sched_fair.c 103 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. /*
  25. * Targeted preemption latency for CPU-bound tasks:
  26. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. */
  36. unsigned int sysctl_sched_latency = 6000000ULL;
  37. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  38. /*
  39. * The initial- and re-scaling of tunables is configurable
  40. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  41. *
  42. * Options are:
  43. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  44. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  45. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  46. */
  47. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  48. = SCHED_TUNABLESCALING_LOG;
  49. /*
  50. * Minimal preemption granularity for CPU-bound tasks:
  51. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  52. */
  53. unsigned int sysctl_sched_min_granularity = 750000ULL;
  54. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  55. /*
  56. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  57. */
  58. static unsigned int sched_nr_latency = 8;
  59. /*
  60. * After fork, child runs first. If set to 0 (default) then
  61. * parent will (try to) run first.
  62. */
  63. unsigned int sysctl_sched_child_runs_first __read_mostly;
  64. /*
  65. * sys_sched_yield() compat mode
  66. *
  67. * This option switches the agressive yield implementation of the
  68. * old scheduler back on.
  69. */
  70. unsigned int __read_mostly sysctl_sched_compat_yield;
  71. /*
  72. * SCHED_OTHER wake-up granularity.
  73. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  74. *
  75. * This option delays the preemption effects of decoupled workloads
  76. * and reduces their over-scheduling. Synchronous workloads will still
  77. * have immediate wakeup/sleep latencies.
  78. */
  79. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  80. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  81. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  82. static const struct sched_class fair_sched_class;
  83. /**************************************************************
  84. * CFS operations on generic schedulable entities:
  85. */
  86. #ifdef CONFIG_FAIR_GROUP_SCHED
  87. /* cpu runqueue to which this cfs_rq is attached */
  88. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  89. {
  90. return cfs_rq->rq;
  91. }
  92. /* An entity is a task if it doesn't "own" a runqueue */
  93. #define entity_is_task(se) (!se->my_q)
  94. static inline struct task_struct *task_of(struct sched_entity *se)
  95. {
  96. #ifdef CONFIG_SCHED_DEBUG
  97. WARN_ON_ONCE(!entity_is_task(se));
  98. #endif
  99. return container_of(se, struct task_struct, se);
  100. }
  101. /* Walk up scheduling entities hierarchy */
  102. #define for_each_sched_entity(se) \
  103. for (; se; se = se->parent)
  104. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  105. {
  106. return p->se.cfs_rq;
  107. }
  108. /* runqueue on which this entity is (to be) queued */
  109. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  110. {
  111. return se->cfs_rq;
  112. }
  113. /* runqueue "owned" by this group */
  114. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  115. {
  116. return grp->my_q;
  117. }
  118. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  119. * another cpu ('this_cpu')
  120. */
  121. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  122. {
  123. return cfs_rq->tg->cfs_rq[this_cpu];
  124. }
  125. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  126. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  127. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  128. /* Do the two (enqueued) entities belong to the same group ? */
  129. static inline int
  130. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  131. {
  132. if (se->cfs_rq == pse->cfs_rq)
  133. return 1;
  134. return 0;
  135. }
  136. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  137. {
  138. return se->parent;
  139. }
  140. /* return depth at which a sched entity is present in the hierarchy */
  141. static inline int depth_se(struct sched_entity *se)
  142. {
  143. int depth = 0;
  144. for_each_sched_entity(se)
  145. depth++;
  146. return depth;
  147. }
  148. static void
  149. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  150. {
  151. int se_depth, pse_depth;
  152. /*
  153. * preemption test can be made between sibling entities who are in the
  154. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  155. * both tasks until we find their ancestors who are siblings of common
  156. * parent.
  157. */
  158. /* First walk up until both entities are at same depth */
  159. se_depth = depth_se(*se);
  160. pse_depth = depth_se(*pse);
  161. while (se_depth > pse_depth) {
  162. se_depth--;
  163. *se = parent_entity(*se);
  164. }
  165. while (pse_depth > se_depth) {
  166. pse_depth--;
  167. *pse = parent_entity(*pse);
  168. }
  169. while (!is_same_group(*se, *pse)) {
  170. *se = parent_entity(*se);
  171. *pse = parent_entity(*pse);
  172. }
  173. }
  174. #else /* !CONFIG_FAIR_GROUP_SCHED */
  175. static inline struct task_struct *task_of(struct sched_entity *se)
  176. {
  177. return container_of(se, struct task_struct, se);
  178. }
  179. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  180. {
  181. return container_of(cfs_rq, struct rq, cfs);
  182. }
  183. #define entity_is_task(se) 1
  184. #define for_each_sched_entity(se) \
  185. for (; se; se = NULL)
  186. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  187. {
  188. return &task_rq(p)->cfs;
  189. }
  190. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  191. {
  192. struct task_struct *p = task_of(se);
  193. struct rq *rq = task_rq(p);
  194. return &rq->cfs;
  195. }
  196. /* runqueue "owned" by this group */
  197. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  198. {
  199. return NULL;
  200. }
  201. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  202. {
  203. return &cpu_rq(this_cpu)->cfs;
  204. }
  205. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  206. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  207. static inline int
  208. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  209. {
  210. return 1;
  211. }
  212. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  213. {
  214. return NULL;
  215. }
  216. static inline void
  217. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  218. {
  219. }
  220. #endif /* CONFIG_FAIR_GROUP_SCHED */
  221. /**************************************************************
  222. * Scheduling class tree data structure manipulation methods:
  223. */
  224. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  225. {
  226. s64 delta = (s64)(vruntime - min_vruntime);
  227. if (delta > 0)
  228. min_vruntime = vruntime;
  229. return min_vruntime;
  230. }
  231. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  232. {
  233. s64 delta = (s64)(vruntime - min_vruntime);
  234. if (delta < 0)
  235. min_vruntime = vruntime;
  236. return min_vruntime;
  237. }
  238. static inline int entity_before(struct sched_entity *a,
  239. struct sched_entity *b)
  240. {
  241. return (s64)(a->vruntime - b->vruntime) < 0;
  242. }
  243. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  244. {
  245. return se->vruntime - cfs_rq->min_vruntime;
  246. }
  247. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  248. {
  249. u64 vruntime = cfs_rq->min_vruntime;
  250. if (cfs_rq->curr)
  251. vruntime = cfs_rq->curr->vruntime;
  252. if (cfs_rq->rb_leftmost) {
  253. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  254. struct sched_entity,
  255. run_node);
  256. if (!cfs_rq->curr)
  257. vruntime = se->vruntime;
  258. else
  259. vruntime = min_vruntime(vruntime, se->vruntime);
  260. }
  261. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  262. }
  263. /*
  264. * Enqueue an entity into the rb-tree:
  265. */
  266. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  267. {
  268. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  269. struct rb_node *parent = NULL;
  270. struct sched_entity *entry;
  271. s64 key = entity_key(cfs_rq, se);
  272. int leftmost = 1;
  273. /*
  274. * Find the right place in the rbtree:
  275. */
  276. while (*link) {
  277. parent = *link;
  278. entry = rb_entry(parent, struct sched_entity, run_node);
  279. /*
  280. * We dont care about collisions. Nodes with
  281. * the same key stay together.
  282. */
  283. if (key < entity_key(cfs_rq, entry)) {
  284. link = &parent->rb_left;
  285. } else {
  286. link = &parent->rb_right;
  287. leftmost = 0;
  288. }
  289. }
  290. /*
  291. * Maintain a cache of leftmost tree entries (it is frequently
  292. * used):
  293. */
  294. if (leftmost)
  295. cfs_rq->rb_leftmost = &se->run_node;
  296. rb_link_node(&se->run_node, parent, link);
  297. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  298. }
  299. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  300. {
  301. if (cfs_rq->rb_leftmost == &se->run_node) {
  302. struct rb_node *next_node;
  303. next_node = rb_next(&se->run_node);
  304. cfs_rq->rb_leftmost = next_node;
  305. }
  306. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  307. }
  308. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  309. {
  310. struct rb_node *left = cfs_rq->rb_leftmost;
  311. if (!left)
  312. return NULL;
  313. return rb_entry(left, struct sched_entity, run_node);
  314. }
  315. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  316. {
  317. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  318. if (!last)
  319. return NULL;
  320. return rb_entry(last, struct sched_entity, run_node);
  321. }
  322. /**************************************************************
  323. * Scheduling class statistics methods:
  324. */
  325. #ifdef CONFIG_SCHED_DEBUG
  326. int sched_proc_update_handler(struct ctl_table *table, int write,
  327. void __user *buffer, size_t *lenp,
  328. loff_t *ppos)
  329. {
  330. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  331. int factor = get_update_sysctl_factor();
  332. if (ret || !write)
  333. return ret;
  334. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  335. sysctl_sched_min_granularity);
  336. #define WRT_SYSCTL(name) \
  337. (normalized_sysctl_##name = sysctl_##name / (factor))
  338. WRT_SYSCTL(sched_min_granularity);
  339. WRT_SYSCTL(sched_latency);
  340. WRT_SYSCTL(sched_wakeup_granularity);
  341. WRT_SYSCTL(sched_shares_ratelimit);
  342. #undef WRT_SYSCTL
  343. return 0;
  344. }
  345. #endif
  346. /*
  347. * delta /= w
  348. */
  349. static inline unsigned long
  350. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  351. {
  352. if (unlikely(se->load.weight != NICE_0_LOAD))
  353. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  354. return delta;
  355. }
  356. /*
  357. * The idea is to set a period in which each task runs once.
  358. *
  359. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  360. * this period because otherwise the slices get too small.
  361. *
  362. * p = (nr <= nl) ? l : l*nr/nl
  363. */
  364. static u64 __sched_period(unsigned long nr_running)
  365. {
  366. u64 period = sysctl_sched_latency;
  367. unsigned long nr_latency = sched_nr_latency;
  368. if (unlikely(nr_running > nr_latency)) {
  369. period = sysctl_sched_min_granularity;
  370. period *= nr_running;
  371. }
  372. return period;
  373. }
  374. /*
  375. * We calculate the wall-time slice from the period by taking a part
  376. * proportional to the weight.
  377. *
  378. * s = p*P[w/rw]
  379. */
  380. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  381. {
  382. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  383. for_each_sched_entity(se) {
  384. struct load_weight *load;
  385. struct load_weight lw;
  386. cfs_rq = cfs_rq_of(se);
  387. load = &cfs_rq->load;
  388. if (unlikely(!se->on_rq)) {
  389. lw = cfs_rq->load;
  390. update_load_add(&lw, se->load.weight);
  391. load = &lw;
  392. }
  393. slice = calc_delta_mine(slice, se->load.weight, load);
  394. }
  395. return slice;
  396. }
  397. /*
  398. * We calculate the vruntime slice of a to be inserted task
  399. *
  400. * vs = s/w
  401. */
  402. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  403. {
  404. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  405. }
  406. /*
  407. * Update the current task's runtime statistics. Skip current tasks that
  408. * are not in our scheduling class.
  409. */
  410. static inline void
  411. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  412. unsigned long delta_exec)
  413. {
  414. unsigned long delta_exec_weighted;
  415. schedstat_set(curr->statistics.exec_max,
  416. max((u64)delta_exec, curr->statistics.exec_max));
  417. curr->sum_exec_runtime += delta_exec;
  418. schedstat_add(cfs_rq, exec_clock, delta_exec);
  419. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  420. curr->vruntime += delta_exec_weighted;
  421. update_min_vruntime(cfs_rq);
  422. }
  423. static void update_curr(struct cfs_rq *cfs_rq)
  424. {
  425. struct sched_entity *curr = cfs_rq->curr;
  426. u64 now = rq_of(cfs_rq)->clock_task;
  427. unsigned long delta_exec;
  428. if (unlikely(!curr))
  429. return;
  430. /*
  431. * Get the amount of time the current task was running
  432. * since the last time we changed load (this cannot
  433. * overflow on 32 bits):
  434. */
  435. delta_exec = (unsigned long)(now - curr->exec_start);
  436. if (!delta_exec)
  437. return;
  438. __update_curr(cfs_rq, curr, delta_exec);
  439. curr->exec_start = now;
  440. if (entity_is_task(curr)) {
  441. struct task_struct *curtask = task_of(curr);
  442. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  443. cpuacct_charge(curtask, delta_exec);
  444. account_group_exec_runtime(curtask, delta_exec);
  445. }
  446. }
  447. static inline void
  448. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  449. {
  450. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  451. }
  452. /*
  453. * Task is being enqueued - update stats:
  454. */
  455. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  456. {
  457. /*
  458. * Are we enqueueing a waiting task? (for current tasks
  459. * a dequeue/enqueue event is a NOP)
  460. */
  461. if (se != cfs_rq->curr)
  462. update_stats_wait_start(cfs_rq, se);
  463. }
  464. static void
  465. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  466. {
  467. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  468. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  469. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  470. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  471. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  472. #ifdef CONFIG_SCHEDSTATS
  473. if (entity_is_task(se)) {
  474. trace_sched_stat_wait(task_of(se),
  475. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  476. }
  477. #endif
  478. schedstat_set(se->statistics.wait_start, 0);
  479. }
  480. static inline void
  481. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  482. {
  483. /*
  484. * Mark the end of the wait period if dequeueing a
  485. * waiting task:
  486. */
  487. if (se != cfs_rq->curr)
  488. update_stats_wait_end(cfs_rq, se);
  489. }
  490. /*
  491. * We are picking a new current task - update its stats:
  492. */
  493. static inline void
  494. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  495. {
  496. /*
  497. * We are starting a new run period:
  498. */
  499. se->exec_start = rq_of(cfs_rq)->clock_task;
  500. }
  501. /**************************************************
  502. * Scheduling class queueing methods:
  503. */
  504. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  505. static void
  506. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  507. {
  508. cfs_rq->task_weight += weight;
  509. }
  510. #else
  511. static inline void
  512. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  513. {
  514. }
  515. #endif
  516. static void
  517. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  518. {
  519. update_load_add(&cfs_rq->load, se->load.weight);
  520. if (!parent_entity(se))
  521. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  522. if (entity_is_task(se)) {
  523. add_cfs_task_weight(cfs_rq, se->load.weight);
  524. list_add(&se->group_node, &cfs_rq->tasks);
  525. }
  526. cfs_rq->nr_running++;
  527. se->on_rq = 1;
  528. }
  529. static void
  530. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  531. {
  532. update_load_sub(&cfs_rq->load, se->load.weight);
  533. if (!parent_entity(se))
  534. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  535. if (entity_is_task(se)) {
  536. add_cfs_task_weight(cfs_rq, -se->load.weight);
  537. list_del_init(&se->group_node);
  538. }
  539. cfs_rq->nr_running--;
  540. se->on_rq = 0;
  541. }
  542. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  543. {
  544. #ifdef CONFIG_SCHEDSTATS
  545. struct task_struct *tsk = NULL;
  546. if (entity_is_task(se))
  547. tsk = task_of(se);
  548. if (se->statistics.sleep_start) {
  549. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  550. if ((s64)delta < 0)
  551. delta = 0;
  552. if (unlikely(delta > se->statistics.sleep_max))
  553. se->statistics.sleep_max = delta;
  554. se->statistics.sleep_start = 0;
  555. se->statistics.sum_sleep_runtime += delta;
  556. if (tsk) {
  557. account_scheduler_latency(tsk, delta >> 10, 1);
  558. trace_sched_stat_sleep(tsk, delta);
  559. }
  560. }
  561. if (se->statistics.block_start) {
  562. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  563. if ((s64)delta < 0)
  564. delta = 0;
  565. if (unlikely(delta > se->statistics.block_max))
  566. se->statistics.block_max = delta;
  567. se->statistics.block_start = 0;
  568. se->statistics.sum_sleep_runtime += delta;
  569. if (tsk) {
  570. if (tsk->in_iowait) {
  571. se->statistics.iowait_sum += delta;
  572. se->statistics.iowait_count++;
  573. trace_sched_stat_iowait(tsk, delta);
  574. }
  575. /*
  576. * Blocking time is in units of nanosecs, so shift by
  577. * 20 to get a milliseconds-range estimation of the
  578. * amount of time that the task spent sleeping:
  579. */
  580. if (unlikely(prof_on == SLEEP_PROFILING)) {
  581. profile_hits(SLEEP_PROFILING,
  582. (void *)get_wchan(tsk),
  583. delta >> 20);
  584. }
  585. account_scheduler_latency(tsk, delta >> 10, 0);
  586. }
  587. }
  588. #endif
  589. }
  590. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  591. {
  592. #ifdef CONFIG_SCHED_DEBUG
  593. s64 d = se->vruntime - cfs_rq->min_vruntime;
  594. if (d < 0)
  595. d = -d;
  596. if (d > 3*sysctl_sched_latency)
  597. schedstat_inc(cfs_rq, nr_spread_over);
  598. #endif
  599. }
  600. static void
  601. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  602. {
  603. u64 vruntime = cfs_rq->min_vruntime;
  604. /*
  605. * The 'current' period is already promised to the current tasks,
  606. * however the extra weight of the new task will slow them down a
  607. * little, place the new task so that it fits in the slot that
  608. * stays open at the end.
