sched.c 226 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/sched.h>
  80. /*
  81. * Convert user-nice values [ -20 ... 0 ... 19 ]
  82. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  83. * and back.
  84. */
  85. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  86. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  87. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  88. /*
  89. * 'User priority' is the nice value converted to something we
  90. * can work with better when scaling various scheduler parameters,
  91. * it's a [ 0 ... 39 ] range.
  92. */
  93. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  94. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  95. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  96. /*
  97. * Helpers for converting nanosecond timing to jiffy resolution
  98. */
  99. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  100. #define NICE_0_LOAD SCHED_LOAD_SCALE
  101. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  102. /*
  103. * These are the 'tuning knobs' of the scheduler:
  104. *
  105. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  106. * Timeslices get refilled after they expire.
  107. */
  108. #define DEF_TIMESLICE (100 * HZ / 1000)
  109. /*
  110. * single value that denotes runtime == period, ie unlimited time.
  111. */
  112. #define RUNTIME_INF ((u64)~0ULL)
  113. static inline int rt_policy(int policy)
  114. {
  115. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  116. return 1;
  117. return 0;
  118. }
  119. static inline int task_has_rt_policy(struct task_struct *p)
  120. {
  121. return rt_policy(p->policy);
  122. }
  123. /*
  124. * This is the priority-queue data structure of the RT scheduling class:
  125. */
  126. struct rt_prio_array {
  127. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  128. struct list_head queue[MAX_RT_PRIO];
  129. };
  130. struct rt_bandwidth {
  131. /* nests inside the rq lock: */
  132. raw_spinlock_t rt_runtime_lock;
  133. ktime_t rt_period;
  134. u64 rt_runtime;
  135. struct hrtimer rt_period_timer;
  136. };
  137. static struct rt_bandwidth def_rt_bandwidth;
  138. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  139. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  140. {
  141. struct rt_bandwidth *rt_b =
  142. container_of(timer, struct rt_bandwidth, rt_period_timer);
  143. ktime_t now;
  144. int overrun;
  145. int idle = 0;
  146. for (;;) {
  147. now = hrtimer_cb_get_time(timer);
  148. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  149. if (!overrun)
  150. break;
  151. idle = do_sched_rt_period_timer(rt_b, overrun);
  152. }
  153. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  154. }
  155. static
  156. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  157. {
  158. rt_b->rt_period = ns_to_ktime(period);
  159. rt_b->rt_runtime = runtime;
  160. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  161. hrtimer_init(&rt_b->rt_period_timer,
  162. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  163. rt_b->rt_period_timer.function = sched_rt_period_timer;
  164. }
  165. static inline int rt_bandwidth_enabled(void)
  166. {
  167. return sysctl_sched_rt_runtime >= 0;
  168. }
  169. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  170. {
  171. ktime_t now;
  172. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  173. return;
  174. if (hrtimer_active(&rt_b->rt_period_timer))
  175. return;
  176. raw_spin_lock(&rt_b->rt_runtime_lock);
  177. for (;;) {
  178. unsigned long delta;
  179. ktime_t soft, hard;
  180. if (hrtimer_active(&rt_b->rt_period_timer))
  181. break;
  182. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  183. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  184. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  185. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  186. delta = ktime_to_ns(ktime_sub(hard, soft));
  187. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  188. HRTIMER_MODE_ABS_PINNED, 0);
  189. }
  190. raw_spin_unlock(&rt_b->rt_runtime_lock);
  191. }
  192. #ifdef CONFIG_RT_GROUP_SCHED
  193. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  194. {
  195. hrtimer_cancel(&rt_b->rt_period_timer);
  196. }
  197. #endif
  198. /*
  199. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  200. * detach_destroy_domains and partition_sched_domains.
  201. */
  202. static DEFINE_MUTEX(sched_domains_mutex);
  203. #ifdef CONFIG_CGROUP_SCHED
  204. #include <linux/cgroup.h>
  205. struct cfs_rq;
  206. static LIST_HEAD(task_groups);
  207. /* task group related information */
  208. struct task_group {
  209. struct cgroup_subsys_state css;
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* schedulable entities of this group on each cpu */
  212. struct sched_entity **se;
  213. /* runqueue "owned" by this group on each cpu */
  214. struct cfs_rq **cfs_rq;
  215. unsigned long shares;
  216. #endif
  217. #ifdef CONFIG_RT_GROUP_SCHED
  218. struct sched_rt_entity **rt_se;
  219. struct rt_rq **rt_rq;
  220. struct rt_bandwidth rt_bandwidth;
  221. #endif
  222. struct rcu_head rcu;
  223. struct list_head list;
  224. struct task_group *parent;
  225. struct list_head siblings;
  226. struct list_head children;
  227. };
  228. #define root_task_group init_task_group
  229. /* task_group_lock serializes add/remove of task groups and also changes to
  230. * a task group's cpu shares.
  231. */
  232. static DEFINE_SPINLOCK(task_group_lock);
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. #ifdef CONFIG_SMP
  235. static int root_task_group_empty(void)
  236. {
  237. return list_empty(&root_task_group.children);
  238. }
  239. #endif
  240. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  241. /*
  242. * A weight of 0 or 1 can cause arithmetics problems.
  243. * A weight of a cfs_rq is the sum of weights of which entities
  244. * are queued on this cfs_rq, so a weight of a entity should not be
  245. * too large, so as the shares value of a task group.
  246. * (The default weight is 1024 - so there's no practical
  247. * limitation from this.)
  248. */
  249. #define MIN_SHARES 2
  250. #define MAX_SHARES (1UL << 18)
  251. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  252. #endif
  253. /* Default task group.
  254. * Every task in system belong to this group at bootup.
  255. */
  256. struct task_group init_task_group;
  257. #endif /* CONFIG_CGROUP_SCHED */
  258. /* CFS-related fields in a runqueue */
  259. struct cfs_rq {
  260. struct load_weight load;
  261. unsigned long nr_running;
  262. u64 exec_clock;
  263. u64 min_vruntime;
  264. struct rb_root tasks_timeline;
  265. struct rb_node *rb_leftmost;
  266. struct list_head tasks;
  267. struct list_head *balance_iterator;
  268. /*
  269. * 'curr' points to currently running entity on this cfs_rq.
  270. * It is set to NULL otherwise (i.e when none are currently running).
  271. */
  272. struct sched_entity *curr, *next, *last;
  273. unsigned int nr_spread_over;
  274. #ifdef CONFIG_FAIR_GROUP_SCHED
  275. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  276. /*
  277. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  278. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  279. * (like users, containers etc.)
  280. *
  281. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  282. * list is used during load balance.
  283. */
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * this cpu's part of tg->shares
  300. */
  301. unsigned long shares;
  302. /*
  303. * load.weight at the time we set shares
  304. */
  305. unsigned long rq_weight;
  306. #endif
  307. #endif
  308. };
  309. /* Real-Time classes' related field in a runqueue: */
  310. struct rt_rq {
  311. struct rt_prio_array active;
  312. unsigned long rt_nr_running;
  313. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  314. struct {
  315. int curr; /* highest queued rt task prio */
  316. #ifdef CONFIG_SMP
  317. int next; /* next highest */
  318. #endif
  319. } highest_prio;
  320. #endif
  321. #ifdef CONFIG_SMP
  322. unsigned long rt_nr_migratory;
  323. unsigned long rt_nr_total;
  324. int overloaded;
  325. struct plist_head pushable_tasks;
  326. #endif
  327. int rt_throttled;
  328. u64 rt_time;
  329. u64 rt_runtime;
  330. /* Nests inside the rq lock: */
  331. raw_spinlock_t rt_runtime_lock;
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. unsigned long rt_nr_boosted;
  334. struct rq *rq;
  335. struct list_head leaf_rt_rq_list;
  336. struct task_group *tg;
  337. #endif
  338. };
  339. #ifdef CONFIG_SMP
  340. /*
  341. * We add the notion of a root-domain which will be used to define per-domain
  342. * variables. Each exclusive cpuset essentially defines an island domain by
  343. * fully partitioning the member cpus from any other cpuset. Whenever a new
  344. * exclusive cpuset is created, we also create and attach a new root-domain
  345. * object.
  346. *
  347. */
  348. struct root_domain {
  349. atomic_t refcount;
  350. cpumask_var_t span;
  351. cpumask_var_t online;
  352. /*
  353. * The "RT overload" flag: it gets set if a CPU has more than
  354. * one runnable RT task.
  355. */
  356. cpumask_var_t rto_mask;
  357. atomic_t rto_count;
  358. struct cpupri cpupri;
  359. };
  360. /*
  361. * By default the system creates a single root-domain with all cpus as
  362. * members (mimicking the global state we have today).
  363. */
  364. static struct root_domain def_root_domain;
  365. #endif /* CONFIG_SMP */
  366. /*
  367. * This is the main, per-CPU runqueue data structure.
  368. *
  369. * Locking rule: those places that want to lock multiple runqueues
  370. * (such as the load balancing or the thread migration code), lock
  371. * acquire operations must be ordered by ascending &runqueue.
  372. */
  373. struct rq {
  374. /* runqueue lock: */
  375. raw_spinlock_t lock;
  376. /*
  377. * nr_running and cpu_load should be in the same cacheline because
  378. * remote CPUs use both these fields when doing load calculation.
  379. */
  380. unsigned long nr_running;
  381. #define CPU_LOAD_IDX_MAX 5
  382. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  383. unsigned long last_load_update_tick;
  384. #ifdef CONFIG_NO_HZ
  385. u64 nohz_stamp;
  386. unsigned char nohz_balance_kick;
  387. #endif
  388. unsigned int skip_clock_update;
  389. /* capture load from *all* tasks on this cpu: */
  390. struct load_weight load;
  391. unsigned long nr_load_updates;
  392. u64 nr_switches;
  393. struct cfs_rq cfs;
  394. struct rt_rq rt;
  395. #ifdef CONFIG_FAIR_GROUP_SCHED
  396. /* list of leaf cfs_rq on this cpu: */
  397. struct list_head leaf_cfs_rq_list;
  398. #endif
  399. #ifdef CONFIG_RT_GROUP_SCHED
  400. struct list_head leaf_rt_rq_list;
  401. #endif
  402. /*
  403. * This is part of a global counter where only the total sum
  404. * over all CPUs matters. A task can increase this counter on
  405. * one CPU and if it got migrated afterwards it may decrease
  406. * it on another CPU. Always updated under the runqueue lock:
  407. */
  408. unsigned long nr_uninterruptible;
  409. struct task_struct *curr, *idle, *stop;
  410. unsigned long next_balance;
  411. struct mm_struct *prev_mm;
  412. u64 clock;
  413. u64 clock_task;
  414. atomic_t nr_iowait;
  415. #ifdef CONFIG_SMP
  416. struct root_domain *rd;
  417. struct sched_domain *sd;
  418. unsigned long cpu_power;
  419. unsigned char idle_at_tick;
  420. /* For active balancing */
  421. int post_schedule;
  422. int active_balance;
  423. int push_cpu;
  424. struct cpu_stop_work active_balance_work;
  425. /* cpu of this runqueue: */
  426. int cpu;
  427. int online;
  428. unsigned long avg_load_per_task;
  429. u64 rt_avg;
  430. u64 age_stamp;
  431. u64 idle_stamp;
  432. u64 avg_idle;
  433. #endif
  434. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  435. u64 prev_irq_time;
  436. #endif
  437. /* calc_load related fields */
  438. unsigned long calc_load_update;
  439. long calc_load_active;
  440. #ifdef CONFIG_SCHED_HRTICK
  441. #ifdef CONFIG_SMP
  442. int hrtick_csd_pending;
  443. struct call_single_data hrtick_csd;
  444. #endif
  445. struct hrtimer hrtick_timer;
  446. #endif
  447. #ifdef CONFIG_SCHEDSTATS
  448. /* latency stats */
  449. struct sched_info rq_sched_info;
  450. unsigned long long rq_cpu_time;
  451. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  452. /* sys_sched_yield() stats */
  453. unsigned int yld_count;
  454. /* schedule() stats */
  455. unsigned int sched_switch;
  456. unsigned int sched_count;
  457. unsigned int sched_goidle;
  458. /* try_to_wake_up() stats */
  459. unsigned int ttwu_count;
  460. unsigned int ttwu_local;
  461. /* BKL stats */
  462. unsigned int bkl_count;
  463. #endif
  464. };
  465. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  466. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  467. static inline int cpu_of(struct rq *rq)
  468. {
  469. #ifdef CONFIG_SMP
  470. return rq->cpu;
  471. #else
  472. return 0;
  473. #endif
  474. }
  475. #define rcu_dereference_check_sched_domain(p) \
  476. rcu_dereference_check((p), \
  477. rcu_read_lock_sched_held() || \
  478. lockdep_is_held(&sched_domains_mutex))
  479. /*
  480. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  481. * See detach_destroy_domains: synchronize_sched for details.
  482. *
  483. * The domain tree of any CPU may only be accessed from within
  484. * preempt-disabled sections.
