mmu.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <asm/page.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/module.h>
  25. #include "vmx.h"
  26. #include "kvm.h"
  27. #undef MMU_DEBUG
  28. #undef AUDIT
  29. #ifdef AUDIT
  30. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  31. #else
  32. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  33. #endif
  34. #ifdef MMU_DEBUG
  35. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  36. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  37. #else
  38. #define pgprintk(x...) do { } while (0)
  39. #define rmap_printk(x...) do { } while (0)
  40. #endif
  41. #if defined(MMU_DEBUG) || defined(AUDIT)
  42. static int dbg = 1;
  43. #endif
  44. #define ASSERT(x) \
  45. if (!(x)) { \
  46. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  47. __FILE__, __LINE__, #x); \
  48. }
  49. #define PT64_PT_BITS 9
  50. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  51. #define PT32_PT_BITS 10
  52. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  53. #define PT_WRITABLE_SHIFT 1
  54. #define PT_PRESENT_MASK (1ULL << 0)
  55. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  56. #define PT_USER_MASK (1ULL << 2)
  57. #define PT_PWT_MASK (1ULL << 3)
  58. #define PT_PCD_MASK (1ULL << 4)
  59. #define PT_ACCESSED_MASK (1ULL << 5)
  60. #define PT_DIRTY_MASK (1ULL << 6)
  61. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  62. #define PT_PAT_MASK (1ULL << 7)
  63. #define PT_GLOBAL_MASK (1ULL << 8)
  64. #define PT64_NX_MASK (1ULL << 63)
  65. #define PT_PAT_SHIFT 7
  66. #define PT_DIR_PAT_SHIFT 12
  67. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  68. #define PT32_DIR_PSE36_SIZE 4
  69. #define PT32_DIR_PSE36_SHIFT 13
  70. #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  71. #define PT32_PTE_COPY_MASK \
  72. (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
  73. #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
  74. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  75. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  76. #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  77. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  78. #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
  79. #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
  80. #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
  81. #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
  82. #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
  83. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  84. #define PT64_LEVEL_BITS 9
  85. #define PT64_LEVEL_SHIFT(level) \
  86. ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
  87. #define PT64_LEVEL_MASK(level) \
  88. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  89. #define PT64_INDEX(address, level)\
  90. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  91. #define PT32_LEVEL_BITS 10
  92. #define PT32_LEVEL_SHIFT(level) \
  93. ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
  94. #define PT32_LEVEL_MASK(level) \
  95. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  96. #define PT32_INDEX(address, level)\
  97. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  98. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  99. #define PT64_DIR_BASE_ADDR_MASK \
  100. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  101. #define PT32_BASE_ADDR_MASK PAGE_MASK
  102. #define PT32_DIR_BASE_ADDR_MASK \
  103. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  104. #define PFERR_PRESENT_MASK (1U << 0)
  105. #define PFERR_WRITE_MASK (1U << 1)
  106. #define PFERR_USER_MASK (1U << 2)
  107. #define PFERR_FETCH_MASK (1U << 4)
  108. #define PT64_ROOT_LEVEL 4
  109. #define PT32_ROOT_LEVEL 2
  110. #define PT32E_ROOT_LEVEL 3
  111. #define PT_DIRECTORY_LEVEL 2
  112. #define PT_PAGE_TABLE_LEVEL 1
  113. #define RMAP_EXT 4
  114. struct kvm_rmap_desc {
  115. u64 *shadow_ptes[RMAP_EXT];
  116. struct kvm_rmap_desc *more;
  117. };
  118. static int is_write_protection(struct kvm_vcpu *vcpu)
  119. {
  120. return vcpu->cr0 & CR0_WP_MASK;
  121. }
  122. static int is_cpuid_PSE36(void)
  123. {
  124. return 1;
  125. }
  126. static int is_nx(struct kvm_vcpu *vcpu)
  127. {
  128. return vcpu->shadow_efer & EFER_NX;
  129. }
  130. static int is_present_pte(unsigned long pte)
  131. {
  132. return pte & PT_PRESENT_MASK;
  133. }
  134. static int is_writeble_pte(unsigned long pte)
  135. {
  136. return pte & PT_WRITABLE_MASK;
  137. }
  138. static int is_io_pte(unsigned long pte)
  139. {
  140. return pte & PT_SHADOW_IO_MARK;
  141. }
  142. static int is_rmap_pte(u64 pte)
  143. {
  144. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  145. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  146. }
  147. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  148. size_t objsize, int min)
  149. {
  150. void *obj;
  151. if (cache->nobjs >= min)
  152. return 0;
  153. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  154. obj = kzalloc(objsize, GFP_NOWAIT);
  155. if (!obj)
  156. return -ENOMEM;
  157. cache->objects[cache->nobjs++] = obj;
  158. }
  159. return 0;
  160. }
  161. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  162. {
  163. while (mc->nobjs)
  164. kfree(mc->objects[--mc->nobjs]);
  165. }
  166. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  167. {
  168. int r;
  169. r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
  170. sizeof(struct kvm_pte_chain), 4);
  171. if (r)
  172. goto out;
  173. r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
  174. sizeof(struct kvm_rmap_desc), 1);
  175. out:
  176. return r;
  177. }
  178. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  179. {
  180. mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
  181. mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
  182. }
  183. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  184. size_t size)
  185. {
  186. void *p;
  187. BUG_ON(!mc->nobjs);
  188. p = mc->objects[--mc->nobjs];
  189. memset(p, 0, size);
  190. return p;
  191. }
  192. static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
  193. {
  194. if (mc->nobjs < KVM_NR_MEM_OBJS)
  195. mc->objects[mc->nobjs++] = obj;
  196. else
  197. kfree(obj);
  198. }
  199. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  200. {
  201. return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
  202. sizeof(struct kvm_pte_chain));
  203. }
  204. static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
  205. struct kvm_pte_chain *pc)
  206. {
  207. mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
  208. }
  209. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  210. {
  211. return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
  212. sizeof(struct kvm_rmap_desc));
  213. }
  214. static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
  215. struct kvm_rmap_desc *rd)
  216. {
  217. mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
  218. }
  219. /*
  220. * Reverse mapping data structures:
  221. *
  222. * If page->private bit zero is zero, then page->private points to the
  223. * shadow page table entry that points to page_address(page).