  609. */
  610. if (initial && sched_feat(START_DEBIT))
  611. vruntime += sched_vslice(cfs_rq, se);
  612. /* sleeps up to a single latency don't count. */
  613. if (!initial) {
  614. unsigned long thresh = sysctl_sched_latency;
  615. /*
  616. * Halve their sleep time's effect, to allow
  617. * for a gentler effect of sleepers:
  618. */
  619. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  620. thresh >>= 1;
  621. vruntime -= thresh;
  622. }
  623. /* ensure we never gain time by being placed backwards. */
  624. vruntime = max_vruntime(se->vruntime, vruntime);
  625. se->vruntime = vruntime;
  626. }
  627. static void
  628. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  629. {
  630. /*
  631. * Update the normalized vruntime before updating min_vruntime
  632. * through callig update_curr().
  633. */
  634. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  635. se->vruntime += cfs_rq->min_vruntime;
  636. /*
  637. * Update run-time statistics of the 'current'.
  638. */
  639. update_curr(cfs_rq);
  640. account_entity_enqueue(cfs_rq, se);
  641. if (flags & ENQUEUE_WAKEUP) {
  642. place_entity(cfs_rq, se, 0);
  643. enqueue_sleeper(cfs_rq, se);
  644. }
  645. update_stats_enqueue(cfs_rq, se);
  646. check_spread(cfs_rq, se);
  647. if (se != cfs_rq->curr)
  648. __enqueue_entity(cfs_rq, se);
  649. }
  650. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  651. {
  652. if (!se || cfs_rq->last == se)
  653. cfs_rq->last = NULL;
  654. if (!se || cfs_rq->next == se)
  655. cfs_rq->next = NULL;
  656. }
  657. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  658. {
  659. for_each_sched_entity(se)
  660. __clear_buddies(cfs_rq_of(se), se);
  661. }
  662. static void
  663. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  664. {
  665. /*
  666. * Update run-time statistics of the 'current'.
  667. */
  668. update_curr(cfs_rq);
  669. update_stats_dequeue(cfs_rq, se);
  670. if (flags & DEQUEUE_SLEEP) {
  671. #ifdef CONFIG_SCHEDSTATS
  672. if (entity_is_task(se)) {
  673. struct task_struct *tsk = task_of(se);
  674. if (tsk->state & TASK_INTERRUPTIBLE)
  675. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  676. if (tsk->state & TASK_UNINTERRUPTIBLE)
  677. se->statistics.block_start = rq_of(cfs_rq)->clock;
  678. }
  679. #endif
  680. }
  681. clear_buddies(cfs_rq, se);
  682. if (se != cfs_rq->curr)
  683. __dequeue_entity(cfs_rq, se);
  684. account_entity_dequeue(cfs_rq, se);
  685. update_min_vruntime(cfs_rq);
  686. /*
  687. * Normalize the entity after updating the min_vruntime because the
  688. * update can refer to the ->curr item and we need to reflect this
  689. * movement in our normalized position.
  690. */
  691. if (!(flags & DEQUEUE_SLEEP))
  692. se->vruntime -= cfs_rq->min_vruntime;
  693. }
  694. /*
  695. * Preempt the current task with a newly woken task if needed:
  696. */
  697. static void
  698. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  699. {
  700. unsigned long ideal_runtime, delta_exec;
  701. ideal_runtime = sched_slice(cfs_rq, curr);
  702. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  703. if (delta_exec > ideal_runtime) {
  704. resched_task(rq_of(cfs_rq)->curr);
  705. /*
  706. * The current task ran long enough, ensure it doesn't get
  707. * re-elected due to buddy favours.
  708. */
  709. clear_buddies(cfs_rq, curr);
  710. return;
  711. }
  712. /*
  713. * Ensure that a task that missed wakeup preemption by a
  714. * narrow margin doesn't have to wait for a full slice.
  715. * This also mitigates buddy induced latencies under load.
  716. */
  717. if (!sched_feat(WAKEUP_PREEMPT))
  718. return;
  719. if (delta_exec < sysctl_sched_min_granularity)
  720. return;
  721. if (cfs_rq->nr_running > 1) {
  722. struct sched_entity *se = __pick_next_entity(cfs_rq);
  723. s64 delta = curr->vruntime - se->vruntime;
  724. if (delta > ideal_runtime)
  725. resched_task(rq_of(cfs_rq)->curr);
  726. }
  727. }
  728. static void
  729. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  730. {
  731. /* 'current' is not kept within the tree. */
  732. if (se->on_rq) {
  733. /*
  734. * Any task has to be enqueued before it get to execute on
  735. * a CPU. So account for the time it spent waiting on the
  736. * runqueue.
  737. */
  738. update_stats_wait_end(cfs_rq, se);
  739. __dequeue_entity(cfs_rq, se);
  740. }
  741. update_stats_curr_start(cfs_rq, se);
  742. cfs_rq->curr = se;
  743. #ifdef CONFIG_SCHEDSTATS
  744. /*
  745. * Track our maximum slice length, if the CPU's load is at
  746. * least twice that of our own weight (i.e. dont track it
  747. * when there are only lesser-weight tasks around):
  748. */
  749. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  750. se->statistics.slice_max = max(se->statistics.slice_max,
  751. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  752. }
  753. #endif
  754. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  755. }
  756. static int
  757. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  758. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  759. {
  760. struct sched_entity *se = __pick_next_entity(cfs_rq);
  761. struct sched_entity *left = se;
  762. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  763. se = cfs_rq->next;
  764. /*
  765. * Prefer last buddy, try to return the CPU to a preempted task.
  766. */
  767. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  768. se = cfs_rq->last;
  769. clear_buddies(cfs_rq, se);
  770. return se;
  771. }
  772. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  773. {
  774. /*
  775. * If still on the runqueue then deactivate_task()
  776. * was not called and update_curr() has to be done:
  777. */
  778. if (prev->on_rq)
  779. update_curr(cfs_rq);
  780. check_spread(cfs_rq, prev);
  781. if (prev->on_rq) {
  782. update_stats_wait_start(cfs_rq, prev);
  783. /* Put 'current' back into the tree. */
  784. __enqueue_entity(cfs_rq, prev);
  785. }
  786. cfs_rq->curr = NULL;
  787. }
  788. static void
  789. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  790. {
  791. /*
  792. * Update run-time statistics of the 'current'.
  793. */
  794. update_curr(cfs_rq);
  795. #ifdef CONFIG_SCHED_HRTICK
  796. /*
  797. * queued ticks are scheduled to match the slice, so don't bother
  798. * validating it and just reschedule.
  799. */
  800. if (queued) {
  801. resched_task(rq_of(cfs_rq)->curr);
  802. return;
  803. }
  804. /*
  805. * don't let the period tick interfere with the hrtick preemption
  806. */
  807. if (!sched_feat(DOUBLE_TICK) &&
  808. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  809. return;
  810. #endif
  811. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  812. check_preempt_tick(cfs_rq, curr);
  813. }
  814. /**************************************************
  815. * CFS operations on tasks:
  816. */
  817. #ifdef CONFIG_SCHED_HRTICK
  818. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  819. {
  820. struct sched_entity *se = &p->se;
  821. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  822. WARN_ON(task_rq(p) != rq);
  823. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  824. u64 slice = sched_slice(cfs_rq, se);
  825. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  826. s64 delta = slice - ran;
  827. if (delta < 0) {
  828. if (rq->curr == p)
  829. resched_task(p);
  830. return;
  831. }
  832. /*
  833. * Don't schedule slices shorter than 10000ns, that just
  834. * doesn't make sense. Rely on vruntime for fairness.
  835. */
  836. if (rq->curr != p)
  837. delta = max_t(s64, 10000LL, delta);
  838. hrtick_start(rq, delta);
  839. }
  840. }
  841. /*
  842. * called from enqueue/dequeue and updates the hrtick when the
  843. * current task is from our class and nr_running is low enough
  844. * to matter.
  845. */
  846. static void hrtick_update(struct rq *rq)
  847. {
  848. struct task_struct *curr = rq->curr;
  849. if (curr->sched_class != &fair_sched_class)
  850. return;
  851. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  852. hrtick_start_fair(rq, curr);
  853. }
  854. #else /* !CONFIG_SCHED_HRTICK */
  855. static inline void
  856. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  857. {
  858. }
  859. static inline void hrtick_update(struct rq *rq)
  860. {
  861. }
  862. #endif
  863. /*
  864. * The enqueue_task method is called before nr_running is
  865. * increased. Here we update the fair scheduling stats and
  866. * then put the task into the rbtree:
  867. */
  868. static void
  869. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  870. {
  871. struct cfs_rq *cfs_rq;
  872. struct sched_entity *se = &p->se;
  873. for_each_sched_entity(se) {
  874. if (se->on_rq)
  875. break;
  876. cfs_rq = cfs_rq_of(se);
  877. enqueue_entity(cfs_rq, se, flags);
  878. flags = ENQUEUE_WAKEUP;
  879. }
  880. hrtick_update(rq);
  881. }
  882. /*
  883. * The dequeue_task method is called before nr_running is
  884. * decreased. We remove the task from the rbtree and
  885. * update the fair scheduling stats:
  886. */
  887. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  888. {
  889. struct cfs_rq *cfs_rq;
  890. struct sched_entity *se = &p->se;
  891. for_each_sched_entity(se) {
  892. cfs_rq = cfs_rq_of(se);
  893. dequeue_entity(cfs_rq, se, flags);
  894. /* Don't dequeue parent if it has other entities besides us */
  895. if (cfs_rq->load.weight)
  896. break;
  897. flags |= DEQUEUE_SLEEP;
  898. }
  899. hrtick_update(rq);
  900. }
  901. /*
  902. * sched_yield() support is very simple - we dequeue and enqueue.
  903. *
  904. * If compat_yield is turned on then we requeue to the end of the tree.
  905. */
  906. static void yield_task_fair(struct rq *rq)
  907. {
  908. struct task_struct *curr = rq->curr;
  909. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  910. struct sched_entity *rightmost, *se = &curr->se;
  911. /*
  912. * Are we the only task in the tree?
  913. */
  914. if (unlikely(cfs_rq->nr_running == 1))
  915. return;
  916. clear_buddies(cfs_rq, se);
  917. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  918. update_rq_clock(rq);
  919. /*
  920. * Update run-time statistics of the 'current'.
  921. */
  922. update_curr(cfs_rq);
  923. return;
  924. }
  925. /*
  926. * Find the rightmost entry in the rbtree:
  927. */
  928. rightmost = __pick_last_entity(cfs_rq);
  929. /*
  930. * Already in the rightmost position?
  931. */
  932. if (unlikely(!rightmost || entity_before(rightmost, se)))
  933. return;
  934. /*
  935. * Minimally necessary key value to be last in the tree:
  936. * Upon rescheduling, sched_class::put_prev_task() will place
  937. * 'current' within the tree based on its new key value.
  938. */
  939. se->vruntime = rightmost->vruntime + 1;
  940. }
  941. #ifdef CONFIG_SMP
  942. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  943. {
  944. struct sched_entity *se = &p->se;
  945. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  946. se->vruntime -= cfs_rq->min_vruntime;
  947. }
  948. #ifdef CONFIG_FAIR_GROUP_SCHED
  949. /*
  950. * effective_load() calculates the load change as seen from the root_task_group
  951. *
  952. * Adding load to a group doesn't make a group heavier, but can cause movement
  953. * of group shares between cpus. Assuming the shares were perfectly aligned one
  954. * can calculate the shift in shares.