  485. */
  486. #define for_each_domain(cpu, __sd) \
  487. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  488. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  489. #define this_rq() (&__get_cpu_var(runqueues))
  490. #define task_rq(p) cpu_rq(task_cpu(p))
  491. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  492. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  493. #ifdef CONFIG_CGROUP_SCHED
  494. /*
  495. * Return the group to which this tasks belongs.
  496. *
  497. * We use task_subsys_state_check() and extend the RCU verification
  498. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  499. * holds that lock for each task it moves into the cgroup. Therefore
  500. * by holding that lock, we pin the task to the current cgroup.
  501. */
  502. static inline struct task_group *task_group(struct task_struct *p)
  503. {
  504. struct cgroup_subsys_state *css;
  505. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  506. lockdep_is_held(&task_rq(p)->lock));
  507. return container_of(css, struct task_group, css);
  508. }
  509. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  510. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  511. {
  512. #ifdef CONFIG_FAIR_GROUP_SCHED
  513. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  514. p->se.parent = task_group(p)->se[cpu];
  515. #endif
  516. #ifdef CONFIG_RT_GROUP_SCHED
  517. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  518. p->rt.parent = task_group(p)->rt_se[cpu];
  519. #endif
  520. }
  521. #else /* CONFIG_CGROUP_SCHED */
  522. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  523. static inline struct task_group *task_group(struct task_struct *p)
  524. {
  525. return NULL;
  526. }
  527. #endif /* CONFIG_CGROUP_SCHED */
  528. static u64 irq_time_cpu(int cpu);
  529. static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
  530. inline void update_rq_clock(struct rq *rq)
  531. {
  532. if (!rq->skip_clock_update) {
  533. int cpu = cpu_of(rq);
  534. u64 irq_time;
  535. rq->clock = sched_clock_cpu(cpu);
  536. irq_time = irq_time_cpu(cpu);
  537. if (rq->clock - irq_time > rq->clock_task)
  538. rq->clock_task = rq->clock - irq_time;
  539. sched_irq_time_avg_update(rq, irq_time);
  540. }
  541. }
  542. /*
  543. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  544. */
  545. #ifdef CONFIG_SCHED_DEBUG
  546. # define const_debug __read_mostly
  547. #else
  548. # define const_debug static const
  549. #endif
  550. /**
  551. * runqueue_is_locked
  552. * @cpu: the processor in question.
  553. *
  554. * Returns true if the current cpu runqueue is locked.
  555. * This interface allows printk to be called with the runqueue lock
  556. * held and know whether or not it is OK to wake up the klogd.
  557. */
  558. int runqueue_is_locked(int cpu)
  559. {
  560. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  561. }
  562. /*
  563. * Debugging: various feature bits
  564. */
  565. #define SCHED_FEAT(name, enabled) \
  566. __SCHED_FEAT_##name ,
  567. enum {
  568. #include "sched_features.h"
  569. };
  570. #undef SCHED_FEAT
  571. #define SCHED_FEAT(name, enabled) \
  572. (1UL << __SCHED_FEAT_##name) * enabled |
  573. const_debug unsigned int sysctl_sched_features =
  574. #include "sched_features.h"
  575. 0;
  576. #undef SCHED_FEAT
  577. #ifdef CONFIG_SCHED_DEBUG
  578. #define SCHED_FEAT(name, enabled) \
  579. #name ,
  580. static __read_mostly char *sched_feat_names[] = {
  581. #include "sched_features.h"
  582. NULL
  583. };
  584. #undef SCHED_FEAT
  585. static int sched_feat_show(struct seq_file *m, void *v)
  586. {
  587. int i;
  588. for (i = 0; sched_feat_names[i]; i++) {
  589. if (!(sysctl_sched_features & (1UL << i)))
  590. seq_puts(m, "NO_");
  591. seq_printf(m, "%s ", sched_feat_names[i]);
  592. }
  593. seq_puts(m, "\n");
  594. return 0;
  595. }
  596. static ssize_t
  597. sched_feat_write(struct file *filp, const char __user *ubuf,
  598. size_t cnt, loff_t *ppos)
  599. {
  600. char buf[64];
  601. char *cmp;
  602. int neg = 0;
  603. int i;
  604. if (cnt > 63)
  605. cnt = 63;
  606. if (copy_from_user(&buf, ubuf, cnt))
  607. return -EFAULT;
  608. buf[cnt] = 0;
  609. cmp = strstrip(buf);
  610. if (strncmp(buf, "NO_", 3) == 0) {
  611. neg = 1;
  612. cmp += 3;
  613. }
  614. for (i = 0; sched_feat_names[i]; i++) {
  615. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  616. if (neg)
  617. sysctl_sched_features &= ~(1UL << i);
  618. else
  619. sysctl_sched_features |= (1UL << i);
  620. break;
  621. }
  622. }
  623. if (!sched_feat_names[i])
  624. return -EINVAL;
  625. *ppos += cnt;
  626. return cnt;
  627. }
  628. static int sched_feat_open(struct inode *inode, struct file *filp)
  629. {
  630. return single_open(filp, sched_feat_show, NULL);
  631. }
  632. static const struct file_operations sched_feat_fops = {
  633. .open = sched_feat_open,
  634. .write = sched_feat_write,
  635. .read = seq_read,
  636. .llseek = seq_lseek,
  637. .release = single_release,
  638. };
  639. static __init int sched_init_debug(void)
  640. {
  641. debugfs_create_file("sched_features", 0644, NULL, NULL,
  642. &sched_feat_fops);
  643. return 0;
  644. }
  645. late_initcall(sched_init_debug);
  646. #endif
  647. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  648. /*
  649. * Number of tasks to iterate in a single balance run.
  650. * Limited because this is done with IRQs disabled.
  651. */
  652. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  653. /*
  654. * ratelimit for updating the group shares.
  655. * default: 0.25ms
  656. */
  657. unsigned int sysctl_sched_shares_ratelimit = 250000;
  658. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  659. /*
  660. * Inject some fuzzyness into changing the per-cpu group shares
  661. * this avoids remote rq-locks at the expense of fairness.
  662. * default: 4
  663. */
  664. unsigned int sysctl_sched_shares_thresh = 4;
  665. /*
  666. * period over which we average the RT time consumption, measured
  667. * in ms.
  668. *
  669. * default: 1s
  670. */
  671. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  672. /*
  673. * period over which we measure -rt task cpu usage in us.
  674. * default: 1s
  675. */
  676. unsigned int sysctl_sched_rt_period = 1000000;
  677. static __read_mostly int scheduler_running;
  678. /*
  679. * part of the period that we allow rt tasks to run in us.
  680. * default: 0.95s
  681. */
  682. int sysctl_sched_rt_runtime = 950000;
  683. static inline u64 global_rt_period(void)
  684. {
  685. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  686. }
  687. static inline u64 global_rt_runtime(void)
  688. {
  689. if (sysctl_sched_rt_runtime < 0)
  690. return RUNTIME_INF;
  691. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  692. }
  693. #ifndef prepare_arch_switch
  694. # define prepare_arch_switch(next) do { } while (0)
  695. #endif
  696. #ifndef finish_arch_switch
  697. # define finish_arch_switch(prev) do { } while (0)
  698. #endif
  699. static inline int task_current(struct rq *rq, struct task_struct *p)
  700. {
  701. return rq->curr == p;
  702. }
  703. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  704. static inline int task_running(struct rq *rq, struct task_struct *p)
  705. {
  706. return task_current(rq, p);
  707. }
  708. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  709. {
  710. }
  711. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  712. {
  713. #ifdef CONFIG_DEBUG_SPINLOCK
  714. /* this is a valid case when another task releases the spinlock */
  715. rq->lock.owner = current;
  716. #endif
  717. /*
  718. * If we are tracking spinlock dependencies then we have to
  719. * fix up the runqueue lock - which gets 'carried over' from
  720. * prev into current:
  721. */
  722. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  723. raw_spin_unlock_irq(&rq->lock);
  724. }
  725. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  726. static inline int task_running(struct rq *rq, struct task_struct *p)
  727. {
  728. #ifdef CONFIG_SMP
  729. return p->oncpu;
  730. #else
  731. return task_current(rq, p);
  732. #endif
  733. }
  734. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  735. {
  736. #ifdef CONFIG_SMP
  737. /*
  738. * We can optimise this out completely for !SMP, because the
  739. * SMP rebalancing from interrupt is the only thing that cares
  740. * here.
  741. */
  742. next->oncpu = 1;
  743. #endif
  744. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  745. raw_spin_unlock_irq(&rq->lock);
  746. #else
  747. raw_spin_unlock(&rq->lock);
  748. #endif
  749. }
  750. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  751. {
  752. #ifdef CONFIG_SMP
  753. /*
  754. * After ->oncpu is cleared, the task can be moved to a different CPU.
  755. * We must ensure this doesn't happen until the switch is completely
  756. * finished.
  757. */
  758. smp_wmb();
  759. prev->oncpu = 0;
  760. #endif
  761. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  762. local_irq_enable();
  763. #endif
  764. }
  765. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  766. /*
  767. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  768. * against ttwu().
  769. */
  770. static inline int task_is_waking(struct task_struct *p)
  771. {
  772. return unlikely(p->state == TASK_WAKING);
  773. }
  774. /*
  775. * __task_rq_lock - lock the runqueue a given task resides on.
  776. * Must be called interrupts disabled.
  777. */
  778. static inline struct rq *__task_rq_lock(struct task_struct *p)
  779. __acquires(rq->lock)
  780. {
  781. struct rq *rq;
  782. for (;;) {
  783. rq = task_rq(p);
  784. raw_spin_lock(&rq->lock);
  785. if (likely(rq == task_rq(p)))
  786. return rq;
  787. raw_spin_unlock(&rq->lock);
  788. }
  789. }
  790. /*
  791. * task_rq_lock - lock the runqueue a given task resides on and disable
  792. * interrupts. Note the ordering: we can safely lookup the task_rq without
  793. * explicitly disabling preemption.
  794. */
  795. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  796. __acquires(rq->lock)
  797. {
  798. struct rq *rq;
  799. for (;;) {
  800. local_irq_save(*flags);
  801. rq = task_rq(p);
  802. raw_spin_lock(&rq->lock);
  803. if (likely(rq == task_rq(p)))
  804. return rq;
  805. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  806. }
  807. }
  808. static void __task_rq_unlock(struct rq *rq)
  809. __releases(rq->lock)
  810. {
  811. raw_spin_unlock(&rq->lock);
  812. }
  813. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  814. __releases(rq->lock)
  815. {
  816. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  817. }
  818. /*
  819. * this_rq_lock - lock this runqueue and disable interrupts.
  820. */
  821. static struct rq *this_rq_lock(void)
  822. __acquires(rq->lock)
  823. {
  824. struct rq *rq;
  825. local_irq_disable();
  826. rq = this_rq();
  827. raw_spin_lock(&rq->lock);
  828. return rq;
  829. }
  830. #ifdef CONFIG_SCHED_HRTICK
  831. /*
  832. * Use HR-timers to deliver accurate preemption points.
  833. *
  834. * Its all a bit involved since we cannot program an hrt while holding the
  835. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  836. * reschedule event.
  837. *
  838. * When we get rescheduled we reprogram the hrtick_timer outside of the
  839. * rq->lock.
  840. */
  841. /*
  842. * Use hrtick when:
  843. * - enabled by features
  844. * - hrtimer is actually high res
  845. */
  846. static inline int hrtick_enabled(struct rq *rq)
  847. {
  848. if (!sched_feat(HRTICK))
  849. return 0;
  850. if (!cpu_active(cpu_of(rq)))
  851. return 0;
  852. return hrtimer_is_hres_active(&rq->hrtick_timer);
  853. }
  854. static void hrtick_clear(struct rq *rq)
  855. {
  856. if (hrtimer_active(&rq->hrtick_timer))
  857. hrtimer_cancel(&rq->hrtick_timer);
  858. }
  859. /*
  860. * High-resolution timer tick.
  861. * Runs from hardirq context with interrupts disabled.
  862. */
  863. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  864. {
  865. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  866. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  867. raw_spin_lock(&rq->lock);
  868. update_rq_clock(rq);
  869. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  870. raw_spin_unlock(&rq->lock);
  871. return HRTIMER_NORESTART;
  872. }
  873. #ifdef CONFIG_SMP
  874. /*
  875. * called from hardirq (IPI) context
  876. */
  877. static void __hrtick_start(void *arg)
  878. {
  879. struct rq *rq = arg;
  880. raw_spin_lock(&rq->lock);
  881. hrtimer_restart(&rq->hrtick_timer);
  882. rq->hrtick_csd_pending = 0;
  883. raw_spin_unlock(&rq->lock);
  884. }
  885. /*
  886. * Called to set the hrtick timer state.
