  2399. }
  2400. /* Now read the DPCD to see if it's actually running */
  2401. if (!intel_dp_get_dpcd(intel_dp)) {
  2402. intel_dp_link_down(intel_dp);
  2403. return;
  2404. }
  2405. /* Try to read the source of the interrupt */
  2406. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2407. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  2408. /* Clear interrupt source */
  2409. intel_dp_aux_native_write_1(intel_dp,
  2410. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2411. sink_irq_vector);
  2412. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  2413. intel_dp_handle_test_request(intel_dp);
  2414. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  2415. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  2416. }
  2417. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2418. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  2419. drm_get_encoder_name(&intel_encoder->base));
  2420. intel_dp_start_link_train(intel_dp);
  2421. intel_dp_complete_link_train(intel_dp);
  2422. intel_dp_stop_link_train(intel_dp);
  2423. }
  2424. }
  2425. /* XXX this is probably wrong for multiple downstream ports */
  2426. static enum drm_connector_status
  2427. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  2428. {
  2429. uint8_t *dpcd = intel_dp->dpcd;
  2430. uint8_t type;
  2431. if (!intel_dp_get_dpcd(intel_dp))
  2432. return connector_status_disconnected;
  2433. /* if there's no downstream port, we're done */
  2434. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  2435. return connector_status_connected;
  2436. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  2437. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2438. intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
  2439. uint8_t reg;
  2440. if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
  2441. &reg, 1))
  2442. return connector_status_unknown;
  2443. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  2444. : connector_status_disconnected;
  2445. }
  2446. /* If no HPD, poke DDC gently */
  2447. if (drm_probe_ddc(&intel_dp->adapter))
  2448. return connector_status_connected;
  2449. /* Well we tried, say unknown for unreliable port types */
  2450. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
  2451. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  2452. if (type == DP_DS_PORT_TYPE_VGA ||
  2453. type == DP_DS_PORT_TYPE_NON_EDID)
  2454. return connector_status_unknown;
  2455. } else {
  2456. type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  2457. DP_DWN_STRM_PORT_TYPE_MASK;
  2458. if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
  2459. type == DP_DWN_STRM_PORT_TYPE_OTHER)
  2460. return connector_status_unknown;
  2461. }
  2462. /* Anything else is out of spec, warn and ignore */
  2463. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  2464. return connector_status_disconnected;
  2465. }
  2466. static enum drm_connector_status
  2467. ironlake_dp_detect(struct intel_dp *intel_dp)
  2468. {
  2469. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2470. struct drm_i915_private *dev_priv = dev->dev_private;
  2471. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2472. enum drm_connector_status status;
  2473. /* Can't disconnect eDP, but you can close the lid... */
  2474. if (is_edp(intel_dp)) {
  2475. status = intel_panel_detect(dev);
  2476. if (status == connector_status_unknown)
  2477. status = connector_status_connected;
  2478. return status;
  2479. }
  2480. if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
  2481. return connector_status_disconnected;
  2482. return intel_dp_detect_dpcd(intel_dp);
  2483. }
  2484. static enum drm_connector_status
  2485. g4x_dp_detect(struct intel_dp *intel_dp)
  2486. {
  2487. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2488. struct drm_i915_private *dev_priv = dev->dev_private;
  2489. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2490. uint32_t bit;
  2491. /* Can't disconnect eDP, but you can close the lid... */
  2492. if (is_edp(intel_dp)) {
  2493. enum drm_connector_status status;
  2494. status = intel_panel_detect(dev);
  2495. if (status == connector_status_unknown)
  2496. status = connector_status_connected;