  955. *
  956. * The problem is that perfectly aligning the shares is rather expensive, hence
  957. * we try to avoid doing that too often - see update_shares(), which ratelimits
  958. * this change.
  959. *
  960. * We compensate this by not only taking the current delta into account, but
  961. * also considering the delta between when the shares were last adjusted and
  962. * now.
  963. *
  964. * We still saw a performance dip, some tracing learned us that between
  965. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  966. * significantly. Therefore try to bias the error in direction of failing
  967. * the affine wakeup.
  968. *
  969. */
  970. static long effective_load(struct task_group *tg, int cpu,
  971. long wl, long wg)
  972. {
  973. struct sched_entity *se = tg->se[cpu];
  974. if (!tg->parent)
  975. return wl;
  976. /*
  977. * By not taking the decrease of shares on the other cpu into
  978. * account our error leans towards reducing the affine wakeups.
  979. */
  980. if (!wl && sched_feat(ASYM_EFF_LOAD))
  981. return wl;
  982. for_each_sched_entity(se) {
  983. long S, rw, s, a, b;
  984. long more_w;
  985. /*
  986. * Instead of using this increment, also add the difference
  987. * between when the shares were last updated and now.
  988. */
  989. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  990. wl += more_w;
  991. wg += more_w;
  992. S = se->my_q->tg->shares;
  993. s = se->my_q->shares;
  994. rw = se->my_q->rq_weight;
  995. a = S*(rw + wl);
  996. b = S*rw + s*wg;
  997. wl = s*(a-b);
  998. if (likely(b))
  999. wl /= b;
  1000. /*
  1001. * Assume the group is already running and will
  1002. * thus already be accounted for in the weight.
  1003. *
  1004. * That is, moving shares between CPUs, does not
  1005. * alter the group weight.
  1006. */
  1007. wg = 0;
  1008. }
  1009. return wl;
  1010. }
  1011. #else
  1012. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1013. unsigned long wl, unsigned long wg)
  1014. {
  1015. return wl;
  1016. }
  1017. #endif
  1018. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1019. {
  1020. unsigned long this_load, load;
  1021. int idx, this_cpu, prev_cpu;
  1022. unsigned long tl_per_task;
  1023. struct task_group *tg;
  1024. unsigned long weight;
  1025. int balanced;
  1026. idx = sd->wake_idx;
  1027. this_cpu = smp_processor_id();
  1028. prev_cpu = task_cpu(p);
  1029. load = source_load(prev_cpu, idx);
  1030. this_load = target_load(this_cpu, idx);
  1031. /*
  1032. * If sync wakeup then subtract the (maximum possible)
  1033. * effect of the currently running task from the load
  1034. * of the current CPU:
  1035. */
  1036. rcu_read_lock();
  1037. if (sync) {
  1038. tg = task_group(current);
  1039. weight = current->se.load.weight;
  1040. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1041. load += effective_load(tg, prev_cpu, 0, -weight);
  1042. }
  1043. tg = task_group(p);
  1044. weight = p->se.load.weight;
  1045. /*
  1046. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1047. * due to the sync cause above having dropped this_load to 0, we'll
  1048. * always have an imbalance, but there's really nothing you can do
  1049. * about that, so that's good too.
  1050. *
  1051. * Otherwise check if either cpus are near enough in load to allow this
  1052. * task to be woken on this_cpu.
  1053. */
  1054. if (this_load) {
  1055. unsigned long this_eff_load, prev_eff_load;
  1056. this_eff_load = 100;
  1057. this_eff_load *= power_of(prev_cpu);
  1058. this_eff_load *= this_load +
  1059. effective_load(tg, this_cpu, weight, weight);
  1060. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1061. prev_eff_load *= power_of(this_cpu);
  1062. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1063. balanced = this_eff_load <= prev_eff_load;
  1064. } else
  1065. balanced = true;
  1066. rcu_read_unlock();
  1067. /*
  1068. * If the currently running task will sleep within
  1069. * a reasonable amount of time then attract this newly
  1070. * woken task:
  1071. */
  1072. if (sync && balanced)
  1073. return 1;
  1074. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1075. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1076. if (balanced ||
  1077. (this_load <= load &&
  1078. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1079. /*
  1080. * This domain has SD_WAKE_AFFINE and
  1081. * p is cache cold in this domain, and
  1082. * there is no bad imbalance.
  1083. */
  1084. schedstat_inc(sd, ttwu_move_affine);
  1085. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1086. return 1;
  1087. }
  1088. return 0;
  1089. }
  1090. /*
  1091. * find_idlest_group finds and returns the least busy CPU group within the
  1092. * domain.
  1093. */
  1094. static struct sched_group *
  1095. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1096. int this_cpu, int load_idx)
  1097. {
  1098. struct sched_group *idlest = NULL, *group = sd->groups;
  1099. unsigned long min_load = ULONG_MAX, this_load = 0;
  1100. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1101. do {
  1102. unsigned long load, avg_load;
  1103. int local_group;
  1104. int i;
  1105. /* Skip over this group if it has no CPUs allowed */
  1106. if (!cpumask_intersects(sched_group_cpus(group),
  1107. &p->cpus_allowed))
  1108. continue;
  1109. local_group = cpumask_test_cpu(this_cpu,
  1110. sched_group_cpus(group));
  1111. /* Tally up the load of all CPUs in the group */
  1112. avg_load = 0;
  1113. for_each_cpu(i, sched_group_cpus(group)) {
  1114. /* Bias balancing toward cpus of our domain */
  1115. if (local_group)
  1116. load = source_load(i, load_idx);
  1117. else
  1118. load = target_load(i, load_idx);
  1119. avg_load += load;
  1120. }
  1121. /* Adjust by relative CPU power of the group */
  1122. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1123. if (local_group) {
  1124. this_load = avg_load;
  1125. } else if (avg_load < min_load) {
  1126. min_load = avg_load;
  1127. idlest = group;
  1128. }
  1129. } while (group = group->next, group != sd->groups);
  1130. if (!idlest || 100*this_load < imbalance*min_load)
  1131. return NULL;
  1132. return idlest;
  1133. }
  1134. /*
  1135. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1136. */
  1137. static int
  1138. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1139. {
  1140. unsigned long load, min_load = ULONG_MAX;
  1141. int idlest = -1;
  1142. int i;
  1143. /* Traverse only the allowed CPUs */
  1144. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1145. load = weighted_cpuload(i);
  1146. if (load < min_load || (load == min_load && i == this_cpu)) {
  1147. min_load = load;
  1148. idlest = i;
  1149. }
  1150. }
  1151. return idlest;
  1152. }
  1153. /*
  1154. * Try and locate an idle CPU in the sched_domain.
  1155. */
  1156. static int select_idle_sibling(struct task_struct *p, int target)
  1157. {
  1158. int cpu = smp_processor_id();
  1159. int prev_cpu = task_cpu(p);
  1160. struct sched_domain *sd;
  1161. int i;
  1162. /*
  1163. * If the task is going to be woken-up on this cpu and if it is
  1164. * already idle, then it is the right target.
  1165. */
  1166. if (target == cpu && idle_cpu(cpu))
  1167. return cpu;
  1168. /*
  1169. * If the task is going to be woken-up on the cpu where it previously
  1170. * ran and if it is currently idle, then it the right target.
  1171. */
  1172. if (target == prev_cpu && idle_cpu(prev_cpu))
  1173. return prev_cpu;
  1174. /*
  1175. * Otherwise, iterate the domains and find an elegible idle cpu.
  1176. */
  1177. for_each_domain(target, sd) {
  1178. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1179. break;
  1180. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1181. if (idle_cpu(i)) {
  1182. target = i;
  1183. break;
  1184. }
  1185. }
  1186. /*
  1187. * Lets stop looking for an idle sibling when we reached
  1188. * the domain that spans the current cpu and prev_cpu.
  1189. */
  1190. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1191. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1192. break;
  1193. }
  1194. return target;
  1195. }
  1196. /*
  1197. * sched_balance_self: balance the current task (running on cpu) in domains
  1198. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1199. * SD_BALANCE_EXEC.
  1200. *
  1201. * Balance, ie. select the least loaded group.
  1202. *
  1203. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1204. *
  1205. * preempt must be disabled.
  1206. */
  1207. static int
  1208. select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
  1209. {
  1210. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1211. int cpu = smp_processor_id();
  1212. int prev_cpu = task_cpu(p);
  1213. int new_cpu = cpu;
  1214. int want_affine = 0;
  1215. int want_sd = 1;
  1216. int sync = wake_flags & WF_SYNC;
  1217. if (sd_flag & SD_BALANCE_WAKE) {
  1218. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1219. want_affine = 1;
  1220. new_cpu = prev_cpu;
  1221. }
  1222. for_each_domain(cpu, tmp) {
  1223. if (!(tmp->flags & SD_LOAD_BALANCE))
  1224. continue;
  1225. /*
  1226. * If power savings logic is enabled for a domain, see if we
  1227. * are not overloaded, if so, don't balance wider.
  1228. */
  1229. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1230. unsigned long power = 0;
  1231. unsigned long nr_running = 0;
  1232. unsigned long capacity;
  1233. int i;
  1234. for_each_cpu(i, sched_domain_span(tmp)) {
  1235. power += power_of(i);
  1236. nr_running += cpu_rq(i)->cfs.nr_running;
  1237. }
  1238. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1239. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1240. nr_running /= 2;
  1241. if (nr_running < capacity)
  1242. want_sd = 0;
  1243. }
  1244. /*
  1245. * If both cpu and prev_cpu are part of this domain,
  1246. * cpu is a valid SD_WAKE_AFFINE target.
  1247. */
  1248. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1249. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1250. affine_sd = tmp;
  1251. want_affine = 0;
  1252. }
  1253. if (!want_sd && !want_affine)
  1254. break;
  1255. if (!(tmp->flags & sd_flag))
  1256. continue;
  1257. if (want_sd)
  1258. sd = tmp;
  1259. }
  1260. #ifdef CONFIG_FAIR_GROUP_SCHED
  1261. if (sched_feat(LB_SHARES_UPDATE)) {
  1262. /*
  1263. * Pick the largest domain to update shares over
  1264. */
  1265. tmp = sd;
  1266. if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
  1267. tmp = affine_sd;
  1268. if (tmp) {
  1269. raw_spin_unlock(&rq->lock);
  1270. update_shares(tmp);
  1271. raw_spin_lock(&rq->lock);
  1272. }
  1273. }
  1274. #endif
  1275. if (affine_sd) {
  1276. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1277. return select_idle_sibling(p, cpu);
  1278. else
  1279. return select_idle_sibling(p, prev_cpu);
  1280. }
  1281. while (sd) {
  1282. int load_idx = sd->forkexec_idx;
  1283. struct sched_group *group;
  1284. int weight;
  1285. if (!(sd->flags & sd_flag)) {
  1286. sd = sd->child;
  1287. continue;
  1288. }
  1289. if (sd_flag & SD_BALANCE_WAKE)
  1290. load_idx = sd->wake_idx;
  1291. group = find_idlest_group(sd, p, cpu, load_idx);
  1292. if (!group) {
  1293. sd = sd->child;
  1294. continue;
  1295. }
  1296. new_cpu = find_idlest_cpu(group, p, cpu);
  1297. if (new_cpu == -1 || new_cpu == cpu) {
  1298. /* Now try balancing at a lower domain level of cpu */
  1299. sd = sd->child;
  1300. continue;
  1301. }
  1302. /* Now try balancing at a lower domain level of new_cpu */
  1303. cpu = new_cpu;
  1304. weight = sd->span_weight;
  1305. sd = NULL;
  1306. for_each_domain(cpu, tmp) {
  1307. if (weight <= tmp->span_weight)
  1308. break;
  1309. if (tmp->flags & sd_flag)
  1310. sd = tmp;
  1311. }
  1312. /* while loop will break here if sd == NULL */
  1313. }
  1314. return new_cpu;
  1315. }
  1316. #endif /* CONFIG_SMP */
  1317. static unsigned long
  1318. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1319. {
  1320. unsigned long gran = sysctl_sched_wakeup_granularity;
  1321. /*
  1322. * Since its curr running now, convert the gran from real-time
  1323. * to virtual-time in his units.
  1324. *
  1325. * By using 'se' instead of 'curr' we penalize light tasks, so
  1326. * they get preempted easier. That is, if 'se' < 'curr' then
  1327. * the resulting gran will be larger, therefore penalizing the
  1328. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1329. * be smaller, again penalizing the lighter task.
  1330. *
  1331. * This is especially important for buddies when the leftmost
  1332. * task is higher priority than the buddy.
  1333. */
  1334. if (unlikely(se->load.weight != NICE_0_LOAD))
  1335. gran = calc_delta_fair(gran, se);
  1336. return gran;
  1337. }
  1338. /*
  1339. * Should 'se' preempt 'curr'.
  1340. *
  1341. * |s1
  1342. * |s2
  1343. * |s3
  1344. * g
  1345. * |<--->|c
  1346. *
  1347. * w(c, s1) = -1
  1348. * w(c, s2) = 0
  1349. * w(c, s3) = 1
  1350. *
  1351. */
  1352. static int
  1353. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1354. {
  1355. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1356. if (vdiff <= 0)
  1357. return -1;
  1358. gran = wakeup_gran(curr, se);
  1359. if (vdiff > gran)
  1360. return 1;
  1361. return 0;
  1362. }
  1363. static void set_last_buddy(struct sched_entity *se)
  1364. {
  1365. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1366. for_each_sched_entity(se)
  1367. cfs_rq_of(se)->last = se;
  1368. }
  1369. }
  1370. static void set_next_buddy(struct sched_entity *se)
  1371. {
  1372. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1373. for_each_sched_entity(se)
  1374. cfs_rq_of(se)->next = se;
  1375. }
  1376. }
  1377. /*
  1378. * Preempt the current task with a newly woken task if needed:
  1379. */
  1380. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1381. {
  1382. struct task_struct *curr = rq->curr;
  1383. struct sched_entity *se = &curr->se, *pse = &p->se;
  1384. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1385. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1386. if (unlikely(se == pse))
  1387. return;
  1388. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1389. set_next_buddy(pse);
  1390. /*
  1391. * We can come here with TIF_NEED_RESCHED already set from new task
  1392. * wake up path.
