sched_rt.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #ifdef CONFIG_RT_GROUP_SCHED
  6. #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
  7. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  8. {
  9. #ifdef CONFIG_SCHED_DEBUG
  10. WARN_ON_ONCE(!rt_entity_is_task(rt_se));
  11. #endif
  12. return container_of(rt_se, struct task_struct, rt);
  13. }
  14. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  15. {
  16. return rt_rq->rq;
  17. }
  18. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  19. {
  20. return rt_se->rt_rq;
  21. }
  22. #else /* CONFIG_RT_GROUP_SCHED */
  23. #define rt_entity_is_task(rt_se) (1)
  24. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  25. {
  26. return container_of(rt_se, struct task_struct, rt);
  27. }
  28. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  29. {
  30. return container_of(rt_rq, struct rq, rt);
  31. }
  32. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  33. {
  34. struct task_struct *p = rt_task_of(rt_se);
  35. struct rq *rq = task_rq(p);
  36. return &rq->rt;
  37. }
  38. #endif /* CONFIG_RT_GROUP_SCHED */
  39. #ifdef CONFIG_SMP
  40. static inline int rt_overloaded(struct rq *rq)
  41. {
  42. return atomic_read(&rq->rd->rto_count);
  43. }
  44. static inline void rt_set_overload(struct rq *rq)
  45. {
  46. if (!rq->online)
  47. return;
  48. cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
  49. /*
  50. * Make sure the mask is visible before we set
  51. * the overload count. That is checked to determine
  52. * if we should look at the mask. It would be a shame
  53. * if we looked at the mask, but the mask was not
  54. * updated yet.
  55. */
  56. wmb();
  57. atomic_inc(&rq->rd->rto_count);
  58. }
  59. static inline void rt_clear_overload(struct rq *rq)
  60. {
  61. if (!rq->online)
  62. return;
  63. /* the order here really doesn't matter */
  64. atomic_dec(&rq->rd->rto_count);
  65. cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
  66. }
  67. static void update_rt_migration(struct rt_rq *rt_rq)
  68. {
  69. if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
  70. if (!rt_rq->overloaded) {
  71. rt_set_overload(rq_of_rt_rq(rt_rq));
  72. rt_rq->overloaded = 1;
  73. }
  74. } else if (rt_rq->overloaded) {
  75. rt_clear_overload(rq_of_rt_rq(rt_rq));
  76. rt_rq->overloaded = 0;
  77. }
  78. }
  79. static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  80. {
  81. if (!rt_entity_is_task(rt_se))
  82. return;
  83. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  84. rt_rq->rt_nr_total++;
  85. if (rt_se->nr_cpus_allowed > 1)
  86. rt_rq->rt_nr_migratory++;
  87. update_rt_migration(rt_rq);
  88. }
  89. static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  90. {
  91. if (!rt_entity_is_task(rt_se))
  92. return;
  93. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  94. rt_rq->rt_nr_total--;
  95. if (rt_se->nr_cpus_allowed > 1)
  96. rt_rq->rt_nr_migratory--;
  97. update_rt_migration(rt_rq);
  98. }
  99. static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  100. {
  101. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  102. plist_node_init(&p->pushable_tasks, p->prio);
  103. plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
  104. }
  105. static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  106. {
  107. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  108. }
  109. static inline int has_pushable_tasks(struct rq *rq)
  110. {
  111. return !plist_head_empty(&rq->rt.pushable_tasks);
  112. }
  113. #else
  114. static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  115. {
  116. }
  117. static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  118. {
  119. }
  120. static inline
  121. void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  122. {
  123. }
  124. static inline
  125. void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  126. {
  127. }
  128. #endif /* CONFIG_SMP */
  129. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  130. {
  131. return !list_empty(&rt_se->run_list);
  132. }
  133. #ifdef CONFIG_RT_GROUP_SCHED
  134. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  135. {
  136. if (!rt_rq->tg)
  137. return RUNTIME_INF;
  138. return rt_rq->rt_runtime;
  139. }
  140. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  141. {
  142. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  143. }
  144. #define for_each_leaf_rt_rq(rt_rq, rq) \
  145. list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  146. #define for_each_sched_rt_entity(rt_se) \
  147. for (; rt_se; rt_se = rt_se->parent)
  148. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  149. {
  150. return rt_se->my_q;
  151. }
  152. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
  153. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  154. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  155. {
  156. int this_cpu = smp_processor_id();
  157. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  158. struct sched_rt_entity *rt_se;
  159. rt_se = rt_rq->tg->rt_se[this_cpu];
  160. if (rt_rq->rt_nr_running) {
  161. if (rt_se && !on_rt_rq(rt_se))
  162. enqueue_rt_entity(rt_se, false);
  163. if (rt_rq->highest_prio.curr < curr->prio)
  164. resched_task(curr);
  165. }
  166. }
  167. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  168. {
  169. int this_cpu = smp_processor_id();
  170. struct sched_rt_entity *rt_se;
  171. rt_se = rt_rq->tg->rt_se[this_cpu];
  172. if (rt_se && on_rt_rq(rt_se))
  173. dequeue_rt_entity(rt_se);
  174. }
  175. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  176. {
  177. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  178. }
  179. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  180. {
  181. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  182. struct task_struct *p;
  183. if (rt_rq)
  184. return !!rt_rq->rt_nr_boosted;
  185. p = rt_task_of(rt_se);
  186. return p->prio != p->normal_prio;
  187. }
  188. #ifdef CONFIG_SMP
  189. static inline const struct cpumask *sched_rt_period_mask(void)
  190. {
  191. return cpu_rq(smp_processor_id())->rd->span;
  192. }
  193. #else
  194. static inline const struct cpumask *sched_rt_period_mask(void)
  195. {
  196. return cpu_online_mask;
  197. }
  198. #endif
  199. static inline
  200. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  201. {
  202. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  203. }
  204. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  205. {
  206. return &rt_rq->tg->rt_bandwidth;
  207. }
  208. #else /* !CONFIG_RT_GROUP_SCHED */
  209. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  210. {
  211. return rt_rq->rt_runtime;
  212. }
  213. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  214. {
  215. return ktime_to_ns(def_rt_bandwidth.rt_period);
  216. }
  217. #define for_each_leaf_rt_rq(rt_rq, rq) \
  218. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  219. #define for_each_sched_rt_entity(rt_se) \
  220. for (; rt_se; rt_se = NULL)
  221. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  222. {
  223. return NULL;
  224. }
  225. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  226. {
  227. if (rt_rq->rt_nr_running)
  228. resched_task(rq_of_rt_rq(rt_rq)->curr);
  229. }
  230. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  231. {
  232. }
  233. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  234. {
  235. return rt_rq->rt_throttled;
  236. }
  237. static inline const struct cpumask *sched_rt_period_mask(void)
  238. {
  239. return cpu_online_mask;
  240. }
  241. static inline
  242. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  243. {
  244. return &cpu_rq(cpu)->rt;
  245. }
  246. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  247. {
  248. return &def_rt_bandwidth;
  249. }
  250. #endif /* CONFIG_RT_GROUP_SCHED */
  251. #ifdef CONFIG_SMP
  252. /*
  253. * We ran out of runtime, see if we can borrow some from our neighbours.