  2497. return status;
  2498. }
  2499. switch (intel_dig_port->port) {
  2500. case PORT_B:
  2501. bit = PORTB_HOTPLUG_LIVE_STATUS;
  2502. break;
  2503. case PORT_C:
  2504. bit = PORTC_HOTPLUG_LIVE_STATUS;
  2505. break;
  2506. case PORT_D:
  2507. bit = PORTD_HOTPLUG_LIVE_STATUS;
  2508. break;
  2509. default:
  2510. return connector_status_unknown;
  2511. }
  2512. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  2513. return connector_status_disconnected;
  2514. return intel_dp_detect_dpcd(intel_dp);
  2515. }
  2516. static struct edid *
  2517. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  2518. {
  2519. struct intel_connector *intel_connector = to_intel_connector(connector);
  2520. /* use cached edid if we have one */
  2521. if (intel_connector->edid) {
  2522. /* invalid edid */
  2523. if (IS_ERR(intel_connector->edid))
  2524. return NULL;
  2525. return drm_edid_duplicate(intel_connector->edid);
  2526. }
  2527. return drm_get_edid(connector, adapter);
  2528. }
  2529. static int
  2530. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  2531. {
  2532. struct intel_connector *intel_connector = to_intel_connector(connector);
  2533. /* use cached edid if we have one */
  2534. if (intel_connector->edid) {
  2535. /* invalid edid */
  2536. if (IS_ERR(intel_connector->edid))
  2537. return 0;
  2538. return intel_connector_update_modes(connector,
  2539. intel_connector->edid);
  2540. }
  2541. return intel_ddc_get_modes(connector, adapter);
  2542. }
  2543. static enum drm_connector_status
  2544. intel_dp_detect(struct drm_connector *connector, bool force)
  2545. {
  2546. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2547. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2548. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2549. struct drm_device *dev = connector->dev;
  2550. enum drm_connector_status status;
  2551. struct edid *edid = NULL;
  2552. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  2553. connector->base.id, drm_get_connector_name(connector));
  2554. intel_dp->has_audio = false;
  2555. if (HAS_PCH_SPLIT(dev))
  2556. status = ironlake_dp_detect(intel_dp);
  2557. else
  2558. status = g4x_dp_detect(intel_dp);
  2559. if (status != connector_status_connected)
  2560. return status;
  2561. intel_dp_probe_oui(intel_dp);
  2562. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  2563. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  2564. } else {
  2565. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2566. if (edid) {
  2567. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  2568. kfree(edid);
  2569. }
  2570. }
  2571. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  2572. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2573. return connector_status_connected;
  2574. }
  2575. static int intel_dp_get_modes(struct drm_connector *connector)
  2576. {
  2577. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2578. struct intel_connector *intel_connector = to_intel_connector(connector);
  2579. struct drm_device *dev = connector->dev;
  2580. int ret;
  2581. /* We should parse the EDID data and find out if it has an audio sink
  2582. */
  2583. ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
  2584. if (ret)
  2585. return ret;
  2586. /* if eDP has no EDID, fall back to fixed mode */
  2587. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  2588. struct drm_display_mode *mode;
  2589. mode = drm_mode_duplicate(dev,
  2590. intel_connector->panel.fixed_mode);
  2591. if (mode) {
  2592. drm_mode_probed_add(connector, mode);
  2593. return 1;
  2594. }
  2595. }
  2596. return 0;
  2597. }
  2598. static bool
  2599. intel_dp_detect_audio(struct drm_connector *connector)
  2600. {
  2601. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2602. struct edid *edid;
  2603. bool has_audio = false;
  2604. edid = intel_dp_get_edid(connector, &intel_dp->adapter);
  2605. if (edid) {
  2606. has_audio = drm_detect_monitor_audio(edid);
  2607. kfree(edid);
  2608. }
  2609. return has_audio;
  2610. }
  2611. static int
  2612. intel_dp_set_property(struct drm_connector *connector,
  2613. struct drm_property *property,
  2614. uint64_t val)