  224. *
  225. * If page->private bit zero is one, (then page->private & ~1) points
  226. * to a struct kvm_rmap_desc containing more mappings.
  227. */
  228. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
  229. {
  230. struct page *page;
  231. struct kvm_rmap_desc *desc;
  232. int i;
  233. if (!is_rmap_pte(*spte))
  234. return;
  235. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  236. if (!page_private(page)) {
  237. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  238. set_page_private(page,(unsigned long)spte);
  239. } else if (!(page_private(page) & 1)) {
  240. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  241. desc = mmu_alloc_rmap_desc(vcpu);
  242. desc->shadow_ptes[0] = (u64 *)page_private(page);
  243. desc->shadow_ptes[1] = spte;
  244. set_page_private(page,(unsigned long)desc | 1);
  245. } else {
  246. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  247. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  248. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  249. desc = desc->more;
  250. if (desc->shadow_ptes[RMAP_EXT-1]) {
  251. desc->more = mmu_alloc_rmap_desc(vcpu);
  252. desc = desc->more;
  253. }
  254. for (i = 0; desc->shadow_ptes[i]; ++i)
  255. ;
  256. desc->shadow_ptes[i] = spte;
  257. }
  258. }
  259. static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
  260. struct page *page,
  261. struct kvm_rmap_desc *desc,
  262. int i,
  263. struct kvm_rmap_desc *prev_desc)
  264. {
  265. int j;
  266. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  267. ;
  268. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  269. desc->shadow_ptes[j] = NULL;
  270. if (j != 0)
  271. return;
  272. if (!prev_desc && !desc->more)
  273. set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
  274. else
  275. if (prev_desc)
  276. prev_desc->more = desc->more;
  277. else
  278. set_page_private(page,(unsigned long)desc->more | 1);
  279. mmu_free_rmap_desc(vcpu, desc);
  280. }
  281. static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
  282. {
  283. struct page *page;
  284. struct kvm_rmap_desc *desc;
  285. struct kvm_rmap_desc *prev_desc;
  286. int i;
  287. if (!is_rmap_pte(*spte))
  288. return;
  289. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  290. if (!page_private(page)) {
  291. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  292. BUG();
  293. } else if (!(page_private(page) & 1)) {
  294. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  295. if ((u64 *)page_private(page) != spte) {
  296. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  297. spte, *spte);
  298. BUG();
  299. }
  300. set_page_private(page,0);
  301. } else {
  302. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  303. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  304. prev_desc = NULL;
  305. while (desc) {
  306. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  307. if (desc->shadow_ptes[i] == spte) {
  308. rmap_desc_remove_entry(vcpu, page,
  309. desc, i,
  310. prev_desc);
  311. return;
  312. }
  313. prev_desc = desc;
  314. desc = desc->more;
  315. }
  316. BUG();
  317. }
  318. }
  319. static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  320. {
  321. struct kvm *kvm = vcpu->kvm;
  322. struct page *page;
  323. struct kvm_rmap_desc *desc;
  324. u64 *spte;
  325. page = gfn_to_page(kvm, gfn);
  326. BUG_ON(!page);
  327. while (page_private(page)) {
  328. if (!(page_private(page) & 1))
  329. spte = (u64 *)page_private(page);
  330. else {
  331. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  332. spte = desc->shadow_ptes[0];
  333. }
  334. BUG_ON(!spte);
  335. BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
  336. != page_to_pfn(page));
  337. BUG_ON(!(*spte & PT_PRESENT_MASK));
  338. BUG_ON(!(*spte & PT_WRITABLE_MASK));
  339. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  340. rmap_remove(vcpu, spte);
  341. kvm_arch_ops->tlb_flush(vcpu);
  342. *spte &= ~(u64)PT_WRITABLE_MASK;
  343. }
  344. }
  345. static int is_empty_shadow_page(hpa_t page_hpa)
  346. {
  347. u64 *pos;
  348. u64 *end;
  349. for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
  350. pos != end; pos++)
  351. if (*pos != 0) {
  352. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  353. pos, *pos);
  354. return 0;
  355. }
  356. return 1;
  357. }
  358. static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
  359. {
  360. struct kvm_mmu_page *page_head = page_header(page_hpa);
  361. ASSERT(is_empty_shadow_page(page_hpa));
  362. page_head->page_hpa = page_hpa;
  363. list_move(&page_head->link, &vcpu->free_pages);
  364. ++vcpu->kvm->n_free_mmu_pages;
  365. }
  366. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  367. {
  368. return gfn;
  369. }
  370. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  371. u64 *parent_pte)
  372. {
  373. struct kvm_mmu_page *page;
  374. if (list_empty(&vcpu->free_pages))
  375. return NULL;
  376. page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