  254. */
  255. static int do_balance_runtime(struct rt_rq *rt_rq)
  256. {
  257. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  258. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  259. int i, weight, more = 0;
  260. u64 rt_period;
  261. weight = cpumask_weight(rd->span);
  262. raw_spin_lock(&rt_b->rt_runtime_lock);
  263. rt_period = ktime_to_ns(rt_b->rt_period);
  264. for_each_cpu(i, rd->span) {
  265. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  266. s64 diff;
  267. if (iter == rt_rq)
  268. continue;
  269. raw_spin_lock(&iter->rt_runtime_lock);
  270. /*
  271. * Either all rqs have inf runtime and there's nothing to steal
  272. * or __disable_runtime() below sets a specific rq to inf to
  273. * indicate its been disabled and disalow stealing.
  274. */
  275. if (iter->rt_runtime == RUNTIME_INF)
  276. goto next;
  277. /*
  278. * From runqueues with spare time, take 1/n part of their
  279. * spare time, but no more than our period.
  280. */
  281. diff = iter->rt_runtime - iter->rt_time;
  282. if (diff > 0) {
  283. diff = div_u64((u64)diff, weight);
  284. if (rt_rq->rt_runtime + diff > rt_period)
  285. diff = rt_period - rt_rq->rt_runtime;
  286. iter->rt_runtime -= diff;
  287. rt_rq->rt_runtime += diff;
  288. more = 1;
  289. if (rt_rq->rt_runtime == rt_period) {
  290. raw_spin_unlock(&iter->rt_runtime_lock);
  291. break;
  292. }
  293. }
  294. next:
  295. raw_spin_unlock(&iter->rt_runtime_lock);
  296. }
  297. raw_spin_unlock(&rt_b->rt_runtime_lock);
  298. return more;
  299. }
  300. /*
  301. * Ensure this RQ takes back all the runtime it lend to its neighbours.
  302. */
  303. static void __disable_runtime(struct rq *rq)
  304. {
  305. struct root_domain *rd = rq->rd;
  306. struct rt_rq *rt_rq;
  307. if (unlikely(!scheduler_running))
  308. return;
  309. for_each_leaf_rt_rq(rt_rq, rq) {
  310. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  311. s64 want;
  312. int i;
  313. raw_spin_lock(&rt_b->rt_runtime_lock);
  314. raw_spin_lock(&rt_rq->rt_runtime_lock);
  315. /*
  316. * Either we're all inf and nobody needs to borrow, or we're
  317. * already disabled and thus have nothing to do, or we have
  318. * exactly the right amount of runtime to take out.
  319. */
  320. if (rt_rq->rt_runtime == RUNTIME_INF ||
  321. rt_rq->rt_runtime == rt_b->rt_runtime)
  322. goto balanced;
  323. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  324. /*
  325. * Calculate the difference between what we started out with
  326. * and what we current have, that's the amount of runtime
  327. * we lend and now have to reclaim.
  328. */
  329. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  330. /*
  331. * Greedy reclaim, take back as much as we can.
  332. */
  333. for_each_cpu(i, rd->span) {
  334. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  335. s64 diff;
  336. /*
  337. * Can't reclaim from ourselves or disabled runqueues.
  338. */
  339. if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
  340. continue;
  341. raw_spin_lock(&iter->rt_runtime_lock);
  342. if (want > 0) {
  343. diff = min_t(s64, iter->rt_runtime, want);
  344. iter->rt_runtime -= diff;
  345. want -= diff;
  346. } else {
  347. iter->rt_runtime -= want;
  348. want -= want;
  349. }
  350. raw_spin_unlock(&iter->rt_runtime_lock);
  351. if (!want)
  352. break;
  353. }
  354. raw_spin_lock(&rt_rq->rt_runtime_lock);
  355. /*
  356. * We cannot be left wanting - that would mean some runtime
  357. * leaked out of the system.
  358. */
  359. BUG_ON(want);
  360. balanced:
  361. /*
  362. * Disable all the borrow logic by pretending we have inf
  363. * runtime - in which case borrowing doesn't make sense.