  2615. {
  2616. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  2617. struct intel_connector *intel_connector = to_intel_connector(connector);
  2618. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  2619. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2620. int ret;
  2621. ret = drm_object_property_set_value(&connector->base, property, val);
  2622. if (ret)
  2623. return ret;
  2624. if (property == dev_priv->force_audio_property) {
  2625. int i = val;
  2626. bool has_audio;
  2627. if (i == intel_dp->force_audio)
  2628. return 0;
  2629. intel_dp->force_audio = i;
  2630. if (i == HDMI_AUDIO_AUTO)
  2631. has_audio = intel_dp_detect_audio(connector);
  2632. else
  2633. has_audio = (i == HDMI_AUDIO_ON);
  2634. if (has_audio == intel_dp->has_audio)
  2635. return 0;
  2636. intel_dp->has_audio = has_audio;
  2637. goto done;
  2638. }
  2639. if (property == dev_priv->broadcast_rgb_property) {
  2640. bool old_auto = intel_dp->color_range_auto;
  2641. uint32_t old_range = intel_dp->color_range;
  2642. switch (val) {
  2643. case INTEL_BROADCAST_RGB_AUTO:
  2644. intel_dp->color_range_auto = true;
  2645. break;
  2646. case INTEL_BROADCAST_RGB_FULL:
  2647. intel_dp->color_range_auto = false;
  2648. intel_dp->color_range = 0;
  2649. break;
  2650. case INTEL_BROADCAST_RGB_LIMITED:
  2651. intel_dp->color_range_auto = false;
  2652. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  2653. break;
  2654. default:
  2655. return -EINVAL;
  2656. }
  2657. if (old_auto == intel_dp->color_range_auto &&
  2658. old_range == intel_dp->color_range)
  2659. return 0;
  2660. goto done;
  2661. }
  2662. if (is_edp(intel_dp) &&
  2663. property == connector->dev->mode_config.scaling_mode_property) {
  2664. if (val == DRM_MODE_SCALE_NONE) {
  2665. DRM_DEBUG_KMS("no scaling not supported\n");
  2666. return -EINVAL;
  2667. }
  2668. if (intel_connector->panel.fitting_mode == val) {
  2669. /* the eDP scaling property is not changed */
  2670. return 0;
  2671. }
  2672. intel_connector->panel.fitting_mode = val;
  2673. goto done;
  2674. }
  2675. return -EINVAL;
  2676. done:
  2677. if (intel_encoder->base.crtc)
  2678. intel_crtc_restore_mode(intel_encoder->base.crtc);
  2679. return 0;
  2680. }
  2681. static void
  2682. intel_dp_connector_destroy(struct drm_connector *connector)
  2683. {
  2684. struct intel_connector *intel_connector = to_intel_connector(connector);
  2685. if (!IS_ERR_OR_NULL(intel_connector->edid))
  2686. kfree(intel_connector->edid);
  2687. /* Can't call is_edp() since the encoder may have been destroyed
  2688. * already. */
  2689. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  2690. intel_panel_fini(&intel_connector->panel);
  2691. drm_connector_cleanup(connector);
  2692. kfree(connector);
  2693. }
  2694. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  2695. {
  2696. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  2697. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2698. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2699. i2c_del_adapter(&intel_dp->adapter);
  2700. drm_encoder_cleanup(encoder);
  2701. if (is_edp(intel_dp)) {
  2702. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2703. mutex_lock(&dev->mode_config.mutex);
  2704. ironlake_panel_vdd_off_sync(intel_dp);
  2705. mutex_unlock(&dev->mode_config.mutex);
  2706. }
  2707. kfree(intel_dig_port);
  2708. }
  2709. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  2710. .dpms = intel_connector_dpms,
  2711. .detect = intel_dp_detect,
  2712. .fill_modes = drm_helper_probe_single_connector_modes,
  2713. .set_property = intel_dp_set_property,
  2714. .destroy = intel_dp_connector_destroy,
  2715. };
  2716. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  2717. .get_modes = intel_dp_get_modes,
  2718. .mode_valid = intel_dp_mode_valid,
  2719. .best_encoder = intel_best_encoder,
  2720. };
  2721. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  2722. .destroy = intel_dp_encoder_destroy,
  2723. };
  2724. static void
  2725. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  2726. {
  2727. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2728. intel_dp_check_link_status(intel_dp);
  2729. }