  887. *
  888. * called with rq->lock held and irqs disabled
  889. */
  890. static void hrtick_start(struct rq *rq, u64 delay)
  891. {
  892. struct hrtimer *timer = &rq->hrtick_timer;
  893. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  894. hrtimer_set_expires(timer, time);
  895. if (rq == this_rq()) {
  896. hrtimer_restart(timer);
  897. } else if (!rq->hrtick_csd_pending) {
  898. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  899. rq->hrtick_csd_pending = 1;
  900. }
  901. }
  902. static int
  903. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  904. {
  905. int cpu = (int)(long)hcpu;
  906. switch (action) {
  907. case CPU_UP_CANCELED:
  908. case CPU_UP_CANCELED_FROZEN:
  909. case CPU_DOWN_PREPARE:
  910. case CPU_DOWN_PREPARE_FROZEN:
  911. case CPU_DEAD:
  912. case CPU_DEAD_FROZEN:
  913. hrtick_clear(cpu_rq(cpu));
  914. return NOTIFY_OK;
  915. }
  916. return NOTIFY_DONE;
  917. }
  918. static __init void init_hrtick(void)
  919. {
  920. hotcpu_notifier(hotplug_hrtick, 0);
  921. }
  922. #else
  923. /*
  924. * Called to set the hrtick timer state.
  925. *
  926. * called with rq->lock held and irqs disabled
  927. */
  928. static void hrtick_start(struct rq *rq, u64 delay)
  929. {
  930. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  931. HRTIMER_MODE_REL_PINNED, 0);
  932. }
  933. static inline void init_hrtick(void)
  934. {
  935. }
  936. #endif /* CONFIG_SMP */
  937. static void init_rq_hrtick(struct rq *rq)
  938. {
  939. #ifdef CONFIG_SMP
  940. rq->hrtick_csd_pending = 0;
  941. rq->hrtick_csd.flags = 0;
  942. rq->hrtick_csd.func = __hrtick_start;
  943. rq->hrtick_csd.info = rq;
  944. #endif
  945. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  946. rq->hrtick_timer.function = hrtick;
  947. }
  948. #else /* CONFIG_SCHED_HRTICK */
  949. static inline void hrtick_clear(struct rq *rq)
  950. {
  951. }
  952. static inline void init_rq_hrtick(struct rq *rq)
  953. {
  954. }
  955. static inline void init_hrtick(void)
  956. {
  957. }
  958. #endif /* CONFIG_SCHED_HRTICK */
  959. /*
  960. * resched_task - mark a task 'to be rescheduled now'.
  961. *
  962. * On UP this means the setting of the need_resched flag, on SMP it
  963. * might also involve a cross-CPU call to trigger the scheduler on
  964. * the target CPU.
  965. */
  966. #ifdef CONFIG_SMP
  967. #ifndef tsk_is_polling
  968. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  969. #endif
  970. static void resched_task(struct task_struct *p)
  971. {
  972. int cpu;
  973. assert_raw_spin_locked(&task_rq(p)->lock);
  974. if (test_tsk_need_resched(p))
  975. return;
  976. set_tsk_need_resched(p);
  977. cpu = task_cpu(p);
  978. if (cpu == smp_processor_id())
  979. return;
  980. /* NEED_RESCHED must be visible before we test polling */
  981. smp_mb();
  982. if (!tsk_is_polling(p))
  983. smp_send_reschedule(cpu);
  984. }
  985. static void resched_cpu(int cpu)
  986. {
  987. struct rq *rq = cpu_rq(cpu);
  988. unsigned long flags;
  989. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  990. return;
  991. resched_task(cpu_curr(cpu));
  992. raw_spin_unlock_irqrestore(&rq->lock, flags);
  993. }
  994. #ifdef CONFIG_NO_HZ
  995. /*
  996. * In the semi idle case, use the nearest busy cpu for migrating timers
  997. * from an idle cpu. This is good for power-savings.
  998. *
  999. * We don't do similar optimization for completely idle system, as
  1000. * selecting an idle cpu will add more delays to the timers than intended
  1001. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1002. */
  1003. int get_nohz_timer_target(void)
  1004. {
  1005. int cpu = smp_processor_id();
  1006. int i;
  1007. struct sched_domain *sd;
  1008. for_each_domain(cpu, sd) {
  1009. for_each_cpu(i, sched_domain_span(sd))
  1010. if (!idle_cpu(i))
  1011. return i;
  1012. }
  1013. return cpu;
  1014. }
  1015. /*
  1016. * When add_timer_on() enqueues a timer into the timer wheel of an
  1017. * idle CPU then this timer might expire before the next timer event
  1018. * which is scheduled to wake up that CPU. In case of a completely
  1019. * idle system the next event might even be infinite time into the
  1020. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1021. * leaves the inner idle loop so the newly added timer is taken into
  1022. * account when the CPU goes back to idle and evaluates the timer
  1023. * wheel for the next timer event.
  1024. */
  1025. void wake_up_idle_cpu(int cpu)
  1026. {
  1027. struct rq *rq = cpu_rq(cpu);
  1028. if (cpu == smp_processor_id())
  1029. return;
  1030. /*
  1031. * This is safe, as this function is called with the timer
  1032. * wheel base lock of (cpu) held. When the CPU is on the way
  1033. * to idle and has not yet set rq->curr to idle then it will
  1034. * be serialized on the timer wheel base lock and take the new
  1035. * timer into account automatically.
  1036. */
  1037. if (rq->curr != rq->idle)
  1038. return;
  1039. /*
  1040. * We can set TIF_RESCHED on the idle task of the other CPU
  1041. * lockless. The worst case is that the other CPU runs the
  1042. * idle task through an additional NOOP schedule()
  1043. */
  1044. set_tsk_need_resched(rq->idle);
  1045. /* NEED_RESCHED must be visible before we test polling */
  1046. smp_mb();
  1047. if (!tsk_is_polling(rq->idle))
  1048. smp_send_reschedule(cpu);
  1049. }
  1050. #endif /* CONFIG_NO_HZ */
  1051. static u64 sched_avg_period(void)
  1052. {
  1053. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1054. }
  1055. static void sched_avg_update(struct rq *rq)
  1056. {
  1057. s64 period = sched_avg_period();
  1058. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1059. /*
  1060. * Inline assembly required to prevent the compiler
  1061. * optimising this loop into a divmod call.
  1062. * See __iter_div_u64_rem() for another example of this.
  1063. */
  1064. asm("" : "+rm" (rq->age_stamp));
  1065. rq->age_stamp += period;
  1066. rq->rt_avg /= 2;
  1067. }
  1068. }
  1069. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1070. {
  1071. rq->rt_avg += rt_delta;
  1072. sched_avg_update(rq);
  1073. }
  1074. #else /* !CONFIG_SMP */
  1075. static void resched_task(struct task_struct *p)
  1076. {
  1077. assert_raw_spin_locked(&task_rq(p)->lock);
  1078. set_tsk_need_resched(p);
  1079. }
  1080. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1081. {
  1082. }
  1083. static void sched_avg_update(struct rq *rq)
  1084. {
  1085. }
  1086. #endif /* CONFIG_SMP */
  1087. #if BITS_PER_LONG == 32
  1088. # define WMULT_CONST (~0UL)
  1089. #else
  1090. # define WMULT_CONST (1UL << 32)
  1091. #endif
  1092. #define WMULT_SHIFT 32
  1093. /*
  1094. * Shift right and round:
  1095. */
  1096. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1097. /*
  1098. * delta *= weight / lw
  1099. */
  1100. static unsigned long
  1101. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1102. struct load_weight *lw)
  1103. {
  1104. u64 tmp;
  1105. if (!lw->inv_weight) {
  1106. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1107. lw->inv_weight = 1;
  1108. else
  1109. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1110. / (lw->weight+1);
  1111. }
  1112. tmp = (u64)delta_exec * weight;
  1113. /*
  1114. * Check whether we'd overflow the 64-bit multiplication:
  1115. */
  1116. if (unlikely(tmp > WMULT_CONST))
  1117. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1118. WMULT_SHIFT/2);
  1119. else
  1120. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1121. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1122. }
  1123. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1124. {
  1125. lw->weight += inc;
  1126. lw->inv_weight = 0;
  1127. }
  1128. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1129. {
  1130. lw->weight -= dec;
  1131. lw->inv_weight = 0;
  1132. }
  1133. /*
  1134. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1135. * of tasks with abnormal "nice" values across CPUs the contribution that
  1136. * each task makes to its run queue's load is weighted according to its
  1137. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1138. * scaled version of the new time slice allocation that they receive on time
  1139. * slice expiry etc.
  1140. */
  1141. #define WEIGHT_IDLEPRIO 3
  1142. #define WMULT_IDLEPRIO 1431655765
  1143. /*
  1144. * Nice levels are multiplicative, with a gentle 10% change for every
  1145. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1146. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1147. * that remained on nice 0.
  1148. *
  1149. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1150. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1151. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1152. * If a task goes up by ~10% and another task goes down by ~10% then
  1153. * the relative distance between them is ~25%.)
  1154. */
  1155. static const int prio_to_weight[40] = {
  1156. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1157. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1158. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1159. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1160. /* 0 */ 1024, 820, 655, 526, 423,
  1161. /* 5 */ 335, 272, 215, 172, 137,
  1162. /* 10 */ 110, 87, 70, 56, 45,
  1163. /* 15 */ 36, 29, 23, 18, 15,
  1164. };
  1165. /*
  1166. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1167. *
  1168. * In cases where the weight does not change often, we can use the
  1169. * precalculated inverse to speed up arithmetics by turning divisions
  1170. * into multiplications:
  1171. */
  1172. static const u32 prio_to_wmult[40] = {
  1173. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1174. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1175. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1176. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1177. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1178. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1179. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1180. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1181. };
  1182. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1183. enum cpuacct_stat_index {
  1184. CPUACCT_STAT_USER, /* ... user mode */
  1185. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1186. CPUACCT_STAT_NSTATS,
  1187. };
  1188. #ifdef CONFIG_CGROUP_CPUACCT
  1189. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1190. static void cpuacct_update_stats(struct task_struct *tsk,
  1191. enum cpuacct_stat_index idx, cputime_t val);
  1192. #else
  1193. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1194. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1195. enum cpuacct_stat_index idx, cputime_t val) {}
  1196. #endif
  1197. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1198. {
  1199. update_load_add(&rq->load, load);
  1200. }
  1201. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1202. {
  1203. update_load_sub(&rq->load, load);
  1204. }
  1205. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1206. typedef int (*tg_visitor)(struct task_group *, void *);
  1207. /*
  1208. * Iterate the full tree, calling @down when first entering a node and @up when
  1209. * leaving it for the final time.
  1210. */
  1211. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1212. {
  1213. struct task_group *parent, *child;
  1214. int ret;
  1215. rcu_read_lock();
  1216. parent = &root_task_group;
  1217. down:
  1218. ret = (*down)(parent, data);
  1219. if (ret)
  1220. goto out_unlock;
  1221. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1222. parent = child;
  1223. goto down;
  1224. up:
  1225. continue;
  1226. }
  1227. ret = (*up)(parent, data);
  1228. if (ret)
  1229. goto out_unlock;
  1230. child = parent;
  1231. parent = parent->parent;
  1232. if (parent)
  1233. goto up;
  1234. out_unlock:
  1235. rcu_read_unlock();
  1236. return ret;
  1237. }
  1238. static int tg_nop(struct task_group *tg, void *data)
  1239. {
  1240. return 0;
  1241. }
  1242. #endif
  1243. #ifdef CONFIG_SMP
  1244. /* Used instead of source_load when we know the type == 0 */
  1245. static unsigned long weighted_cpuload(const int cpu)
  1246. {
  1247. return cpu_rq(cpu)->load.weight;
  1248. }
  1249. /*
  1250. * Return a low guess at the load of a migration-source cpu weighted
  1251. * according to the scheduling class and "nice" value.
  1252. *
  1253. * We want to under-estimate the load of migration sources, to
  1254. * balance conservatively.
  1255. */
  1256. static unsigned long source_load(int cpu, int type)
  1257. {
  1258. struct rq *rq = cpu_rq(cpu);
  1259. unsigned long total = weighted_cpuload(cpu);
  1260. if (type == 0 || !sched_feat(LB_BIAS))
  1261. return total;
  1262. return min(rq->cpu_load[type-1], total);
  1263. }
  1264. /*
  1265. * Return a high guess at the load of a migration-target cpu weighted
  1266. * according to the scheduling class and "nice" value.
  1267. */
  1268. static unsigned long target_load(int cpu, int type)
  1269. {
  1270. struct rq *rq = cpu_rq(cpu);
  1271. unsigned long total = weighted_cpuload(cpu);
  1272. if (type == 0 || !sched_feat(LB_BIAS))
  1273. return total;
  1274. return max(rq->cpu_load[type-1], total);
  1275. }
  1276. static unsigned long power_of(int cpu)
  1277. {
  1278. return cpu_rq(cpu)->cpu_power;
  1279. }
  1280. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1281. static unsigned long cpu_avg_load_per_task(int cpu)
  1282. {
  1283. struct rq *rq = cpu_rq(cpu);
  1284. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1285. if (nr_running)
  1286. rq->avg_load_per_task = rq->load.weight / nr_running;
  1287. else
  1288. rq->avg_load_per_task = 0;
  1289. return rq->avg_load_per_task;
  1290. }
  1291. #ifdef CONFIG_FAIR_GROUP_SCHED
  1292. static __read_mostly unsigned long __percpu *update_shares_data;
  1293. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1294. /*
  1295. * Calculate and set the cpu's group shares.