  364. */
  365. rt_rq->rt_runtime = RUNTIME_INF;
  366. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  367. raw_spin_unlock(&rt_b->rt_runtime_lock);
  368. }
  369. }
  370. static void disable_runtime(struct rq *rq)
  371. {
  372. unsigned long flags;
  373. raw_spin_lock_irqsave(&rq->lock, flags);
  374. __disable_runtime(rq);
  375. raw_spin_unlock_irqrestore(&rq->lock, flags);
  376. }
  377. static void __enable_runtime(struct rq *rq)
  378. {
  379. struct rt_rq *rt_rq;
  380. if (unlikely(!scheduler_running))
  381. return;
  382. /*
  383. * Reset each runqueue's bandwidth settings
  384. */
  385. for_each_leaf_rt_rq(rt_rq, rq) {
  386. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  387. raw_spin_lock(&rt_b->rt_runtime_lock);
  388. raw_spin_lock(&rt_rq->rt_runtime_lock);
  389. rt_rq->rt_runtime = rt_b->rt_runtime;
  390. rt_rq->rt_time = 0;
  391. rt_rq->rt_throttled = 0;
  392. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  393. raw_spin_unlock(&rt_b->rt_runtime_lock);
  394. }
  395. }
  396. static void enable_runtime(struct rq *rq)
  397. {
  398. unsigned long flags;
  399. raw_spin_lock_irqsave(&rq->lock, flags);
  400. __enable_runtime(rq);
  401. raw_spin_unlock_irqrestore(&rq->lock, flags);
  402. }
  403. static int balance_runtime(struct rt_rq *rt_rq)
  404. {
  405. int more = 0;
  406. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  407. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  408. more = do_balance_runtime(rt_rq);
  409. raw_spin_lock(&rt_rq->rt_runtime_lock);
  410. }
  411. return more;
  412. }
  413. #else /* !CONFIG_SMP */
  414. static inline int balance_runtime(struct rt_rq *rt_rq)
  415. {
  416. return 0;
  417. }
  418. #endif /* CONFIG_SMP */
  419. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  420. {
  421. int i, idle = 1;
  422. const struct cpumask *span;
  423. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  424. return 1;
  425. span = sched_rt_period_mask();
  426. for_each_cpu(i, span) {
  427. int enqueue = 0;
  428. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  429. struct rq *rq = rq_of_rt_rq(rt_rq);
  430. raw_spin_lock(&rq->lock);
  431. if (rt_rq->rt_time) {
  432. u64 runtime;
  433. raw_spin_lock(&rt_rq->rt_runtime_lock);
  434. if (rt_rq->rt_throttled)
  435. balance_runtime(rt_rq);
  436. runtime = rt_rq->rt_runtime;
  437. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  438. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  439. rt_rq->rt_throttled = 0;
  440. enqueue = 1;
  441. }
  442. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  443. idle = 0;
  444. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  445. } else if (rt_rq->rt_nr_running)
  446. idle = 0;
  447. if (enqueue)
  448. sched_rt_rq_enqueue(rt_rq);
  449. raw_spin_unlock(&rq->lock);
  450. }
  451. return idle;
  452. }
  453. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  454. {
  455. #ifdef CONFIG_RT_GROUP_SCHED
  456. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  457. if (rt_rq)
  458. return rt_rq->highest_prio.curr;
  459. #endif
  460. return rt_task_of(rt_se)->prio;
  461. }
  462. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  463. {
  464. u64 runtime = sched_rt_runtime(rt_rq);
  465. if (rt_rq->rt_throttled)
  466. return rt_rq_throttled(rt_rq);
  467. if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
  468. return 0;
  469. balance_runtime(rt_rq);
  470. runtime = sched_rt_runtime(rt_rq);
  471. if (runtime == RUNTIME_INF)
  472. return 0;
  473. if (rt_rq->rt_time > runtime) {
  474. rt_rq->rt_throttled = 1;
  475. if (rt_rq_throttled(rt_rq)) {
  476. sched_rt_rq_dequeue(rt_rq);
  477. return 1;
  478. }
  479. }
  480. return 0;
  481. }
  482. /*
  483. * Update the current task's runtime statistics. Skip current tasks that
  484. * are not in our scheduling class.
  485. */
  486. static void update_curr_rt(struct rq *rq)
  487. {
  488. struct task_struct *curr = rq->curr;
  489. struct sched_rt_entity *rt_se = &curr->rt;
  490. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  491. u64 delta_exec;
  492. if (!task_has_rt_policy(curr))
  493. return;
  494. delta_exec = rq->clock_task - curr->se.exec_start;
  495. if (unlikely((s64)delta_exec < 0))
  496. delta_exec = 0;
  497. schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
  498. curr->se.sum_exec_runtime += delta_exec;
  499. account_group_exec_runtime(curr, delta_exec);
  500. curr->se.exec_start = rq->clock_task;
  501. cpuacct_charge(curr, delta_exec);
  502. sched_rt_avg_update(rq, delta_exec);
  503. if (!rt_bandwidth_enabled())
  504. return;
  505. for_each_sched_rt_entity(rt_se) {
  506. rt_rq = rt_rq_of_se(rt_se);
  507. if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
  508. raw_spin_lock(&rt_rq->rt_runtime_lock);
  509. rt_rq->rt_time += delta_exec;
  510. if (sched_rt_runtime_exceeded(rt_rq))
  511. resched_task(curr);
  512. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  513. }
  514. }
  515. }
  516. #if defined CONFIG_SMP
  517. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
  518. static inline int next_prio(struct rq *rq)
  519. {
  520. struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
  521. if (next && rt_prio(next->prio))
  522. return next->prio;
  523. else
  524. return MAX_RT_PRIO;
  525. }
  526. static void
  527. inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  528. {
  529. struct rq *rq = rq_of_rt_rq(rt_rq);
  530. if (prio < prev_prio) {
  531. /*
  532. * If the new task is higher in priority than anything on the
  533. * run-queue, we know that the previous high becomes our
  534. * next-highest.