  2730. /* Return which DP Port should be selected for Transcoder DP control */
  2731. int
  2732. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  2733. {
  2734. struct drm_device *dev = crtc->dev;
  2735. struct intel_encoder *intel_encoder;
  2736. struct intel_dp *intel_dp;
  2737. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2738. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2739. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2740. intel_encoder->type == INTEL_OUTPUT_EDP)
  2741. return intel_dp->output_reg;
  2742. }
  2743. return -1;
  2744. }
  2745. /* check the VBT to see whether the eDP is on DP-D port */
  2746. bool intel_dpd_is_edp(struct drm_device *dev)
  2747. {
  2748. struct drm_i915_private *dev_priv = dev->dev_private;
  2749. union child_device_config *p_child;
  2750. int i;
  2751. if (!dev_priv->vbt.child_dev_num)
  2752. return false;
  2753. for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
  2754. p_child = dev_priv->vbt.child_dev + i;
  2755. if (p_child->common.dvo_port == PORT_IDPD &&
  2756. p_child->common.device_type == DEVICE_TYPE_eDP)
  2757. return true;
  2758. }
  2759. return false;
  2760. }
  2761. static void
  2762. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2763. {
  2764. struct intel_connector *intel_connector = to_intel_connector(connector);
  2765. intel_attach_force_audio_property(connector);
  2766. intel_attach_broadcast_rgb_property(connector);
  2767. intel_dp->color_range_auto = true;
  2768. if (is_edp(intel_dp)) {
  2769. drm_mode_create_scaling_mode_property(connector->dev);
  2770. drm_object_attach_property(
  2771. &connector->base,
  2772. connector->dev->mode_config.scaling_mode_property,
  2773. DRM_MODE_SCALE_ASPECT);
  2774. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  2775. }
  2776. }
  2777. static void
  2778. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  2779. struct intel_dp *intel_dp,
  2780. struct edp_power_seq *out)
  2781. {
  2782. struct drm_i915_private *dev_priv = dev->dev_private;
  2783. struct edp_power_seq cur, vbt, spec, final;
  2784. u32 pp_on, pp_off, pp_div, pp;
  2785. int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
  2786. if (HAS_PCH_SPLIT(dev)) {
  2787. pp_ctrl_reg = PCH_PP_CONTROL;
  2788. pp_on_reg = PCH_PP_ON_DELAYS;
  2789. pp_off_reg = PCH_PP_OFF_DELAYS;
  2790. pp_div_reg = PCH_PP_DIVISOR;
  2791. } else {
  2792. enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
  2793. pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
  2794. pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
  2795. pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
  2796. pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
  2797. }
  2798. /* Workaround: Need to write PP_CONTROL with the unlock key as
  2799. * the very first thing. */
  2800. pp = ironlake_get_pp_control(intel_dp);
  2801. I915_WRITE(pp_ctrl_reg, pp);
  2802. pp_on = I915_READ(pp_on_reg);
  2803. pp_off = I915_READ(pp_off_reg);
  2804. pp_div = I915_READ(pp_div_reg);
  2805. /* Pull timing values out of registers */
  2806. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2807. PANEL_POWER_UP_DELAY_SHIFT;
  2808. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2809. PANEL_LIGHT_ON_DELAY_SHIFT;
  2810. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2811. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2812. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2813. PANEL_POWER_DOWN_DELAY_SHIFT;
  2814. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2815. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2816. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2817. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2818. vbt = dev_priv->vbt.edp_pps;
  2819. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  2820. * our hw here, which are all in 100usec. */
  2821. spec.t1_t3 = 210 * 10;
  2822. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  2823. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  2824. spec.t10 = 500 * 10;
  2825. /* This one is special and actually in units of 100ms, but zero
  2826. * based in the hw (so we need to add 100 ms). But the sw vbt
