intel_ddi.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  30. * them for both DP and FDI transports, allowing those ports to
  31. * automatically adapt to HDMI connections as well
  32. */
  33. static const u32 hsw_ddi_translations_dp[] = {
  34. 0x00FFFFFF, 0x0006000E, /* DP parameters */
  35. 0x00D75FFF, 0x0005000A,
  36. 0x00C30FFF, 0x00040006,
  37. 0x80AAAFFF, 0x000B0000,
  38. 0x00FFFFFF, 0x0005000A,
  39. 0x00D75FFF, 0x000C0004,
  40. 0x80C30FFF, 0x000B0000,
  41. 0x00FFFFFF, 0x00040006,
  42. 0x80D75FFF, 0x000B0000,
  43. };
  44. static const u32 hsw_ddi_translations_fdi[] = {
  45. 0x00FFFFFF, 0x0007000E, /* FDI parameters */
  46. 0x00D75FFF, 0x000F000A,
  47. 0x00C30FFF, 0x00060006,
  48. 0x00AAAFFF, 0x001E0000,
  49. 0x00FFFFFF, 0x000F000A,
  50. 0x00D75FFF, 0x00160004,
  51. 0x00C30FFF, 0x001E0000,
  52. 0x00FFFFFF, 0x00060006,
  53. 0x00D75FFF, 0x001E0000,
  54. };
  55. static const u32 hsw_ddi_translations_hdmi[] = {
  56. /* Idx NT mV diff T mV diff db */
  57. 0x00FFFFFF, 0x0006000E, /* 0: 400 400 0 */
  58. 0x00E79FFF, 0x000E000C, /* 1: 400 500 2 */
  59. 0x00D75FFF, 0x0005000A, /* 2: 400 600 3.5 */
  60. 0x00FFFFFF, 0x0005000A, /* 3: 600 600 0 */
  61. 0x00E79FFF, 0x001D0007, /* 4: 600 750 2 */
  62. 0x00D75FFF, 0x000C0004, /* 5: 600 900 3.5 */
  63. 0x00FFFFFF, 0x00040006, /* 6: 800 800 0 */
  64. 0x80E79FFF, 0x00030002, /* 7: 800 1000 2 */
  65. 0x00FFFFFF, 0x00140005, /* 8: 850 850 0 */
  66. 0x00FFFFFF, 0x000C0004, /* 9: 900 900 0 */
  67. 0x00FFFFFF, 0x001C0003, /* 10: 950 950 0 */
  68. 0x80FFFFFF, 0x00030002, /* 11: 1000 1000 0 */
  69. };
  70. enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  71. {
  72. struct drm_encoder *encoder = &intel_encoder->base;
  73. int type = intel_encoder->type;
  74. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
  75. type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
  76. struct intel_digital_port *intel_dig_port =
  77. enc_to_dig_port(encoder);
  78. return intel_dig_port->port;
  79. } else if (type == INTEL_OUTPUT_ANALOG) {
  80. return PORT_E;
  81. } else {
  82. DRM_ERROR("Invalid DDI encoder type %d\n", type);
  83. BUG();
  84. }
  85. }
  86. /* On Haswell, DDI port buffers must be programmed with correct values
  87. * in advance. The buffer values are different for FDI and DP modes,
  88. * but the HDMI/DVI fields are shared among those. So we program the DDI
  89. * in either FDI or DP modes only, as HDMI connections will work with both
  90. * of those
  91. */
  92. static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
  93. {
  94. struct drm_i915_private *dev_priv = dev->dev_private;
  95. u32 reg;
  96. int i;
  97. const u32 *ddi_translations = (port == PORT_E) ?
  98. hsw_ddi_translations_fdi :
  99. hsw_ddi_translations_dp;
  100. int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  101. for (i = 0, reg = DDI_BUF_TRANS(port);
  102. i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
  103. I915_WRITE(reg, ddi_translations[i]);
  104. reg += 4;
  105. }
  106. /* Entry 9 is for HDMI: */
  107. for (i = 0; i < 2; i++) {
  108. I915_WRITE(reg, hsw_ddi_translations_hdmi[hdmi_level * 2 + i]);
  109. reg += 4;
  110. }
  111. }
  112. /* Program DDI buffers translations for DP. By default, program ports A-D in DP
  113. * mode and port E for FDI.