  535. */
  536. rt_rq->highest_prio.next = prev_prio;
  537. if (rq->online)
  538. cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
  539. } else if (prio == rt_rq->highest_prio.curr)
  540. /*
  541. * If the next task is equal in priority to the highest on
  542. * the run-queue, then we implicitly know that the next highest
  543. * task cannot be any lower than current
  544. */
  545. rt_rq->highest_prio.next = prio;
  546. else if (prio < rt_rq->highest_prio.next)
  547. /*
  548. * Otherwise, we need to recompute next-highest
  549. */
  550. rt_rq->highest_prio.next = next_prio(rq);
  551. }
  552. static void
  553. dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  554. {
  555. struct rq *rq = rq_of_rt_rq(rt_rq);
  556. if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
  557. rt_rq->highest_prio.next = next_prio(rq);
  558. if (rq->online && rt_rq->highest_prio.curr != prev_prio)
  559. cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
  560. }
  561. #else /* CONFIG_SMP */
  562. static inline
  563. void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  564. static inline
  565. void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  566. #endif /* CONFIG_SMP */
  567. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  568. static void
  569. inc_rt_prio(struct rt_rq *rt_rq, int prio)
  570. {
  571. int prev_prio = rt_rq->highest_prio.curr;
  572. if (prio < prev_prio)
  573. rt_rq->highest_prio.curr = prio;
  574. inc_rt_prio_smp(rt_rq, prio, prev_prio);
  575. }
  576. static void
  577. dec_rt_prio(struct rt_rq *rt_rq, int prio)
  578. {
  579. int prev_prio = rt_rq->highest_prio.curr;
  580. if (rt_rq->rt_nr_running) {
  581. WARN_ON(prio < prev_prio);
  582. /*
  583. * This may have been our highest task, and therefore
  584. * we may have some recomputation to do
  585. */
  586. if (prio == prev_prio) {
  587. struct rt_prio_array *array = &rt_rq->active;
  588. rt_rq->highest_prio.curr =
  589. sched_find_first_bit(array->bitmap);
  590. }
  591. } else
  592. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  593. dec_rt_prio_smp(rt_rq, prio, prev_prio);
  594. }
  595. #else
  596. static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
  597. static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
  598. #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
  599. #ifdef CONFIG_RT_GROUP_SCHED
  600. static void
  601. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  602. {
  603. if (rt_se_boosted(rt_se))
  604. rt_rq->rt_nr_boosted++;
  605. if (rt_rq->tg)
  606. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  607. }
  608. static void
  609. dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  610. {
  611. if (rt_se_boosted(rt_se))
  612. rt_rq->rt_nr_boosted--;
  613. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  614. }
  615. #else /* CONFIG_RT_GROUP_SCHED */
  616. static void
  617. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  618. {
  619. start_rt_bandwidth(&def_rt_bandwidth);
  620. }
  621. static inline
  622. void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
  623. #endif /* CONFIG_RT_GROUP_SCHED */
  624. static inline
  625. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  626. {
  627. int prio = rt_se_prio(rt_se);
  628. WARN_ON(!rt_prio(prio));
  629. rt_rq->rt_nr_running++;
  630. inc_rt_prio(rt_rq, prio);
  631. inc_rt_migration(rt_se, rt_rq);
  632. inc_rt_group(rt_se, rt_rq);
  633. }
  634. static inline
  635. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  636. {
  637. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  638. WARN_ON(!rt_rq->rt_nr_running);
  639. rt_rq->rt_nr_running--;
  640. dec_rt_prio(rt_rq, rt_se_prio(rt_se));
  641. dec_rt_migration(rt_se, rt_rq);
  642. dec_rt_group(rt_se, rt_rq);
  643. }
  644. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
  645. {
  646. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  647. struct rt_prio_array *array = &rt_rq->active;
  648. struct rt_rq *group_rq = group_rt_rq(rt_se);
  649. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  650. /*
  651. * Don't enqueue the group if its throttled, or when empty.
  652. * The latter is a consequence of the former when a child group
  653. * get throttled and the current group doesn't have any other
  654. * active members.
  655. */
  656. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
  657. return;
  658. if (head)
  659. list_add(&rt_se->run_list, queue);
  660. else
  661. list_add_tail(&rt_se->run_list, queue);
  662. __set_bit(rt_se_prio(rt_se), array->bitmap);
  663. inc_rt_tasks(rt_se, rt_rq);
  664. }
  665. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
  666. {
  667. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  668. struct rt_prio_array *array = &rt_rq->active;
  669. list_del_init(&rt_se->run_list);
  670. if (list_empty(array->queue + rt_se_prio(rt_se)))
  671. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  672. dec_rt_tasks(rt_se, rt_rq);
  673. }
  674. /*
  675. * Because the prio of an upper entry depends on the lower
  676. * entries, we must remove entries top - down.
  677. */
  678. static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
  679. {
  680. struct sched_rt_entity *back = NULL;
  681. for_each_sched_rt_entity(rt_se) {
  682. rt_se->back = back;
  683. back = rt_se;
  684. }
  685. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  686. if (on_rt_rq(rt_se))
  687. __dequeue_rt_entity(rt_se);
  688. }
  689. }
  690. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
  691. {
  692. dequeue_rt_stack(rt_se);
  693. for_each_sched_rt_entity(rt_se)
  694. __enqueue_rt_entity(rt_se, head);
  695. }
  696. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  697. {
  698. dequeue_rt_stack(rt_se);
  699. for_each_sched_rt_entity(rt_se) {
  700. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  701. if (rt_rq && rt_rq->rt_nr_running)
  702. __enqueue_rt_entity(rt_se, false);
  703. }
  704. }
  705. /*
  706. * Adding/removing a task to/from a priority array:
  707. */
  708. static void
  709. enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  710. {
  711. struct sched_rt_entity *rt_se = &p->rt;
  712. if (flags & ENQUEUE_WAKEUP)
  713. rt_se->timeout = 0;
  714. enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
  715. if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
  716. enqueue_pushable_task(rq, p);
  717. }
  718. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  719. {
  720. struct sched_rt_entity *rt_se = &p->rt;
  721. update_curr_rt(rq);
  722. dequeue_rt_entity(rt_se);
  723. dequeue_pushable_task(rq, p);
  724. }
  725. /*
  726. * Put task to the end of the run list without the overhead of dequeue
  727. * followed by enqueue.
  728. */
  729. static void
  730. requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
  731. {
  732. if (on_rt_rq(rt_se)) {
  733. struct rt_prio_array *array = &rt_rq->active;
  734. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  735. if (head)
  736. list_move(&rt_se->run_list, queue);
  737. else
  738. list_move_tail(&rt_se->run_list, queue);
  739. }
  740. }
  741. static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
  742. {
  743. struct sched_rt_entity *rt_se = &p->rt;
  744. struct rt_rq *rt_rq;
  745. for_each_sched_rt_entity(rt_se) {
  746. rt_rq = rt_rq_of_se(rt_se);
  747. requeue_rt_entity(rt_rq, rt_se, head);
  748. }
  749. }
  750. static void yield_task_rt(struct rq *rq)
  751. {
  752. requeue_task_rt(rq, rq->curr, 0);
  753. }
  754. #ifdef CONFIG_SMP
  755. static int find_lowest_rq(struct task_struct *task);
  756. static int
  757. select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
  758. {
  759. if (sd_flag != SD_BALANCE_WAKE)
  760. return smp_processor_id();
  761. /*
  762. * If the current task is an RT task, then
  763. * try to see if we can wake this RT task up on another
  764. * runqueue. Otherwise simply start this RT task
  765. * on its current runqueue.
  766. *
  767. * We want to avoid overloading runqueues. If the woken
  768. * task is a higher priority, then it will stay on this CPU
  769. * and the lower prio task should be moved to another CPU.