  2827. * table multiplies it with 1000 to make it in units of 100usec,
  2828. * too. */
  2829. spec.t11_t12 = (510 + 100) * 10;
  2830. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2831. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2832. /* Use the max of the register settings and vbt. If both are
  2833. * unset, fall back to the spec limits. */
  2834. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  2835. spec.field : \
  2836. max(cur.field, vbt.field))
  2837. assign_final(t1_t3);
  2838. assign_final(t8);
  2839. assign_final(t9);
  2840. assign_final(t10);
  2841. assign_final(t11_t12);
  2842. #undef assign_final
  2843. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  2844. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2845. intel_dp->backlight_on_delay = get_delay(t8);
  2846. intel_dp->backlight_off_delay = get_delay(t9);
  2847. intel_dp->panel_power_down_delay = get_delay(t10);
  2848. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  2849. #undef get_delay
  2850. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  2851. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  2852. intel_dp->panel_power_cycle_delay);
  2853. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  2854. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  2855. if (out)
  2856. *out = final;
  2857. }
  2858. static void
  2859. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  2860. struct intel_dp *intel_dp,
  2861. struct edp_power_seq *seq)
  2862. {
  2863. struct drm_i915_private *dev_priv = dev->dev_private;
  2864. u32 pp_on, pp_off, pp_div, port_sel = 0;
  2865. int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
  2866. int pp_on_reg, pp_off_reg, pp_div_reg;
  2867. if (HAS_PCH_SPLIT(dev)) {
  2868. pp_on_reg = PCH_PP_ON_DELAYS;
  2869. pp_off_reg = PCH_PP_OFF_DELAYS;
  2870. pp_div_reg = PCH_PP_DIVISOR;
  2871. } else {
  2872. enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
  2873. pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
  2874. pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
  2875. pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
  2876. }
  2877. /* And finally store the new values in the power sequencer. */
  2878. pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  2879. (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
  2880. pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  2881. (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  2882. /* Compute the divisor for the pp clock, simply match the Bspec
  2883. * formula. */
  2884. pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
  2885. pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
  2886. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  2887. /* Haswell doesn't have any port selection bits for the panel
  2888. * power sequencer any more. */
  2889. if (IS_VALLEYVIEW(dev)) {
  2890. if (dp_to_dig_port(intel_dp)->port == PORT_B)
  2891. port_sel = PANEL_PORT_SELECT_DPB_VLV;
  2892. else
  2893. port_sel = PANEL_PORT_SELECT_DPC_VLV;
  2894. } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  2895. if (dp_to_dig_port(intel_dp)->port == PORT_A)
  2896. port_sel = PANEL_PORT_SELECT_DPA;
  2897. else
  2898. port_sel = PANEL_PORT_SELECT_DPD;
  2899. }
  2900. pp_on |= port_sel;
  2901. I915_WRITE(pp_on_reg, pp_on);
  2902. I915_WRITE(pp_off_reg, pp_off);
  2903. I915_WRITE(pp_div_reg, pp_div);
  2904. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  2905. I915_READ(pp_on_reg),
  2906. I915_READ(pp_off_reg),
  2907. I915_READ(pp_div_reg));
  2908. }
  2909. static bool intel_edp_init_connector(struct intel_dp *intel_dp,
  2910. struct intel_connector *intel_connector)
  2911. {
  2912. struct drm_connector *connector = &intel_connector->base;
  2913. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2914. struct drm_device *dev = intel_dig_port->base.base.dev;
  2915. struct drm_i915_private *dev_priv = dev->dev_private;
  2916. struct drm_display_mode *fixed_mode = NULL;
  2917. struct edp_power_seq power_seq = { 0 };
  2918. bool has_dpcd;
  2919. struct drm_display_mode *scan;
  2920. struct edid *edid;
  2921. if (!is_edp(intel_dp))
  2922. return true;