  114. */
  115. void intel_prepare_ddi(struct drm_device *dev)
  116. {
  117. int port;
  118. if (!HAS_DDI(dev))
  119. return;
  120. for (port = PORT_A; port <= PORT_E; port++)
  121. intel_prepare_ddi_buffers(dev, port);
  122. }
  123. static const long hsw_ddi_buf_ctl_values[] = {
  124. DDI_BUF_EMP_400MV_0DB_HSW,
  125. DDI_BUF_EMP_400MV_3_5DB_HSW,
  126. DDI_BUF_EMP_400MV_6DB_HSW,
  127. DDI_BUF_EMP_400MV_9_5DB_HSW,
  128. DDI_BUF_EMP_600MV_0DB_HSW,
  129. DDI_BUF_EMP_600MV_3_5DB_HSW,
  130. DDI_BUF_EMP_600MV_6DB_HSW,
  131. DDI_BUF_EMP_800MV_0DB_HSW,
  132. DDI_BUF_EMP_800MV_3_5DB_HSW
  133. };
  134. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  135. enum port port)
  136. {
  137. uint32_t reg = DDI_BUF_CTL(port);
  138. int i;
  139. for (i = 0; i < 8; i++) {
  140. udelay(1);
  141. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  142. return;
  143. }
  144. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  145. }
  146. /* Starting with Haswell, different DDI ports can work in FDI mode for
  147. * connection to the PCH-located connectors. For this, it is necessary to train
  148. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  149. *
  150. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  151. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  152. * DDI A (which is used for eDP)
  153. */
  154. void hsw_fdi_link_train(struct drm_crtc *crtc)
  155. {
  156. struct drm_device *dev = crtc->dev;
  157. struct drm_i915_private *dev_priv = dev->dev_private;
  158. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  159. u32 temp, i, rx_ctl_val;
  160. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  161. * mode set "sequence for CRT port" document:
  162. * - TP1 to TP2 time with the default value
  163. * - FDI delay to 90h
  164. *
  165. * WaFDIAutoLinkSetTimingOverrride:hsw
  166. */
  167. I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
  168. FDI_RX_PWRDN_LANE0_VAL(2) |
  169. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  170. /* Enable the PCH Receiver FDI PLL */
  171. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  172. FDI_RX_PLL_ENABLE |
  173. FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  174. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  175. POSTING_READ(_FDI_RXA_CTL);
  176. udelay(220);
  177. /* Switch from Rawclk to PCDclk */
  178. rx_ctl_val |= FDI_PCDCLK;
  179. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  180. /* Configure Port Clock Select */
  181. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->ddi_pll_sel);
  182. /* Start the training iterating through available voltages and emphasis,
  183. * testing each value twice. */
  184. for (i = 0; i < ARRAY_SIZE(hsw_ddi_buf_ctl_values) * 2; i++) {
  185. /* Configure DP_TP_CTL with auto-training */
  186. I915_WRITE(DP_TP_CTL(PORT_E),
  187. DP_TP_CTL_FDI_AUTOTRAIN |
  188. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  189. DP_TP_CTL_LINK_TRAIN_PAT1 |
  190. DP_TP_CTL_ENABLE);
  191. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  192. * DDI E does not support port reversal, the functionality is
  193. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  194. * port reversal bit */
  195. I915_WRITE(DDI_BUF_CTL(PORT_E),
  196. DDI_BUF_CTL_ENABLE |
  197. ((intel_crtc->config.fdi_lanes - 1) << 1) |
  198. hsw_ddi_buf_ctl_values[i / 2]);
  199. POSTING_READ(DDI_BUF_CTL(PORT_E));
  200. udelay(600);
  201. /* Program PCH FDI Receiver TU */
  202. I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
  203. /* Enable PCH FDI Receiver with auto-training */
  204. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  205. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  206. POSTING_READ(_FDI_RXA_CTL);
  207. /* Wait for FDI receiver lane calibration */
  208. udelay(30);
  209. /* Unset FDI_RX_MISC pwrdn lanes */
  210. temp = I915_READ(_FDI_RXA_MISC);
  211. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  212. I915_WRITE(_FDI_RXA_MISC, temp);
  213. POSTING_READ(_FDI_RXA_MISC);
  214. /* Wait for FDI auto training time */
  215. udelay(5);
  216. temp = I915_READ(DP_TP_STATUS(PORT_E));
  217. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  218. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  219. /* Enable normal pixel sending for FDI */
  220. I915_WRITE(DP_TP_CTL(PORT_E),
  221. DP_TP_CTL_FDI_AUTOTRAIN |
  222. DP_TP_CTL_LINK_TRAIN_NORMAL |
  223. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  224. DP_TP_CTL_ENABLE);
  225. return;
  226. }
  227. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  228. temp &= ~DDI_BUF_CTL_ENABLE;
  229. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  230. POSTING_READ(DDI_BUF_CTL(PORT_E));
  231. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  232. temp = I915_READ(DP_TP_CTL(PORT_E));
  233. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  234. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  235. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  236. POSTING_READ(DP_TP_CTL(PORT_E));
  237. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  238. rx_ctl_val &= ~FDI_RX_ENABLE;
  239. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  240. POSTING_READ(_FDI_RXA_CTL);
  241. /* Reset FDI_RX_MISC pwrdn lanes */
  242. temp = I915_READ(_FDI_RXA_MISC);
  243. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  244. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  245. I915_WRITE(_FDI_RXA_MISC, temp);
  246. POSTING_READ(_FDI_RXA_MISC);
  247. }
  248. DRM_ERROR("FDI link training failed!\n");
  249. }
  250. static void intel_ddi_mode_set(struct intel_encoder *encoder)
  251. {
  252. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  253. int port = intel_ddi_get_encoder_port(encoder);
  254. int pipe = crtc->pipe;
  255. int type = encoder->type;
  256. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  257. DRM_DEBUG_KMS("Preparing DDI mode on port %c, pipe %c\n",
  258. port_name(port), pipe_name(pipe));
  259. crtc->eld_vld = false;
  260. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  261. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  262. struct intel_digital_port *intel_dig_port =
  263. enc_to_dig_port(&encoder->base);
  264. intel_dp->DP = intel_dig_port->saved_port_bits |
  265. DDI_BUF_CTL_ENABLE | DDI_BUF_EMP_400MV_0DB_HSW;
  266. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  267. if (intel_dp->has_audio) {
  268. DRM_DEBUG_DRIVER("DP audio on pipe %c on DDI\n",
  269. pipe_name(crtc->pipe));
  270. /* write eld */
  271. DRM_DEBUG_DRIVER("DP audio: write eld information\n");
  272. intel_write_eld(&encoder->base, adjusted_mode);
  273. }
  274. } else if (type == INTEL_OUTPUT_HDMI) {
  275. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  276. if (intel_hdmi->has_audio) {
  277. /* Proper support for digital audio needs a new logic
  278. * and a new set of registers, so we leave it for future
  279. * patch bombing.