  377. list_move(&page->link, &vcpu->kvm->active_mmu_pages);
  378. ASSERT(is_empty_shadow_page(page->page_hpa));
  379. page->slot_bitmap = 0;
  380. page->multimapped = 0;
  381. page->parent_pte = parent_pte;
  382. --vcpu->kvm->n_free_mmu_pages;
  383. return page;
  384. }
  385. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  386. struct kvm_mmu_page *page, u64 *parent_pte)
  387. {
  388. struct kvm_pte_chain *pte_chain;
  389. struct hlist_node *node;
  390. int i;
  391. if (!parent_pte)
  392. return;
  393. if (!page->multimapped) {
  394. u64 *old = page->parent_pte;
  395. if (!old) {
  396. page->parent_pte = parent_pte;
  397. return;
  398. }
  399. page->multimapped = 1;
  400. pte_chain = mmu_alloc_pte_chain(vcpu);
  401. INIT_HLIST_HEAD(&page->parent_ptes);
  402. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  403. pte_chain->parent_ptes[0] = old;
  404. }
  405. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  406. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  407. continue;
  408. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  409. if (!pte_chain->parent_ptes[i]) {
  410. pte_chain->parent_ptes[i] = parent_pte;
  411. return;
  412. }
  413. }
  414. pte_chain = mmu_alloc_pte_chain(vcpu);
  415. BUG_ON(!pte_chain);
  416. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  417. pte_chain->parent_ptes[0] = parent_pte;
  418. }
  419. static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
  420. struct kvm_mmu_page *page,
  421. u64 *parent_pte)
  422. {
  423. struct kvm_pte_chain *pte_chain;
  424. struct hlist_node *node;
  425. int i;
  426. if (!page->multimapped) {
  427. BUG_ON(page->parent_pte != parent_pte);
  428. page->parent_pte = NULL;
  429. return;
  430. }
  431. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  432. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  433. if (!pte_chain->parent_ptes[i])
  434. break;
  435. if (pte_chain->parent_ptes[i] != parent_pte)
  436. continue;
  437. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  438. && pte_chain->parent_ptes[i + 1]) {
  439. pte_chain->parent_ptes[i]
  440. = pte_chain->parent_ptes[i + 1];
  441. ++i;
  442. }
  443. pte_chain->parent_ptes[i] = NULL;
  444. if (i == 0) {
  445. hlist_del(&pte_chain->link);
  446. mmu_free_pte_chain(vcpu, pte_chain);
  447. if (hlist_empty(&page->parent_ptes)) {
  448. page->multimapped = 0;
  449. page->parent_pte = NULL;
  450. }
  451. }
  452. return;
  453. }
  454. BUG();
  455. }
  456. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
  457. gfn_t gfn)
  458. {
  459. unsigned index;
  460. struct hlist_head *bucket;
  461. struct kvm_mmu_page *page;
  462. struct hlist_node *node;
  463. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  464. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  465. bucket = &vcpu->kvm->mmu_page_hash[index];
  466. hlist_for_each_entry(page, node, bucket, hash_link)
  467. if (page->gfn == gfn && !page->role.metaphysical) {
  468. pgprintk("%s: found role %x\n",
  469. __FUNCTION__, page->role.word);
  470. return page;
  471. }
  472. return NULL;
  473. }
  474. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  475. gfn_t gfn,
  476. gva_t gaddr,
  477. unsigned level,
  478. int metaphysical,
  479. unsigned hugepage_access,
  480. u64 *parent_pte)
  481. {
  482. union kvm_mmu_page_role role;
  483. unsigned index;
  484. unsigned quadrant;
  485. struct hlist_head *bucket;
  486. struct kvm_mmu_page *page;
  487. struct hlist_node *node;
  488. role.word = 0;
  489. role.glevels = vcpu->mmu.root_level;
  490. role.level = level;
  491. role.metaphysical = metaphysical;
  492. role.hugepage_access = hugepage_access;
  493. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  494. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  495. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  496. role.quadrant = quadrant;
  497. }
  498. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  499. gfn, role.word);
  500. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  501. bucket = &vcpu->kvm->mmu_page_hash[index];
  502. hlist_for_each_entry(page, node, bucket, hash_link)
  503. if (page->gfn == gfn && page->role.word == role.word) {
  504. mmu_page_add_parent_pte(vcpu, page, parent_pte);
  505. pgprintk("%s: found\n", __FUNCTION__);
  506. return page;
  507. }
  508. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  509. if (!page)
  510. return page;
  511. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  512. page->gfn = gfn;
  513. page->role = role;
  514. hlist_add_head(&page->hash_link, bucket);
  515. if (!metaphysical)
  516. rmap_write_protect(vcpu, gfn);
  517. return page;
  518. }
  519. static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
  520. struct kvm_mmu_page *page)
  521. {
  522. unsigned i;
  523. u64 *pt;
  524. u64 ent;
  525. pt = __va(page->page_hpa);
  526. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  527. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  528. if (pt[i] & PT_PRESENT_MASK)