  1393. */
  1394. if (test_tsk_need_resched(curr))
  1395. return;
  1396. /*
  1397. * Batch and idle tasks do not preempt (their preemption is driven by
  1398. * the tick):
  1399. */
  1400. if (unlikely(p->policy != SCHED_NORMAL))
  1401. return;
  1402. /* Idle tasks are by definition preempted by everybody. */
  1403. if (unlikely(curr->policy == SCHED_IDLE))
  1404. goto preempt;
  1405. if (!sched_feat(WAKEUP_PREEMPT))
  1406. return;
  1407. update_curr(cfs_rq);
  1408. find_matching_se(&se, &pse);
  1409. BUG_ON(!pse);
  1410. if (wakeup_preempt_entity(se, pse) == 1)
  1411. goto preempt;
  1412. return;
  1413. preempt:
  1414. resched_task(curr);
  1415. /*
  1416. * Only set the backward buddy when the current task is still
  1417. * on the rq. This can happen when a wakeup gets interleaved
  1418. * with schedule on the ->pre_schedule() or idle_balance()
  1419. * point, either of which can * drop the rq lock.
  1420. *
  1421. * Also, during early boot the idle thread is in the fair class,
  1422. * for obvious reasons its a bad idea to schedule back to it.
  1423. */
  1424. if (unlikely(!se->on_rq || curr == rq->idle))
  1425. return;
  1426. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1427. set_last_buddy(se);
  1428. }
  1429. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1430. {
  1431. struct task_struct *p;
  1432. struct cfs_rq *cfs_rq = &rq->cfs;
  1433. struct sched_entity *se;
  1434. if (!cfs_rq->nr_running)
  1435. return NULL;
  1436. do {
  1437. se = pick_next_entity(cfs_rq);
  1438. set_next_entity(cfs_rq, se);
  1439. cfs_rq = group_cfs_rq(se);
  1440. } while (cfs_rq);
  1441. p = task_of(se);
  1442. hrtick_start_fair(rq, p);
  1443. return p;
  1444. }
  1445. /*
  1446. * Account for a descheduled task:
  1447. */
  1448. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1449. {
  1450. struct sched_entity *se = &prev->se;
  1451. struct cfs_rq *cfs_rq;
  1452. for_each_sched_entity(se) {
  1453. cfs_rq = cfs_rq_of(se);
  1454. put_prev_entity(cfs_rq, se);
  1455. }
  1456. }
  1457. #ifdef CONFIG_SMP
  1458. /**************************************************
  1459. * Fair scheduling class load-balancing methods:
  1460. */
  1461. /*
  1462. * pull_task - move a task from a remote runqueue to the local runqueue.
  1463. * Both runqueues must be locked.
  1464. */
  1465. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1466. struct rq *this_rq, int this_cpu)
  1467. {
  1468. deactivate_task(src_rq, p, 0);
  1469. set_task_cpu(p, this_cpu);
  1470. activate_task(this_rq, p, 0);
  1471. check_preempt_curr(this_rq, p, 0);
  1472. /* re-arm NEWIDLE balancing when moving tasks */
  1473. src_rq->avg_idle = this_rq->avg_idle = 2*sysctl_sched_migration_cost;
  1474. this_rq->idle_stamp = 0;
  1475. }
  1476. /*
  1477. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1478. */
  1479. static
  1480. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1481. struct sched_domain *sd, enum cpu_idle_type idle,
  1482. int *all_pinned)
  1483. {
  1484. int tsk_cache_hot = 0;
  1485. /*
  1486. * We do not migrate tasks that are:
  1487. * 1) running (obviously), or
  1488. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1489. * 3) are cache-hot on their current CPU.
  1490. */
  1491. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1492. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1493. return 0;
  1494. }
  1495. *all_pinned = 0;
  1496. if (task_running(rq, p)) {
  1497. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1498. return 0;
  1499. }
  1500. /*
  1501. * Aggressive migration if:
  1502. * 1) task is cache cold, or
  1503. * 2) too many balance attempts have failed.
  1504. */
  1505. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1506. if (!tsk_cache_hot ||
  1507. sd->nr_balance_failed > sd->cache_nice_tries) {
  1508. #ifdef CONFIG_SCHEDSTATS
  1509. if (tsk_cache_hot) {
  1510. schedstat_inc(sd, lb_hot_gained[idle]);
  1511. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1512. }
  1513. #endif
  1514. return 1;
  1515. }
  1516. if (tsk_cache_hot) {
  1517. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1518. return 0;
  1519. }
  1520. return 1;
  1521. }
  1522. /*
  1523. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1524. * part of active balancing operations within "domain".
  1525. * Returns 1 if successful and 0 otherwise.
  1526. *
  1527. * Called with both runqueues locked.
  1528. */
  1529. static int
  1530. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1531. struct sched_domain *sd, enum cpu_idle_type idle)
  1532. {
  1533. struct task_struct *p, *n;
  1534. struct cfs_rq *cfs_rq;
  1535. int pinned = 0;
  1536. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1537. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1538. if (!can_migrate_task(p, busiest, this_cpu,
  1539. sd, idle, &pinned))
  1540. continue;
  1541. pull_task(busiest, p, this_rq, this_cpu);
  1542. /*
  1543. * Right now, this is only the second place pull_task()
  1544. * is called, so we can safely collect pull_task()
  1545. * stats here rather than inside pull_task().
  1546. */
  1547. schedstat_inc(sd, lb_gained[idle]);
  1548. return 1;
  1549. }
  1550. }
  1551. return 0;
  1552. }
  1553. static unsigned long
  1554. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1555. unsigned long max_load_move, struct sched_domain *sd,
  1556. enum cpu_idle_type idle, int *all_pinned,
  1557. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1558. {
  1559. int loops = 0, pulled = 0, pinned = 0;
  1560. long rem_load_move = max_load_move;
  1561. struct task_struct *p, *n;
  1562. if (max_load_move == 0)
  1563. goto out;
  1564. pinned = 1;
  1565. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1566. if (loops++ > sysctl_sched_nr_migrate)
  1567. break;
  1568. if ((p->se.load.weight >> 1) > rem_load_move ||
  1569. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1570. continue;
  1571. pull_task(busiest, p, this_rq, this_cpu);
  1572. pulled++;
  1573. rem_load_move -= p->se.load.weight;
  1574. #ifdef CONFIG_PREEMPT
  1575. /*
  1576. * NEWIDLE balancing is a source of latency, so preemptible
  1577. * kernels will stop after the first task is pulled to minimize
  1578. * the critical section.
  1579. */
  1580. if (idle == CPU_NEWLY_IDLE)
  1581. break;
  1582. #endif
  1583. /*
  1584. * We only want to steal up to the prescribed amount of
  1585. * weighted load.
  1586. */
  1587. if (rem_load_move <= 0)
  1588. break;
  1589. if (p->prio < *this_best_prio)
  1590. *this_best_prio = p->prio;
  1591. }
  1592. out:
  1593. /*
  1594. * Right now, this is one of only two places pull_task() is called,
  1595. * so we can safely collect pull_task() stats here rather than
  1596. * inside pull_task().
  1597. */
  1598. schedstat_add(sd, lb_gained[idle], pulled);
  1599. if (all_pinned)
  1600. *all_pinned = pinned;
  1601. return max_load_move - rem_load_move;
  1602. }
  1603. #ifdef CONFIG_FAIR_GROUP_SCHED
  1604. static unsigned long
  1605. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1606. unsigned long max_load_move,
  1607. struct sched_domain *sd, enum cpu_idle_type idle,
  1608. int *all_pinned, int *this_best_prio)
  1609. {
  1610. long rem_load_move = max_load_move;
  1611. int busiest_cpu = cpu_of(busiest);
  1612. struct task_group *tg;
  1613. rcu_read_lock();
  1614. update_h_load(busiest_cpu);
  1615. list_for_each_entry_rcu(tg, &task_groups, list) {
  1616. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1617. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1618. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1619. u64 rem_load, moved_load;
  1620. /*
  1621. * empty group
  1622. */
  1623. if (!busiest_cfs_rq->task_weight)
  1624. continue;
  1625. rem_load = (u64)rem_load_move * busiest_weight;
  1626. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1627. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1628. rem_load, sd, idle, all_pinned, this_best_prio,
  1629. busiest_cfs_rq);
  1630. if (!moved_load)
  1631. continue;
  1632. moved_load *= busiest_h_load;
  1633. moved_load = div_u64(moved_load, busiest_weight + 1);
  1634. rem_load_move -= moved_load;
  1635. if (rem_load_move < 0)
  1636. break;
  1637. }
  1638. rcu_read_unlock();
  1639. return max_load_move - rem_load_move;
  1640. }
  1641. #else
  1642. static unsigned long
  1643. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1644. unsigned long max_load_move,
  1645. struct sched_domain *sd, enum cpu_idle_type idle,
  1646. int *all_pinned, int *this_best_prio)
  1647. {
  1648. return balance_tasks(this_rq, this_cpu, busiest,
  1649. max_load_move, sd, idle, all_pinned,
  1650. this_best_prio, &busiest->cfs);
  1651. }
  1652. #endif
  1653. /*
  1654. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1655. * this_rq, as part of a balancing operation within domain "sd".
  1656. * Returns 1 if successful and 0 otherwise.
  1657. *
  1658. * Called with both runqueues locked.
  1659. */
  1660. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1661. unsigned long max_load_move,
  1662. struct sched_domain *sd, enum cpu_idle_type idle,
  1663. int *all_pinned)
  1664. {
  1665. unsigned long total_load_moved = 0, load_moved;
  1666. int this_best_prio = this_rq->curr->prio;
  1667. do {
  1668. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1669. max_load_move - total_load_moved,
  1670. sd, idle, all_pinned, &this_best_prio);
  1671. total_load_moved += load_moved;
  1672. #ifdef CONFIG_PREEMPT
  1673. /*
  1674. * NEWIDLE balancing is a source of latency, so preemptible
  1675. * kernels will stop after the first task is pulled to minimize
  1676. * the critical section.
  1677. */
  1678. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1679. break;
  1680. if (raw_spin_is_contended(&this_rq->lock) ||
  1681. raw_spin_is_contended(&busiest->lock))
  1682. break;
  1683. #endif
  1684. } while (load_moved && max_load_move > total_load_moved);
  1685. return total_load_moved > 0;
  1686. }
  1687. /********** Helpers for find_busiest_group ************************/
  1688. /*
  1689. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1690. * during load balancing.
  1691. */
  1692. struct sd_lb_stats {
  1693. struct sched_group *busiest; /* Busiest group in this sd */
  1694. struct sched_group *this; /* Local group in this sd */
  1695. unsigned long total_load; /* Total load of all groups in sd */
  1696. unsigned long total_pwr; /* Total power of all groups in sd */
  1697. unsigned long avg_load; /* Average load across all groups in sd */
  1698. /** Statistics of this group */
  1699. unsigned long this_load;
  1700. unsigned long this_load_per_task;
  1701. unsigned long this_nr_running;
  1702. unsigned long this_has_capacity;
  1703. unsigned int this_idle_cpus;
  1704. /* Statistics of the busiest group */
  1705. unsigned int busiest_idle_cpus;
  1706. unsigned long max_load;
  1707. unsigned long busiest_load_per_task;
  1708. unsigned long busiest_nr_running;
  1709. unsigned long busiest_group_capacity;
  1710. unsigned long busiest_has_capacity;
  1711. unsigned int busiest_group_weight;
  1712. int group_imb; /* Is there imbalance in this sd */
  1713. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1714. int power_savings_balance; /* Is powersave balance needed for this sd */
  1715. struct sched_group *group_min; /* Least loaded group in sd */
  1716. struct sched_group *group_leader; /* Group which relieves group_min */
  1717. unsigned long min_load_per_task; /* load_per_task in group_min */
  1718. unsigned long leader_nr_running; /* Nr running of group_leader */
  1719. unsigned long min_nr_running; /* Nr running of group_min */
  1720. #endif
  1721. };
  1722. /*
  1723. * sg_lb_stats - stats of a sched_group required for load_balancing
  1724. */
  1725. struct sg_lb_stats {
  1726. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1727. unsigned long group_load; /* Total load over the CPUs of the group */
  1728. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1729. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1730. unsigned long group_capacity;
  1731. unsigned long idle_cpus;
  1732. unsigned long group_weight;
  1733. int group_imb; /* Is there an imbalance in the group ? */
  1734. int group_has_capacity; /* Is there extra capacity in the group? */
  1735. };
  1736. /**
  1737. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1738. * @group: The group whose first cpu is to be returned.
  1739. */
  1740. static inline unsigned int group_first_cpu(struct sched_group *group)
  1741. {
  1742. return cpumask_first(sched_group_cpus(group));
  1743. }
  1744. /**
  1745. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1746. * @sd: The sched_domain whose load_idx is to be obtained.
  1747. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1748. */
  1749. static inline int get_sd_load_idx(struct sched_domain *sd,
  1750. enum cpu_idle_type idle)
  1751. {
  1752. int load_idx;
  1753. switch (idle) {
  1754. case CPU_NOT_IDLE:
  1755. load_idx = sd->busy_idx;
  1756. break;
  1757. case CPU_NEWLY_IDLE:
  1758. load_idx = sd->newidle_idx;
  1759. break;
  1760. default:
  1761. load_idx = sd->idle_idx;
  1762. break;
  1763. }
  1764. return load_idx;
  1765. }
  1766. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1767. /**
  1768. * init_sd_power_savings_stats - Initialize power savings statistics for
  1769. * the given sched_domain, during load balancing.
  1770. *
  1771. * @sd: Sched domain whose power-savings statistics are to be initialized.
  1772. * @sds: Variable containing the statistics for sd.
  1773. * @idle: Idle status of the CPU at which we're performing load-balancing.
  1774. */
  1775. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1776. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1777. {
  1778. /*
  1779. * Busy processors will not participate in power savings
  1780. * balance.
  1781. */
  1782. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1783. sds->power_savings_balance = 0;
  1784. else {
  1785. sds->power_savings_balance = 1;
  1786. sds->min_nr_running = ULONG_MAX;
  1787. sds->leader_nr_running = 0;
  1788. }
  1789. }
  1790. /**
  1791. * update_sd_power_savings_stats - Update the power saving stats for a
  1792. * sched_domain while performing load balancing.