  280. */
  281. DRM_DEBUG_DRIVER("HDMI audio on pipe %c on DDI\n",
  282. pipe_name(crtc->pipe));
  283. /* write eld */
  284. DRM_DEBUG_DRIVER("HDMI audio: write eld information\n");
  285. intel_write_eld(&encoder->base, adjusted_mode);
  286. }
  287. intel_hdmi->set_infoframes(&encoder->base, adjusted_mode);
  288. }
  289. }
  290. static struct intel_encoder *
  291. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  292. {
  293. struct drm_device *dev = crtc->dev;
  294. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  295. struct intel_encoder *intel_encoder, *ret = NULL;
  296. int num_encoders = 0;
  297. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  298. ret = intel_encoder;
  299. num_encoders++;
  300. }
  301. if (num_encoders != 1)
  302. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  303. pipe_name(intel_crtc->pipe));
  304. BUG_ON(ret == NULL);
  305. return ret;
  306. }
  307. void intel_ddi_put_crtc_pll(struct drm_crtc *crtc)
  308. {
  309. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  310. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  311. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  312. uint32_t val;
  313. switch (intel_crtc->ddi_pll_sel) {
  314. case PORT_CLK_SEL_SPLL:
  315. plls->spll_refcount--;
  316. if (plls->spll_refcount == 0) {
  317. DRM_DEBUG_KMS("Disabling SPLL\n");
  318. val = I915_READ(SPLL_CTL);
  319. WARN_ON(!(val & SPLL_PLL_ENABLE));
  320. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  321. POSTING_READ(SPLL_CTL);
  322. }
  323. break;
  324. case PORT_CLK_SEL_WRPLL1:
  325. plls->wrpll1_refcount--;
  326. if (plls->wrpll1_refcount == 0) {
  327. DRM_DEBUG_KMS("Disabling WRPLL 1\n");
  328. val = I915_READ(WRPLL_CTL1);
  329. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  330. I915_WRITE(WRPLL_CTL1, val & ~WRPLL_PLL_ENABLE);
  331. POSTING_READ(WRPLL_CTL1);
  332. }
  333. break;
  334. case PORT_CLK_SEL_WRPLL2:
  335. plls->wrpll2_refcount--;
  336. if (plls->wrpll2_refcount == 0) {
  337. DRM_DEBUG_KMS("Disabling WRPLL 2\n");
  338. val = I915_READ(WRPLL_CTL2);
  339. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  340. I915_WRITE(WRPLL_CTL2, val & ~WRPLL_PLL_ENABLE);
  341. POSTING_READ(WRPLL_CTL2);
  342. }
  343. break;
  344. }
  345. WARN(plls->spll_refcount < 0, "Invalid SPLL refcount\n");
  346. WARN(plls->wrpll1_refcount < 0, "Invalid WRPLL1 refcount\n");
  347. WARN(plls->wrpll2_refcount < 0, "Invalid WRPLL2 refcount\n");
  348. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_NONE;
  349. }
  350. #define LC_FREQ 2700
  351. #define LC_FREQ_2K (LC_FREQ * 2000)
  352. #define P_MIN 2
  353. #define P_MAX 64
  354. #define P_INC 2
  355. /* Constraints for PLL good behavior */
  356. #define REF_MIN 48
  357. #define REF_MAX 400
  358. #define VCO_MIN 2400
  359. #define VCO_MAX 4800
  360. #define ABS_DIFF(a, b) ((a > b) ? (a - b) : (b - a))
  361. struct wrpll_rnp {
  362. unsigned p, n2, r2;
  363. };
  364. static unsigned wrpll_get_budget_for_freq(int clock)
  365. {
  366. unsigned budget;
  367. switch (clock) {
  368. case 25175000:
  369. case 25200000:
  370. case 27000000:
  371. case 27027000:
  372. case 37762500:
  373. case 37800000:
  374. case 40500000:
  375. case 40541000:
  376. case 54000000:
  377. case 54054000:
  378. case 59341000:
  379. case 59400000:
  380. case 72000000:
  381. case 74176000:
  382. case 74250000:
  383. case 81000000:
  384. case 81081000:
  385. case 89012000:
  386. case 89100000:
  387. case 108000000:
  388. case 108108000:
  389. case 111264000:
  390. case 111375000:
  391. case 148352000:
  392. case 148500000:
  393. case 162000000:
  394. case 162162000:
  395. case 222525000:
  396. case 222750000:
  397. case 296703000:
  398. case 297000000:
  399. budget = 0;
  400. break;
  401. case 233500000:
  402. case 245250000:
  403. case 247750000:
  404. case 253250000:
  405. case 298000000:
  406. budget = 1500;
  407. break;
  408. case 169128000:
  409. case 169500000:
  410. case 179500000:
  411. case 202000000:
  412. budget = 2000;
  413. break;
  414. case 256250000:
  415. case 262500000:
  416. case 270000000:
  417. case 272500000:
  418. case 273750000:
  419. case 280750000:
  420. case 281250000:
  421. case 286000000:
  422. case 291750000:
  423. budget = 4000;
  424. break;
  425. case 267250000:
  426. case 268500000:
  427. budget = 5000;
  428. break;
  429. default:
  430. budget = 1000;
  431. break;
  432. }
  433. return budget;
  434. }
  435. static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  436. unsigned r2, unsigned n2, unsigned p,
  437. struct wrpll_rnp *best)
  438. {
  439. uint64_t a, b, c, d, diff, diff_best;
  440. /* No best (r,n,p) yet */
  441. if (best->p == 0) {
  442. best->p = p;
  443. best->n2 = n2;
  444. best->r2 = r2;
  445. return;
  446. }
  447. /*
  448. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  449. * freq2k.