  770. * Even though this will probably make the lower prio task
  771. * lose its cache, we do not want to bounce a higher task
  772. * around just because it gave up its CPU, perhaps for a
  773. * lock?
  774. *
  775. * For equal prio tasks, we just let the scheduler sort it out.
  776. */
  777. if (unlikely(rt_task(rq->curr)) &&
  778. (rq->curr->rt.nr_cpus_allowed < 2 ||
  779. rq->curr->prio < p->prio) &&
  780. (p->rt.nr_cpus_allowed > 1)) {
  781. int cpu = find_lowest_rq(p);
  782. return (cpu == -1) ? task_cpu(p) : cpu;
  783. }
  784. /*
  785. * Otherwise, just let it ride on the affined RQ and the
  786. * post-schedule router will push the preempted task away
  787. */
  788. return task_cpu(p);
  789. }
  790. static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
  791. {
  792. if (rq->curr->rt.nr_cpus_allowed == 1)
  793. return;
  794. if (p->rt.nr_cpus_allowed != 1
  795. && cpupri_find(&rq->rd->cpupri, p, NULL))
  796. return;
  797. if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
  798. return;
  799. /*
  800. * There appears to be other cpus that can accept
  801. * current and none to run 'p', so lets reschedule
  802. * to try and push current away:
  803. */
  804. requeue_task_rt(rq, p, 1);
  805. resched_task(rq->curr);
  806. }
  807. #endif /* CONFIG_SMP */
  808. /*
  809. * Preempt the current task with a newly woken task if needed:
  810. */
  811. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
  812. {
  813. if (p->prio < rq->curr->prio) {
  814. resched_task(rq->curr);
  815. return;
  816. }
  817. #ifdef CONFIG_SMP
  818. /*
  819. * If:
  820. *
  821. * - the newly woken task is of equal priority to the current task
  822. * - the newly woken task is non-migratable while current is migratable
  823. * - current will be preempted on the next reschedule
  824. *
  825. * we should check to see if current can readily move to a different
  826. * cpu. If so, we will reschedule to allow the push logic to try
  827. * to move current somewhere else, making room for our non-migratable
  828. * task.
  829. */
  830. if (p->prio == rq->curr->prio && !need_resched())
  831. check_preempt_equal_prio(rq, p);
  832. #endif
  833. }
  834. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  835. struct rt_rq *rt_rq)
  836. {
  837. struct rt_prio_array *array = &rt_rq->active;
  838. struct sched_rt_entity *next = NULL;
  839. struct list_head *queue;
  840. int idx;
  841. idx = sched_find_first_bit(array->bitmap);
  842. BUG_ON(idx >= MAX_RT_PRIO);
  843. queue = array->queue + idx;
  844. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  845. return next;
  846. }
  847. static struct task_struct *_pick_next_task_rt(struct rq *rq)
  848. {
  849. struct sched_rt_entity *rt_se;
  850. struct task_struct *p;
  851. struct rt_rq *rt_rq;
  852. rt_rq = &rq->rt;
  853. if (unlikely(!rt_rq->rt_nr_running))
  854. return NULL;
  855. if (rt_rq_throttled(rt_rq))
  856. return NULL;
  857. do {
  858. rt_se = pick_next_rt_entity(rq, rt_rq);
  859. BUG_ON(!rt_se);
  860. rt_rq = group_rt_rq(rt_se);
  861. } while (rt_rq);
  862. p = rt_task_of(rt_se);
  863. p->se.exec_start = rq->clock_task;
  864. return p;
  865. }
  866. static struct task_struct *pick_next_task_rt(struct rq *rq)
  867. {
  868. struct task_struct *p = _pick_next_task_rt(rq);
  869. /* The running task is never eligible for pushing */
  870. if (p)
  871. dequeue_pushable_task(rq, p);
  872. #ifdef CONFIG_SMP
  873. /*
  874. * We detect this state here so that we can avoid taking the RQ
  875. * lock again later if there is no need to push
  876. */
  877. rq->post_schedule = has_pushable_tasks(rq);
  878. #endif
  879. return p;
  880. }
  881. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  882. {
  883. update_curr_rt(rq);
  884. p->se.exec_start = 0;
  885. /*
  886. * The previous task needs to be made eligible for pushing
  887. * if it is still active
  888. */
  889. if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
  890. enqueue_pushable_task(rq, p);
  891. }
  892. #ifdef CONFIG_SMP
  893. /* Only try algorithms three times */
  894. #define RT_MAX_TRIES 3
  895. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
  896. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  897. {
  898. if (!task_running(rq, p) &&
  899. (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
  900. (p->rt.nr_cpus_allowed > 1))
  901. return 1;
  902. return 0;
  903. }
  904. /* Return the second highest RT task, NULL otherwise */
  905. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  906. {
  907. struct task_struct *next = NULL;
  908. struct sched_rt_entity *rt_se;
  909. struct rt_prio_array *array;
  910. struct rt_rq *rt_rq;
  911. int idx;
  912. for_each_leaf_rt_rq(rt_rq, rq) {
  913. array = &rt_rq->active;
  914. idx = sched_find_first_bit(array->bitmap);
  915. next_idx:
  916. if (idx >= MAX_RT_PRIO)
  917. continue;
  918. if (next && next->prio < idx)
  919. continue;
  920. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  921. struct task_struct *p;
  922. if (!rt_entity_is_task(rt_se))
  923. continue;
  924. p = rt_task_of(rt_se);
  925. if (pick_rt_task(rq, p, cpu)) {
  926. next = p;
  927. break;
  928. }
  929. }
  930. if (!next) {
  931. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  932. goto next_idx;
  933. }
  934. }
  935. return next;
  936. }
  937. static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
  938. static int find_lowest_rq(struct task_struct *task)
  939. {
  940. struct sched_domain *sd;
  941. struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
  942. int this_cpu = smp_processor_id();
  943. int cpu = task_cpu(task);
  944. if (task->rt.nr_cpus_allowed == 1)
  945. return -1; /* No other targets possible */
  946. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  947. return -1; /* No targets found */
  948. /*
  949. * At this point we have built a mask of cpus representing the
  950. * lowest priority tasks in the system. Now we want to elect
  951. * the best one based on our affinity and topology.