  1296. */
  1297. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1298. unsigned long sd_shares,
  1299. unsigned long sd_rq_weight,
  1300. unsigned long *usd_rq_weight)
  1301. {
  1302. unsigned long shares, rq_weight;
  1303. int boost = 0;
  1304. rq_weight = usd_rq_weight[cpu];
  1305. if (!rq_weight) {
  1306. boost = 1;
  1307. rq_weight = NICE_0_LOAD;
  1308. }
  1309. /*
  1310. * \Sum_j shares_j * rq_weight_i
  1311. * shares_i = -----------------------------
  1312. * \Sum_j rq_weight_j
  1313. */
  1314. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1315. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1316. if (abs(shares - tg->se[cpu]->load.weight) >
  1317. sysctl_sched_shares_thresh) {
  1318. struct rq *rq = cpu_rq(cpu);
  1319. unsigned long flags;
  1320. raw_spin_lock_irqsave(&rq->lock, flags);
  1321. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1322. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1323. __set_se_shares(tg->se[cpu], shares);
  1324. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1325. }
  1326. }
  1327. /*
  1328. * Re-compute the task group their per cpu shares over the given domain.
  1329. * This needs to be done in a bottom-up fashion because the rq weight of a
  1330. * parent group depends on the shares of its child groups.
  1331. */
  1332. static int tg_shares_up(struct task_group *tg, void *data)
  1333. {
  1334. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1335. unsigned long *usd_rq_weight;
  1336. struct sched_domain *sd = data;
  1337. unsigned long flags;
  1338. int i;
  1339. if (!tg->se[0])
  1340. return 0;
  1341. local_irq_save(flags);
  1342. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1343. for_each_cpu(i, sched_domain_span(sd)) {
  1344. weight = tg->cfs_rq[i]->load.weight;
  1345. usd_rq_weight[i] = weight;
  1346. rq_weight += weight;
  1347. /*
  1348. * If there are currently no tasks on the cpu pretend there
  1349. * is one of average load so that when a new task gets to
  1350. * run here it will not get delayed by group starvation.
  1351. */
  1352. if (!weight)
  1353. weight = NICE_0_LOAD;
  1354. sum_weight += weight;
  1355. shares += tg->cfs_rq[i]->shares;
  1356. }
  1357. if (!rq_weight)
  1358. rq_weight = sum_weight;
  1359. if ((!shares && rq_weight) || shares > tg->shares)
  1360. shares = tg->shares;
  1361. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1362. shares = tg->shares;
  1363. for_each_cpu(i, sched_domain_span(sd))
  1364. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1365. local_irq_restore(flags);
  1366. return 0;
  1367. }
  1368. /*
  1369. * Compute the cpu's hierarchical load factor for each task group.
  1370. * This needs to be done in a top-down fashion because the load of a child
  1371. * group is a fraction of its parents load.
  1372. */
  1373. static int tg_load_down(struct task_group *tg, void *data)
  1374. {
  1375. unsigned long load;
  1376. long cpu = (long)data;
  1377. if (!tg->parent) {
  1378. load = cpu_rq(cpu)->load.weight;
  1379. } else {
  1380. load = tg->parent->cfs_rq[cpu]->h_load;
  1381. load *= tg->cfs_rq[cpu]->shares;
  1382. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1383. }
  1384. tg->cfs_rq[cpu]->h_load = load;
  1385. return 0;
  1386. }
  1387. static void update_shares(struct sched_domain *sd)
  1388. {
  1389. s64 elapsed;
  1390. u64 now;
  1391. if (root_task_group_empty())
  1392. return;
  1393. now = local_clock();
  1394. elapsed = now - sd->last_update;
  1395. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1396. sd->last_update = now;
  1397. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1398. }
  1399. }
  1400. static void update_h_load(long cpu)
  1401. {
  1402. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1403. }
  1404. #else
  1405. static inline void update_shares(struct sched_domain *sd)
  1406. {
  1407. }
  1408. #endif
  1409. #ifdef CONFIG_PREEMPT
  1410. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1411. /*
  1412. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1413. * way at the expense of forcing extra atomic operations in all
  1414. * invocations. This assures that the double_lock is acquired using the
  1415. * same underlying policy as the spinlock_t on this architecture, which
  1416. * reduces latency compared to the unfair variant below. However, it
  1417. * also adds more overhead and therefore may reduce throughput.
  1418. */
  1419. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1420. __releases(this_rq->lock)
  1421. __acquires(busiest->lock)
  1422. __acquires(this_rq->lock)
  1423. {
  1424. raw_spin_unlock(&this_rq->lock);
  1425. double_rq_lock(this_rq, busiest);
  1426. return 1;
  1427. }
  1428. #else
  1429. /*
  1430. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1431. * latency by eliminating extra atomic operations when the locks are
  1432. * already in proper order on entry. This favors lower cpu-ids and will
  1433. * grant the double lock to lower cpus over higher ids under contention,
  1434. * regardless of entry order into the function.
  1435. */
  1436. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1437. __releases(this_rq->lock)
  1438. __acquires(busiest->lock)
  1439. __acquires(this_rq->lock)
  1440. {
  1441. int ret = 0;
  1442. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1443. if (busiest < this_rq) {
  1444. raw_spin_unlock(&this_rq->lock);
  1445. raw_spin_lock(&busiest->lock);
  1446. raw_spin_lock_nested(&this_rq->lock,
  1447. SINGLE_DEPTH_NESTING);
  1448. ret = 1;
  1449. } else
  1450. raw_spin_lock_nested(&busiest->lock,
  1451. SINGLE_DEPTH_NESTING);
  1452. }
  1453. return ret;
  1454. }
  1455. #endif /* CONFIG_PREEMPT */
  1456. /*
  1457. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1458. */
  1459. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1460. {
  1461. if (unlikely(!irqs_disabled())) {
  1462. /* printk() doesn't work good under rq->lock */
  1463. raw_spin_unlock(&this_rq->lock);
  1464. BUG_ON(1);
  1465. }
  1466. return _double_lock_balance(this_rq, busiest);
  1467. }
  1468. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1469. __releases(busiest->lock)
  1470. {
  1471. raw_spin_unlock(&busiest->lock);
  1472. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1473. }
  1474. /*
  1475. * double_rq_lock - safely lock two runqueues
  1476. *
  1477. * Note this does not disable interrupts like task_rq_lock,
  1478. * you need to do so manually before calling.
  1479. */
  1480. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1481. __acquires(rq1->lock)
  1482. __acquires(rq2->lock)
  1483. {
  1484. BUG_ON(!irqs_disabled());
  1485. if (rq1 == rq2) {
  1486. raw_spin_lock(&rq1->lock);
  1487. __acquire(rq2->lock); /* Fake it out ;) */
  1488. } else {
  1489. if (rq1 < rq2) {
  1490. raw_spin_lock(&rq1->lock);
  1491. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1492. } else {
  1493. raw_spin_lock(&rq2->lock);
  1494. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1495. }
  1496. }
  1497. }
  1498. /*
  1499. * double_rq_unlock - safely unlock two runqueues
  1500. *
  1501. * Note this does not restore interrupts like task_rq_unlock,
  1502. * you need to do so manually after calling.
  1503. */
  1504. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1505. __releases(rq1->lock)
  1506. __releases(rq2->lock)
  1507. {
  1508. raw_spin_unlock(&rq1->lock);
  1509. if (rq1 != rq2)
  1510. raw_spin_unlock(&rq2->lock);
  1511. else
  1512. __release(rq2->lock);
  1513. }
  1514. #endif
  1515. #ifdef CONFIG_FAIR_GROUP_SCHED
  1516. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1517. {
  1518. #ifdef CONFIG_SMP
  1519. cfs_rq->shares = shares;
  1520. #endif
  1521. }
  1522. #endif
  1523. static void calc_load_account_idle(struct rq *this_rq);
  1524. static void update_sysctl(void);
  1525. static int get_update_sysctl_factor(void);
  1526. static void update_cpu_load(struct rq *this_rq);
  1527. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1528. {
  1529. set_task_rq(p, cpu);
  1530. #ifdef CONFIG_SMP
  1531. /*
  1532. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1533. * successfuly executed on another CPU. We must ensure that updates of
  1534. * per-task data have been completed by this moment.
  1535. */
  1536. smp_wmb();
  1537. task_thread_info(p)->cpu = cpu;
  1538. #endif
  1539. }
  1540. static const struct sched_class rt_sched_class;
  1541. #define sched_class_highest (&stop_sched_class)
  1542. #define for_each_class(class) \
  1543. for (class = sched_class_highest; class; class = class->next)
  1544. #include "sched_stats.h"
  1545. static void inc_nr_running(struct rq *rq)
  1546. {
  1547. rq->nr_running++;
  1548. }
  1549. static void dec_nr_running(struct rq *rq)
  1550. {
  1551. rq->nr_running--;
  1552. }
  1553. static void set_load_weight(struct task_struct *p)
  1554. {
  1555. /*
  1556. * SCHED_IDLE tasks get minimal weight:
  1557. */
  1558. if (p->policy == SCHED_IDLE) {
  1559. p->se.load.weight = WEIGHT_IDLEPRIO;
  1560. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1561. return;
  1562. }
  1563. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1564. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1565. }
  1566. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1567. {
  1568. update_rq_clock(rq);
  1569. sched_info_queued(p);
  1570. p->sched_class->enqueue_task(rq, p, flags);
  1571. p->se.on_rq = 1;
  1572. }
  1573. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1574. {
  1575. update_rq_clock(rq);
  1576. sched_info_dequeued(p);
  1577. p->sched_class->dequeue_task(rq, p, flags);
  1578. p->se.on_rq = 0;
  1579. }
  1580. /*
  1581. * activate_task - move a task to the runqueue.
  1582. */
  1583. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1584. {
  1585. if (task_contributes_to_load(p))
  1586. rq->nr_uninterruptible--;
  1587. enqueue_task(rq, p, flags);
  1588. inc_nr_running(rq);
  1589. }
  1590. /*
  1591. * deactivate_task - remove a task from the runqueue.
  1592. */
  1593. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1594. {
  1595. if (task_contributes_to_load(p))
  1596. rq->nr_uninterruptible++;
  1597. dequeue_task(rq, p, flags);
  1598. dec_nr_running(rq);
  1599. }
  1600. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1601. /*
  1602. * There are no locks covering percpu hardirq/softirq time.
  1603. * They are only modified in account_system_vtime, on corresponding CPU
  1604. * with interrupts disabled. So, writes are safe.
  1605. * They are read and saved off onto struct rq in update_rq_clock().
  1606. * This may result in other CPU reading this CPU's irq time and can
  1607. * race with irq/account_system_vtime on this CPU. We would either get old
  1608. * or new value (or semi updated value on 32 bit) with a side effect of
  1609. * accounting a slice of irq time to wrong task when irq is in progress
  1610. * while we read rq->clock. That is a worthy compromise in place of having
  1611. * locks on each irq in account_system_time.
  1612. */
  1613. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1614. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1615. static DEFINE_PER_CPU(u64, irq_start_time);
  1616. static int sched_clock_irqtime;
  1617. void enable_sched_clock_irqtime(void)
  1618. {
  1619. sched_clock_irqtime = 1;
  1620. }
  1621. void disable_sched_clock_irqtime(void)
  1622. {
  1623. sched_clock_irqtime = 0;
  1624. }
  1625. static u64 irq_time_cpu(int cpu)
  1626. {
  1627. if (!sched_clock_irqtime)
  1628. return 0;
  1629. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1630. }
  1631. void account_system_vtime(struct task_struct *curr)
  1632. {
  1633. unsigned long flags;
  1634. int cpu;
  1635. u64 now, delta;
  1636. if (!sched_clock_irqtime)
  1637. return;
  1638. local_irq_save(flags);
  1639. cpu = smp_processor_id();
  1640. now = sched_clock_cpu(cpu);
  1641. delta = now - per_cpu(irq_start_time, cpu);
  1642. per_cpu(irq_start_time, cpu) = now;
  1643. /*
  1644. * We do not account for softirq time from ksoftirqd here.
  1645. * We want to continue accounting softirq time to ksoftirqd thread
  1646. * in that case, so as not to confuse scheduler with a special task
  1647. * that do not consume any time, but still wants to run.
  1648. */
  1649. if (hardirq_count())
  1650. per_cpu(cpu_hardirq_time, cpu) += delta;
  1651. else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
  1652. per_cpu(cpu_softirq_time, cpu) += delta;
  1653. local_irq_restore(flags);
  1654. }
  1655. EXPORT_SYMBOL_GPL(account_system_vtime);
  1656. static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
  1657. {
  1658. if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
  1659. u64 delta_irq = curr_irq_time - rq->prev_irq_time;
  1660. rq->prev_irq_time = curr_irq_time;
  1661. sched_rt_avg_update(rq, delta_irq);
  1662. }
  1663. }
  1664. #else
  1665. static u64 irq_time_cpu(int cpu)
  1666. {
  1667. return 0;
  1668. }
  1669. static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
  1670. #endif
  1671. #include "sched_idletask.c"
  1672. #include "sched_fair.c"
  1673. #include "sched_rt.c"
  1674. #include "sched_stoptask.c"
  1675. #ifdef CONFIG_SCHED_DEBUG
  1676. # include "sched_debug.c"
  1677. #endif
  1678. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1679. {
  1680. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1681. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1682. if (stop) {
  1683. /*
  1684. * Make it appear like a SCHED_FIFO task, its something
  1685. * userspace knows about and won't get confused about.