  450. *
  451. * delta = 1e6 *
  452. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  453. * freq2k;
  454. *
  455. * and we would like delta <= budget.
  456. *
  457. * If the discrepancy is above the PPM-based budget, always prefer to
  458. * improve upon the previous solution. However, if you're within the
  459. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  460. */
  461. a = freq2k * budget * p * r2;
  462. b = freq2k * budget * best->p * best->r2;
  463. diff = ABS_DIFF((freq2k * p * r2), (LC_FREQ_2K * n2));
  464. diff_best = ABS_DIFF((freq2k * best->p * best->r2),
  465. (LC_FREQ_2K * best->n2));
  466. c = 1000000 * diff;
  467. d = 1000000 * diff_best;
  468. if (a < c && b < d) {
  469. /* If both are above the budget, pick the closer */
  470. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  471. best->p = p;
  472. best->n2 = n2;
  473. best->r2 = r2;
  474. }
  475. } else if (a >= c && b < d) {
  476. /* If A is below the threshold but B is above it? Update. */
  477. best->p = p;
  478. best->n2 = n2;
  479. best->r2 = r2;
  480. } else if (a >= c && b >= d) {
  481. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  482. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  483. best->p = p;
  484. best->n2 = n2;
  485. best->r2 = r2;
  486. }
  487. }
  488. /* Otherwise a < c && b >= d, do nothing */
  489. }
  490. static void
  491. intel_ddi_calculate_wrpll(int clock /* in Hz */,
  492. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  493. {
  494. uint64_t freq2k;
  495. unsigned p, n2, r2;
  496. struct wrpll_rnp best = { 0, 0, 0 };
  497. unsigned budget;
  498. freq2k = clock / 100;
  499. budget = wrpll_get_budget_for_freq(clock);
  500. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  501. * and directly pass the LC PLL to it. */
  502. if (freq2k == 5400000) {
  503. *n2_out = 2;
  504. *p_out = 1;
  505. *r2_out = 2;
  506. return;
  507. }
  508. /*
  509. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  510. * the WR PLL.
  511. *
  512. * We want R so that REF_MIN <= Ref <= REF_MAX.
  513. * Injecting R2 = 2 * R gives:
  514. * REF_MAX * r2 > LC_FREQ * 2 and
  515. * REF_MIN * r2 < LC_FREQ * 2
  516. *
  517. * Which means the desired boundaries for r2 are:
  518. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  519. *
  520. */
  521. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  522. r2 <= LC_FREQ * 2 / REF_MIN;
  523. r2++) {
  524. /*
  525. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  526. *
  527. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  528. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  529. * VCO_MAX * r2 > n2 * LC_FREQ and
  530. * VCO_MIN * r2 < n2 * LC_FREQ)
  531. *
  532. * Which means the desired boundaries for n2 are:
  533. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  534. */
  535. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  536. n2 <= VCO_MAX * r2 / LC_FREQ;
  537. n2++) {
  538. for (p = P_MIN; p <= P_MAX; p += P_INC)
  539. wrpll_update_rnp(freq2k, budget,
  540. r2, n2, p, &best);
  541. }
  542. }
  543. *n2_out = best.n2;
  544. *p_out = best.p;
  545. *r2_out = best.r2;
  546. DRM_DEBUG_KMS("WRPLL: %dHz refresh rate with p=%d, n2=%d r2=%d\n",
  547. clock, *p_out, *n2_out, *r2_out);
  548. }
  549. bool intel_ddi_pll_mode_set(struct drm_crtc *crtc)
  550. {
  551. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  552. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  553. struct drm_encoder *encoder = &intel_encoder->base;
  554. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  555. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  556. int type = intel_encoder->type;
  557. enum pipe pipe = intel_crtc->pipe;
  558. uint32_t reg, val;
  559. int clock = intel_crtc->config.port_clock;
  560. /* TODO: reuse PLLs when possible (compare values) */
  561. intel_ddi_put_crtc_pll(crtc);
  562. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  563. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  564. switch (intel_dp->link_bw) {
  565. case DP_LINK_BW_1_62:
  566. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
  567. break;
  568. case DP_LINK_BW_2_7:
  569. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
  570. break;
  571. case DP_LINK_BW_5_4:
  572. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
  573. break;
  574. default:
  575. DRM_ERROR("Link bandwidth %d unsupported\n",
  576. intel_dp->link_bw);
  577. return false;
  578. }
  579. /* We don't need to turn any PLL on because we'll use LCPLL. */
  580. return true;
  581. } else if (type == INTEL_OUTPUT_HDMI) {
  582. unsigned p, n2, r2;
  583. if (plls->wrpll1_refcount == 0) {
  584. DRM_DEBUG_KMS("Using WRPLL 1 on pipe %c\n",
  585. pipe_name(pipe));
  586. plls->wrpll1_refcount++;
  587. reg = WRPLL_CTL1;
  588. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL1;
  589. } else if (plls->wrpll2_refcount == 0) {
  590. DRM_DEBUG_KMS("Using WRPLL 2 on pipe %c\n",
  591. pipe_name(pipe));
  592. plls->wrpll2_refcount++;
  593. reg = WRPLL_CTL2;
  594. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL2;
  595. } else {
  596. DRM_ERROR("No WRPLLs available!\n");
  597. return false;
  598. }
  599. WARN(I915_READ(reg) & WRPLL_PLL_ENABLE,
  600. "WRPLL already enabled\n");
  601. intel_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  602. val = WRPLL_PLL_ENABLE | WRPLL_PLL_SELECT_LCPLL_2700 |
  603. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  604. WRPLL_DIVIDER_POST(p);
  605. } else if (type == INTEL_OUTPUT_ANALOG) {
  606. if (plls->spll_refcount == 0) {
  607. DRM_DEBUG_KMS("Using SPLL on pipe %c\n",
  608. pipe_name(pipe));
  609. plls->spll_refcount++;
  610. reg = SPLL_CTL;
  611. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_SPLL;
  612. } else {
  613. DRM_ERROR("SPLL already in use\n");
  614. return false;
  615. }
  616. WARN(I915_READ(reg) & SPLL_PLL_ENABLE,
  617. "SPLL already enabled\n");
  618. val = SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  619. } else {