  529. rmap_remove(vcpu, &pt[i]);
  530. pt[i] = 0;
  531. }
  532. kvm_arch_ops->tlb_flush(vcpu);
  533. return;
  534. }
  535. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  536. ent = pt[i];
  537. pt[i] = 0;
  538. if (!(ent & PT_PRESENT_MASK))
  539. continue;
  540. ent &= PT64_BASE_ADDR_MASK;
  541. mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
  542. }
  543. }
  544. static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
  545. struct kvm_mmu_page *page,
  546. u64 *parent_pte)
  547. {
  548. mmu_page_remove_parent_pte(vcpu, page, parent_pte);
  549. }
  550. static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
  551. struct kvm_mmu_page *page)
  552. {
  553. u64 *parent_pte;
  554. while (page->multimapped || page->parent_pte) {
  555. if (!page->multimapped)
  556. parent_pte = page->parent_pte;
  557. else {
  558. struct kvm_pte_chain *chain;
  559. chain = container_of(page->parent_ptes.first,
  560. struct kvm_pte_chain, link);
  561. parent_pte = chain->parent_ptes[0];
  562. }
  563. BUG_ON(!parent_pte);
  564. kvm_mmu_put_page(vcpu, page, parent_pte);
  565. *parent_pte = 0;
  566. }
  567. kvm_mmu_page_unlink_children(vcpu, page);
  568. if (!page->root_count) {
  569. hlist_del(&page->hash_link);
  570. kvm_mmu_free_page(vcpu, page->page_hpa);
  571. } else
  572. list_move(&page->link, &vcpu->kvm->active_mmu_pages);
  573. }
  574. static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  575. {
  576. unsigned index;
  577. struct hlist_head *bucket;
  578. struct kvm_mmu_page *page;
  579. struct hlist_node *node, *n;
  580. int r;
  581. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  582. r = 0;
  583. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  584. bucket = &vcpu->kvm->mmu_page_hash[index];
  585. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  586. if (page->gfn == gfn && !page->role.metaphysical) {
  587. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  588. page->role.word);
  589. kvm_mmu_zap_page(vcpu, page);
  590. r = 1;
  591. }
  592. return r;
  593. }
  594. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  595. {
  596. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  597. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  598. __set_bit(slot, &page_head->slot_bitmap);
  599. }
  600. hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  601. {
  602. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  603. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  604. }
  605. hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  606. {
  607. struct page *page;
  608. ASSERT((gpa & HPA_ERR_MASK) == 0);
  609. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  610. if (!page)
  611. return gpa | HPA_ERR_MASK;
  612. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  613. | (gpa & (PAGE_SIZE-1));
  614. }
  615. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  616. {
  617. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  618. if (gpa == UNMAPPED_GVA)
  619. return UNMAPPED_GVA;
  620. return gpa_to_hpa(vcpu, gpa);
  621. }
  622. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  623. {
  624. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  625. if (gpa == UNMAPPED_GVA)
  626. return NULL;
  627. return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
  628. }
  629. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  630. {
  631. }
  632. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  633. {
  634. int level = PT32E_ROOT_LEVEL;
  635. hpa_t table_addr = vcpu->mmu.root_hpa;
  636. for (; ; level--) {
  637. u32 index = PT64_INDEX(v, level);
  638. u64 *table;
  639. u64 pte;
  640. ASSERT(VALID_PAGE(table_addr));
  641. table = __va(table_addr);
  642. if (level == 1) {
  643. pte = table[index];
  644. if (is_present_pte(pte) && is_writeble_pte(pte))
  645. return 0;
  646. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  647. page_header_update_slot(vcpu->kvm, table, v);
  648. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  649. PT_USER_MASK;
  650. rmap_add(vcpu, &table[index]);
  651. return 0;
  652. }
  653. if (table[index] == 0) {
  654. struct kvm_mmu_page *new_table;
  655. gfn_t pseudo_gfn;
  656. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  657. >> PAGE_SHIFT;
  658. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  659. v, level - 1,
  660. 1, 0, &table[index]);
  661. if (!new_table) {
  662. pgprintk("nonpaging_map: ENOMEM\n");
  663. return -ENOMEM;
  664. }
  665. table[index] = new_table->page_hpa | PT_PRESENT_MASK
  666. | PT_WRITABLE_MASK | PT_USER_MASK;
  667. }
  668. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  669. }
  670. }
  671. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  672. {
  673. int i;
  674. struct kvm_mmu_page *page;
  675. #ifdef CONFIG_X86_64
  676. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  677. hpa_t root = vcpu->mmu.root_hpa;
  678. ASSERT(VALID_PAGE(root));
  679. page = page_header(root);
  680. --page->root_count;