  952. *
  953. * We prioritize the last cpu that the task executed on since
  954. * it is most likely cache-hot in that location.
  955. */
  956. if (cpumask_test_cpu(cpu, lowest_mask))
  957. return cpu;
  958. /*
  959. * Otherwise, we consult the sched_domains span maps to figure
  960. * out which cpu is logically closest to our hot cache data.
  961. */
  962. if (!cpumask_test_cpu(this_cpu, lowest_mask))
  963. this_cpu = -1; /* Skip this_cpu opt if not among lowest */
  964. for_each_domain(cpu, sd) {
  965. if (sd->flags & SD_WAKE_AFFINE) {
  966. int best_cpu;
  967. /*
  968. * "this_cpu" is cheaper to preempt than a
  969. * remote processor.
  970. */
  971. if (this_cpu != -1 &&
  972. cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
  973. return this_cpu;
  974. best_cpu = cpumask_first_and(lowest_mask,
  975. sched_domain_span(sd));
  976. if (best_cpu < nr_cpu_ids)
  977. return best_cpu;
  978. }
  979. }
  980. /*
  981. * And finally, if there were no matches within the domains
  982. * just give the caller *something* to work with from the compatible
  983. * locations.
  984. */
  985. if (this_cpu != -1)
  986. return this_cpu;
  987. cpu = cpumask_any(lowest_mask);
  988. if (cpu < nr_cpu_ids)
  989. return cpu;
  990. return -1;
  991. }
  992. /* Will lock the rq it finds */
  993. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  994. {
  995. struct rq *lowest_rq = NULL;
  996. int tries;
  997. int cpu;
  998. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  999. cpu = find_lowest_rq(task);
  1000. if ((cpu == -1) || (cpu == rq->cpu))
  1001. break;
  1002. lowest_rq = cpu_rq(cpu);
  1003. /* if the prio of this runqueue changed, try again */
  1004. if (double_lock_balance(rq, lowest_rq)) {
  1005. /*
  1006. * We had to unlock the run queue. In
  1007. * the mean time, task could have
  1008. * migrated already or had its affinity changed.
  1009. * Also make sure that it wasn't scheduled on its rq.
  1010. */
  1011. if (unlikely(task_rq(task) != rq ||
  1012. !cpumask_test_cpu(lowest_rq->cpu,
  1013. &task->cpus_allowed) ||
  1014. task_running(rq, task) ||
  1015. !task->se.on_rq)) {
  1016. raw_spin_unlock(&lowest_rq->lock);
  1017. lowest_rq = NULL;
  1018. break;
  1019. }
  1020. }
  1021. /* If this rq is still suitable use it. */
  1022. if (lowest_rq->rt.highest_prio.curr > task->prio)
  1023. break;
  1024. /* try again */
  1025. double_unlock_balance(rq, lowest_rq);
  1026. lowest_rq = NULL;
  1027. }
  1028. return lowest_rq;
  1029. }
  1030. static struct task_struct *pick_next_pushable_task(struct rq *rq)
  1031. {
  1032. struct task_struct *p;
  1033. if (!has_pushable_tasks(rq))
  1034. return NULL;
  1035. p = plist_first_entry(&rq->rt.pushable_tasks,
  1036. struct task_struct, pushable_tasks);
  1037. BUG_ON(rq->cpu != task_cpu(p));
  1038. BUG_ON(task_current(rq, p));
  1039. BUG_ON(p->rt.nr_cpus_allowed <= 1);
  1040. BUG_ON(!p->se.on_rq);
  1041. BUG_ON(!rt_task(p));
  1042. return p;
  1043. }
  1044. /*
  1045. * If the current CPU has more than one RT task, see if the non
  1046. * running task can migrate over to a CPU that is running a task
  1047. * of lesser priority.
  1048. */
  1049. static int push_rt_task(struct rq *rq)
  1050. {
  1051. struct task_struct *next_task;
  1052. struct rq *lowest_rq;
  1053. if (!rq->rt.overloaded)
  1054. return 0;
  1055. next_task = pick_next_pushable_task(rq);
  1056. if (!next_task)
  1057. return 0;
  1058. retry:
  1059. if (unlikely(next_task == rq->curr)) {
  1060. WARN_ON(1);
  1061. return 0;
  1062. }
  1063. /*
  1064. * It's possible that the next_task slipped in of
  1065. * higher priority than current. If that's the case
  1066. * just reschedule current.
  1067. */
  1068. if (unlikely(next_task->prio < rq->curr->prio)) {
  1069. resched_task(rq->curr);
  1070. return 0;
  1071. }
  1072. /* We might release rq lock */
  1073. get_task_struct(next_task);
  1074. /* find_lock_lowest_rq locks the rq if found */
  1075. lowest_rq = find_lock_lowest_rq(next_task, rq);
  1076. if (!lowest_rq) {
  1077. struct task_struct *task;
  1078. /*
  1079. * find lock_lowest_rq releases rq->lock
  1080. * so it is possible that next_task has migrated.
  1081. *
  1082. * We need to make sure that the task is still on the same
  1083. * run-queue and is also still the next task eligible for
  1084. * pushing.
  1085. */
  1086. task = pick_next_pushable_task(rq);
  1087. if (task_cpu(next_task) == rq->cpu && task == next_task) {
  1088. /*
  1089. * If we get here, the task hasnt moved at all, but
  1090. * it has failed to push. We will not try again,
  1091. * since the other cpus will pull from us when they
  1092. * are ready.
  1093. */
  1094. dequeue_pushable_task(rq, next_task);
  1095. goto out;
  1096. }
  1097. if (!task)
  1098. /* No more tasks, just exit */
  1099. goto out;
  1100. /*
  1101. * Something has shifted, try again.