  620. WARN(1, "Invalid DDI encoder type %d\n", type);
  621. return false;
  622. }
  623. I915_WRITE(reg, val);
  624. udelay(20);
  625. return true;
  626. }
  627. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  628. {
  629. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  630. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  631. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  632. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  633. int type = intel_encoder->type;
  634. uint32_t temp;
  635. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  636. temp = TRANS_MSA_SYNC_CLK;
  637. switch (intel_crtc->config.pipe_bpp) {
  638. case 18:
  639. temp |= TRANS_MSA_6_BPC;
  640. break;
  641. case 24:
  642. temp |= TRANS_MSA_8_BPC;
  643. break;
  644. case 30:
  645. temp |= TRANS_MSA_10_BPC;
  646. break;
  647. case 36:
  648. temp |= TRANS_MSA_12_BPC;
  649. break;
  650. default:
  651. BUG();
  652. }
  653. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  654. }
  655. }
  656. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  657. {
  658. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  659. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  660. struct drm_encoder *encoder = &intel_encoder->base;
  661. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  662. enum pipe pipe = intel_crtc->pipe;
  663. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  664. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  665. int type = intel_encoder->type;
  666. uint32_t temp;
  667. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  668. temp = TRANS_DDI_FUNC_ENABLE;
  669. temp |= TRANS_DDI_SELECT_PORT(port);
  670. switch (intel_crtc->config.pipe_bpp) {
  671. case 18:
  672. temp |= TRANS_DDI_BPC_6;
  673. break;
  674. case 24:
  675. temp |= TRANS_DDI_BPC_8;
  676. break;
  677. case 30:
  678. temp |= TRANS_DDI_BPC_10;
  679. break;
  680. case 36:
  681. temp |= TRANS_DDI_BPC_12;
  682. break;
  683. default:
  684. BUG();
  685. }
  686. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  687. temp |= TRANS_DDI_PVSYNC;
  688. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  689. temp |= TRANS_DDI_PHSYNC;
  690. if (cpu_transcoder == TRANSCODER_EDP) {
  691. switch (pipe) {
  692. case PIPE_A:
  693. /* Can only use the always-on power well for eDP when
  694. * not using the panel fitter, and when not using motion
  695. * blur mitigation (which we don't support). */
  696. if (intel_crtc->config.pch_pfit.enabled)
  697. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  698. else
  699. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  700. break;
  701. case PIPE_B:
  702. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  703. break;
  704. case PIPE_C:
  705. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  706. break;
  707. default:
  708. BUG();
  709. break;
  710. }
  711. }
  712. if (type == INTEL_OUTPUT_HDMI) {
  713. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  714. if (intel_hdmi->has_hdmi_sink)
  715. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  716. else
  717. temp |= TRANS_DDI_MODE_SELECT_DVI;
  718. } else if (type == INTEL_OUTPUT_ANALOG) {
  719. temp |= TRANS_DDI_MODE_SELECT_FDI;
  720. temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
  721. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  722. type == INTEL_OUTPUT_EDP) {
  723. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  724. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  725. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  726. } else {
  727. WARN(1, "Invalid encoder type %d for pipe %c\n",
  728. intel_encoder->type, pipe_name(pipe));
  729. }
  730. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  731. }
  732. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  733. enum transcoder cpu_transcoder)
  734. {
  735. uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  736. uint32_t val = I915_READ(reg);
  737. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK);
  738. val |= TRANS_DDI_PORT_NONE;
  739. I915_WRITE(reg, val);
  740. }
  741. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  742. {
  743. struct drm_device *dev = intel_connector->base.dev;
  744. struct drm_i915_private *dev_priv = dev->dev_private;
  745. struct intel_encoder *intel_encoder = intel_connector->encoder;
  746. int type = intel_connector->base.connector_type;
  747. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  748. enum pipe pipe = 0;
  749. enum transcoder cpu_transcoder;
  750. uint32_t tmp;
  751. if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
  752. return false;
  753. if (port == PORT_A)
  754. cpu_transcoder = TRANSCODER_EDP;
  755. else
  756. cpu_transcoder = (enum transcoder) pipe;
  757. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  758. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  759. case TRANS_DDI_MODE_SELECT_HDMI:
  760. case TRANS_DDI_MODE_SELECT_DVI:
  761. return (type == DRM_MODE_CONNECTOR_HDMIA);
  762. case TRANS_DDI_MODE_SELECT_DP_SST:
  763. if (type == DRM_MODE_CONNECTOR_eDP)
  764. return true;
  765. case TRANS_DDI_MODE_SELECT_DP_MST:
  766. return (type == DRM_MODE_CONNECTOR_DisplayPort);
  767. case TRANS_DDI_MODE_SELECT_FDI:
  768. return (type == DRM_MODE_CONNECTOR_VGA);
  769. default:
  770. return false;
  771. }
  772. }
  773. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  774. enum pipe *pipe)
  775. {
  776. struct drm_device *dev = encoder->base.dev;
  777. struct drm_i915_private *dev_priv = dev->dev_private;
  778. enum port port = intel_ddi_get_encoder_port(encoder);
  779. u32 tmp;
  780. int i;
  781. tmp = I915_READ(DDI_BUF_CTL(port));
  782. if (!(tmp & DDI_BUF_CTL_ENABLE))
  783. return false;
  784. if (port == PORT_A) {
  785. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  786. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  787. case TRANS_DDI_EDP_INPUT_A_ON:
  788. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  789. *pipe = PIPE_A;
