i915_sysfs.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Ben Widawsky <ben@bwidawsk.net>
  25. *
  26. */
  27. #include <linux/device.h>
  28. #include <linux/module.h>
  29. #include <linux/stat.h>
  30. #include <linux/sysfs.h>
  31. #include "intel_drv.h"
  32. #include "i915_drv.h"
  33. #ifdef CONFIG_PM
  34. static u32 calc_residency(struct drm_device *dev, const u32 reg)
  35. {
  36. struct drm_i915_private *dev_priv = dev->dev_private;
  37. u64 raw_time; /* 32b value may overflow during fixed point math */
  38. u64 units = 128ULL, div = 100000ULL, bias = 100ULL;
  39. if (!intel_enable_rc6(dev))
  40. return 0;
  41. /* On VLV, residency time is in CZ units rather than 1.28us */
  42. if (IS_VALLEYVIEW(dev)) {
  43. u32 clkctl2;
  44. clkctl2 = I915_READ(VLV_CLK_CTL2) >>
  45. CLK_CTL2_CZCOUNT_30NS_SHIFT;
  46. if (!clkctl2) {
  47. WARN(!clkctl2, "bogus CZ count value");
  48. return 0;
  49. }
  50. units = DIV_ROUND_UP_ULL(30ULL * bias, (u64)clkctl2);
  51. if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
  52. units <<= 8;
  53. div = 1000000ULL * bias;
  54. }
  55. raw_time = I915_READ(reg) * units;
  56. return DIV_ROUND_UP_ULL(raw_time, div);
  57. }
  58. static ssize_t
  59. show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
  60. {
  61. struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
  62. return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
  63. }
  64. static ssize_t
  65. show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  66. {
  67. struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
  68. u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
  69. return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
  70. }
  71. static ssize_t
  72. show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  73. {
  74. struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
  75. u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
  76. if (IS_VALLEYVIEW(dminor->dev))
  77. rc6p_residency = 0;
  78. return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
  79. }
  80. static ssize_t
  81. show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  82. {
  83. struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
  84. u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
  85. if (IS_VALLEYVIEW(dminor->dev))
  86. rc6pp_residency = 0;
  87. return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
  88. }
  89. static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
  90. static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
  91. static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
  92. static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
  93. static struct attribute *rc6_attrs[] = {
  94. &dev_attr_rc6_enable.attr,
  95. &dev_attr_rc6_residency_ms.attr,
  96. &dev_attr_rc6p_residency_ms.attr,
  97. &dev_attr_rc6pp_residency_ms.attr,
  98. NULL
  99. };
  100. static struct attribute_group rc6_attr_group = {
  101. .name = power_group_name,
  102. .attrs = rc6_attrs
  103. };
  104. #endif
  105. static int l3_access_valid(struct drm_device *dev, loff_t offset)
  106. {
  107. if (!HAS_L3_DPF(dev))
  108. return -EPERM;
  109. if (offset % 4 != 0)
  110. return -EINVAL;
  111. if (offset >= GEN7_L3LOG_SIZE)
  112. return -ENXIO;
  113. return 0;
  114. }
  115. static ssize_t
  116. i915_l3_read(struct file *filp, struct kobject *kobj,
  117. struct bin_attribute *attr, char *buf,
  118. loff_t offset, size_t count)
  119. {
  120. struct device *dev = container_of(kobj, struct device, kobj);
  121. struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev);
  122. struct drm_device *drm_dev = dminor->dev;
  123. struct drm_i915_private *dev_priv = drm_dev->dev_private;
  124. int slice = (int)(uintptr_t)attr->private;
  125. int ret;
  126. count = round_down(count, 4);
  127. ret = l3_access_valid(drm_dev, offset);
  128. if (ret)
  129. return ret;
  130. count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count);
  131. ret = i915_mutex_lock_interruptible(drm_dev);
  132. if (ret)
  133. return ret;
  134. if (dev_priv->l3_parity.remap_info[slice])
  135. memcpy(buf,
  136. dev_priv->l3_parity.remap_info[slice] + (offset/4),
  137. count);
  138. else
  139. memset(buf, 0, count);
  140. mutex_unlock(&drm_dev->struct_mutex);
  141. return count;
  142. }
  143. static ssize_t
  144. i915_l3_write(struct file *filp, struct kobject *kobj,
  145. struct bin_attribute *attr, char *buf,
  146. loff_t offset, size_t count)
  147. {
  148. struct device *dev = container_of(kobj, struct device, kobj);
  149. struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev);
  150. struct drm_device *drm_dev = dminor->dev;
  151. struct drm_i915_private *dev_priv = drm_dev->dev_private;
  152. struct i915_hw_context *ctx;
  153. u32 *temp = NULL; /* Just here to make handling failures easy */
  154. int slice = (int)(uintptr_t)attr->private;
  155. int ret;
  156. ret = l3_access_valid(drm_dev, offset);
  157. if (ret)
  158. return ret;
  159. if (dev_priv->hw_contexts_disabled)
  160. return -ENXIO;
  161. ret = i915_mutex_lock_interruptible(drm_dev);
  162. if (ret)
  163. return ret;
  164. if (!dev_priv->l3_parity.remap_info[slice]) {
  165. temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
  166. if (!temp) {
  167. mutex_unlock(&drm_dev->struct_mutex);
  168. return -ENOMEM;
  169. }
  170. }
  171. ret = i915_gpu_idle(drm_dev);
  172. if (ret) {
  173. kfree(temp);
  174. mutex_unlock(&drm_dev->struct_mutex);
  175. return ret;
  176. }
  177. /* TODO: Ideally we really want a GPU reset here to make sure errors
  178. * aren't propagated. Since I cannot find a stable way to reset the GPU
  179. * at this point it is left as a TODO.