  1102. */
  1103. put_task_struct(next_task);
  1104. next_task = task;
  1105. goto retry;
  1106. }
  1107. deactivate_task(rq, next_task, 0);
  1108. set_task_cpu(next_task, lowest_rq->cpu);
  1109. activate_task(lowest_rq, next_task, 0);
  1110. resched_task(lowest_rq->curr);
  1111. double_unlock_balance(rq, lowest_rq);
  1112. out:
  1113. put_task_struct(next_task);
  1114. return 1;
  1115. }
  1116. static void push_rt_tasks(struct rq *rq)
  1117. {
  1118. /* push_rt_task will return true if it moved an RT */
  1119. while (push_rt_task(rq))
  1120. ;
  1121. }
  1122. static int pull_rt_task(struct rq *this_rq)
  1123. {
  1124. int this_cpu = this_rq->cpu, ret = 0, cpu;
  1125. struct task_struct *p;
  1126. struct rq *src_rq;
  1127. if (likely(!rt_overloaded(this_rq)))
  1128. return 0;
  1129. for_each_cpu(cpu, this_rq->rd->rto_mask) {
  1130. if (this_cpu == cpu)
  1131. continue;
  1132. src_rq = cpu_rq(cpu);
  1133. /*
  1134. * Don't bother taking the src_rq->lock if the next highest
  1135. * task is known to be lower-priority than our current task.
  1136. * This may look racy, but if this value is about to go
  1137. * logically higher, the src_rq will push this task away.
  1138. * And if its going logically lower, we do not care
  1139. */
  1140. if (src_rq->rt.highest_prio.next >=
  1141. this_rq->rt.highest_prio.curr)
  1142. continue;
  1143. /*
  1144. * We can potentially drop this_rq's lock in
  1145. * double_lock_balance, and another CPU could
  1146. * alter this_rq
  1147. */
  1148. double_lock_balance(this_rq, src_rq);
  1149. /*
  1150. * Are there still pullable RT tasks?
  1151. */
  1152. if (src_rq->rt.rt_nr_running <= 1)
  1153. goto skip;
  1154. p = pick_next_highest_task_rt(src_rq, this_cpu);
  1155. /*
  1156. * Do we have an RT task that preempts
  1157. * the to-be-scheduled task?
  1158. */
  1159. if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
  1160. WARN_ON(p == src_rq->curr);
  1161. WARN_ON(!p->se.on_rq);
  1162. /*
  1163. * There's a chance that p is higher in priority
  1164. * than what's currently running on its cpu.
  1165. * This is just that p is wakeing up and hasn't
  1166. * had a chance to schedule. We only pull
  1167. * p if it is lower in priority than the
  1168. * current task on the run queue
  1169. */
  1170. if (p->prio < src_rq->curr->prio)
  1171. goto skip;
  1172. ret = 1;
  1173. deactivate_task(src_rq, p, 0);
  1174. set_task_cpu(p, this_cpu);
  1175. activate_task(this_rq, p, 0);
  1176. /*
  1177. * We continue with the search, just in
  1178. * case there's an even higher prio task
  1179. * in another runqueue. (low likelyhood
  1180. * but possible)
  1181. */
  1182. }
  1183. skip:
  1184. double_unlock_balance(this_rq, src_rq);
  1185. }
  1186. return ret;
  1187. }
  1188. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  1189. {
  1190. /* Try to pull RT tasks here if we lower this rq's prio */
  1191. if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
  1192. pull_rt_task(rq);
  1193. }
  1194. static void post_schedule_rt(struct rq *rq)
  1195. {
  1196. push_rt_tasks(rq);
  1197. }
  1198. /*
  1199. * If we are not running and we are not going to reschedule soon, we should
  1200. * try to push tasks away now
  1201. */
  1202. static void task_woken_rt(struct rq *rq, struct task_struct *p)
  1203. {
  1204. if (!task_running(rq, p) &&
  1205. !test_tsk_need_resched(rq->curr) &&
  1206. has_pushable_tasks(rq) &&
  1207. p->rt.nr_cpus_allowed > 1 &&
  1208. rt_task(rq->curr) &&
  1209. (rq->curr->rt.nr_cpus_allowed < 2 ||
  1210. rq->curr->prio < p->prio))
  1211. push_rt_tasks(rq);
  1212. }
  1213. static void set_cpus_allowed_rt(struct task_struct *p,
  1214. const struct cpumask *new_mask)
  1215. {
  1216. int weight = cpumask_weight(new_mask);
  1217. BUG_ON(!rt_task(p));
  1218. /*
  1219. * Update the migration status of the RQ if we have an RT task
  1220. * which is running AND changing its weight value.
  1221. */
  1222. if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
  1223. struct rq *rq = task_rq(p);
  1224. if (!task_current(rq, p)) {
  1225. /*
  1226. * Make sure we dequeue this task from the pushable list
  1227. * before going further. It will either remain off of
  1228. * the list because we are no longer pushable, or it
  1229. * will be requeued.
  1230. */
  1231. if (p->rt.nr_cpus_allowed > 1)
  1232. dequeue_pushable_task(rq, p);
  1233. /*
  1234. * Requeue if our weight is changing and still > 1
  1235. */
  1236. if (weight > 1)
  1237. enqueue_pushable_task(rq, p);
  1238. }
  1239. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  1240. rq->rt.rt_nr_migratory++;
  1241. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  1242. BUG_ON(!rq->rt.rt_nr_migratory);
  1243. rq->rt.rt_nr_migratory--;
  1244. }
  1245. update_rt_migration(&rq->rt);
  1246. }
  1247. cpumask_copy(&p->cpus_allowed, new_mask);
  1248. p->rt.nr_cpus_allowed = weight;
  1249. }
  1250. /* Assumes rq->lock is held */
  1251. static void rq_online_rt(struct rq *rq)
  1252. {
  1253. if (rq->rt.overloaded)
  1254. rt_set_overload(rq);
  1255. __enable_runtime(rq);
  1256. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
  1257. }
  1258. /* Assumes rq->lock is held */
  1259. static void rq_offline_rt(struct rq *rq)
  1260. {
  1261. if (rq->rt.overloaded)
  1262. rt_clear_overload(rq);
  1263. __disable_runtime(rq);
  1264. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1265. }
  1266. /*
  1267. * When switch from the rt queue, we bring ourselves to a position
  1268. * that we might want to pull RT tasks from other runqueues.
  1269. */
  1270. static void switched_from_rt(struct rq *rq, struct task_struct *p,
  1271. int running)
  1272. {
  1273. /*
  1274. * If there are other RT tasks then we will reschedule
  1275. * and the scheduling of the other RT tasks will handle
  1276. * the balancing. But if we are the last RT task
  1277. * we may need to handle the pulling of RT tasks
  1278. * now.