  790. break;
  791. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  792. *pipe = PIPE_B;
  793. break;
  794. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  795. *pipe = PIPE_C;
  796. break;
  797. }
  798. return true;
  799. } else {
  800. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  801. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  802. if ((tmp & TRANS_DDI_PORT_MASK)
  803. == TRANS_DDI_SELECT_PORT(port)) {
  804. *pipe = i;
  805. return true;
  806. }
  807. }
  808. }
  809. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  810. return false;
  811. }
  812. static uint32_t intel_ddi_get_crtc_pll(struct drm_i915_private *dev_priv,
  813. enum pipe pipe)
  814. {
  815. uint32_t temp, ret;
  816. enum port port = I915_MAX_PORTS;
  817. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  818. pipe);
  819. int i;
  820. if (cpu_transcoder == TRANSCODER_EDP) {
  821. port = PORT_A;
  822. } else {
  823. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  824. temp &= TRANS_DDI_PORT_MASK;
  825. for (i = PORT_B; i <= PORT_E; i++)
  826. if (temp == TRANS_DDI_SELECT_PORT(i))
  827. port = i;
  828. }
  829. if (port == I915_MAX_PORTS) {
  830. WARN(1, "Pipe %c enabled on an unknown port\n",
  831. pipe_name(pipe));
  832. ret = PORT_CLK_SEL_NONE;
  833. } else {
  834. ret = I915_READ(PORT_CLK_SEL(port));
  835. DRM_DEBUG_KMS("Pipe %c connected to port %c using clock "
  836. "0x%08x\n", pipe_name(pipe), port_name(port),
  837. ret);
  838. }
  839. return ret;
  840. }
  841. void intel_ddi_setup_hw_pll_state(struct drm_device *dev)
  842. {
  843. struct drm_i915_private *dev_priv = dev->dev_private;
  844. enum pipe pipe;
  845. struct intel_crtc *intel_crtc;
  846. for_each_pipe(pipe) {
  847. intel_crtc =
  848. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  849. if (!intel_crtc->active)
  850. continue;
  851. intel_crtc->ddi_pll_sel = intel_ddi_get_crtc_pll(dev_priv,
  852. pipe);
  853. switch (intel_crtc->ddi_pll_sel) {
  854. case PORT_CLK_SEL_SPLL:
  855. dev_priv->ddi_plls.spll_refcount++;
  856. break;
  857. case PORT_CLK_SEL_WRPLL1:
  858. dev_priv->ddi_plls.wrpll1_refcount++;
  859. break;
  860. case PORT_CLK_SEL_WRPLL2:
  861. dev_priv->ddi_plls.wrpll2_refcount++;
  862. break;
  863. }
  864. }
  865. }
  866. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  867. {
  868. struct drm_crtc *crtc = &intel_crtc->base;
  869. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  870. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  871. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  872. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  873. if (cpu_transcoder != TRANSCODER_EDP)
  874. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  875. TRANS_CLK_SEL_PORT(port));
  876. }
  877. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  878. {
  879. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  880. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  881. if (cpu_transcoder != TRANSCODER_EDP)
  882. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  883. TRANS_CLK_SEL_DISABLED);
  884. }
  885. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  886. {
  887. struct drm_encoder *encoder = &intel_encoder->base;
  888. struct drm_crtc *crtc = encoder->crtc;
  889. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  890. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  891. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  892. int type = intel_encoder->type;
  893. if (type == INTEL_OUTPUT_EDP) {
  894. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  895. ironlake_edp_panel_vdd_on(intel_dp);
  896. ironlake_edp_panel_on(intel_dp);
  897. ironlake_edp_panel_vdd_off(intel_dp, true);
  898. }
  899. WARN_ON(intel_crtc->ddi_pll_sel == PORT_CLK_SEL_NONE);
  900. I915_WRITE(PORT_CLK_SEL(port), intel_crtc->ddi_pll_sel);
  901. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  902. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  903. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  904. intel_dp_start_link_train(intel_dp);
  905. intel_dp_complete_link_train(intel_dp);
  906. if (port != PORT_A)
  907. intel_dp_stop_link_train(intel_dp);
  908. }
  909. }
  910. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  911. {
  912. struct drm_encoder *encoder = &intel_encoder->base;
  913. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  914. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  915. int type = intel_encoder->type;
  916. uint32_t val;
  917. bool wait = false;
  918. val = I915_READ(DDI_BUF_CTL(port));
  919. if (val & DDI_BUF_CTL_ENABLE) {
  920. val &= ~DDI_BUF_CTL_ENABLE;
  921. I915_WRITE(DDI_BUF_CTL(port), val);
  922. wait = true;
  923. }
  924. val = I915_READ(DP_TP_CTL(port));
  925. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  926. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  927. I915_WRITE(DP_TP_CTL(port), val);
  928. if (wait)
  929. intel_wait_ddi_buf_idle(dev_priv, port);
  930. if (type == INTEL_OUTPUT_EDP) {
  931. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  932. ironlake_edp_panel_vdd_on(intel_dp);
  933. ironlake_edp_panel_off(intel_dp);
  934. }
  935. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  936. }
  937. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  938. {
  939. struct drm_encoder *encoder = &intel_encoder->base;
  940. struct drm_crtc *crtc = encoder->crtc;
  941. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  942. int pipe = intel_crtc->pipe;
  943. struct drm_device *dev = encoder->dev;
  944. struct drm_i915_private *dev_priv = dev->dev_private;
  945. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  946. int type = intel_encoder->type;
  947. uint32_t tmp;
  948. if (type == INTEL_OUTPUT_HDMI) {
  949. struct intel_digital_port *intel_dig_port =
  950. enc_to_dig_port(encoder);
  951. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  952. * are ignored so nothing special needs to be done besides
  953. * enabling the port.