  681. vcpu->mmu.root_hpa = INVALID_PAGE;
  682. return;
  683. }
  684. #endif
  685. for (i = 0; i < 4; ++i) {
  686. hpa_t root = vcpu->mmu.pae_root[i];
  687. ASSERT(VALID_PAGE(root));
  688. root &= PT64_BASE_ADDR_MASK;
  689. page = page_header(root);
  690. --page->root_count;
  691. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  692. }
  693. vcpu->mmu.root_hpa = INVALID_PAGE;
  694. }
  695. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  696. {
  697. int i;
  698. gfn_t root_gfn;
  699. struct kvm_mmu_page *page;
  700. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  701. #ifdef CONFIG_X86_64
  702. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  703. hpa_t root = vcpu->mmu.root_hpa;
  704. ASSERT(!VALID_PAGE(root));
  705. page = kvm_mmu_get_page(vcpu, root_gfn, 0,
  706. PT64_ROOT_LEVEL, 0, 0, NULL);
  707. root = page->page_hpa;
  708. ++page->root_count;
  709. vcpu->mmu.root_hpa = root;
  710. return;
  711. }
  712. #endif
  713. for (i = 0; i < 4; ++i) {
  714. hpa_t root = vcpu->mmu.pae_root[i];
  715. ASSERT(!VALID_PAGE(root));
  716. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
  717. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  718. else if (vcpu->mmu.root_level == 0)
  719. root_gfn = 0;
  720. page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  721. PT32_ROOT_LEVEL, !is_paging(vcpu),
  722. 0, NULL);
  723. root = page->page_hpa;
  724. ++page->root_count;
  725. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  726. }
  727. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  728. }
  729. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  730. {
  731. return vaddr;
  732. }
  733. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  734. u32 error_code)
  735. {
  736. gpa_t addr = gva;
  737. hpa_t paddr;
  738. int r;
  739. r = mmu_topup_memory_caches(vcpu);
  740. if (r)
  741. return r;
  742. ASSERT(vcpu);
  743. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  744. paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
  745. if (is_error_hpa(paddr))
  746. return 1;
  747. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  748. }
  749. static void nonpaging_free(struct kvm_vcpu *vcpu)
  750. {
  751. mmu_free_roots(vcpu);
  752. }
  753. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  754. {
  755. struct kvm_mmu *context = &vcpu->mmu;
  756. context->new_cr3 = nonpaging_new_cr3;
  757. context->page_fault = nonpaging_page_fault;
  758. context->gva_to_gpa = nonpaging_gva_to_gpa;
  759. context->free = nonpaging_free;
  760. context->root_level = 0;
  761. context->shadow_root_level = PT32E_ROOT_LEVEL;
  762. mmu_alloc_roots(vcpu);
  763. ASSERT(VALID_PAGE(context->root_hpa));
  764. kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
  765. return 0;
  766. }
  767. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  768. {
  769. ++kvm_stat.tlb_flush;
  770. kvm_arch_ops->tlb_flush(vcpu);
  771. }
  772. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  773. {
  774. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  775. mmu_free_roots(vcpu);
  776. if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
  777. kvm_mmu_free_some_pages(vcpu);
  778. mmu_alloc_roots(vcpu);
  779. kvm_mmu_flush_tlb(vcpu);
  780. kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  781. }
  782. static inline void set_pte_common(struct kvm_vcpu *vcpu,
  783. u64 *shadow_pte,
  784. gpa_t gaddr,
  785. int dirty,
  786. u64 access_bits,
  787. gfn_t gfn)
  788. {
  789. hpa_t paddr;
  790. *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
  791. if (!dirty)
  792. access_bits &= ~PT_WRITABLE_MASK;
  793. paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
  794. *shadow_pte |= access_bits;
  795. if (is_error_hpa(paddr)) {
  796. *shadow_pte |= gaddr;
  797. *shadow_pte |= PT_SHADOW_IO_MARK;
  798. *shadow_pte &= ~PT_PRESENT_MASK;
  799. return;
  800. }
  801. *shadow_pte |= paddr;
  802. if (access_bits & PT_WRITABLE_MASK) {
  803. struct kvm_mmu_page *shadow;
  804. shadow = kvm_mmu_lookup_page(vcpu, gfn);
  805. if (shadow) {
  806. pgprintk("%s: found shadow page for %lx, marking ro\n",
  807. __FUNCTION__, gfn);
  808. access_bits &= ~PT_WRITABLE_MASK;
  809. if (is_writeble_pte(*shadow_pte)) {
  810. *shadow_pte &= ~PT_WRITABLE_MASK;
  811. kvm_arch_ops->tlb_flush(vcpu);
  812. }
  813. }
  814. }
  815. if (access_bits & PT_WRITABLE_MASK)
  816. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  817. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  818. rmap_add(vcpu, shadow_pte);
  819. }
  820. static void inject_page_fault(struct kvm_vcpu *vcpu,
  821. u64 addr,
  822. u32 err_code)
  823. {
  824. kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
  825. }
  826. static inline int fix_read_pf(u64 *shadow_ent)
  827. {
  828. if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
  829. !(*shadow_ent & PT_USER_MASK)) {
  830. /*
  831. * If supervisor write protect is disabled, we shadow kernel
  832. * pages as user pages so we can trap the write access.