  1793. *
  1794. * @group: sched_group belonging to the sched_domain under consideration.
  1795. * @sds: Variable containing the statistics of the sched_domain
  1796. * @local_group: Does group contain the CPU for which we're performing
  1797. * load balancing ?
  1798. * @sgs: Variable containing the statistics of the group.
  1799. */
  1800. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1801. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1802. {
  1803. if (!sds->power_savings_balance)
  1804. return;
  1805. /*
  1806. * If the local group is idle or completely loaded
  1807. * no need to do power savings balance at this domain
  1808. */
  1809. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  1810. !sds->this_nr_running))
  1811. sds->power_savings_balance = 0;
  1812. /*
  1813. * If a group is already running at full capacity or idle,
  1814. * don't include that group in power savings calculations
  1815. */
  1816. if (!sds->power_savings_balance ||
  1817. sgs->sum_nr_running >= sgs->group_capacity ||
  1818. !sgs->sum_nr_running)
  1819. return;
  1820. /*
  1821. * Calculate the group which has the least non-idle load.
  1822. * This is the group from where we need to pick up the load
  1823. * for saving power
  1824. */
  1825. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  1826. (sgs->sum_nr_running == sds->min_nr_running &&
  1827. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  1828. sds->group_min = group;
  1829. sds->min_nr_running = sgs->sum_nr_running;
  1830. sds->min_load_per_task = sgs->sum_weighted_load /
  1831. sgs->sum_nr_running;
  1832. }
  1833. /*
  1834. * Calculate the group which is almost near its
  1835. * capacity but still has some space to pick up some load
  1836. * from other group and save more power
  1837. */
  1838. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  1839. return;
  1840. if (sgs->sum_nr_running > sds->leader_nr_running ||
  1841. (sgs->sum_nr_running == sds->leader_nr_running &&
  1842. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  1843. sds->group_leader = group;
  1844. sds->leader_nr_running = sgs->sum_nr_running;
  1845. }
  1846. }
  1847. /**
  1848. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  1849. * @sds: Variable containing the statistics of the sched_domain
  1850. * under consideration.
  1851. * @this_cpu: Cpu at which we're currently performing load-balancing.
  1852. * @imbalance: Variable to store the imbalance.
  1853. *
  1854. * Description:
  1855. * Check if we have potential to perform some power-savings balance.
  1856. * If yes, set the busiest group to be the least loaded group in the
  1857. * sched_domain, so that it's CPUs can be put to idle.
  1858. *
  1859. * Returns 1 if there is potential to perform power-savings balance.
  1860. * Else returns 0.
  1861. */
  1862. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1863. int this_cpu, unsigned long *imbalance)
  1864. {
  1865. if (!sds->power_savings_balance)
  1866. return 0;
  1867. if (sds->this != sds->group_leader ||
  1868. sds->group_leader == sds->group_min)
  1869. return 0;
  1870. *imbalance = sds->min_load_per_task;
  1871. sds->busiest = sds->group_min;
  1872. return 1;
  1873. }
  1874. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1875. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1876. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1877. {
  1878. return;
  1879. }
  1880. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1881. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1882. {
  1883. return;
  1884. }
  1885. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1886. int this_cpu, unsigned long *imbalance)
  1887. {
  1888. return 0;
  1889. }
  1890. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1891. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  1892. {
  1893. return SCHED_LOAD_SCALE;
  1894. }
  1895. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  1896. {
  1897. return default_scale_freq_power(sd, cpu);
  1898. }
  1899. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  1900. {
  1901. unsigned long weight = sd->span_weight;
  1902. unsigned long smt_gain = sd->smt_gain;
  1903. smt_gain /= weight;
  1904. return smt_gain;
  1905. }
  1906. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  1907. {
  1908. return default_scale_smt_power(sd, cpu);
  1909. }
  1910. unsigned long scale_rt_power(int cpu)
  1911. {
  1912. struct rq *rq = cpu_rq(cpu);
  1913. u64 total, available;
  1914. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  1915. if (unlikely(total < rq->rt_avg)) {
  1916. /* Ensures that power won't end up being negative */
  1917. available = 0;
  1918. } else {
  1919. available = total - rq->rt_avg;
  1920. }
  1921. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  1922. total = SCHED_LOAD_SCALE;
  1923. total >>= SCHED_LOAD_SHIFT;
  1924. return div_u64(available, total);
  1925. }
  1926. static void update_cpu_power(struct sched_domain *sd, int cpu)
  1927. {
  1928. unsigned long weight = sd->span_weight;
  1929. unsigned long power = SCHED_LOAD_SCALE;
  1930. struct sched_group *sdg = sd->groups;
  1931. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  1932. if (sched_feat(ARCH_POWER))
  1933. power *= arch_scale_smt_power(sd, cpu);
  1934. else
  1935. power *= default_scale_smt_power(sd, cpu);
  1936. power >>= SCHED_LOAD_SHIFT;
  1937. }
  1938. sdg->cpu_power_orig = power;
  1939. if (sched_feat(ARCH_POWER))
  1940. power *= arch_scale_freq_power(sd, cpu);
  1941. else
  1942. power *= default_scale_freq_power(sd, cpu);
  1943. power >>= SCHED_LOAD_SHIFT;
  1944. power *= scale_rt_power(cpu);
  1945. power >>= SCHED_LOAD_SHIFT;
  1946. if (!power)
  1947. power = 1;
  1948. cpu_rq(cpu)->cpu_power = power;
  1949. sdg->cpu_power = power;
  1950. }
  1951. static void update_group_power(struct sched_domain *sd, int cpu)
  1952. {
  1953. struct sched_domain *child = sd->child;
  1954. struct sched_group *group, *sdg = sd->groups;
  1955. unsigned long power;
  1956. if (!child) {
  1957. update_cpu_power(sd, cpu);
  1958. return;
  1959. }
  1960. power = 0;
  1961. group = child->groups;
  1962. do {
  1963. power += group->cpu_power;
  1964. group = group->next;
  1965. } while (group != child->groups);
  1966. sdg->cpu_power = power;
  1967. }
  1968. /*
  1969. * Try and fix up capacity for tiny siblings, this is needed when
  1970. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  1971. * which on its own isn't powerful enough.
  1972. *
  1973. * See update_sd_pick_busiest() and check_asym_packing().
  1974. */
  1975. static inline int
  1976. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  1977. {
  1978. /*
  1979. * Only siblings can have significantly less than SCHED_LOAD_SCALE
  1980. */
  1981. if (sd->level != SD_LV_SIBLING)
  1982. return 0;
  1983. /*
  1984. * If ~90% of the cpu_power is still there, we're good.
  1985. */
  1986. if (group->cpu_power * 32 > group->cpu_power_orig * 29)
  1987. return 1;
  1988. return 0;
  1989. }
  1990. /**
  1991. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  1992. * @sd: The sched_domain whose statistics are to be updated.
  1993. * @group: sched_group whose statistics are to be updated.
  1994. * @this_cpu: Cpu for which load balance is currently performed.
  1995. * @idle: Idle status of this_cpu
  1996. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  1997. * @sd_idle: Idle status of the sched_domain containing group.
  1998. * @local_group: Does group contain this_cpu.
  1999. * @cpus: Set of cpus considered for load balancing.
  2000. * @balance: Should we balance.
  2001. * @sgs: variable to hold the statistics for this group.
  2002. */
  2003. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2004. struct sched_group *group, int this_cpu,
  2005. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2006. int local_group, const struct cpumask *cpus,
  2007. int *balance, struct sg_lb_stats *sgs)
  2008. {
  2009. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2010. int i;
  2011. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2012. unsigned long avg_load_per_task = 0;
  2013. if (local_group)
  2014. balance_cpu = group_first_cpu(group);
  2015. /* Tally up the load of all CPUs in the group */
  2016. max_cpu_load = 0;
  2017. min_cpu_load = ~0UL;
  2018. max_nr_running = 0;
  2019. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2020. struct rq *rq = cpu_rq(i);
  2021. if (*sd_idle && rq->nr_running)
  2022. *sd_idle = 0;
  2023. /* Bias balancing toward cpus of our domain */
  2024. if (local_group) {
  2025. if (idle_cpu(i) && !first_idle_cpu) {
  2026. first_idle_cpu = 1;
  2027. balance_cpu = i;
  2028. }
  2029. load = target_load(i, load_idx);
  2030. } else {
  2031. load = source_load(i, load_idx);
  2032. if (load > max_cpu_load) {
  2033. max_cpu_load = load;
  2034. max_nr_running = rq->nr_running;
  2035. }
  2036. if (min_cpu_load > load)
  2037. min_cpu_load = load;
  2038. }
  2039. sgs->group_load += load;
  2040. sgs->sum_nr_running += rq->nr_running;
  2041. sgs->sum_weighted_load += weighted_cpuload(i);
  2042. if (idle_cpu(i))
  2043. sgs->idle_cpus++;
  2044. }
  2045. /*
  2046. * First idle cpu or the first cpu(busiest) in this sched group
  2047. * is eligible for doing load balancing at this and above
  2048. * domains. In the newly idle case, we will allow all the cpu's
  2049. * to do the newly idle load balance.
  2050. */
  2051. if (idle != CPU_NEWLY_IDLE && local_group) {
  2052. if (balance_cpu != this_cpu) {
  2053. *balance = 0;
  2054. return;
  2055. }
  2056. update_group_power(sd, this_cpu);
  2057. }
  2058. /* Adjust by relative CPU power of the group */
  2059. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2060. /*
  2061. * Consider the group unbalanced when the imbalance is larger
  2062. * than the average weight of two tasks.
  2063. *
  2064. * APZ: with cgroup the avg task weight can vary wildly and
  2065. * might not be a suitable number - should we keep a
  2066. * normalized nr_running number somewhere that negates
  2067. * the hierarchy?
  2068. */
  2069. if (sgs->sum_nr_running)
  2070. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2071. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
  2072. sgs->group_imb = 1;
  2073. sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2074. if (!sgs->group_capacity)
  2075. sgs->group_capacity = fix_small_capacity(sd, group);
  2076. sgs->group_weight = group->group_weight;
  2077. if (sgs->group_capacity > sgs->sum_nr_running)
  2078. sgs->group_has_capacity = 1;
  2079. }
  2080. /**
  2081. * update_sd_pick_busiest - return 1 on busiest group
  2082. * @sd: sched_domain whose statistics are to be checked
  2083. * @sds: sched_domain statistics
  2084. * @sg: sched_group candidate to be checked for being the busiest
  2085. * @sgs: sched_group statistics
  2086. * @this_cpu: the current cpu
  2087. *
  2088. * Determine if @sg is a busier group than the previously selected
  2089. * busiest group.
  2090. */
  2091. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2092. struct sd_lb_stats *sds,
  2093. struct sched_group *sg,
  2094. struct sg_lb_stats *sgs,
  2095. int this_cpu)
  2096. {
  2097. if (sgs->avg_load <= sds->max_load)
  2098. return false;
  2099. if (sgs->sum_nr_running > sgs->group_capacity)
  2100. return true;
  2101. if (sgs->group_imb)
  2102. return true;
  2103. /*
  2104. * ASYM_PACKING needs to move all the work to the lowest
  2105. * numbered CPUs in the group, therefore mark all groups
  2106. * higher than ourself as busy.
  2107. */
  2108. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2109. this_cpu < group_first_cpu(sg)) {
  2110. if (!sds->busiest)
  2111. return true;
  2112. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2113. return true;
  2114. }
  2115. return false;
  2116. }
  2117. /**
  2118. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2119. * @sd: sched_domain whose statistics are to be updated.
  2120. * @this_cpu: Cpu for which load balance is currently performed.
  2121. * @idle: Idle status of this_cpu
  2122. * @sd_idle: Idle status of the sched_domain containing sg.
  2123. * @cpus: Set of cpus considered for load balancing.
  2124. * @balance: Should we balance.
  2125. * @sds: variable to hold the statistics for this sched_domain.
  2126. */
  2127. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2128. enum cpu_idle_type idle, int *sd_idle,
  2129. const struct cpumask *cpus, int *balance,
  2130. struct sd_lb_stats *sds)
  2131. {
  2132. struct sched_domain *child = sd->child;
  2133. struct sched_group *sg = sd->groups;
  2134. struct sg_lb_stats sgs;
  2135. int load_idx, prefer_sibling = 0;
  2136. if (child && child->flags & SD_PREFER_SIBLING)
  2137. prefer_sibling = 1;
  2138. init_sd_power_savings_stats(sd, sds, idle);
  2139. load_idx = get_sd_load_idx(sd, idle);
  2140. do {
  2141. int local_group;
  2142. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2143. memset(&sgs, 0, sizeof(sgs));
  2144. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
  2145. local_group, cpus, balance, &sgs);
  2146. if (local_group && !(*balance))
  2147. return;
  2148. sds->total_load += sgs.group_load;
  2149. sds->total_pwr += sg->cpu_power;
  2150. /*
  2151. * In case the child domain prefers tasks go to siblings
  2152. * first, lower the sg capacity to one so that we'll try
  2153. * and move all the excess tasks away. We lower the capacity
  2154. * of a group only if the local group has the capacity to fit
  2155. * these excess tasks, i.e. nr_running < group_capacity. The
  2156. * extra check prevents the case where you always pull from the
  2157. * heaviest group when it is already under-utilized (possible
  2158. * with a large weight task outweighs the tasks on the system).
  2159. */
  2160. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2161. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2162. if (local_group) {
  2163. sds->this_load = sgs.avg_load;
  2164. sds->this = sg;
  2165. sds->this_nr_running = sgs.sum_nr_running;
  2166. sds->this_load_per_task = sgs.sum_weighted_load;
  2167. sds->this_has_capacity = sgs.group_has_capacity;
  2168. sds->this_idle_cpus = sgs.idle_cpus;
  2169. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2170. sds->max_load = sgs.avg_load;
  2171. sds->busiest = sg;
  2172. sds->busiest_nr_running = sgs.sum_nr_running;
  2173. sds->busiest_idle_cpus = sgs.idle_cpus;
  2174. sds->busiest_group_capacity = sgs.group_capacity;
  2175. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2176. sds->busiest_has_capacity = sgs.group_has_capacity;
  2177. sds->busiest_group_weight = sgs.group_weight;
  2178. sds->group_imb = sgs.group_imb;
  2179. }
  2180. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2181. sg = sg->next;
  2182. } while (sg != sd->groups);
  2183. }
  2184. int __weak arch_sd_sibling_asym_packing(void)
  2185. {
  2186. return 0*SD_ASYM_PACKING;
  2187. }
  2188. /**
  2189. * check_asym_packing - Check to see if the group is packed into the
  2190. * sched doman.