  954. */
  955. I915_WRITE(DDI_BUF_CTL(port),
  956. intel_dig_port->saved_port_bits |
  957. DDI_BUF_CTL_ENABLE);
  958. } else if (type == INTEL_OUTPUT_EDP) {
  959. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  960. if (port == PORT_A)
  961. intel_dp_stop_link_train(intel_dp);
  962. ironlake_edp_backlight_on(intel_dp);
  963. intel_edp_psr_enable(intel_dp);
  964. }
  965. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  966. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  967. tmp |= ((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4));
  968. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  969. }
  970. }
  971. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  972. {
  973. struct drm_encoder *encoder = &intel_encoder->base;
  974. struct drm_crtc *crtc = encoder->crtc;
  975. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  976. int pipe = intel_crtc->pipe;
  977. int type = intel_encoder->type;
  978. struct drm_device *dev = encoder->dev;
  979. struct drm_i915_private *dev_priv = dev->dev_private;
  980. uint32_t tmp;
  981. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  982. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  983. tmp &= ~((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) <<
  984. (pipe * 4));
  985. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  986. }
  987. if (type == INTEL_OUTPUT_EDP) {
  988. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  989. intel_edp_psr_disable(intel_dp);
  990. ironlake_edp_backlight_off(intel_dp);
  991. }
  992. }
  993. int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
  994. {
  995. uint32_t lcpll = I915_READ(LCPLL_CTL);
  996. if (lcpll & LCPLL_CD_SOURCE_FCLK)
  997. return 800000;
  998. else if (I915_READ(HSW_FUSE_STRAP) & HSW_CDCLK_LIMIT)
  999. return 450000;
  1000. else if ((lcpll & LCPLL_CLK_FREQ_MASK) == LCPLL_CLK_FREQ_450)
  1001. return 450000;
  1002. else if (IS_ULT(dev_priv->dev))
  1003. return 337500;
  1004. else
  1005. return 540000;
  1006. }
  1007. void intel_ddi_pll_init(struct drm_device *dev)
  1008. {
  1009. struct drm_i915_private *dev_priv = dev->dev_private;
  1010. uint32_t val = I915_READ(LCPLL_CTL);
  1011. /* The LCPLL register should be turned on by the BIOS. For now let's
  1012. * just check its state and print errors in case something is wrong.
  1013. * Don't even try to turn it on.
  1014. */
  1015. DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
  1016. intel_ddi_get_cdclk_freq(dev_priv));
  1017. if (val & LCPLL_CD_SOURCE_FCLK)
  1018. DRM_ERROR("CDCLK source is not LCPLL\n");
  1019. if (val & LCPLL_PLL_DISABLE)
  1020. DRM_ERROR("LCPLL is disabled\n");
  1021. }
  1022. void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
  1023. {
  1024. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  1025. struct intel_dp *intel_dp = &intel_dig_port->dp;
  1026. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  1027. enum port port = intel_dig_port->port;
  1028. uint32_t val;
  1029. bool wait = false;
  1030. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  1031. val = I915_READ(DDI_BUF_CTL(port));
  1032. if (val & DDI_BUF_CTL_ENABLE) {
  1033. val &= ~DDI_BUF_CTL_ENABLE;
  1034. I915_WRITE(DDI_BUF_CTL(port), val);
  1035. wait = true;
  1036. }
  1037. val = I915_READ(DP_TP_CTL(port));
  1038. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1039. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1040. I915_WRITE(DP_TP_CTL(port), val);
  1041. POSTING_READ(DP_TP_CTL(port));
  1042. if (wait)
  1043. intel_wait_ddi_buf_idle(dev_priv, port);
  1044. }
  1045. val = DP_TP_CTL_ENABLE | DP_TP_CTL_MODE_SST |
  1046. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  1047. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  1048. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  1049. I915_WRITE(DP_TP_CTL(port), val);
  1050. POSTING_READ(DP_TP_CTL(port));
  1051. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  1052. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  1053. POSTING_READ(DDI_BUF_CTL(port));
  1054. udelay(600);
  1055. }
  1056. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  1057. {
  1058. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1059. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1060. uint32_t val;
  1061. intel_ddi_post_disable(intel_encoder);
  1062. val = I915_READ(_FDI_RXA_CTL);
  1063. val &= ~FDI_RX_ENABLE;
  1064. I915_WRITE(_FDI_RXA_CTL, val);
  1065. val = I915_READ(_FDI_RXA_MISC);
  1066. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1067. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1068. I915_WRITE(_FDI_RXA_MISC, val);
  1069. val = I915_READ(_FDI_RXA_CTL);
  1070. val &= ~FDI_PCDCLK;
  1071. I915_WRITE(_FDI_RXA_CTL, val);
  1072. val = I915_READ(_FDI_RXA_CTL);
  1073. val &= ~FDI_RX_PLL_ENABLE;
  1074. I915_WRITE(_FDI_RXA_CTL, val);
  1075. }
  1076. static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
  1077. {
  1078. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  1079. int type = intel_encoder->type;
  1080. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP)
  1081. intel_dp_check_link_status(intel_dp);
  1082. }
  1083. void intel_ddi_get_config(struct intel_encoder *encoder,
  1084. struct intel_crtc_config *pipe_config)
  1085. {
  1086. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1087. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1088. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1089. u32 temp, flags = 0;