  180. */
  181. if (temp)
  182. dev_priv->l3_parity.remap_info[slice] = temp;
  183. memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count);
  184. /* NB: We defer the remapping until we switch to the context */
  185. list_for_each_entry(ctx, &dev_priv->context_list, link)
  186. ctx->remap_slice |= (1<<slice);
  187. mutex_unlock(&drm_dev->struct_mutex);
  188. return count;
  189. }
  190. static struct bin_attribute dpf_attrs = {
  191. .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
  192. .size = GEN7_L3LOG_SIZE,
  193. .read = i915_l3_read,
  194. .write = i915_l3_write,
  195. .mmap = NULL,
  196. .private = (void *)0
  197. };
  198. static struct bin_attribute dpf_attrs_1 = {
  199. .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
  200. .size = GEN7_L3LOG_SIZE,
  201. .read = i915_l3_read,
  202. .write = i915_l3_write,
  203. .mmap = NULL,
  204. .private = (void *)1
  205. };
  206. static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
  207. struct device_attribute *attr, char *buf)
  208. {
  209. struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
  210. struct drm_device *dev = minor->dev;
  211. struct drm_i915_private *dev_priv = dev->dev_private;
  212. int ret;
  213. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  214. mutex_lock(&dev_priv->rps.hw_lock);
  215. if (IS_VALLEYVIEW(dev_priv->dev)) {
  216. u32 freq;
  217. freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  218. ret = vlv_gpu_freq(dev_priv->mem_freq, (freq >> 8) & 0xff);
  219. } else {
  220. ret = dev_priv->rps.cur_delay * GT_FREQUENCY_MULTIPLIER;
  221. }
  222. mutex_unlock(&dev_priv->rps.hw_lock);
  223. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  224. }
  225. static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
  226. struct device_attribute *attr, char *buf)
  227. {
  228. struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
  229. struct drm_device *dev = minor->dev;
  230. struct drm_i915_private *dev_priv = dev->dev_private;
  231. return snprintf(buf, PAGE_SIZE, "%d\n",
  232. vlv_gpu_freq(dev_priv->mem_freq,
  233. dev_priv->rps.rpe_delay));
  234. }
  235. static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  236. {
  237. struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
  238. struct drm_device *dev = minor->dev;
  239. struct drm_i915_private *dev_priv = dev->dev_private;
  240. int ret;
  241. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  242. mutex_lock(&dev_priv->rps.hw_lock);
  243. if (IS_VALLEYVIEW(dev_priv->dev))
  244. ret = vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.max_delay);
  245. else
  246. ret = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
  247. mutex_unlock(&dev_priv->rps.hw_lock);
  248. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  249. }
  250. static ssize_t gt_max_freq_mhz_store(struct device *kdev,
  251. struct device_attribute *attr,
  252. const char *buf, size_t count)
  253. {
  254. struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
  255. struct drm_device *dev = minor->dev;
  256. struct drm_i915_private *dev_priv = dev->dev_private;
  257. u32 val, rp_state_cap, hw_max, hw_min, non_oc_max;
  258. ssize_t ret;
  259. ret = kstrtou32(buf, 0, &val);
  260. if (ret)
  261. return ret;
  262. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  263. mutex_lock(&dev_priv->rps.hw_lock);
  264. if (IS_VALLEYVIEW(dev_priv->dev)) {
  265. val = vlv_freq_opcode(dev_priv->mem_freq, val);
  266. hw_max = valleyview_rps_max_freq(dev_priv);
  267. hw_min = valleyview_rps_min_freq(dev_priv);
  268. non_oc_max = hw_max;
  269. } else {
  270. val /= GT_FREQUENCY_MULTIPLIER;
  271. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  272. hw_max = dev_priv->rps.hw_max;
  273. non_oc_max = (rp_state_cap & 0xff);
  274. hw_min = ((rp_state_cap & 0xff0000) >> 16);
  275. }
  276. if (val < hw_min || val > hw_max ||
  277. val < dev_priv->rps.min_delay) {
  278. mutex_unlock(&dev_priv->rps.hw_lock);
  279. return -EINVAL;
  280. }
  281. if (val > non_oc_max)