  2191. *
  2192. * This is primarily intended to used at the sibling level. Some
  2193. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2194. * case of POWER7, it can move to lower SMT modes only when higher
  2195. * threads are idle. When in lower SMT modes, the threads will
  2196. * perform better since they share less core resources. Hence when we
  2197. * have idle threads, we want them to be the higher ones.
  2198. *
  2199. * This packing function is run on idle threads. It checks to see if
  2200. * the busiest CPU in this domain (core in the P7 case) has a higher
  2201. * CPU number than the packing function is being run on. Here we are
  2202. * assuming lower CPU number will be equivalent to lower a SMT thread
  2203. * number.
  2204. *
  2205. * Returns 1 when packing is required and a task should be moved to
  2206. * this CPU. The amount of the imbalance is returned in *imbalance.
  2207. *
  2208. * @sd: The sched_domain whose packing is to be checked.
  2209. * @sds: Statistics of the sched_domain which is to be packed
  2210. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2211. * @imbalance: returns amount of imbalanced due to packing.
  2212. */
  2213. static int check_asym_packing(struct sched_domain *sd,
  2214. struct sd_lb_stats *sds,
  2215. int this_cpu, unsigned long *imbalance)
  2216. {
  2217. int busiest_cpu;
  2218. if (!(sd->flags & SD_ASYM_PACKING))
  2219. return 0;
  2220. if (!sds->busiest)
  2221. return 0;
  2222. busiest_cpu = group_first_cpu(sds->busiest);
  2223. if (this_cpu > busiest_cpu)
  2224. return 0;
  2225. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
  2226. SCHED_LOAD_SCALE);
  2227. return 1;
  2228. }
  2229. /**
  2230. * fix_small_imbalance - Calculate the minor imbalance that exists
  2231. * amongst the groups of a sched_domain, during
  2232. * load balancing.
  2233. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2234. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2235. * @imbalance: Variable to store the imbalance.
  2236. */
  2237. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2238. int this_cpu, unsigned long *imbalance)
  2239. {
  2240. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2241. unsigned int imbn = 2;
  2242. unsigned long scaled_busy_load_per_task;
  2243. if (sds->this_nr_running) {
  2244. sds->this_load_per_task /= sds->this_nr_running;
  2245. if (sds->busiest_load_per_task >
  2246. sds->this_load_per_task)
  2247. imbn = 1;
  2248. } else
  2249. sds->this_load_per_task =
  2250. cpu_avg_load_per_task(this_cpu);
  2251. scaled_busy_load_per_task = sds->busiest_load_per_task
  2252. * SCHED_LOAD_SCALE;
  2253. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2254. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2255. (scaled_busy_load_per_task * imbn)) {
  2256. *imbalance = sds->busiest_load_per_task;
  2257. return;
  2258. }
  2259. /*
  2260. * OK, we don't have enough imbalance to justify moving tasks,
  2261. * however we may be able to increase total CPU power used by
  2262. * moving them.
  2263. */
  2264. pwr_now += sds->busiest->cpu_power *
  2265. min(sds->busiest_load_per_task, sds->max_load);
  2266. pwr_now += sds->this->cpu_power *
  2267. min(sds->this_load_per_task, sds->this_load);
  2268. pwr_now /= SCHED_LOAD_SCALE;
  2269. /* Amount of load we'd subtract */
  2270. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2271. sds->busiest->cpu_power;
  2272. if (sds->max_load > tmp)
  2273. pwr_move += sds->busiest->cpu_power *
  2274. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2275. /* Amount of load we'd add */
  2276. if (sds->max_load * sds->busiest->cpu_power <
  2277. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2278. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2279. sds->this->cpu_power;
  2280. else
  2281. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2282. sds->this->cpu_power;
  2283. pwr_move += sds->this->cpu_power *
  2284. min(sds->this_load_per_task, sds->this_load + tmp);
  2285. pwr_move /= SCHED_LOAD_SCALE;
  2286. /* Move if we gain throughput */
  2287. if (pwr_move > pwr_now)
  2288. *imbalance = sds->busiest_load_per_task;
  2289. }
  2290. /**
  2291. * calculate_imbalance - Calculate the amount of imbalance present within the
  2292. * groups of a given sched_domain during load balance.
  2293. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2294. * @this_cpu: Cpu for which currently load balance is being performed.
  2295. * @imbalance: The variable to store the imbalance.
  2296. */
  2297. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2298. unsigned long *imbalance)
  2299. {
  2300. unsigned long max_pull, load_above_capacity = ~0UL;
  2301. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2302. if (sds->group_imb) {
  2303. sds->busiest_load_per_task =
  2304. min(sds->busiest_load_per_task, sds->avg_load);
  2305. }
  2306. /*
  2307. * In the presence of smp nice balancing, certain scenarios can have
  2308. * max load less than avg load(as we skip the groups at or below
  2309. * its cpu_power, while calculating max_load..)
  2310. */
  2311. if (sds->max_load < sds->avg_load) {
  2312. *imbalance = 0;
  2313. return fix_small_imbalance(sds, this_cpu, imbalance);
  2314. }
  2315. if (!sds->group_imb) {
  2316. /*
  2317. * Don't want to pull so many tasks that a group would go idle.
  2318. */
  2319. load_above_capacity = (sds->busiest_nr_running -
  2320. sds->busiest_group_capacity);
  2321. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2322. load_above_capacity /= sds->busiest->cpu_power;
  2323. }
  2324. /*
  2325. * We're trying to get all the cpus to the average_load, so we don't
  2326. * want to push ourselves above the average load, nor do we wish to
  2327. * reduce the max loaded cpu below the average load. At the same time,
  2328. * we also don't want to reduce the group load below the group capacity
  2329. * (so that we can implement power-savings policies etc). Thus we look
  2330. * for the minimum possible imbalance.
  2331. * Be careful of negative numbers as they'll appear as very large values
  2332. * with unsigned longs.
  2333. */
  2334. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2335. /* How much load to actually move to equalise the imbalance */
  2336. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2337. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2338. / SCHED_LOAD_SCALE;
  2339. /*
  2340. * if *imbalance is less than the average load per runnable task
  2341. * there is no gaurantee that any tasks will be moved so we'll have
  2342. * a think about bumping its value to force at least one task to be
  2343. * moved
  2344. */
  2345. if (*imbalance < sds->busiest_load_per_task)
  2346. return fix_small_imbalance(sds, this_cpu, imbalance);
  2347. }
  2348. /******* find_busiest_group() helpers end here *********************/
  2349. /**
  2350. * find_busiest_group - Returns the busiest group within the sched_domain
  2351. * if there is an imbalance. If there isn't an imbalance, and
  2352. * the user has opted for power-savings, it returns a group whose
  2353. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2354. * such a group exists.
  2355. *
  2356. * Also calculates the amount of weighted load which should be moved
  2357. * to restore balance.
  2358. *
  2359. * @sd: The sched_domain whose busiest group is to be returned.
  2360. * @this_cpu: The cpu for which load balancing is currently being performed.
  2361. * @imbalance: Variable which stores amount of weighted load which should
  2362. * be moved to restore balance/put a group to idle.
  2363. * @idle: The idle status of this_cpu.
  2364. * @sd_idle: The idleness of sd
  2365. * @cpus: The set of CPUs under consideration for load-balancing.
  2366. * @balance: Pointer to a variable indicating if this_cpu
  2367. * is the appropriate cpu to perform load balancing at this_level.
  2368. *
  2369. * Returns: - the busiest group if imbalance exists.
  2370. * - If no imbalance and user has opted for power-savings balance,
  2371. * return the least loaded group whose CPUs can be
  2372. * put to idle by rebalancing its tasks onto our group.
  2373. */
  2374. static struct sched_group *
  2375. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2376. unsigned long *imbalance, enum cpu_idle_type idle,
  2377. int *sd_idle, const struct cpumask *cpus, int *balance)
  2378. {
  2379. struct sd_lb_stats sds;
  2380. memset(&sds, 0, sizeof(sds));
  2381. /*
  2382. * Compute the various statistics relavent for load balancing at
  2383. * this level.
  2384. */
  2385. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  2386. balance, &sds);
  2387. /* Cases where imbalance does not exist from POV of this_cpu */
  2388. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  2389. * at this level.
  2390. * 2) There is no busy sibling group to pull from.
  2391. * 3) This group is the busiest group.
  2392. * 4) This group is more busy than the avg busieness at this
  2393. * sched_domain.
  2394. * 5) The imbalance is within the specified limit.
  2395. *
  2396. * Note: when doing newidle balance, if the local group has excess
  2397. * capacity (i.e. nr_running < group_capacity) and the busiest group
  2398. * does not have any capacity, we force a load balance to pull tasks
  2399. * to the local group. In this case, we skip past checks 3, 4 and 5.
  2400. */
  2401. if (!(*balance))
  2402. goto ret;
  2403. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2404. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2405. return sds.busiest;
  2406. if (!sds.busiest || sds.busiest_nr_running == 0)
  2407. goto out_balanced;
  2408. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2409. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2410. !sds.busiest_has_capacity)
  2411. goto force_balance;
  2412. if (sds.this_load >= sds.max_load)
  2413. goto out_balanced;
  2414. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2415. if (sds.this_load >= sds.avg_load)
  2416. goto out_balanced;
  2417. /*
  2418. * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
  2419. * And to check for busy balance use !idle_cpu instead of
  2420. * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
  2421. * even when they are idle.
  2422. */
  2423. if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
  2424. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2425. goto out_balanced;
  2426. } else {
  2427. /*
  2428. * This cpu is idle. If the busiest group load doesn't
  2429. * have more tasks than the number of available cpu's and
  2430. * there is no imbalance between this and busiest group
  2431. * wrt to idle cpu's, it is balanced.
  2432. */
  2433. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  2434. sds.busiest_nr_running <= sds.busiest_group_weight)
  2435. goto out_balanced;
  2436. }
  2437. force_balance:
  2438. /* Looks like there is an imbalance. Compute it */
  2439. calculate_imbalance(&sds, this_cpu, imbalance);
  2440. return sds.busiest;
  2441. out_balanced:
  2442. /*
  2443. * There is no obvious imbalance. But check if we can do some balancing
  2444. * to save power.
  2445. */
  2446. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2447. return sds.busiest;
  2448. ret:
  2449. *imbalance = 0;
  2450. return NULL;
  2451. }
  2452. /*
  2453. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2454. */
  2455. static struct rq *
  2456. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2457. enum cpu_idle_type idle, unsigned long imbalance,
  2458. const struct cpumask *cpus)
  2459. {
  2460. struct rq *busiest = NULL, *rq;
  2461. unsigned long max_load = 0;
  2462. int i;
  2463. for_each_cpu(i, sched_group_cpus(group)) {
  2464. unsigned long power = power_of(i);
  2465. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2466. unsigned long wl;
  2467. if (!capacity)
  2468. capacity = fix_small_capacity(sd, group);
  2469. if (!cpumask_test_cpu(i, cpus))
  2470. continue;
  2471. rq = cpu_rq(i);
  2472. wl = weighted_cpuload(i);
  2473. /*
  2474. * When comparing with imbalance, use weighted_cpuload()
  2475. * which is not scaled with the cpu power.
  2476. */
  2477. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2478. continue;
  2479. /*
  2480. * For the load comparisons with the other cpu's, consider
  2481. * the weighted_cpuload() scaled with the cpu power, so that
  2482. * the load can be moved away from the cpu that is potentially
  2483. * running at a lower capacity.
  2484. */
  2485. wl = (wl * SCHED_LOAD_SCALE) / power;
  2486. if (wl > max_load) {
  2487. max_load = wl;
  2488. busiest = rq;
  2489. }
  2490. }
  2491. return busiest;
  2492. }
  2493. /*
  2494. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2495. * so long as it is large enough.
  2496. */
  2497. #define MAX_PINNED_INTERVAL 512
  2498. /* Working cpumask for load_balance and load_balance_newidle. */
  2499. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2500. static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
  2501. int busiest_cpu, int this_cpu)
  2502. {
  2503. if (idle == CPU_NEWLY_IDLE) {
  2504. /*
  2505. * ASYM_PACKING needs to force migrate tasks from busy but
  2506. * higher numbered CPUs in order to pack all tasks in the
  2507. * lowest numbered CPUs.
  2508. */
  2509. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2510. return 1;
  2511. /*
  2512. * The only task running in a non-idle cpu can be moved to this
  2513. * cpu in an attempt to completely freeup the other CPU
  2514. * package.
  2515. *
  2516. * The package power saving logic comes from
  2517. * find_busiest_group(). If there are no imbalance, then
  2518. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2519. * f_b_g() will select a group from which a running task may be
  2520. * pulled to this cpu in order to make the other package idle.
  2521. * If there is no opportunity to make a package idle and if
  2522. * there are no imbalance, then f_b_g() will return NULL and no
  2523. * action will be taken in load_balance_newidle().
  2524. *
  2525. * Under normal task pull operation due to imbalance, there
  2526. * will be more than one task in the source run queue and
  2527. * move_tasks() will succeed. ld_moved will be true and this
  2528. * active balance code will not be triggered.
  2529. */
  2530. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2531. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2532. return 0;
  2533. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2534. return 0;
  2535. }
  2536. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2537. }
  2538. static int active_load_balance_cpu_stop(void *data);
  2539. /*
  2540. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2541. * tasks if there is an imbalance.
  2542. */
  2543. static int load_balance(int this_cpu, struct rq *this_rq,
  2544. struct sched_domain *sd, enum cpu_idle_type idle,
  2545. int *balance)
  2546. {
  2547. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2548. struct sched_group *group;
  2549. unsigned long imbalance;
  2550. struct rq *busiest;
  2551. unsigned long flags;
  2552. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2553. cpumask_copy(cpus, cpu_active_mask);
  2554. /*
  2555. * When power savings policy is enabled for the parent domain, idle
  2556. * sibling can pick up load irrespective of busy siblings. In this case,
  2557. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2558. * portraying it as CPU_NOT_IDLE.