  1090. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1091. if (temp & TRANS_DDI_PHSYNC)
  1092. flags |= DRM_MODE_FLAG_PHSYNC;
  1093. else
  1094. flags |= DRM_MODE_FLAG_NHSYNC;
  1095. if (temp & TRANS_DDI_PVSYNC)
  1096. flags |= DRM_MODE_FLAG_PVSYNC;
  1097. else
  1098. flags |= DRM_MODE_FLAG_NVSYNC;
  1099. pipe_config->adjusted_mode.flags |= flags;
  1100. switch (temp & TRANS_DDI_BPC_MASK) {
  1101. case TRANS_DDI_BPC_6:
  1102. pipe_config->pipe_bpp = 18;
  1103. break;
  1104. case TRANS_DDI_BPC_8:
  1105. pipe_config->pipe_bpp = 24;
  1106. break;
  1107. case TRANS_DDI_BPC_10:
  1108. pipe_config->pipe_bpp = 30;
  1109. break;
  1110. case TRANS_DDI_BPC_12:
  1111. pipe_config->pipe_bpp = 36;
  1112. break;
  1113. default:
  1114. break;
  1115. }
  1116. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  1117. case TRANS_DDI_MODE_SELECT_HDMI:
  1118. case TRANS_DDI_MODE_SELECT_DVI:
  1119. case TRANS_DDI_MODE_SELECT_FDI:
  1120. break;
  1121. case TRANS_DDI_MODE_SELECT_DP_SST:
  1122. case TRANS_DDI_MODE_SELECT_DP_MST:
  1123. pipe_config->has_dp_encoder = true;
  1124. intel_dp_get_m_n(intel_crtc, pipe_config);
  1125. break;
  1126. default:
  1127. break;
  1128. }
  1129. }
  1130. static void intel_ddi_destroy(struct drm_encoder *encoder)
  1131. {
  1132. /* HDMI has nothing special to destroy, so we can go with this. */
  1133. intel_dp_encoder_destroy(encoder);
  1134. }
  1135. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  1136. struct intel_crtc_config *pipe_config)
  1137. {
  1138. int type = encoder->type;
  1139. int port = intel_ddi_get_encoder_port(encoder);
  1140. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  1141. if (port == PORT_A)
  1142. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  1143. if (type == INTEL_OUTPUT_HDMI)
  1144. return intel_hdmi_compute_config(encoder, pipe_config);
  1145. else
  1146. return intel_dp_compute_config(encoder, pipe_config);
  1147. }
  1148. static const struct drm_encoder_funcs intel_ddi_funcs = {
  1149. .destroy = intel_ddi_destroy,
  1150. };
  1151. static struct intel_connector *
  1152. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  1153. {
  1154. struct intel_connector *connector;
  1155. enum port port = intel_dig_port->port;
  1156. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1157. if (!connector)
  1158. return NULL;
  1159. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  1160. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  1161. kfree(connector);
  1162. return NULL;
  1163. }
  1164. return connector;
  1165. }
  1166. static struct intel_connector *
  1167. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  1168. {
  1169. struct intel_connector *connector;
  1170. enum port port = intel_dig_port->port;
  1171. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1172. if (!connector)
  1173. return NULL;
  1174. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  1175. intel_hdmi_init_connector(intel_dig_port, connector);
  1176. return connector;
  1177. }
  1178. void intel_ddi_init(struct drm_device *dev, enum port port)
  1179. {
  1180. struct drm_i915_private *dev_priv = dev->dev_private;
  1181. struct intel_digital_port *intel_dig_port;
  1182. struct intel_encoder *intel_encoder;
  1183. struct drm_encoder *encoder;
  1184. struct intel_connector *hdmi_connector = NULL;
  1185. struct intel_connector *dp_connector = NULL;
  1186. bool init_hdmi, init_dp;
  1187. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  1188. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  1189. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  1190. if (!init_dp && !init_hdmi) {
  1191. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible\n",
  1192. port_name(port));
  1193. init_hdmi = true;
  1194. init_dp = true;
  1195. }
  1196. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1197. if (!intel_dig_port)
  1198. return;
  1199. intel_encoder = &intel_dig_port->base;
  1200. encoder = &intel_encoder->base;
  1201. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  1202. DRM_MODE_ENCODER_TMDS);
  1203. intel_encoder->compute_config = intel_ddi_compute_config;
  1204. intel_encoder->mode_set = intel_ddi_mode_set;
  1205. intel_encoder->enable = intel_enable_ddi;
  1206. intel_encoder->pre_enable = intel_ddi_pre_enable;
  1207. intel_encoder->disable = intel_disable_ddi;
  1208. intel_encoder->post_disable = intel_ddi_post_disable;
  1209. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  1210. intel_encoder->get_config = intel_ddi_get_config;
  1211. intel_dig_port->port = port;
  1212. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  1213. (DDI_BUF_PORT_REVERSAL |
  1214. DDI_A_4_LANES);
  1215. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  1216. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1217. intel_encoder->cloneable = false;
  1218. intel_encoder->hot_plug = intel_ddi_hot_plug;
  1219. if (init_dp)
  1220. dp_connector = intel_ddi_init_dp_connector(intel_dig_port);
  1221. /* In theory we don't need the encoder->type check, but leave it just in
  1222. * case we have some really bad VBTs... */
  1223. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi)
  1224. hdmi_connector = intel_ddi_init_hdmi_connector(intel_dig_port);
  1225. if (!dp_connector && !hdmi_connector) {
  1226. drm_encoder_cleanup(encoder);
  1227. kfree(intel_dig_port);
  1228. }
  1229. }