  833. */
  834. *shadow_ent |= PT_USER_MASK;
  835. *shadow_ent &= ~PT_WRITABLE_MASK;
  836. return 1;
  837. }
  838. return 0;
  839. }
  840. static void paging_free(struct kvm_vcpu *vcpu)
  841. {
  842. nonpaging_free(vcpu);
  843. }
  844. #define PTTYPE 64
  845. #include "paging_tmpl.h"
  846. #undef PTTYPE
  847. #define PTTYPE 32
  848. #include "paging_tmpl.h"
  849. #undef PTTYPE
  850. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  851. {
  852. struct kvm_mmu *context = &vcpu->mmu;
  853. ASSERT(is_pae(vcpu));
  854. context->new_cr3 = paging_new_cr3;
  855. context->page_fault = paging64_page_fault;
  856. context->gva_to_gpa = paging64_gva_to_gpa;
  857. context->free = paging_free;
  858. context->root_level = level;
  859. context->shadow_root_level = level;
  860. mmu_alloc_roots(vcpu);
  861. ASSERT(VALID_PAGE(context->root_hpa));
  862. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  863. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  864. return 0;
  865. }
  866. static int paging64_init_context(struct kvm_vcpu *vcpu)
  867. {
  868. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  869. }
  870. static int paging32_init_context(struct kvm_vcpu *vcpu)
  871. {
  872. struct kvm_mmu *context = &vcpu->mmu;
  873. context->new_cr3 = paging_new_cr3;
  874. context->page_fault = paging32_page_fault;
  875. context->gva_to_gpa = paging32_gva_to_gpa;
  876. context->free = paging_free;
  877. context->root_level = PT32_ROOT_LEVEL;
  878. context->shadow_root_level = PT32E_ROOT_LEVEL;
  879. mmu_alloc_roots(vcpu);
  880. ASSERT(VALID_PAGE(context->root_hpa));
  881. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  882. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  883. return 0;
  884. }
  885. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  886. {
  887. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  888. }
  889. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  890. {
  891. ASSERT(vcpu);
  892. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  893. if (!is_paging(vcpu))
  894. return nonpaging_init_context(vcpu);
  895. else if (is_long_mode(vcpu))
  896. return paging64_init_context(vcpu);
  897. else if (is_pae(vcpu))
  898. return paging32E_init_context(vcpu);
  899. else
  900. return paging32_init_context(vcpu);
  901. }
  902. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  903. {
  904. ASSERT(vcpu);
  905. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  906. vcpu->mmu.free(vcpu);
  907. vcpu->mmu.root_hpa = INVALID_PAGE;
  908. }
  909. }
  910. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  911. {
  912. int r;
  913. destroy_kvm_mmu(vcpu);
  914. r = init_kvm_mmu(vcpu);
  915. if (r < 0)
  916. goto out;
  917. r = mmu_topup_memory_caches(vcpu);
  918. out:
  919. return r;
  920. }
  921. static void mmu_pre_write_zap_pte(struct kvm_vcpu *vcpu,
  922. struct kvm_mmu_page *page,
  923. u64 *spte)
  924. {
  925. u64 pte;
  926. struct kvm_mmu_page *child;
  927. pte = *spte;
  928. if (is_present_pte(pte)) {
  929. if (page->role.level == PT_PAGE_TABLE_LEVEL)
  930. rmap_remove(vcpu, spte);
  931. else {
  932. child = page_header(pte & PT64_BASE_ADDR_MASK);
  933. mmu_page_remove_parent_pte(vcpu, child, spte);
  934. }
  935. }
  936. *spte = 0;
  937. }
  938. void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
  939. {
  940. gfn_t gfn = gpa >> PAGE_SHIFT;
  941. struct kvm_mmu_page *page;
  942. struct hlist_node *node, *n;
  943. struct hlist_head *bucket;
  944. unsigned index;
  945. u64 *spte;
  946. unsigned offset = offset_in_page(gpa);
  947. unsigned pte_size;
  948. unsigned page_offset;
  949. unsigned misaligned;
  950. int level;
  951. int flooded = 0;
  952. int npte;
  953. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  954. if (gfn == vcpu->last_pt_write_gfn) {
  955. ++vcpu->last_pt_write_count;
  956. if (vcpu->last_pt_write_count >= 3)
  957. flooded = 1;
  958. } else {
  959. vcpu->last_pt_write_gfn = gfn;
  960. vcpu->last_pt_write_count = 1;
  961. }
  962. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  963. bucket = &vcpu->kvm->mmu_page_hash[index];
  964. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  965. if (page->gfn != gfn || page->role.metaphysical)
  966. continue;
  967. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  968. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  969. if (misaligned || flooded) {
  970. /*
  971. * Misaligned accesses are too much trouble to fix
  972. * up; also, they usually indicate a page is not used
  973. * as a page table.