  2559. */
  2560. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2561. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2562. sd_idle = 1;
  2563. schedstat_inc(sd, lb_count[idle]);
  2564. redo:
  2565. update_shares(sd);
  2566. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2567. cpus, balance);
  2568. if (*balance == 0)
  2569. goto out_balanced;
  2570. if (!group) {
  2571. schedstat_inc(sd, lb_nobusyg[idle]);
  2572. goto out_balanced;
  2573. }
  2574. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2575. if (!busiest) {
  2576. schedstat_inc(sd, lb_nobusyq[idle]);
  2577. goto out_balanced;
  2578. }
  2579. BUG_ON(busiest == this_rq);
  2580. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2581. ld_moved = 0;
  2582. if (busiest->nr_running > 1) {
  2583. /*
  2584. * Attempt to move tasks. If find_busiest_group has found
  2585. * an imbalance but busiest->nr_running <= 1, the group is
  2586. * still unbalanced. ld_moved simply stays zero, so it is
  2587. * correctly treated as an imbalance.
  2588. */
  2589. local_irq_save(flags);
  2590. double_rq_lock(this_rq, busiest);
  2591. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2592. imbalance, sd, idle, &all_pinned);
  2593. double_rq_unlock(this_rq, busiest);
  2594. local_irq_restore(flags);
  2595. /*
  2596. * some other cpu did the load balance for us.
  2597. */
  2598. if (ld_moved && this_cpu != smp_processor_id())
  2599. resched_cpu(this_cpu);
  2600. /* All tasks on this runqueue were pinned by CPU affinity */
  2601. if (unlikely(all_pinned)) {
  2602. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2603. if (!cpumask_empty(cpus))
  2604. goto redo;
  2605. goto out_balanced;
  2606. }
  2607. }
  2608. if (!ld_moved) {
  2609. schedstat_inc(sd, lb_failed[idle]);
  2610. /*
  2611. * Increment the failure counter only on periodic balance.
  2612. * We do not want newidle balance, which can be very
  2613. * frequent, pollute the failure counter causing
  2614. * excessive cache_hot migrations and active balances.
  2615. */
  2616. if (idle != CPU_NEWLY_IDLE)
  2617. sd->nr_balance_failed++;
  2618. if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
  2619. this_cpu)) {
  2620. raw_spin_lock_irqsave(&busiest->lock, flags);
  2621. /* don't kick the active_load_balance_cpu_stop,
  2622. * if the curr task on busiest cpu can't be
  2623. * moved to this_cpu
  2624. */
  2625. if (!cpumask_test_cpu(this_cpu,
  2626. &busiest->curr->cpus_allowed)) {
  2627. raw_spin_unlock_irqrestore(&busiest->lock,
  2628. flags);
  2629. all_pinned = 1;
  2630. goto out_one_pinned;
  2631. }
  2632. /*
  2633. * ->active_balance synchronizes accesses to
  2634. * ->active_balance_work. Once set, it's cleared
  2635. * only after active load balance is finished.
  2636. */
  2637. if (!busiest->active_balance) {
  2638. busiest->active_balance = 1;
  2639. busiest->push_cpu = this_cpu;
  2640. active_balance = 1;
  2641. }
  2642. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2643. if (active_balance)
  2644. stop_one_cpu_nowait(cpu_of(busiest),
  2645. active_load_balance_cpu_stop, busiest,
  2646. &busiest->active_balance_work);
  2647. /*
  2648. * We've kicked active balancing, reset the failure
  2649. * counter.
  2650. */
  2651. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2652. }
  2653. } else
  2654. sd->nr_balance_failed = 0;
  2655. if (likely(!active_balance)) {
  2656. /* We were unbalanced, so reset the balancing interval */
  2657. sd->balance_interval = sd->min_interval;
  2658. } else {
  2659. /*
  2660. * If we've begun active balancing, start to back off. This
  2661. * case may not be covered by the all_pinned logic if there
  2662. * is only 1 task on the busy runqueue (because we don't call
  2663. * move_tasks).
  2664. */
  2665. if (sd->balance_interval < sd->max_interval)
  2666. sd->balance_interval *= 2;
  2667. }
  2668. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2669. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2670. ld_moved = -1;
  2671. goto out;
  2672. out_balanced:
  2673. schedstat_inc(sd, lb_balanced[idle]);
  2674. sd->nr_balance_failed = 0;
  2675. out_one_pinned:
  2676. /* tune up the balancing interval */
  2677. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2678. (sd->balance_interval < sd->max_interval))
  2679. sd->balance_interval *= 2;
  2680. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2681. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2682. ld_moved = -1;
  2683. else
  2684. ld_moved = 0;
  2685. out:
  2686. if (ld_moved)
  2687. update_shares(sd);
  2688. return ld_moved;
  2689. }
  2690. /*
  2691. * idle_balance is called by schedule() if this_cpu is about to become
  2692. * idle. Attempts to pull tasks from other CPUs.
  2693. */
  2694. static void idle_balance(int this_cpu, struct rq *this_rq)
  2695. {
  2696. struct sched_domain *sd;
  2697. int pulled_task = 0;
  2698. unsigned long next_balance = jiffies + HZ;
  2699. this_rq->idle_stamp = this_rq->clock;
  2700. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2701. return;
  2702. /*
  2703. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2704. */
  2705. raw_spin_unlock(&this_rq->lock);
  2706. for_each_domain(this_cpu, sd) {
  2707. unsigned long interval;
  2708. int balance = 1;
  2709. if (!(sd->flags & SD_LOAD_BALANCE))
  2710. continue;
  2711. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2712. /* If we've pulled tasks over stop searching: */
  2713. pulled_task = load_balance(this_cpu, this_rq,
  2714. sd, CPU_NEWLY_IDLE, &balance);
  2715. }
  2716. interval = msecs_to_jiffies(sd->balance_interval);
  2717. if (time_after(next_balance, sd->last_balance + interval))
  2718. next_balance = sd->last_balance + interval;
  2719. if (pulled_task)
  2720. break;
  2721. }
  2722. raw_spin_lock(&this_rq->lock);
  2723. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2724. /*
  2725. * We are going idle. next_balance may be set based on
  2726. * a busy processor. So reset next_balance.
  2727. */
  2728. this_rq->next_balance = next_balance;
  2729. }
  2730. }
  2731. /*
  2732. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2733. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2734. * least 1 task to be running on each physical CPU where possible, and
  2735. * avoids physical / logical imbalances.
  2736. */
  2737. static int active_load_balance_cpu_stop(void *data)
  2738. {
  2739. struct rq *busiest_rq = data;
  2740. int busiest_cpu = cpu_of(busiest_rq);
  2741. int target_cpu = busiest_rq->push_cpu;
  2742. struct rq *target_rq = cpu_rq(target_cpu);
  2743. struct sched_domain *sd;
  2744. raw_spin_lock_irq(&busiest_rq->lock);
  2745. /* make sure the requested cpu hasn't gone down in the meantime */
  2746. if (unlikely(busiest_cpu != smp_processor_id() ||
  2747. !busiest_rq->active_balance))
  2748. goto out_unlock;
  2749. /* Is there any task to move? */
  2750. if (busiest_rq->nr_running <= 1)
  2751. goto out_unlock;
  2752. /*
  2753. * This condition is "impossible", if it occurs
  2754. * we need to fix it. Originally reported by
  2755. * Bjorn Helgaas on a 128-cpu setup.
  2756. */
  2757. BUG_ON(busiest_rq == target_rq);
  2758. /* move a task from busiest_rq to target_rq */
  2759. double_lock_balance(busiest_rq, target_rq);
  2760. /* Search for an sd spanning us and the target CPU. */
  2761. for_each_domain(target_cpu, sd) {
  2762. if ((sd->flags & SD_LOAD_BALANCE) &&
  2763. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2764. break;
  2765. }
  2766. if (likely(sd)) {
  2767. schedstat_inc(sd, alb_count);
  2768. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2769. sd, CPU_IDLE))
  2770. schedstat_inc(sd, alb_pushed);
  2771. else
  2772. schedstat_inc(sd, alb_failed);
  2773. }
  2774. double_unlock_balance(busiest_rq, target_rq);
  2775. out_unlock:
  2776. busiest_rq->active_balance = 0;
  2777. raw_spin_unlock_irq(&busiest_rq->lock);
  2778. return 0;
  2779. }
  2780. #ifdef CONFIG_NO_HZ
  2781. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  2782. static void trigger_sched_softirq(void *data)
  2783. {
  2784. raise_softirq_irqoff(SCHED_SOFTIRQ);
  2785. }
  2786. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  2787. {
  2788. csd->func = trigger_sched_softirq;
  2789. csd->info = NULL;
  2790. csd->flags = 0;
  2791. csd->priv = 0;
  2792. }
  2793. /*
  2794. * idle load balancing details
  2795. * - One of the idle CPUs nominates itself as idle load_balancer, while
  2796. * entering idle.
  2797. * - This idle load balancer CPU will also go into tickless mode when
  2798. * it is idle, just like all other idle CPUs
  2799. * - When one of the busy CPUs notice that there may be an idle rebalancing
  2800. * needed, they will kick the idle load balancer, which then does idle
  2801. * load balancing for all the idle CPUs.
  2802. */
  2803. static struct {
  2804. atomic_t load_balancer;
  2805. atomic_t first_pick_cpu;
  2806. atomic_t second_pick_cpu;
  2807. cpumask_var_t idle_cpus_mask;
  2808. cpumask_var_t grp_idle_mask;
  2809. unsigned long next_balance; /* in jiffy units */
  2810. } nohz ____cacheline_aligned;
  2811. int get_nohz_load_balancer(void)
  2812. {
  2813. return atomic_read(&nohz.load_balancer);
  2814. }
  2815. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2816. /**
  2817. * lowest_flag_domain - Return lowest sched_domain containing flag.
  2818. * @cpu: The cpu whose lowest level of sched domain is to
  2819. * be returned.
  2820. * @flag: The flag to check for the lowest sched_domain
  2821. * for the given cpu.
  2822. *
  2823. * Returns the lowest sched_domain of a cpu which contains the given flag.
  2824. */
  2825. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  2826. {
  2827. struct sched_domain *sd;
  2828. for_each_domain(cpu, sd)
  2829. if (sd && (sd->flags & flag))
  2830. break;
  2831. return sd;
  2832. }
  2833. /**
  2834. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  2835. * @cpu: The cpu whose domains we're iterating over.
  2836. * @sd: variable holding the value of the power_savings_sd
  2837. * for cpu.
  2838. * @flag: The flag to filter the sched_domains to be iterated.
  2839. *
  2840. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  2841. * set, starting from the lowest sched_domain to the highest.
  2842. */
  2843. #define for_each_flag_domain(cpu, sd, flag) \
  2844. for (sd = lowest_flag_domain(cpu, flag); \
  2845. (sd && (sd->flags & flag)); sd = sd->parent)
  2846. /**
  2847. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  2848. * @ilb_group: group to be checked for semi-idleness
  2849. *
  2850. * Returns: 1 if the group is semi-idle. 0 otherwise.
  2851. *
  2852. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  2853. * and atleast one non-idle CPU. This helper function checks if the given
  2854. * sched_group is semi-idle or not.
  2855. */
  2856. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  2857. {
  2858. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  2859. sched_group_cpus(ilb_group));
  2860. /*
  2861. * A sched_group is semi-idle when it has atleast one busy cpu
  2862. * and atleast one idle cpu.
  2863. */
  2864. if (cpumask_empty(nohz.grp_idle_mask))
  2865. return 0;
  2866. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  2867. return 0;
  2868. return 1;
  2869. }
  2870. /**
  2871. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  2872. * @cpu: The cpu which is nominating a new idle_load_balancer.
  2873. *
  2874. * Returns: Returns the id of the idle load balancer if it exists,
  2875. * Else, returns >= nr_cpu_ids.
  2876. *
  2877. * This algorithm picks the idle load balancer such that it belongs to a
  2878. * semi-idle powersavings sched_domain. The idea is to try and avoid
  2879. * completely idle packages/cores just for the purpose of idle load balancing
  2880. * when there are other idle cpu's which are better suited for that job.
  2881. */
  2882. static int find_new_ilb(int cpu)
  2883. {
  2884. struct sched_domain *sd;
  2885. struct sched_group *ilb_group;
  2886. /*
  2887. * Have idle load balancer selection from semi-idle packages only
  2888. * when power-aware load balancing is enabled
  2889. */
  2890. if (!(sched_smt_power_savings || sched_mc_power_savings))
  2891. goto out_done;
  2892. /*
  2893. * Optimize for the case when we have no idle CPUs or only one
  2894. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  2895. */
  2896. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  2897. goto out_done;
  2898. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  2899. ilb_group = sd->groups;
  2900. do {
  2901. if (is_semi_idle_group(ilb_group))
  2902. return cpumask_first(nohz.grp_idle_mask);
  2903. ilb_group = ilb_group->next;
  2904. } while (ilb_group != sd->groups);
  2905. }
  2906. out_done:
  2907. return nr_cpu_ids;
  2908. }
  2909. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  2910. static inline int find_new_ilb(int call_cpu)
  2911. {
  2912. return nr_cpu_ids;
  2913. }
  2914. #endif
  2915. /*
  2916. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  2917. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  2918. * CPU (if there is one).
  2919. */
  2920. static void nohz_balancer_kick(int cpu)
  2921. {
  2922. int ilb_cpu;
  2923. nohz.next_balance++;
  2924. ilb_cpu = get_nohz_load_balancer();
  2925. if (ilb_cpu >= nr_cpu_ids) {
  2926. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  2927. if (ilb_cpu >= nr_cpu_ids)
  2928. return;
  2929. }
  2930. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  2931. struct call_single_data *cp;
  2932. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  2933. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  2934. __smp_call_function_single(ilb_cpu, cp, 0);
  2935. }
  2936. return;
  2937. }
  2938. /*
  2939. * This routine will try to nominate the ilb (idle load balancing)
  2940. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2941. * load balancing on behalf of all those cpus.