  1279. */
  1280. if (!rq->rt.rt_nr_running)
  1281. pull_rt_task(rq);
  1282. }
  1283. static inline void init_sched_rt_class(void)
  1284. {
  1285. unsigned int i;
  1286. for_each_possible_cpu(i)
  1287. zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
  1288. GFP_KERNEL, cpu_to_node(i));
  1289. }
  1290. #endif /* CONFIG_SMP */
  1291. /*
  1292. * When switching a task to RT, we may overload the runqueue
  1293. * with RT tasks. In this case we try to push them off to
  1294. * other runqueues.
  1295. */
  1296. static void switched_to_rt(struct rq *rq, struct task_struct *p,
  1297. int running)
  1298. {
  1299. int check_resched = 1;
  1300. /*
  1301. * If we are already running, then there's nothing
  1302. * that needs to be done. But if we are not running
  1303. * we may need to preempt the current running task.
  1304. * If that current running task is also an RT task
  1305. * then see if we can move to another run queue.
  1306. */
  1307. if (!running) {
  1308. #ifdef CONFIG_SMP
  1309. if (rq->rt.overloaded && push_rt_task(rq) &&
  1310. /* Don't resched if we changed runqueues */
  1311. rq != task_rq(p))
  1312. check_resched = 0;
  1313. #endif /* CONFIG_SMP */
  1314. if (check_resched && p->prio < rq->curr->prio)
  1315. resched_task(rq->curr);
  1316. }
  1317. }
  1318. /*
  1319. * Priority of the task has changed. This may cause
  1320. * us to initiate a push or pull.
  1321. */
  1322. static void prio_changed_rt(struct rq *rq, struct task_struct *p,
  1323. int oldprio, int running)
  1324. {
  1325. if (running) {
  1326. #ifdef CONFIG_SMP
  1327. /*
  1328. * If our priority decreases while running, we
  1329. * may need to pull tasks to this runqueue.
  1330. */
  1331. if (oldprio < p->prio)
  1332. pull_rt_task(rq);
  1333. /*
  1334. * If there's a higher priority task waiting to run
  1335. * then reschedule. Note, the above pull_rt_task
  1336. * can release the rq lock and p could migrate.
  1337. * Only reschedule if p is still on the same runqueue.
  1338. */
  1339. if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
  1340. resched_task(p);
  1341. #else
  1342. /* For UP simply resched on drop of prio */
  1343. if (oldprio < p->prio)
  1344. resched_task(p);
  1345. #endif /* CONFIG_SMP */
  1346. } else {
  1347. /*
  1348. * This task is not running, but if it is
  1349. * greater than the current running task
  1350. * then reschedule.
  1351. */
  1352. if (p->prio < rq->curr->prio)
  1353. resched_task(rq->curr);
  1354. }
  1355. }
  1356. static void watchdog(struct rq *rq, struct task_struct *p)
  1357. {
  1358. unsigned long soft, hard;
  1359. /* max may change after cur was read, this will be fixed next tick */
  1360. soft = task_rlimit(p, RLIMIT_RTTIME);
  1361. hard = task_rlimit_max(p, RLIMIT_RTTIME);
  1362. if (soft != RLIM_INFINITY) {
  1363. unsigned long next;
  1364. p->rt.timeout++;
  1365. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1366. if (p->rt.timeout > next)
  1367. p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
  1368. }
  1369. }
  1370. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1371. {
  1372. update_curr_rt(rq);
  1373. watchdog(rq, p);
  1374. /*
  1375. * RR tasks need a special form of timeslice management.
  1376. * FIFO tasks have no timeslices.
  1377. */
  1378. if (p->policy != SCHED_RR)
  1379. return;
  1380. if (--p->rt.time_slice)
  1381. return;
  1382. p->rt.time_slice = DEF_TIMESLICE;
  1383. /*
  1384. * Requeue to the end of queue if we are not the only element
  1385. * on the queue:
  1386. */
  1387. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1388. requeue_task_rt(rq, p, 0);
  1389. set_tsk_need_resched(p);
  1390. }
  1391. }
  1392. static void set_curr_task_rt(struct rq *rq)
  1393. {
  1394. struct task_struct *p = rq->curr;
  1395. p->se.exec_start = rq->clock_task;
  1396. /* The running task is never eligible for pushing */
  1397. dequeue_pushable_task(rq, p);
  1398. }
  1399. static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
  1400. {
  1401. /*
  1402. * Time slice is 0 for SCHED_FIFO tasks
  1403. */
  1404. if (task->policy == SCHED_RR)
  1405. return DEF_TIMESLICE;
  1406. else
  1407. return 0;
  1408. }
  1409. static const struct sched_class rt_sched_class = {
  1410. .next = &fair_sched_class,
  1411. .enqueue_task = enqueue_task_rt,
  1412. .dequeue_task = dequeue_task_rt,
  1413. .yield_task = yield_task_rt,
  1414. .check_preempt_curr = check_preempt_curr_rt,
  1415. .pick_next_task = pick_next_task_rt,
  1416. .put_prev_task = put_prev_task_rt,
  1417. #ifdef CONFIG_SMP
  1418. .select_task_rq = select_task_rq_rt,
  1419. .set_cpus_allowed = set_cpus_allowed_rt,
  1420. .rq_online = rq_online_rt,
  1421. .rq_offline = rq_offline_rt,
  1422. .pre_schedule = pre_schedule_rt,
  1423. .post_schedule = post_schedule_rt,
  1424. .task_woken = task_woken_rt,
  1425. .switched_from = switched_from_rt,
  1426. #endif
  1427. .set_curr_task = set_curr_task_rt,
  1428. .task_tick = task_tick_rt,
  1429. .get_rr_interval = get_rr_interval_rt,
  1430. .prio_changed = prio_changed_rt,
  1431. .switched_to = switched_to_rt,
  1432. };
  1433. #ifdef CONFIG_SCHED_DEBUG
  1434. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1435. static void print_rt_stats(struct seq_file *m, int cpu)
  1436. {
  1437. struct rt_rq *rt_rq;
  1438. rcu_read_lock();
  1439. for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
  1440. print_rt_rq(m, cpu, rt_rq);
  1441. rcu_read_unlock();
  1442. }
  1443. #endif /* CONFIG_SCHED_DEBUG */