  1686. *
  1687. * Also, it will make PI more or less work without too
  1688. * much confusion -- but then, stop work should not
  1689. * rely on PI working anyway.
  1690. */
  1691. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1692. stop->sched_class = &stop_sched_class;
  1693. }
  1694. cpu_rq(cpu)->stop = stop;
  1695. if (old_stop) {
  1696. /*
  1697. * Reset it back to a normal scheduling class so that
  1698. * it can die in pieces.
  1699. */
  1700. old_stop->sched_class = &rt_sched_class;
  1701. }
  1702. }
  1703. /*
  1704. * __normal_prio - return the priority that is based on the static prio
  1705. */
  1706. static inline int __normal_prio(struct task_struct *p)
  1707. {
  1708. return p->static_prio;
  1709. }
  1710. /*
  1711. * Calculate the expected normal priority: i.e. priority
  1712. * without taking RT-inheritance into account. Might be
  1713. * boosted by interactivity modifiers. Changes upon fork,
  1714. * setprio syscalls, and whenever the interactivity
  1715. * estimator recalculates.
  1716. */
  1717. static inline int normal_prio(struct task_struct *p)
  1718. {
  1719. int prio;
  1720. if (task_has_rt_policy(p))
  1721. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1722. else
  1723. prio = __normal_prio(p);
  1724. return prio;
  1725. }
  1726. /*
  1727. * Calculate the current priority, i.e. the priority
  1728. * taken into account by the scheduler. This value might
  1729. * be boosted by RT tasks, or might be boosted by
  1730. * interactivity modifiers. Will be RT if the task got
  1731. * RT-boosted. If not then it returns p->normal_prio.
  1732. */
  1733. static int effective_prio(struct task_struct *p)
  1734. {
  1735. p->normal_prio = normal_prio(p);
  1736. /*
  1737. * If we are RT tasks or we were boosted to RT priority,
  1738. * keep the priority unchanged. Otherwise, update priority
  1739. * to the normal priority:
  1740. */
  1741. if (!rt_prio(p->prio))
  1742. return p->normal_prio;
  1743. return p->prio;
  1744. }
  1745. /**
  1746. * task_curr - is this task currently executing on a CPU?
  1747. * @p: the task in question.
  1748. */
  1749. inline int task_curr(const struct task_struct *p)
  1750. {
  1751. return cpu_curr(task_cpu(p)) == p;
  1752. }
  1753. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1754. const struct sched_class *prev_class,
  1755. int oldprio, int running)
  1756. {
  1757. if (prev_class != p->sched_class) {
  1758. if (prev_class->switched_from)
  1759. prev_class->switched_from(rq, p, running);
  1760. p->sched_class->switched_to(rq, p, running);
  1761. } else
  1762. p->sched_class->prio_changed(rq, p, oldprio, running);
  1763. }
  1764. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1765. {
  1766. const struct sched_class *class;
  1767. if (p->sched_class == rq->curr->sched_class) {
  1768. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1769. } else {
  1770. for_each_class(class) {
  1771. if (class == rq->curr->sched_class)
  1772. break;
  1773. if (class == p->sched_class) {
  1774. resched_task(rq->curr);
  1775. break;
  1776. }
  1777. }
  1778. }
  1779. /*
  1780. * A queue event has occurred, and we're going to schedule. In
  1781. * this case, we can save a useless back to back clock update.
  1782. */
  1783. if (test_tsk_need_resched(rq->curr))
  1784. rq->skip_clock_update = 1;
  1785. }
  1786. #ifdef CONFIG_SMP
  1787. /*
  1788. * Is this task likely cache-hot:
  1789. */
  1790. static int
  1791. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1792. {
  1793. s64 delta;
  1794. if (p->sched_class != &fair_sched_class)
  1795. return 0;
  1796. if (unlikely(p->policy == SCHED_IDLE))
  1797. return 0;
  1798. /*
  1799. * Buddy candidates are cache hot:
  1800. */
  1801. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1802. (&p->se == cfs_rq_of(&p->se)->next ||
  1803. &p->se == cfs_rq_of(&p->se)->last))
  1804. return 1;
  1805. if (sysctl_sched_migration_cost == -1)
  1806. return 1;
  1807. if (sysctl_sched_migration_cost == 0)
  1808. return 0;
  1809. delta = now - p->se.exec_start;
  1810. return delta < (s64)sysctl_sched_migration_cost;
  1811. }
  1812. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1813. {
  1814. #ifdef CONFIG_SCHED_DEBUG
  1815. /*
  1816. * We should never call set_task_cpu() on a blocked task,
  1817. * ttwu() will sort out the placement.
  1818. */
  1819. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1820. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1821. #endif
  1822. trace_sched_migrate_task(p, new_cpu);
  1823. if (task_cpu(p) != new_cpu) {
  1824. p->se.nr_migrations++;
  1825. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1826. }
  1827. __set_task_cpu(p, new_cpu);
  1828. }
  1829. struct migration_arg {
  1830. struct task_struct *task;
  1831. int dest_cpu;
  1832. };
  1833. static int migration_cpu_stop(void *data);
  1834. /*
  1835. * The task's runqueue lock must be held.
  1836. * Returns true if you have to wait for migration thread.
  1837. */
  1838. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1839. {
  1840. struct rq *rq = task_rq(p);
  1841. /*
  1842. * If the task is not on a runqueue (and not running), then
  1843. * the next wake-up will properly place the task.
  1844. */
  1845. return p->se.on_rq || task_running(rq, p);
  1846. }
  1847. /*
  1848. * wait_task_inactive - wait for a thread to unschedule.
  1849. *
  1850. * If @match_state is nonzero, it's the @p->state value just checked and
  1851. * not expected to change. If it changes, i.e. @p might have woken up,
  1852. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1853. * we return a positive number (its total switch count). If a second call
  1854. * a short while later returns the same number, the caller can be sure that
  1855. * @p has remained unscheduled the whole time.
  1856. *
  1857. * The caller must ensure that the task *will* unschedule sometime soon,
  1858. * else this function might spin for a *long* time. This function can't
  1859. * be called with interrupts off, or it may introduce deadlock with
  1860. * smp_call_function() if an IPI is sent by the same process we are
  1861. * waiting to become inactive.
  1862. */
  1863. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1864. {
  1865. unsigned long flags;
  1866. int running, on_rq;
  1867. unsigned long ncsw;
  1868. struct rq *rq;
  1869. for (;;) {
  1870. /*
  1871. * We do the initial early heuristics without holding
  1872. * any task-queue locks at all. We'll only try to get
  1873. * the runqueue lock when things look like they will
  1874. * work out!
  1875. */
  1876. rq = task_rq(p);
  1877. /*
  1878. * If the task is actively running on another CPU
  1879. * still, just relax and busy-wait without holding
  1880. * any locks.
  1881. *
  1882. * NOTE! Since we don't hold any locks, it's not
  1883. * even sure that "rq" stays as the right runqueue!
  1884. * But we don't care, since "task_running()" will
  1885. * return false if the runqueue has changed and p
  1886. * is actually now running somewhere else!
  1887. */
  1888. while (task_running(rq, p)) {
  1889. if (match_state && unlikely(p->state != match_state))
  1890. return 0;
  1891. cpu_relax();
  1892. }
  1893. /*
  1894. * Ok, time to look more closely! We need the rq
  1895. * lock now, to be *sure*. If we're wrong, we'll
  1896. * just go back and repeat.
  1897. */
  1898. rq = task_rq_lock(p, &flags);
  1899. trace_sched_wait_task(p);
  1900. running = task_running(rq, p);
  1901. on_rq = p->se.on_rq;
  1902. ncsw = 0;
  1903. if (!match_state || p->state == match_state)
  1904. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1905. task_rq_unlock(rq, &flags);
  1906. /*
  1907. * If it changed from the expected state, bail out now.
  1908. */
  1909. if (unlikely(!ncsw))
  1910. break;
  1911. /*
  1912. * Was it really running after all now that we
  1913. * checked with the proper locks actually held?
  1914. *
  1915. * Oops. Go back and try again..
  1916. */
  1917. if (unlikely(running)) {
  1918. cpu_relax();
  1919. continue;
  1920. }
  1921. /*
  1922. * It's not enough that it's not actively running,
  1923. * it must be off the runqueue _entirely_, and not
  1924. * preempted!
  1925. *
  1926. * So if it was still runnable (but just not actively
  1927. * running right now), it's preempted, and we should
  1928. * yield - it could be a while.
  1929. */
  1930. if (unlikely(on_rq)) {
  1931. schedule_timeout_uninterruptible(1);
  1932. continue;
  1933. }
  1934. /*
  1935. * Ahh, all good. It wasn't running, and it wasn't
  1936. * runnable, which means that it will never become
  1937. * running in the future either. We're all done!
  1938. */
  1939. break;
  1940. }
  1941. return ncsw;
  1942. }
  1943. /***
  1944. * kick_process - kick a running thread to enter/exit the kernel
  1945. * @p: the to-be-kicked thread
  1946. *
  1947. * Cause a process which is running on another CPU to enter
  1948. * kernel-mode, without any delay. (to get signals handled.)
  1949. *
  1950. * NOTE: this function doesnt have to take the runqueue lock,
  1951. * because all it wants to ensure is that the remote task enters
  1952. * the kernel. If the IPI races and the task has been migrated
  1953. * to another CPU then no harm is done and the purpose has been
  1954. * achieved as well.
  1955. */
  1956. void kick_process(struct task_struct *p)
  1957. {
  1958. int cpu;
  1959. preempt_disable();
  1960. cpu = task_cpu(p);
  1961. if ((cpu != smp_processor_id()) && task_curr(p))
  1962. smp_send_reschedule(cpu);
  1963. preempt_enable();
  1964. }
  1965. EXPORT_SYMBOL_GPL(kick_process);
  1966. #endif /* CONFIG_SMP */
  1967. /**
  1968. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1969. * @p: the task to evaluate
  1970. * @func: the function to be called
  1971. * @info: the function call argument
  1972. *
  1973. * Calls the function @func when the task is currently running. This might
  1974. * be on the current CPU, which just calls the function directly
  1975. */
  1976. void task_oncpu_function_call(struct task_struct *p,
  1977. void (*func) (void *info), void *info)
  1978. {
  1979. int cpu;
  1980. preempt_disable();
  1981. cpu = task_cpu(p);
  1982. if (task_curr(p))
  1983. smp_call_function_single(cpu, func, info, 1);
  1984. preempt_enable();
  1985. }
  1986. #ifdef CONFIG_SMP
  1987. /*
  1988. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1989. */
  1990. static int select_fallback_rq(int cpu, struct task_struct *p)
  1991. {
  1992. int dest_cpu;
  1993. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1994. /* Look for allowed, online CPU in same node. */
  1995. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1996. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1997. return dest_cpu;
  1998. /* Any allowed, online CPU? */
  1999. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  2000. if (dest_cpu < nr_cpu_ids)
  2001. return dest_cpu;
  2002. /* No more Mr. Nice Guy. */
  2003. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  2004. dest_cpu = cpuset_cpus_allowed_fallback(p);
  2005. /*
  2006. * Don't tell them about moving exiting tasks or
  2007. * kernel threads (both mm NULL), since they never
  2008. * leave kernel.
  2009. */
  2010. if (p->mm && printk_ratelimit()) {
  2011. printk(KERN_INFO "process %d (%s) no "
  2012. "longer affine to cpu%d\n",
  2013. task_pid_nr(p), p->comm, cpu);
  2014. }
  2015. }
  2016. return dest_cpu;
  2017. }
  2018. /*
  2019. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  2020. */
  2021. static inline
  2022. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  2023. {
  2024. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  2025. /*
  2026. * In order not to call set_task_cpu() on a blocking task we need
  2027. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2028. * cpu.
  2029. *
  2030. * Since this is common to all placement strategies, this lives here.