  2942. *
  2943. * When the ilb owner becomes busy, we will not have new ilb owner until some
  2944. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  2945. * idle load balancing by kicking one of the idle CPUs.
  2946. *
  2947. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  2948. * ilb owner CPU in future (when there is a need for idle load balancing on
  2949. * behalf of all idle CPUs).
  2950. */
  2951. void select_nohz_load_balancer(int stop_tick)
  2952. {
  2953. int cpu = smp_processor_id();
  2954. if (stop_tick) {
  2955. if (!cpu_active(cpu)) {
  2956. if (atomic_read(&nohz.load_balancer) != cpu)
  2957. return;
  2958. /*
  2959. * If we are going offline and still the leader,
  2960. * give up!
  2961. */
  2962. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  2963. nr_cpu_ids) != cpu)
  2964. BUG();
  2965. return;
  2966. }
  2967. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  2968. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  2969. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  2970. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  2971. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  2972. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  2973. int new_ilb;
  2974. /* make me the ilb owner */
  2975. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  2976. cpu) != nr_cpu_ids)
  2977. return;
  2978. /*
  2979. * Check to see if there is a more power-efficient
  2980. * ilb.
  2981. */
  2982. new_ilb = find_new_ilb(cpu);
  2983. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  2984. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  2985. resched_cpu(new_ilb);
  2986. return;
  2987. }
  2988. return;
  2989. }
  2990. } else {
  2991. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  2992. return;
  2993. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  2994. if (atomic_read(&nohz.load_balancer) == cpu)
  2995. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  2996. nr_cpu_ids) != cpu)
  2997. BUG();
  2998. }
  2999. return;
  3000. }
  3001. #endif
  3002. static DEFINE_SPINLOCK(balancing);
  3003. /*
  3004. * It checks each scheduling domain to see if it is due to be balanced,
  3005. * and initiates a balancing operation if so.
  3006. *
  3007. * Balancing parameters are set up in arch_init_sched_domains.
  3008. */
  3009. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3010. {
  3011. int balance = 1;
  3012. struct rq *rq = cpu_rq(cpu);
  3013. unsigned long interval;
  3014. struct sched_domain *sd;
  3015. /* Earliest time when we have to do rebalance again */
  3016. unsigned long next_balance = jiffies + 60*HZ;
  3017. int update_next_balance = 0;
  3018. int need_serialize;
  3019. for_each_domain(cpu, sd) {
  3020. if (!(sd->flags & SD_LOAD_BALANCE))
  3021. continue;
  3022. interval = sd->balance_interval;
  3023. if (idle != CPU_IDLE)
  3024. interval *= sd->busy_factor;
  3025. /* scale ms to jiffies */
  3026. interval = msecs_to_jiffies(interval);
  3027. if (unlikely(!interval))
  3028. interval = 1;
  3029. if (interval > HZ*NR_CPUS/10)
  3030. interval = HZ*NR_CPUS/10;
  3031. need_serialize = sd->flags & SD_SERIALIZE;
  3032. if (need_serialize) {
  3033. if (!spin_trylock(&balancing))
  3034. goto out;
  3035. }
  3036. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3037. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3038. /*
  3039. * We've pulled tasks over so either we're no
  3040. * longer idle, or one of our SMT siblings is
  3041. * not idle.
  3042. */
  3043. idle = CPU_NOT_IDLE;
  3044. }
  3045. sd->last_balance = jiffies;
  3046. }
  3047. if (need_serialize)
  3048. spin_unlock(&balancing);
  3049. out:
  3050. if (time_after(next_balance, sd->last_balance + interval)) {
  3051. next_balance = sd->last_balance + interval;
  3052. update_next_balance = 1;
  3053. }
  3054. /*
  3055. * Stop the load balance at this level. There is another
  3056. * CPU in our sched group which is doing load balancing more
  3057. * actively.
  3058. */
  3059. if (!balance)
  3060. break;
  3061. }
  3062. /*
  3063. * next_balance will be updated only when there is a need.
  3064. * When the cpu is attached to null domain for ex, it will not be
  3065. * updated.
  3066. */
  3067. if (likely(update_next_balance))
  3068. rq->next_balance = next_balance;
  3069. }
  3070. #ifdef CONFIG_NO_HZ
  3071. /*
  3072. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3073. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3074. */
  3075. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3076. {
  3077. struct rq *this_rq = cpu_rq(this_cpu);
  3078. struct rq *rq;
  3079. int balance_cpu;
  3080. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3081. return;
  3082. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3083. if (balance_cpu == this_cpu)
  3084. continue;
  3085. /*
  3086. * If this cpu gets work to do, stop the load balancing
  3087. * work being done for other cpus. Next load
  3088. * balancing owner will pick it up.
  3089. */
  3090. if (need_resched()) {
  3091. this_rq->nohz_balance_kick = 0;
  3092. break;
  3093. }
  3094. raw_spin_lock_irq(&this_rq->lock);
  3095. update_rq_clock(this_rq);
  3096. update_cpu_load(this_rq);
  3097. raw_spin_unlock_irq(&this_rq->lock);
  3098. rebalance_domains(balance_cpu, CPU_IDLE);
  3099. rq = cpu_rq(balance_cpu);
  3100. if (time_after(this_rq->next_balance, rq->next_balance))
  3101. this_rq->next_balance = rq->next_balance;
  3102. }
  3103. nohz.next_balance = this_rq->next_balance;
  3104. this_rq->nohz_balance_kick = 0;
  3105. }
  3106. /*
  3107. * Current heuristic for kicking the idle load balancer
  3108. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3109. * idle load balancer when it has more than one process active. This
  3110. * eliminates the need for idle load balancing altogether when we have
  3111. * only one running process in the system (common case).
  3112. * - If there are more than one busy CPU, idle load balancer may have
  3113. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3114. * SMT or core siblings and can run better if they move to different
  3115. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3116. * which will kick idle load balancer as soon as it has any load.
  3117. */
  3118. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3119. {
  3120. unsigned long now = jiffies;
  3121. int ret;
  3122. int first_pick_cpu, second_pick_cpu;
  3123. if (time_before(now, nohz.next_balance))
  3124. return 0;
  3125. if (rq->idle_at_tick)
  3126. return 0;
  3127. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3128. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3129. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3130. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3131. return 0;
  3132. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3133. if (ret == nr_cpu_ids || ret == cpu) {
  3134. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3135. if (rq->nr_running > 1)
  3136. return 1;
  3137. } else {
  3138. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3139. if (ret == nr_cpu_ids || ret == cpu) {
  3140. if (rq->nr_running)
  3141. return 1;
  3142. }
  3143. }
  3144. return 0;
  3145. }
  3146. #else
  3147. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3148. #endif
  3149. /*
  3150. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3151. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3152. */
  3153. static void run_rebalance_domains(struct softirq_action *h)
  3154. {
  3155. int this_cpu = smp_processor_id();
  3156. struct rq *this_rq = cpu_rq(this_cpu);
  3157. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3158. CPU_IDLE : CPU_NOT_IDLE;
  3159. rebalance_domains(this_cpu, idle);
  3160. /*
  3161. * If this cpu has a pending nohz_balance_kick, then do the
  3162. * balancing on behalf of the other idle cpus whose ticks are
  3163. * stopped.
  3164. */
  3165. nohz_idle_balance(this_cpu, idle);
  3166. }
  3167. static inline int on_null_domain(int cpu)
  3168. {
  3169. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3170. }
  3171. /*
  3172. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3173. */
  3174. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3175. {
  3176. /* Don't need to rebalance while attached to NULL domain */
  3177. if (time_after_eq(jiffies, rq->next_balance) &&
  3178. likely(!on_null_domain(cpu)))
  3179. raise_softirq(SCHED_SOFTIRQ);
  3180. #ifdef CONFIG_NO_HZ
  3181. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3182. nohz_balancer_kick(cpu);
  3183. #endif
  3184. }
  3185. static void rq_online_fair(struct rq *rq)
  3186. {
  3187. update_sysctl();
  3188. }
  3189. static void rq_offline_fair(struct rq *rq)
  3190. {
  3191. update_sysctl();
  3192. }
  3193. #else /* CONFIG_SMP */
  3194. /*
  3195. * on UP we do not need to balance between CPUs:
  3196. */
  3197. static inline void idle_balance(int cpu, struct rq *rq)
  3198. {
  3199. }
  3200. #endif /* CONFIG_SMP */
  3201. /*
  3202. * scheduler tick hitting a task of our scheduling class:
  3203. */
  3204. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3205. {
  3206. struct cfs_rq *cfs_rq;
  3207. struct sched_entity *se = &curr->se;
  3208. for_each_sched_entity(se) {
  3209. cfs_rq = cfs_rq_of(se);
  3210. entity_tick(cfs_rq, se, queued);
  3211. }
  3212. }
  3213. /*
  3214. * called on fork with the child task as argument from the parent's context
  3215. * - child not yet on the tasklist
  3216. * - preemption disabled
  3217. */
  3218. static void task_fork_fair(struct task_struct *p)
  3219. {
  3220. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3221. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3222. int this_cpu = smp_processor_id();
  3223. struct rq *rq = this_rq();
  3224. unsigned long flags;
  3225. raw_spin_lock_irqsave(&rq->lock, flags);
  3226. update_rq_clock(rq);
  3227. if (unlikely(task_cpu(p) != this_cpu)) {
  3228. rcu_read_lock();
  3229. __set_task_cpu(p, this_cpu);
  3230. rcu_read_unlock();
  3231. }
  3232. update_curr(cfs_rq);
  3233. if (curr)
  3234. se->vruntime = curr->vruntime;
  3235. place_entity(cfs_rq, se, 1);
  3236. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3237. /*
  3238. * Upon rescheduling, sched_class::put_prev_task() will place
  3239. * 'current' within the tree based on its new key value.
  3240. */
  3241. swap(curr->vruntime, se->vruntime);
  3242. resched_task(rq->curr);
  3243. }
  3244. se->vruntime -= cfs_rq->min_vruntime;
  3245. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3246. }
  3247. /*
  3248. * Priority of the task has changed. Check to see if we preempt
  3249. * the current task.
  3250. */
  3251. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  3252. int oldprio, int running)
  3253. {
  3254. /*
  3255. * Reschedule if we are currently running on this runqueue and
  3256. * our priority decreased, or if we are not currently running on
  3257. * this runqueue and our priority is higher than the current's
  3258. */
  3259. if (running) {
  3260. if (p->prio > oldprio)
  3261. resched_task(rq->curr);
  3262. } else
  3263. check_preempt_curr(rq, p, 0);
  3264. }
  3265. /*
  3266. * We switched to the sched_fair class.
  3267. */
  3268. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  3269. int running)
  3270. {
  3271. /*
  3272. * We were most likely switched from sched_rt, so
  3273. * kick off the schedule if running, otherwise just see
  3274. * if we can still preempt the current task.
  3275. */
  3276. if (running)
  3277. resched_task(rq->curr);
  3278. else
  3279. check_preempt_curr(rq, p, 0);
  3280. }
  3281. /* Account for a task changing its policy or group.
  3282. *
  3283. * This routine is mostly called to set cfs_rq->curr field when a task
  3284. * migrates between groups/classes.
  3285. */
  3286. static void set_curr_task_fair(struct rq *rq)
  3287. {
  3288. struct sched_entity *se = &rq->curr->se;
  3289. for_each_sched_entity(se)
  3290. set_next_entity(cfs_rq_of(se), se);
  3291. }
  3292. #ifdef CONFIG_FAIR_GROUP_SCHED
  3293. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3294. {
  3295. /*
  3296. * If the task was not on the rq at the time of this cgroup movement
  3297. * it must have been asleep, sleeping tasks keep their ->vruntime
  3298. * absolute on their old rq until wakeup (needed for the fair sleeper
  3299. * bonus in place_entity()).
  3300. *
  3301. * If it was on the rq, we've just 'preempted' it, which does convert
  3302. * ->vruntime to a relative base.
  3303. *
  3304. * Make sure both cases convert their relative position when migrating
  3305. * to another cgroup's rq. This does somewhat interfere with the
  3306. * fair sleeper stuff for the first placement, but who cares.
  3307. */
  3308. if (!on_rq)
  3309. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3310. set_task_rq(p, task_cpu(p));
  3311. if (!on_rq)
  3312. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3313. }
  3314. #endif
  3315. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3316. {
  3317. struct sched_entity *se = &task->se;
  3318. unsigned int rr_interval = 0;
  3319. /*
  3320. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3321. * idle runqueue:
  3322. */
  3323. if (rq->cfs.load.weight)
  3324. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3325. return rr_interval;
  3326. }
  3327. /*
  3328. * All the scheduling class methods:
  3329. */
  3330. static const struct sched_class fair_sched_class = {
  3331. .next = &idle_sched_class,
  3332. .enqueue_task = enqueue_task_fair,
  3333. .dequeue_task = dequeue_task_fair,
  3334. .yield_task = yield_task_fair,
  3335. .check_preempt_curr = check_preempt_wakeup,
  3336. .pick_next_task = pick_next_task_fair,
  3337. .put_prev_task = put_prev_task_fair,
  3338. #ifdef CONFIG_SMP
  3339. .select_task_rq = select_task_rq_fair,
  3340. .rq_online = rq_online_fair,
  3341. .rq_offline = rq_offline_fair,
  3342. .task_waking = task_waking_fair,
  3343. #endif
  3344. .set_curr_task = set_curr_task_fair,
  3345. .task_tick = task_tick_fair,
  3346. .task_fork = task_fork_fair,
  3347. .prio_changed = prio_changed_fair,
  3348. .switched_to = switched_to_fair,
  3349. .get_rr_interval = get_rr_interval_fair,
  3350. #ifdef CONFIG_FAIR_GROUP_SCHED
  3351. .task_move_group = task_move_group_fair,
  3352. #endif
  3353. };
  3354. #ifdef CONFIG_SCHED_DEBUG
  3355. static void print_cfs_stats(struct seq_file *m, int cpu)
  3356. {
  3357. struct cfs_rq *cfs_rq;
  3358. rcu_read_lock();
  3359. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3360. print_cfs_rq(m, cpu, cfs_rq);
  3361. rcu_read_unlock();
  3362. }
  3363. #endif