  974. *
  975. * If we're seeing too many writes to a page,
  976. * it may no longer be a page table, or we may be
  977. * forking, in which case it is better to unmap the
  978. * page.
  979. */
  980. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  981. gpa, bytes, page->role.word);
  982. kvm_mmu_zap_page(vcpu, page);
  983. continue;
  984. }
  985. page_offset = offset;
  986. level = page->role.level;
  987. npte = 1;
  988. if (page->role.glevels == PT32_ROOT_LEVEL) {
  989. page_offset <<= 1; /* 32->64 */
  990. /*
  991. * A 32-bit pde maps 4MB while the shadow pdes map
  992. * only 2MB. So we need to double the offset again
  993. * and zap two pdes instead of one.
  994. */
  995. if (level == PT32_ROOT_LEVEL) {
  996. page_offset &= ~7; /* kill rounding error */
  997. page_offset <<= 1;
  998. npte = 2;
  999. }
  1000. page_offset &= ~PAGE_MASK;
  1001. }
  1002. spte = __va(page->page_hpa);
  1003. spte += page_offset / sizeof(*spte);
  1004. while (npte--) {
  1005. mmu_pre_write_zap_pte(vcpu, page, spte);
  1006. ++spte;
  1007. }
  1008. }
  1009. }
  1010. void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
  1011. {
  1012. }
  1013. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1014. {
  1015. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  1016. return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
  1017. }
  1018. void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1019. {
  1020. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  1021. struct kvm_mmu_page *page;
  1022. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  1023. struct kvm_mmu_page, link);
  1024. kvm_mmu_zap_page(vcpu, page);
  1025. }
  1026. }
  1027. EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
  1028. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1029. {
  1030. struct kvm_mmu_page *page;
  1031. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1032. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1033. struct kvm_mmu_page, link);
  1034. kvm_mmu_zap_page(vcpu, page);
  1035. }
  1036. while (!list_empty(&vcpu->free_pages)) {
  1037. page = list_entry(vcpu->free_pages.next,
  1038. struct kvm_mmu_page, link);
  1039. list_del(&page->link);
  1040. __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
  1041. page->page_hpa = INVALID_PAGE;
  1042. }
  1043. free_page((unsigned long)vcpu->mmu.pae_root);
  1044. }
  1045. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1046. {
  1047. struct page *page;
  1048. int i;
  1049. ASSERT(vcpu);
  1050. for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
  1051. struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
  1052. INIT_LIST_HEAD(&page_header->link);
  1053. if ((page = alloc_page(GFP_KERNEL)) == NULL)
  1054. goto error_1;
  1055. set_page_private(page, (unsigned long)page_header);
  1056. page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
  1057. memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
  1058. list_add(&page_header->link, &vcpu->free_pages);
  1059. ++vcpu->kvm->n_free_mmu_pages;
  1060. }
  1061. /*
  1062. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1063. * Therefore we need to allocate shadow page tables in the first
  1064. * 4GB of memory, which happens to fit the DMA32 zone.