  2031. *
  2032. * [ this allows ->select_task() to simply return task_cpu(p) and
  2033. * not worry about this generic constraint ]
  2034. */
  2035. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2036. !cpu_online(cpu)))
  2037. cpu = select_fallback_rq(task_cpu(p), p);
  2038. return cpu;
  2039. }
  2040. static void update_avg(u64 *avg, u64 sample)
  2041. {
  2042. s64 diff = sample - *avg;
  2043. *avg += diff >> 3;
  2044. }
  2045. #endif
  2046. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  2047. bool is_sync, bool is_migrate, bool is_local,
  2048. unsigned long en_flags)
  2049. {
  2050. schedstat_inc(p, se.statistics.nr_wakeups);
  2051. if (is_sync)
  2052. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2053. if (is_migrate)
  2054. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2055. if (is_local)
  2056. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2057. else
  2058. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2059. activate_task(rq, p, en_flags);
  2060. }
  2061. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  2062. int wake_flags, bool success)
  2063. {
  2064. trace_sched_wakeup(p, success);
  2065. check_preempt_curr(rq, p, wake_flags);
  2066. p->state = TASK_RUNNING;
  2067. #ifdef CONFIG_SMP
  2068. if (p->sched_class->task_woken)
  2069. p->sched_class->task_woken(rq, p);
  2070. if (unlikely(rq->idle_stamp)) {
  2071. u64 delta = rq->clock - rq->idle_stamp;
  2072. u64 max = 2*sysctl_sched_migration_cost;
  2073. if (delta > max)
  2074. rq->avg_idle = max;
  2075. else
  2076. update_avg(&rq->avg_idle, delta);
  2077. rq->idle_stamp = 0;
  2078. }
  2079. #endif
  2080. /* if a worker is waking up, notify workqueue */
  2081. if ((p->flags & PF_WQ_WORKER) && success)
  2082. wq_worker_waking_up(p, cpu_of(rq));
  2083. }
  2084. /**
  2085. * try_to_wake_up - wake up a thread
  2086. * @p: the thread to be awakened
  2087. * @state: the mask of task states that can be woken
  2088. * @wake_flags: wake modifier flags (WF_*)
  2089. *
  2090. * Put it on the run-queue if it's not already there. The "current"
  2091. * thread is always on the run-queue (except when the actual
  2092. * re-schedule is in progress), and as such you're allowed to do
  2093. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2094. * runnable without the overhead of this.
  2095. *
  2096. * Returns %true if @p was woken up, %false if it was already running
  2097. * or @state didn't match @p's state.
  2098. */
  2099. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2100. int wake_flags)
  2101. {
  2102. int cpu, orig_cpu, this_cpu, success = 0;
  2103. unsigned long flags;
  2104. unsigned long en_flags = ENQUEUE_WAKEUP;
  2105. struct rq *rq;
  2106. this_cpu = get_cpu();
  2107. smp_wmb();
  2108. rq = task_rq_lock(p, &flags);
  2109. if (!(p->state & state))
  2110. goto out;
  2111. if (p->se.on_rq)
  2112. goto out_running;
  2113. cpu = task_cpu(p);
  2114. orig_cpu = cpu;
  2115. #ifdef CONFIG_SMP
  2116. if (unlikely(task_running(rq, p)))
  2117. goto out_activate;
  2118. /*
  2119. * In order to handle concurrent wakeups and release the rq->lock
  2120. * we put the task in TASK_WAKING state.
  2121. *
  2122. * First fix up the nr_uninterruptible count:
  2123. */
  2124. if (task_contributes_to_load(p)) {
  2125. if (likely(cpu_online(orig_cpu)))
  2126. rq->nr_uninterruptible--;
  2127. else
  2128. this_rq()->nr_uninterruptible--;
  2129. }
  2130. p->state = TASK_WAKING;
  2131. if (p->sched_class->task_waking) {
  2132. p->sched_class->task_waking(rq, p);
  2133. en_flags |= ENQUEUE_WAKING;
  2134. }
  2135. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2136. if (cpu != orig_cpu)
  2137. set_task_cpu(p, cpu);
  2138. __task_rq_unlock(rq);
  2139. rq = cpu_rq(cpu);
  2140. raw_spin_lock(&rq->lock);
  2141. /*
  2142. * We migrated the task without holding either rq->lock, however
  2143. * since the task is not on the task list itself, nobody else
  2144. * will try and migrate the task, hence the rq should match the
  2145. * cpu we just moved it to.
  2146. */
  2147. WARN_ON(task_cpu(p) != cpu);
  2148. WARN_ON(p->state != TASK_WAKING);
  2149. #ifdef CONFIG_SCHEDSTATS
  2150. schedstat_inc(rq, ttwu_count);
  2151. if (cpu == this_cpu)
  2152. schedstat_inc(rq, ttwu_local);
  2153. else {
  2154. struct sched_domain *sd;
  2155. for_each_domain(this_cpu, sd) {
  2156. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2157. schedstat_inc(sd, ttwu_wake_remote);
  2158. break;
  2159. }
  2160. }
  2161. }
  2162. #endif /* CONFIG_SCHEDSTATS */
  2163. out_activate:
  2164. #endif /* CONFIG_SMP */
  2165. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2166. cpu == this_cpu, en_flags);
  2167. success = 1;
  2168. out_running:
  2169. ttwu_post_activation(p, rq, wake_flags, success);
  2170. out:
  2171. task_rq_unlock(rq, &flags);
  2172. put_cpu();
  2173. return success;
  2174. }
  2175. /**
  2176. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2177. * @p: the thread to be awakened
  2178. *
  2179. * Put @p on the run-queue if it's not alredy there. The caller must
  2180. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2181. * the current task. this_rq() stays locked over invocation.
  2182. */
  2183. static void try_to_wake_up_local(struct task_struct *p)
  2184. {
  2185. struct rq *rq = task_rq(p);
  2186. bool success = false;
  2187. BUG_ON(rq != this_rq());
  2188. BUG_ON(p == current);
  2189. lockdep_assert_held(&rq->lock);
  2190. if (!(p->state & TASK_NORMAL))
  2191. return;
  2192. if (!p->se.on_rq) {
  2193. if (likely(!task_running(rq, p))) {
  2194. schedstat_inc(rq, ttwu_count);
  2195. schedstat_inc(rq, ttwu_local);
  2196. }
  2197. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2198. success = true;
  2199. }
  2200. ttwu_post_activation(p, rq, 0, success);
  2201. }
  2202. /**
  2203. * wake_up_process - Wake up a specific process
  2204. * @p: The process to be woken up.
  2205. *
  2206. * Attempt to wake up the nominated process and move it to the set of runnable
  2207. * processes. Returns 1 if the process was woken up, 0 if it was already
  2208. * running.
  2209. *
  2210. * It may be assumed that this function implies a write memory barrier before
  2211. * changing the task state if and only if any tasks are woken up.
  2212. */
  2213. int wake_up_process(struct task_struct *p)
  2214. {
  2215. return try_to_wake_up(p, TASK_ALL, 0);
  2216. }
  2217. EXPORT_SYMBOL(wake_up_process);
  2218. int wake_up_state(struct task_struct *p, unsigned int state)
  2219. {
  2220. return try_to_wake_up(p, state, 0);
  2221. }
  2222. /*
  2223. * Perform scheduler related setup for a newly forked process p.
  2224. * p is forked by current.
  2225. *
  2226. * __sched_fork() is basic setup used by init_idle() too:
  2227. */
  2228. static void __sched_fork(struct task_struct *p)
  2229. {
  2230. p->se.exec_start = 0;
  2231. p->se.sum_exec_runtime = 0;
  2232. p->se.prev_sum_exec_runtime = 0;
  2233. p->se.nr_migrations = 0;
  2234. #ifdef CONFIG_SCHEDSTATS
  2235. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2236. #endif
  2237. INIT_LIST_HEAD(&p->rt.run_list);
  2238. p->se.on_rq = 0;
  2239. INIT_LIST_HEAD(&p->se.group_node);
  2240. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2241. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2242. #endif
  2243. }
  2244. /*
  2245. * fork()/clone()-time setup:
  2246. */
  2247. void sched_fork(struct task_struct *p, int clone_flags)
  2248. {
  2249. int cpu = get_cpu();
  2250. __sched_fork(p);
  2251. /*
  2252. * We mark the process as running here. This guarantees that
  2253. * nobody will actually run it, and a signal or other external
  2254. * event cannot wake it up and insert it on the runqueue either.
  2255. */
  2256. p->state = TASK_RUNNING;
  2257. /*
  2258. * Revert to default priority/policy on fork if requested.
  2259. */
  2260. if (unlikely(p->sched_reset_on_fork)) {
  2261. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2262. p->policy = SCHED_NORMAL;
  2263. p->normal_prio = p->static_prio;
  2264. }
  2265. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2266. p->static_prio = NICE_TO_PRIO(0);
  2267. p->normal_prio = p->static_prio;
  2268. set_load_weight(p);
  2269. }
  2270. /*
  2271. * We don't need the reset flag anymore after the fork. It has
  2272. * fulfilled its duty:
  2273. */
  2274. p->sched_reset_on_fork = 0;
  2275. }
  2276. /*
  2277. * Make sure we do not leak PI boosting priority to the child.
  2278. */
  2279. p->prio = current->normal_prio;
  2280. if (!rt_prio(p->prio))
  2281. p->sched_class = &fair_sched_class;
  2282. if (p->sched_class->task_fork)
  2283. p->sched_class->task_fork(p);
  2284. /*
  2285. * The child is not yet in the pid-hash so no cgroup attach races,
  2286. * and the cgroup is pinned to this child due to cgroup_fork()
  2287. * is ran before sched_fork().
  2288. *
  2289. * Silence PROVE_RCU.
  2290. */
  2291. rcu_read_lock();
  2292. set_task_cpu(p, cpu);
  2293. rcu_read_unlock();
  2294. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2295. if (likely(sched_info_on()))
  2296. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2297. #endif
  2298. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2299. p->oncpu = 0;
  2300. #endif
  2301. #ifdef CONFIG_PREEMPT
  2302. /* Want to start with kernel preemption disabled. */
  2303. task_thread_info(p)->preempt_count = 1;
  2304. #endif
  2305. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2306. put_cpu();
  2307. }
  2308. /*
  2309. * wake_up_new_task - wake up a newly created task for the first time.
  2310. *
  2311. * This function will do some initial scheduler statistics housekeeping
  2312. * that must be done for every newly created context, then puts the task
  2313. * on the runqueue and wakes it.
  2314. */
  2315. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2316. {
  2317. unsigned long flags;
  2318. struct rq *rq;
  2319. int cpu __maybe_unused = get_cpu();
  2320. #ifdef CONFIG_SMP
  2321. rq = task_rq_lock(p, &flags);
  2322. p->state = TASK_WAKING;
  2323. /*
  2324. * Fork balancing, do it here and not earlier because:
  2325. * - cpus_allowed can change in the fork path
  2326. * - any previously selected cpu might disappear through hotplug
  2327. *
  2328. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2329. * without people poking at ->cpus_allowed.
  2330. */
  2331. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2332. set_task_cpu(p, cpu);
  2333. p->state = TASK_RUNNING;
  2334. task_rq_unlock(rq, &flags);
  2335. #endif
  2336. rq = task_rq_lock(p, &flags);
  2337. activate_task(rq, p, 0);
  2338. trace_sched_wakeup_new(p, 1);
  2339. check_preempt_curr(rq, p, WF_FORK);
  2340. #ifdef CONFIG_SMP
  2341. if (p->sched_class->task_woken)
  2342. p->sched_class->task_woken(rq, p);
  2343. #endif
  2344. task_rq_unlock(rq, &flags);
  2345. put_cpu();
  2346. }
  2347. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2348. /**
  2349. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2350. * @notifier: notifier struct to register
  2351. */
  2352. void preempt_notifier_register(struct preempt_notifier *notifier)
  2353. {
  2354. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2355. }
  2356. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2357. /**
  2358. * preempt_notifier_unregister - no longer interested in preemption notifications
  2359. * @notifier: notifier struct to unregister
  2360. *
  2361. * This is safe to call from within a preemption notifier.
  2362. */
  2363. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2364. {
  2365. hlist_del(&notifier->link);
  2366. }
  2367. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2368. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2369. {
  2370. struct preempt_notifier *notifier;
  2371. struct hlist_node *node;
  2372. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2373. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2374. }
  2375. static void
  2376. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2377. struct task_struct *next)
  2378. {
  2379. struct preempt_notifier *notifier;
  2380. struct hlist_node *node;
  2381. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2382. notifier->ops->sched_out(notifier, next);
  2383. }
  2384. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2385. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2386. {
  2387. }
  2388. static void
  2389. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2390. struct task_struct *next)
  2391. {
  2392. }
  2393. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2394. /**
  2395. * prepare_task_switch - prepare to switch tasks
  2396. * @rq: the runqueue preparing to switch
  2397. * @prev: the current task that is being switched out
  2398. * @next: the task we are going to switch to.
  2399. *
  2400. * This is called with the rq lock held and interrupts off. It must
  2401. * be paired with a subsequent finish_task_switch after the context
  2402. * switch.
  2403. *
  2404. * prepare_task_switch sets up locking and calls architecture specific
  2405. * hooks.
  2406. */
  2407. static inline void
  2408. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2409. struct task_struct *next)
  2410. {
  2411. fire_sched_out_preempt_notifiers(prev, next);
  2412. prepare_lock_switch(rq, next);
  2413. prepare_arch_switch(next);
  2414. }
  2415. /**
  2416. * finish_task_switch - clean up after a task-switch
  2417. * @rq: runqueue associated with task-switch
  2418. * @prev: the thread we just switched away from.