  2923. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  2924. /* Cache DPCD and EDID for edp. */
  2925. ironlake_edp_panel_vdd_on(intel_dp);
  2926. has_dpcd = intel_dp_get_dpcd(intel_dp);
  2927. ironlake_edp_panel_vdd_off(intel_dp, false);
  2928. if (has_dpcd) {
  2929. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  2930. dev_priv->no_aux_handshake =
  2931. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  2932. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  2933. } else {
  2934. /* if this fails, presume the device is a ghost */
  2935. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  2936. return false;
  2937. }
  2938. /* We now know it's not a ghost, init power sequence regs. */
  2939. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  2940. &power_seq);
  2941. ironlake_edp_panel_vdd_on(intel_dp);
  2942. edid = drm_get_edid(connector, &intel_dp->adapter);
  2943. if (edid) {
  2944. if (drm_add_edid_modes(connector, edid)) {
  2945. drm_mode_connector_update_edid_property(connector,
  2946. edid);
  2947. drm_edid_to_eld(connector, edid);
  2948. } else {
  2949. kfree(edid);
  2950. edid = ERR_PTR(-EINVAL);
  2951. }
  2952. } else {
  2953. edid = ERR_PTR(-ENOENT);
  2954. }
  2955. intel_connector->edid = edid;
  2956. /* prefer fixed mode from EDID if available */
  2957. list_for_each_entry(scan, &connector->probed_modes, head) {
  2958. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  2959. fixed_mode = drm_mode_duplicate(dev, scan);
  2960. break;
  2961. }
  2962. }
  2963. /* fallback to VBT if available for eDP */
  2964. if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
  2965. fixed_mode = drm_mode_duplicate(dev,
  2966. dev_priv->vbt.lfp_lvds_vbt_mode);
  2967. if (fixed_mode)
  2968. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  2969. }
  2970. ironlake_edp_panel_vdd_off(intel_dp, false);
  2971. intel_panel_init(&intel_connector->panel, fixed_mode);
  2972. intel_panel_setup_backlight(connector);
  2973. return true;
  2974. }
  2975. bool
  2976. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  2977. struct intel_connector *intel_connector)
  2978. {
  2979. struct drm_connector *connector = &intel_connector->base;
  2980. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2981. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2982. struct drm_device *dev = intel_encoder->base.dev;
  2983. struct drm_i915_private *dev_priv = dev->dev_private;
  2984. enum port port = intel_dig_port->port;
  2985. const char *name = NULL;
  2986. int type, error;
  2987. /* Preserve the current hw state. */
  2988. intel_dp->DP = I915_READ(intel_dp->output_reg);
  2989. intel_dp->attached_connector = intel_connector;
  2990. type = DRM_MODE_CONNECTOR_DisplayPort;
  2991. /*
  2992. * FIXME : We need to initialize built-in panels before external panels.
  2993. * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
  2994. */
  2995. switch (port) {
  2996. case PORT_A:
  2997. type = DRM_MODE_CONNECTOR_eDP;
  2998. break;
  2999. case PORT_C:
  3000. if (IS_VALLEYVIEW(dev))
  3001. type = DRM_MODE_CONNECTOR_eDP;
  3002. break;
  3003. case PORT_D:
  3004. if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
  3005. type = DRM_MODE_CONNECTOR_eDP;
  3006. break;
  3007. default: /* silence GCC warning */
  3008. break;
  3009. }
  3010. /*
  3011. * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
  3012. * for DP the encoder type can be set by the caller to
  3013. * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
  3014. */
  3015. if (type == DRM_MODE_CONNECTOR_eDP)
  3016. intel_encoder->type = INTEL_OUTPUT_EDP;
  3017. DRM_DEBUG_KMS("Adding %s connector on port %c\n",
  3018. type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
  3019. port_name(port));
  3020. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  3021. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  3022. connector->interlace_allowed = true;
  3023. connector->doublescan_allowed = 0;
  3024. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  3025. ironlake_panel_vdd_work);
  3026. intel_connector_attach_encoder(intel_connector, intel_encoder);
  3027. drm_sysfs_connector_add(connector);
  3028. if (HAS_DDI(dev))