  282. DRM_DEBUG("User requested overclocking to %d\n",
  283. val * GT_FREQUENCY_MULTIPLIER);
  284. if (dev_priv->rps.cur_delay > val) {
  285. if (IS_VALLEYVIEW(dev_priv->dev))
  286. valleyview_set_rps(dev_priv->dev, val);
  287. else
  288. gen6_set_rps(dev_priv->dev, val);
  289. }
  290. dev_priv->rps.max_delay = val;
  291. mutex_unlock(&dev_priv->rps.hw_lock);
  292. return count;
  293. }
  294. static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  295. {
  296. struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
  297. struct drm_device *dev = minor->dev;
  298. struct drm_i915_private *dev_priv = dev->dev_private;
  299. int ret;
  300. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  301. mutex_lock(&dev_priv->rps.hw_lock);
  302. if (IS_VALLEYVIEW(dev_priv->dev))
  303. ret = vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.min_delay);
  304. else
  305. ret = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
  306. mutex_unlock(&dev_priv->rps.hw_lock);
  307. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  308. }
  309. static ssize_t gt_min_freq_mhz_store(struct device *kdev,
  310. struct device_attribute *attr,
  311. const char *buf, size_t count)
  312. {
  313. struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
  314. struct drm_device *dev = minor->dev;
  315. struct drm_i915_private *dev_priv = dev->dev_private;
  316. u32 val, rp_state_cap, hw_max, hw_min;
  317. ssize_t ret;
  318. ret = kstrtou32(buf, 0, &val);
  319. if (ret)
  320. return ret;
  321. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  322. mutex_lock(&dev_priv->rps.hw_lock);
  323. if (IS_VALLEYVIEW(dev)) {
  324. val = vlv_freq_opcode(dev_priv->mem_freq, val);
  325. hw_max = valleyview_rps_max_freq(dev_priv);
  326. hw_min = valleyview_rps_min_freq(dev_priv);
  327. } else {
  328. val /= GT_FREQUENCY_MULTIPLIER;
  329. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  330. hw_max = dev_priv->rps.hw_max;
  331. hw_min = ((rp_state_cap & 0xff0000) >> 16);
  332. }
  333. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_delay) {
  334. mutex_unlock(&dev_priv->rps.hw_lock);
  335. return -EINVAL;
  336. }
  337. if (dev_priv->rps.cur_delay < val) {
  338. if (IS_VALLEYVIEW(dev))
  339. valleyview_set_rps(dev, val);
  340. else
  341. gen6_set_rps(dev_priv->dev, val);
  342. }
  343. dev_priv->rps.min_delay = val;
  344. mutex_unlock(&dev_priv->rps.hw_lock);
  345. return count;
  346. }
  347. static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
  348. static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
  349. static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
  350. static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
  351. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
  352. static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  353. static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  354. static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  355. /* For now we have a static number of RP states */
  356. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  357. {
  358. struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
  359. struct drm_device *dev = minor->dev;
  360. struct drm_i915_private *dev_priv = dev->dev_private;
  361. u32 val, rp_state_cap;
  362. ssize_t ret;
  363. ret = mutex_lock_interruptible(&dev->struct_mutex);
  364. if (ret)
  365. return ret;
  366. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  367. mutex_unlock(&dev->struct_mutex);
  368. if (attr == &dev_attr_gt_RP0_freq_mhz) {
  369. val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER;
  370. } else if (attr == &dev_attr_gt_RP1_freq_mhz) {
  371. val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER;
  372. } else if (attr == &dev_attr_gt_RPn_freq_mhz) {
  373. val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER;
  374. } else {
  375. BUG();
  376. }
  377. return snprintf(buf, PAGE_SIZE, "%d\n", val);
  378. }
  379. static const struct attribute *gen6_attrs[] = {
  380. &dev_attr_gt_cur_freq_mhz.attr,