  2419. *
  2420. * finish_task_switch must be called after the context switch, paired
  2421. * with a prepare_task_switch call before the context switch.
  2422. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2423. * and do any other architecture-specific cleanup actions.
  2424. *
  2425. * Note that we may have delayed dropping an mm in context_switch(). If
  2426. * so, we finish that here outside of the runqueue lock. (Doing it
  2427. * with the lock held can cause deadlocks; see schedule() for
  2428. * details.)
  2429. */
  2430. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2431. __releases(rq->lock)
  2432. {
  2433. struct mm_struct *mm = rq->prev_mm;
  2434. long prev_state;
  2435. rq->prev_mm = NULL;
  2436. /*
  2437. * A task struct has one reference for the use as "current".
  2438. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2439. * schedule one last time. The schedule call will never return, and
  2440. * the scheduled task must drop that reference.
  2441. * The test for TASK_DEAD must occur while the runqueue locks are
  2442. * still held, otherwise prev could be scheduled on another cpu, die
  2443. * there before we look at prev->state, and then the reference would
  2444. * be dropped twice.
  2445. * Manfred Spraul <manfred@colorfullife.com>
  2446. */
  2447. prev_state = prev->state;
  2448. finish_arch_switch(prev);
  2449. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2450. local_irq_disable();
  2451. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2452. perf_event_task_sched_in(current);
  2453. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2454. local_irq_enable();
  2455. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2456. finish_lock_switch(rq, prev);
  2457. fire_sched_in_preempt_notifiers(current);
  2458. if (mm)
  2459. mmdrop(mm);
  2460. if (unlikely(prev_state == TASK_DEAD)) {
  2461. /*
  2462. * Remove function-return probe instances associated with this
  2463. * task and put them back on the free list.
  2464. */
  2465. kprobe_flush_task(prev);
  2466. put_task_struct(prev);
  2467. }
  2468. }
  2469. #ifdef CONFIG_SMP
  2470. /* assumes rq->lock is held */
  2471. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2472. {
  2473. if (prev->sched_class->pre_schedule)
  2474. prev->sched_class->pre_schedule(rq, prev);
  2475. }
  2476. /* rq->lock is NOT held, but preemption is disabled */
  2477. static inline void post_schedule(struct rq *rq)
  2478. {
  2479. if (rq->post_schedule) {
  2480. unsigned long flags;
  2481. raw_spin_lock_irqsave(&rq->lock, flags);
  2482. if (rq->curr->sched_class->post_schedule)
  2483. rq->curr->sched_class->post_schedule(rq);
  2484. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2485. rq->post_schedule = 0;
  2486. }
  2487. }
  2488. #else
  2489. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2490. {
  2491. }
  2492. static inline void post_schedule(struct rq *rq)
  2493. {
  2494. }
  2495. #endif
  2496. /**
  2497. * schedule_tail - first thing a freshly forked thread must call.
  2498. * @prev: the thread we just switched away from.
  2499. */
  2500. asmlinkage void schedule_tail(struct task_struct *prev)
  2501. __releases(rq->lock)
  2502. {
  2503. struct rq *rq = this_rq();
  2504. finish_task_switch(rq, prev);
  2505. /*
  2506. * FIXME: do we need to worry about rq being invalidated by the
  2507. * task_switch?
  2508. */
  2509. post_schedule(rq);
  2510. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2511. /* In this case, finish_task_switch does not reenable preemption */
  2512. preempt_enable();
  2513. #endif
  2514. if (current->set_child_tid)
  2515. put_user(task_pid_vnr(current), current->set_child_tid);
  2516. }
  2517. /*
  2518. * context_switch - switch to the new MM and the new
  2519. * thread's register state.
  2520. */
  2521. static inline void
  2522. context_switch(struct rq *rq, struct task_struct *prev,
  2523. struct task_struct *next)
  2524. {
  2525. struct mm_struct *mm, *oldmm;
  2526. prepare_task_switch(rq, prev, next);
  2527. trace_sched_switch(prev, next);
  2528. mm = next->mm;
  2529. oldmm = prev->active_mm;
  2530. /*
  2531. * For paravirt, this is coupled with an exit in switch_to to
  2532. * combine the page table reload and the switch backend into
  2533. * one hypercall.
  2534. */
  2535. arch_start_context_switch(prev);
  2536. if (!mm) {
  2537. next->active_mm = oldmm;
  2538. atomic_inc(&oldmm->mm_count);
  2539. enter_lazy_tlb(oldmm, next);
  2540. } else
  2541. switch_mm(oldmm, mm, next);
  2542. if (!prev->mm) {
  2543. prev->active_mm = NULL;
  2544. rq->prev_mm = oldmm;
  2545. }
  2546. /*
  2547. * Since the runqueue lock will be released by the next
  2548. * task (which is an invalid locking op but in the case
  2549. * of the scheduler it's an obvious special-case), so we
  2550. * do an early lockdep release here:
  2551. */
  2552. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2553. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2554. #endif
  2555. /* Here we just switch the register state and the stack. */
  2556. switch_to(prev, next, prev);
  2557. barrier();
  2558. /*
  2559. * this_rq must be evaluated again because prev may have moved
  2560. * CPUs since it called schedule(), thus the 'rq' on its stack
  2561. * frame will be invalid.
  2562. */
  2563. finish_task_switch(this_rq(), prev);
  2564. }
  2565. /*
  2566. * nr_running, nr_uninterruptible and nr_context_switches:
  2567. *
  2568. * externally visible scheduler statistics: current number of runnable
  2569. * threads, current number of uninterruptible-sleeping threads, total
  2570. * number of context switches performed since bootup.
  2571. */
  2572. unsigned long nr_running(void)
  2573. {
  2574. unsigned long i, sum = 0;
  2575. for_each_online_cpu(i)
  2576. sum += cpu_rq(i)->nr_running;
  2577. return sum;
  2578. }
  2579. unsigned long nr_uninterruptible(void)
  2580. {
  2581. unsigned long i, sum = 0;
  2582. for_each_possible_cpu(i)
  2583. sum += cpu_rq(i)->nr_uninterruptible;
  2584. /*
  2585. * Since we read the counters lockless, it might be slightly
  2586. * inaccurate. Do not allow it to go below zero though:
  2587. */
  2588. if (unlikely((long)sum < 0))
  2589. sum = 0;
  2590. return sum;
  2591. }
  2592. unsigned long long nr_context_switches(void)
  2593. {
  2594. int i;
  2595. unsigned long long sum = 0;
  2596. for_each_possible_cpu(i)
  2597. sum += cpu_rq(i)->nr_switches;
  2598. return sum;
  2599. }
  2600. unsigned long nr_iowait(void)
  2601. {
  2602. unsigned long i, sum = 0;
  2603. for_each_possible_cpu(i)
  2604. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2605. return sum;
  2606. }
  2607. unsigned long nr_iowait_cpu(int cpu)
  2608. {
  2609. struct rq *this = cpu_rq(cpu);
  2610. return atomic_read(&this->nr_iowait);
  2611. }
  2612. unsigned long this_cpu_load(void)
  2613. {
  2614. struct rq *this = this_rq();
  2615. return this->cpu_load[0];
  2616. }
  2617. /* Variables and functions for calc_load */
  2618. static atomic_long_t calc_load_tasks;
  2619. static unsigned long calc_load_update;
  2620. unsigned long avenrun[3];
  2621. EXPORT_SYMBOL(avenrun);
  2622. static long calc_load_fold_active(struct rq *this_rq)
  2623. {
  2624. long nr_active, delta = 0;
  2625. nr_active = this_rq->nr_running;
  2626. nr_active += (long) this_rq->nr_uninterruptible;
  2627. if (nr_active != this_rq->calc_load_active) {
  2628. delta = nr_active - this_rq->calc_load_active;
  2629. this_rq->calc_load_active = nr_active;
  2630. }
  2631. return delta;
  2632. }
  2633. #ifdef CONFIG_NO_HZ
  2634. /*
  2635. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2636. *
  2637. * When making the ILB scale, we should try to pull this in as well.
  2638. */
  2639. static atomic_long_t calc_load_tasks_idle;
  2640. static void calc_load_account_idle(struct rq *this_rq)
  2641. {
  2642. long delta;
  2643. delta = calc_load_fold_active(this_rq);
  2644. if (delta)
  2645. atomic_long_add(delta, &calc_load_tasks_idle);
  2646. }
  2647. static long calc_load_fold_idle(void)
  2648. {
  2649. long delta = 0;
  2650. /*
  2651. * Its got a race, we don't care...
  2652. */
  2653. if (atomic_long_read(&calc_load_tasks_idle))
  2654. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2655. return delta;
  2656. }
  2657. #else
  2658. static void calc_load_account_idle(struct rq *this_rq)
  2659. {
  2660. }
  2661. static inline long calc_load_fold_idle(void)
  2662. {
  2663. return 0;
  2664. }
  2665. #endif
  2666. /**
  2667. * get_avenrun - get the load average array
  2668. * @loads: pointer to dest load array
  2669. * @offset: offset to add
  2670. * @shift: shift count to shift the result left
  2671. *
  2672. * These values are estimates at best, so no need for locking.
  2673. */
  2674. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2675. {
  2676. loads[0] = (avenrun[0] + offset) << shift;
  2677. loads[1] = (avenrun[1] + offset) << shift;
  2678. loads[2] = (avenrun[2] + offset) << shift;
  2679. }
  2680. static unsigned long
  2681. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2682. {
  2683. load *= exp;
  2684. load += active * (FIXED_1 - exp);
  2685. return load >> FSHIFT;
  2686. }
  2687. /*
  2688. * calc_load - update the avenrun load estimates 10 ticks after the
  2689. * CPUs have updated calc_load_tasks.
  2690. */
  2691. void calc_global_load(void)
  2692. {
  2693. unsigned long upd = calc_load_update + 10;
  2694. long active;
  2695. if (time_before(jiffies, upd))
  2696. return;
  2697. active = atomic_long_read(&calc_load_tasks);
  2698. active = active > 0 ? active * FIXED_1 : 0;
  2699. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2700. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2701. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2702. calc_load_update += LOAD_FREQ;
  2703. }
  2704. /*
  2705. * Called from update_cpu_load() to periodically update this CPU's
  2706. * active count.
  2707. */
  2708. static void calc_load_account_active(struct rq *this_rq)
  2709. {
  2710. long delta;
  2711. if (time_before(jiffies, this_rq->calc_load_update))
  2712. return;
  2713. delta = calc_load_fold_active(this_rq);
  2714. delta += calc_load_fold_idle();
  2715. if (delta)
  2716. atomic_long_add(delta, &calc_load_tasks);
  2717. this_rq->calc_load_update += LOAD_FREQ;
  2718. }
  2719. /*
  2720. * The exact cpuload at various idx values, calculated at every tick would be
  2721. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2722. *
  2723. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2724. * on nth tick when cpu may be busy, then we have:
  2725. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2726. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2727. *
  2728. * decay_load_missed() below does efficient calculation of
  2729. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2730. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2731. *
  2732. * The calculation is approximated on a 128 point scale.
  2733. * degrade_zero_ticks is the number of ticks after which load at any
  2734. * particular idx is approximated to be zero.
  2735. * degrade_factor is a precomputed table, a row for each load idx.
  2736. * Each column corresponds to degradation factor for a power of two ticks,
  2737. * based on 128 point scale.
  2738. * Example:
  2739. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2740. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2741. *
  2742. * With this power of 2 load factors, we can degrade the load n times
  2743. * by looking at 1 bits in n and doing as many mult/shift instead of
  2744. * n mult/shifts needed by the exact degradation.
  2745. */
  2746. #define DEGRADE_SHIFT 7
  2747. static const unsigned char
  2748. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2749. static const unsigned char
  2750. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2751. {0, 0, 0, 0, 0, 0, 0, 0},
  2752. {64, 32, 8, 0, 0, 0, 0, 0},
  2753. {96, 72, 40, 12, 1, 0, 0},
  2754. {112, 98, 75, 43, 15, 1, 0},
  2755. {120, 112, 98, 76, 45, 16, 2} };
  2756. /*
  2757. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2758. * would be when CPU is idle and so we just decay the old load without
  2759. * adding any new load.
  2760. */
  2761. static unsigned long
  2762. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2763. {
  2764. int j = 0;
  2765. if (!missed_updates)
  2766. return load;
  2767. if (missed_updates >= degrade_zero_ticks[idx])
  2768. return 0;
  2769. if (idx == 1)
  2770. return load >> missed_updates;
  2771. while (missed_updates) {
  2772. if (missed_updates % 2)
  2773. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2774. missed_updates >>= 1;
  2775. j++;
  2776. }
  2777. return load;
  2778. }
  2779. /*
  2780. * Update rq->cpu_load[] statistics. This function is usually called every
  2781. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2782. * every tick. We fix it up based on jiffies.