  3029. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  3030. else
  3031. intel_connector->get_hw_state = intel_connector_get_hw_state;
  3032. intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
  3033. if (HAS_DDI(dev)) {
  3034. switch (intel_dig_port->port) {
  3035. case PORT_A:
  3036. intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
  3037. break;
  3038. case PORT_B:
  3039. intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
  3040. break;
  3041. case PORT_C:
  3042. intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
  3043. break;
  3044. case PORT_D:
  3045. intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
  3046. break;
  3047. default:
  3048. BUG();
  3049. }
  3050. }
  3051. /* Set up the DDC bus. */
  3052. switch (port) {
  3053. case PORT_A:
  3054. intel_encoder->hpd_pin = HPD_PORT_A;
  3055. name = "DPDDC-A";
  3056. break;
  3057. case PORT_B:
  3058. intel_encoder->hpd_pin = HPD_PORT_B;
  3059. name = "DPDDC-B";
  3060. break;
  3061. case PORT_C:
  3062. intel_encoder->hpd_pin = HPD_PORT_C;
  3063. name = "DPDDC-C";
  3064. break;
  3065. case PORT_D:
  3066. intel_encoder->hpd_pin = HPD_PORT_D;
  3067. name = "DPDDC-D";
  3068. break;
  3069. default:
  3070. BUG();
  3071. }
  3072. error = intel_dp_i2c_init(intel_dp, intel_connector, name);
  3073. WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
  3074. error, port_name(port));
  3075. intel_dp->psr_setup_done = false;
  3076. if (!intel_edp_init_connector(intel_dp, intel_connector)) {
  3077. i2c_del_adapter(&intel_dp->adapter);
  3078. if (is_edp(intel_dp)) {
  3079. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  3080. mutex_lock(&dev->mode_config.mutex);
  3081. ironlake_panel_vdd_off_sync(intel_dp);
  3082. mutex_unlock(&dev->mode_config.mutex);
  3083. }
  3084. drm_sysfs_connector_remove(connector);
  3085. drm_connector_cleanup(connector);
  3086. return false;
  3087. }
  3088. intel_dp_add_properties(intel_dp, connector);
  3089. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  3090. * 0xd. Failure to do so will result in spurious interrupts being
  3091. * generated on the port when a cable is not attached.
  3092. */
  3093. if (IS_G4X(dev) && !IS_GM45(dev)) {
  3094. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  3095. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  3096. }
  3097. return true;
  3098. }
  3099. void
  3100. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  3101. {
  3102. struct intel_digital_port *intel_dig_port;
  3103. struct intel_encoder *intel_encoder;
  3104. struct drm_encoder *encoder;
  3105. struct intel_connector *intel_connector;
  3106. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  3107. if (!intel_dig_port)
  3108. return;
  3109. intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
  3110. if (!intel_connector) {
  3111. kfree(intel_dig_port);
  3112. return;
  3113. }
  3114. intel_encoder = &intel_dig_port->base;
  3115. encoder = &intel_encoder->base;
  3116. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  3117. DRM_MODE_ENCODER_TMDS);
  3118. intel_encoder->compute_config = intel_dp_compute_config;
  3119. intel_encoder->mode_set = intel_dp_mode_set;
  3120. intel_encoder->disable = intel_disable_dp;
  3121. intel_encoder->post_disable = intel_post_disable_dp;
  3122. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  3123. intel_encoder->get_config = intel_dp_get_config;
  3124. if (IS_VALLEYVIEW(dev)) {
  3125. intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
  3126. intel_encoder->pre_enable = vlv_pre_enable_dp;
  3127. intel_encoder->enable = vlv_enable_dp;
  3128. } else {
  3129. intel_encoder->pre_enable = g4x_pre_enable_dp;
  3130. intel_encoder->enable = g4x_enable_dp;
  3131. }
  3132. intel_dig_port->port = port;
  3133. intel_dig_port->dp.output_reg = output_reg;
  3134. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  3135. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  3136. intel_encoder->cloneable = false;
  3137. intel_encoder->hot_plug = intel_dp_hot_plug;
  3138. if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
  3139. drm_encoder_cleanup(encoder);
  3140. kfree(intel_dig_port);
  3141. kfree(intel_connector);
  3142. }
  3143. }