  381. &dev_attr_gt_max_freq_mhz.attr,
  382. &dev_attr_gt_min_freq_mhz.attr,
  383. &dev_attr_gt_RP0_freq_mhz.attr,
  384. &dev_attr_gt_RP1_freq_mhz.attr,
  385. &dev_attr_gt_RPn_freq_mhz.attr,
  386. NULL,
  387. };
  388. static const struct attribute *vlv_attrs[] = {
  389. &dev_attr_gt_cur_freq_mhz.attr,
  390. &dev_attr_gt_max_freq_mhz.attr,
  391. &dev_attr_gt_min_freq_mhz.attr,
  392. &dev_attr_vlv_rpe_freq_mhz.attr,
  393. NULL,
  394. };
  395. static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
  396. struct bin_attribute *attr, char *buf,
  397. loff_t off, size_t count)
  398. {
  399. struct device *kdev = container_of(kobj, struct device, kobj);
  400. struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
  401. struct drm_device *dev = minor->dev;
  402. struct i915_error_state_file_priv error_priv;
  403. struct drm_i915_error_state_buf error_str;
  404. ssize_t ret_count = 0;
  405. int ret;
  406. memset(&error_priv, 0, sizeof(error_priv));
  407. ret = i915_error_state_buf_init(&error_str, count, off);
  408. if (ret)
  409. return ret;
  410. error_priv.dev = dev;
  411. i915_error_state_get(dev, &error_priv);
  412. ret = i915_error_state_to_str(&error_str, &error_priv);
  413. if (ret)
  414. goto out;
  415. ret_count = count < error_str.bytes ? count : error_str.bytes;
  416. memcpy(buf, error_str.buf, ret_count);
  417. out:
  418. i915_error_state_put(&error_priv);
  419. i915_error_state_buf_release(&error_str);
  420. return ret ?: ret_count;
  421. }
  422. static ssize_t error_state_write(struct file *file, struct kobject *kobj,
  423. struct bin_attribute *attr, char *buf,
  424. loff_t off, size_t count)
  425. {
  426. struct device *kdev = container_of(kobj, struct device, kobj);
  427. struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
  428. struct drm_device *dev = minor->dev;
  429. int ret;
  430. DRM_DEBUG_DRIVER("Resetting error state\n");
  431. ret = mutex_lock_interruptible(&dev->struct_mutex);
  432. if (ret)
  433. return ret;
  434. i915_destroy_error_state(dev);
  435. mutex_unlock(&dev->struct_mutex);
  436. return count;
  437. }
  438. static struct bin_attribute error_state_attr = {
  439. .attr.name = "error",
  440. .attr.mode = S_IRUSR | S_IWUSR,
  441. .size = 0,
  442. .read = error_state_read,
  443. .write = error_state_write,
  444. };
  445. void i915_setup_sysfs(struct drm_device *dev)
  446. {
  447. int ret;
  448. #ifdef CONFIG_PM
  449. if (INTEL_INFO(dev)->gen >= 6) {
  450. ret = sysfs_merge_group(&dev->primary->kdev.kobj,
  451. &rc6_attr_group);
  452. if (ret)
  453. DRM_ERROR("RC6 residency sysfs setup failed\n");
  454. }
  455. #endif
  456. if (HAS_L3_DPF(dev)) {
  457. ret = device_create_bin_file(&dev->primary->kdev, &dpf_attrs);
  458. if (ret)
  459. DRM_ERROR("l3 parity sysfs setup failed\n");
  460. if (NUM_L3_SLICES(dev) > 1) {
  461. ret = device_create_bin_file(&dev->primary->kdev,
  462. &dpf_attrs_1);
  463. if (ret)
  464. DRM_ERROR("l3 parity slice 1 setup failed\n");
  465. }
  466. }
  467. ret = 0;
  468. if (IS_VALLEYVIEW(dev))
  469. ret = sysfs_create_files(&dev->primary->kdev.kobj, vlv_attrs);
  470. else if (INTEL_INFO(dev)->gen >= 6)
  471. ret = sysfs_create_files(&dev->primary->kdev.kobj, gen6_attrs);
  472. if (ret)
  473. DRM_ERROR("RPS sysfs setup failed\n");
  474. ret = sysfs_create_bin_file(&dev->primary->kdev.kobj,
  475. &error_state_attr);
  476. if (ret)
  477. DRM_ERROR("error_state sysfs setup failed\n");
  478. }
  479. void i915_teardown_sysfs(struct drm_device *dev)
  480. {
  481. sysfs_remove_bin_file(&dev->primary->kdev.kobj, &error_state_attr);
  482. if (IS_VALLEYVIEW(dev))
  483. sysfs_remove_files(&dev->primary->kdev.kobj, vlv_attrs);
  484. else
  485. sysfs_remove_files(&dev->primary->kdev.kobj, gen6_attrs);
  486. device_remove_bin_file(&dev->primary->kdev, &dpf_attrs_1);
  487. device_remove_bin_file(&dev->primary->kdev, &dpf_attrs);
  488. #ifdef CONFIG_PM
  489. sysfs_unmerge_group(&dev->primary->kdev.kobj, &rc6_attr_group);
  490. #endif
  491. }