  1065. */
  1066. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1067. if (!page)
  1068. goto error_1;
  1069. vcpu->mmu.pae_root = page_address(page);
  1070. for (i = 0; i < 4; ++i)
  1071. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  1072. return 0;
  1073. error_1:
  1074. free_mmu_pages(vcpu);
  1075. return -ENOMEM;
  1076. }
  1077. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1078. {
  1079. ASSERT(vcpu);
  1080. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1081. ASSERT(list_empty(&vcpu->free_pages));
  1082. return alloc_mmu_pages(vcpu);
  1083. }
  1084. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1085. {
  1086. ASSERT(vcpu);
  1087. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1088. ASSERT(!list_empty(&vcpu->free_pages));
  1089. return init_kvm_mmu(vcpu);
  1090. }
  1091. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1092. {
  1093. ASSERT(vcpu);
  1094. destroy_kvm_mmu(vcpu);
  1095. free_mmu_pages(vcpu);
  1096. mmu_free_memory_caches(vcpu);
  1097. }
  1098. void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  1099. {
  1100. struct kvm *kvm = vcpu->kvm;
  1101. struct kvm_mmu_page *page;
  1102. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  1103. int i;
  1104. u64 *pt;
  1105. if (!test_bit(slot, &page->slot_bitmap))
  1106. continue;
  1107. pt = __va(page->page_hpa);
  1108. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1109. /* avoid RMW */
  1110. if (pt[i] & PT_WRITABLE_MASK) {
  1111. rmap_remove(vcpu, &pt[i]);
  1112. pt[i] &= ~PT_WRITABLE_MASK;
  1113. }
  1114. }
  1115. }
  1116. void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
  1117. {
  1118. destroy_kvm_mmu(vcpu);
  1119. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1120. struct kvm_mmu_page *page;
  1121. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1122. struct kvm_mmu_page, link);
  1123. kvm_mmu_zap_page(vcpu, page);
  1124. }
  1125. mmu_free_memory_caches(vcpu);
  1126. kvm_arch_ops->tlb_flush(vcpu);
  1127. init_kvm_mmu(vcpu);
  1128. }
  1129. #ifdef AUDIT
  1130. static const char *audit_msg;
  1131. static gva_t canonicalize(gva_t gva)
  1132. {
  1133. #ifdef CONFIG_X86_64
  1134. gva = (long long)(gva << 16) >> 16;
  1135. #endif
  1136. return gva;
  1137. }
  1138. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1139. gva_t va, int level)
  1140. {
  1141. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1142. int i;
  1143. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1144. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1145. u64 ent = pt[i];
  1146. if (!ent & PT_PRESENT_MASK)
  1147. continue;
  1148. va = canonicalize(va);
  1149. if (level > 1)
  1150. audit_mappings_page(vcpu, ent, va, level - 1);
  1151. else {
  1152. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
  1153. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  1154. if ((ent & PT_PRESENT_MASK)
  1155. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1156. printk(KERN_ERR "audit error: (%s) levels %d"
  1157. " gva %lx gpa %llx hpa %llx ent %llx\n",
  1158. audit_msg, vcpu->mmu.root_level,
  1159. va, gpa, hpa, ent);
  1160. }
  1161. }
  1162. }
  1163. static void audit_mappings(struct kvm_vcpu *vcpu)
  1164. {
  1165. unsigned i;
  1166. if (vcpu->mmu.root_level == 4)
  1167. audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
  1168. else
  1169. for (i = 0; i < 4; ++i)
  1170. if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
  1171. audit_mappings_page(vcpu,
  1172. vcpu->mmu.pae_root[i],
  1173. i << 30,
  1174. 2);
  1175. }
  1176. static int count_rmaps(struct kvm_vcpu *vcpu)
  1177. {
  1178. int nmaps = 0;
  1179. int i, j, k;
  1180. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1181. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1182. struct kvm_rmap_desc *d;
  1183. for (j = 0; j < m->npages; ++j) {
  1184. struct page *page = m->phys_mem[j];
  1185. if (!page->private)
  1186. continue;
  1187. if (!(page->private & 1)) {
  1188. ++nmaps;
  1189. continue;
  1190. }
  1191. d = (struct kvm_rmap_desc *)(page->private & ~1ul);
  1192. while (d) {
  1193. for (k = 0; k < RMAP_EXT; ++k)
  1194. if (d->shadow_ptes[k])
  1195. ++nmaps;
  1196. else
  1197. break;
  1198. d = d->more;
  1199. }
  1200. }
  1201. }
  1202. return nmaps;
  1203. }
  1204. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1205. {
  1206. int nmaps = 0;
  1207. struct kvm_mmu_page *page;
  1208. int i;
  1209. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1210. u64 *pt = __va(page->page_hpa);
  1211. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1212. continue;
  1213. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1214. u64 ent = pt[i];
  1215. if (!(ent & PT_PRESENT_MASK))
  1216. continue;
  1217. if (!(ent & PT_WRITABLE_MASK))
  1218. continue;
  1219. ++nmaps;
  1220. }
  1221. }
  1222. return nmaps;
  1223. }
  1224. static void audit_rmap(struct kvm_vcpu *vcpu)
  1225. {
  1226. int n_rmap = count_rmaps(vcpu);
  1227. int n_actual = count_writable_mappings(vcpu);
  1228. if (n_rmap != n_actual)
  1229. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1230. __FUNCTION__, audit_msg, n_rmap, n_actual);
  1231. }
  1232. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1233. {
  1234. struct kvm_mmu_page *page;
  1235. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1236. hfn_t hfn;
  1237. struct page *pg;
  1238. if (page->role.metaphysical)
  1239. continue;
  1240. hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
  1241. >> PAGE_SHIFT;
  1242. pg = pfn_to_page(hfn);
  1243. if (pg->private)
  1244. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1245. " mappings: gfn %lx role %x\n",
  1246. __FUNCTION__, audit_msg, page->gfn,
  1247. page->role.word);
  1248. }
  1249. }
  1250. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1251. {
  1252. int olddbg = dbg;
  1253. dbg = 0;
  1254. audit_msg = msg;
  1255. audit_rmap(vcpu);
  1256. audit_write_protection(vcpu);
  1257. audit_mappings(vcpu);
  1258. dbg = olddbg;
  1259. }
  1260. #endif