  2783. */
  2784. static void update_cpu_load(struct rq *this_rq)
  2785. {
  2786. unsigned long this_load = this_rq->load.weight;
  2787. unsigned long curr_jiffies = jiffies;
  2788. unsigned long pending_updates;
  2789. int i, scale;
  2790. this_rq->nr_load_updates++;
  2791. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2792. if (curr_jiffies == this_rq->last_load_update_tick)
  2793. return;
  2794. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2795. this_rq->last_load_update_tick = curr_jiffies;
  2796. /* Update our load: */
  2797. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2798. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2799. unsigned long old_load, new_load;
  2800. /* scale is effectively 1 << i now, and >> i divides by scale */
  2801. old_load = this_rq->cpu_load[i];
  2802. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2803. new_load = this_load;
  2804. /*
  2805. * Round up the averaging division if load is increasing. This
  2806. * prevents us from getting stuck on 9 if the load is 10, for
  2807. * example.
  2808. */
  2809. if (new_load > old_load)
  2810. new_load += scale - 1;
  2811. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2812. }
  2813. sched_avg_update(this_rq);
  2814. }
  2815. static void update_cpu_load_active(struct rq *this_rq)
  2816. {
  2817. update_cpu_load(this_rq);
  2818. calc_load_account_active(this_rq);
  2819. }
  2820. #ifdef CONFIG_SMP
  2821. /*
  2822. * sched_exec - execve() is a valuable balancing opportunity, because at
  2823. * this point the task has the smallest effective memory and cache footprint.
  2824. */
  2825. void sched_exec(void)
  2826. {
  2827. struct task_struct *p = current;
  2828. unsigned long flags;
  2829. struct rq *rq;
  2830. int dest_cpu;
  2831. rq = task_rq_lock(p, &flags);
  2832. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2833. if (dest_cpu == smp_processor_id())
  2834. goto unlock;
  2835. /*
  2836. * select_task_rq() can race against ->cpus_allowed
  2837. */
  2838. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2839. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2840. struct migration_arg arg = { p, dest_cpu };
  2841. task_rq_unlock(rq, &flags);
  2842. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2843. return;
  2844. }
  2845. unlock:
  2846. task_rq_unlock(rq, &flags);
  2847. }
  2848. #endif
  2849. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2850. EXPORT_PER_CPU_SYMBOL(kstat);
  2851. /*
  2852. * Return any ns on the sched_clock that have not yet been accounted in
  2853. * @p in case that task is currently running.
  2854. *
  2855. * Called with task_rq_lock() held on @rq.
  2856. */
  2857. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2858. {
  2859. u64 ns = 0;
  2860. if (task_current(rq, p)) {
  2861. update_rq_clock(rq);
  2862. ns = rq->clock_task - p->se.exec_start;
  2863. if ((s64)ns < 0)
  2864. ns = 0;
  2865. }
  2866. return ns;
  2867. }
  2868. unsigned long long task_delta_exec(struct task_struct *p)
  2869. {
  2870. unsigned long flags;
  2871. struct rq *rq;
  2872. u64 ns = 0;
  2873. rq = task_rq_lock(p, &flags);
  2874. ns = do_task_delta_exec(p, rq);
  2875. task_rq_unlock(rq, &flags);
  2876. return ns;
  2877. }
  2878. /*
  2879. * Return accounted runtime for the task.
  2880. * In case the task is currently running, return the runtime plus current's
  2881. * pending runtime that have not been accounted yet.
  2882. */
  2883. unsigned long long task_sched_runtime(struct task_struct *p)
  2884. {
  2885. unsigned long flags;
  2886. struct rq *rq;
  2887. u64 ns = 0;
  2888. rq = task_rq_lock(p, &flags);
  2889. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2890. task_rq_unlock(rq, &flags);
  2891. return ns;
  2892. }
  2893. /*
  2894. * Return sum_exec_runtime for the thread group.
  2895. * In case the task is currently running, return the sum plus current's
  2896. * pending runtime that have not been accounted yet.
  2897. *
  2898. * Note that the thread group might have other running tasks as well,
  2899. * so the return value not includes other pending runtime that other
  2900. * running tasks might have.
  2901. */
  2902. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2903. {
  2904. struct task_cputime totals;
  2905. unsigned long flags;
  2906. struct rq *rq;
  2907. u64 ns;
  2908. rq = task_rq_lock(p, &flags);
  2909. thread_group_cputime(p, &totals);
  2910. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2911. task_rq_unlock(rq, &flags);
  2912. return ns;
  2913. }
  2914. /*
  2915. * Account user cpu time to a process.
  2916. * @p: the process that the cpu time gets accounted to
  2917. * @cputime: the cpu time spent in user space since the last update
  2918. * @cputime_scaled: cputime scaled by cpu frequency
  2919. */
  2920. void account_user_time(struct task_struct *p, cputime_t cputime,
  2921. cputime_t cputime_scaled)
  2922. {
  2923. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2924. cputime64_t tmp;
  2925. /* Add user time to process. */
  2926. p->utime = cputime_add(p->utime, cputime);
  2927. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2928. account_group_user_time(p, cputime);
  2929. /* Add user time to cpustat. */
  2930. tmp = cputime_to_cputime64(cputime);
  2931. if (TASK_NICE(p) > 0)
  2932. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2933. else
  2934. cpustat->user = cputime64_add(cpustat->user, tmp);
  2935. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2936. /* Account for user time used */
  2937. acct_update_integrals(p);
  2938. }
  2939. /*
  2940. * Account guest cpu time to a process.
  2941. * @p: the process that the cpu time gets accounted to
  2942. * @cputime: the cpu time spent in virtual machine since the last update
  2943. * @cputime_scaled: cputime scaled by cpu frequency
  2944. */
  2945. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2946. cputime_t cputime_scaled)
  2947. {
  2948. cputime64_t tmp;
  2949. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2950. tmp = cputime_to_cputime64(cputime);
  2951. /* Add guest time to process. */
  2952. p->utime = cputime_add(p->utime, cputime);
  2953. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2954. account_group_user_time(p, cputime);
  2955. p->gtime = cputime_add(p->gtime, cputime);
  2956. /* Add guest time to cpustat. */
  2957. if (TASK_NICE(p) > 0) {
  2958. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2959. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2960. } else {
  2961. cpustat->user = cputime64_add(cpustat->user, tmp);
  2962. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2963. }
  2964. }
  2965. /*
  2966. * Account system cpu time to a process.
  2967. * @p: the process that the cpu time gets accounted to
  2968. * @hardirq_offset: the offset to subtract from hardirq_count()
  2969. * @cputime: the cpu time spent in kernel space since the last update
  2970. * @cputime_scaled: cputime scaled by cpu frequency
  2971. */
  2972. void account_system_time(struct task_struct *p, int hardirq_offset,
  2973. cputime_t cputime, cputime_t cputime_scaled)
  2974. {
  2975. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2976. cputime64_t tmp;
  2977. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2978. account_guest_time(p, cputime, cputime_scaled);
  2979. return;
  2980. }
  2981. /* Add system time to process. */
  2982. p->stime = cputime_add(p->stime, cputime);
  2983. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2984. account_group_system_time(p, cputime);
  2985. /* Add system time to cpustat. */
  2986. tmp = cputime_to_cputime64(cputime);
  2987. if (hardirq_count() - hardirq_offset)
  2988. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2989. else if (in_serving_softirq())
  2990. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2991. else
  2992. cpustat->system = cputime64_add(cpustat->system, tmp);
  2993. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2994. /* Account for system time used */
  2995. acct_update_integrals(p);
  2996. }
  2997. /*
  2998. * Account for involuntary wait time.
  2999. * @steal: the cpu time spent in involuntary wait
  3000. */
  3001. void account_steal_time(cputime_t cputime)
  3002. {
  3003. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3004. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3005. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3006. }
  3007. /*
  3008. * Account for idle time.
  3009. * @cputime: the cpu time spent in idle wait
  3010. */
  3011. void account_idle_time(cputime_t cputime)
  3012. {
  3013. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3014. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3015. struct rq *rq = this_rq();
  3016. if (atomic_read(&rq->nr_iowait) > 0)
  3017. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3018. else
  3019. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3020. }
  3021. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3022. /*
  3023. * Account a single tick of cpu time.
  3024. * @p: the process that the cpu time gets accounted to
  3025. * @user_tick: indicates if the tick is a user or a system tick
  3026. */
  3027. void account_process_tick(struct task_struct *p, int user_tick)
  3028. {
  3029. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3030. struct rq *rq = this_rq();
  3031. if (user_tick)
  3032. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3033. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3034. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3035. one_jiffy_scaled);
  3036. else
  3037. account_idle_time(cputime_one_jiffy);
  3038. }
  3039. /*
  3040. * Account multiple ticks of steal time.
  3041. * @p: the process from which the cpu time has been stolen
  3042. * @ticks: number of stolen ticks
  3043. */
  3044. void account_steal_ticks(unsigned long ticks)
  3045. {
  3046. account_steal_time(jiffies_to_cputime(ticks));
  3047. }
  3048. /*
  3049. * Account multiple ticks of idle time.
  3050. * @ticks: number of stolen ticks
  3051. */
  3052. void account_idle_ticks(unsigned long ticks)
  3053. {
  3054. account_idle_time(jiffies_to_cputime(ticks));
  3055. }
  3056. #endif
  3057. /*
  3058. * Use precise platform statistics if available:
  3059. */
  3060. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3061. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3062. {
  3063. *ut = p->utime;
  3064. *st = p->stime;
  3065. }
  3066. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3067. {
  3068. struct task_cputime cputime;
  3069. thread_group_cputime(p, &cputime);
  3070. *ut = cputime.utime;
  3071. *st = cputime.stime;
  3072. }
  3073. #else
  3074. #ifndef nsecs_to_cputime
  3075. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3076. #endif
  3077. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3078. {
  3079. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3080. /*
  3081. * Use CFS's precise accounting:
  3082. */
  3083. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3084. if (total) {
  3085. u64 temp = rtime;
  3086. temp *= utime;
  3087. do_div(temp, total);
  3088. utime = (cputime_t)temp;
  3089. } else
  3090. utime = rtime;
  3091. /*
  3092. * Compare with previous values, to keep monotonicity:
  3093. */
  3094. p->prev_utime = max(p->prev_utime, utime);
  3095. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3096. *ut = p->prev_utime;
  3097. *st = p->prev_stime;
  3098. }
  3099. /*
  3100. * Must be called with siglock held.
  3101. */
  3102. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3103. {
  3104. struct signal_struct *sig = p->signal;
  3105. struct task_cputime cputime;
  3106. cputime_t rtime, utime, total;
  3107. thread_group_cputime(p, &cputime);
  3108. total = cputime_add(cputime.utime, cputime.stime);
  3109. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3110. if (total) {
  3111. u64 temp = rtime;
  3112. temp *= cputime.utime;
  3113. do_div(temp, total);
  3114. utime = (cputime_t)temp;
  3115. } else
  3116. utime = rtime;
  3117. sig->prev_utime = max(sig->prev_utime, utime);
  3118. sig->prev_stime = max(sig->prev_stime,
  3119. cputime_sub(rtime, sig->prev_utime));
  3120. *ut = sig->prev_utime;
  3121. *st = sig->prev_stime;
  3122. }
  3123. #endif
  3124. /*
  3125. * This function gets called by the timer code, with HZ frequency.
  3126. * We call it with interrupts disabled.
  3127. *
  3128. * It also gets called by the fork code, when changing the parent's
  3129. * timeslices.
  3130. */
  3131. void scheduler_tick(void)
  3132. {
  3133. int cpu = smp_processor_id();
  3134. struct rq *rq = cpu_rq(cpu);
  3135. struct task_struct *curr = rq->curr;
  3136. sched_clock_tick();
  3137. raw_spin_lock(&rq->lock);
  3138. update_rq_clock(rq);
  3139. update_cpu_load_active(rq);
  3140. curr->sched_class->task_tick(rq, curr, 0);
  3141. raw_spin_unlock(&rq->lock);
  3142. perf_event_task_tick();
  3143. #ifdef CONFIG_SMP
  3144. rq->idle_at_tick = idle_cpu(cpu);
  3145. trigger_load_balance(rq, cpu);
  3146. #endif
  3147. }
  3148. notrace unsigned long get_parent_ip(unsigned long addr)
  3149. {
  3150. if (in_lock_functions(addr)) {
  3151. addr = CALLER_ADDR2;
  3152. if (in_lock_functions(addr))
  3153. addr = CALLER_ADDR3;
  3154. }
  3155. return addr;
  3156. }
  3157. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3158. defined(CONFIG_PREEMPT_TRACER))
  3159. void __kprobes add_preempt_count(int val)
  3160. {
  3161. #ifdef CONFIG_DEBUG_PREEMPT
  3162. /*
  3163. * Underflow?
  3164. */
  3165. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3166. return;
  3167. #endif
  3168. preempt_count() += val;
  3169. #ifdef CONFIG_DEBUG_PREEMPT
  3170. /*
  3171. * Spinlock count overflowing soon?
  3172. */
  3173. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3174. PREEMPT_MASK - 10);
  3175. #endif
  3176. if (preempt_count() == val)
  3177. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3178. }
  3179. EXPORT_SYMBOL(add_preempt_count);
  3180. void __kprobes sub_preempt_count(int val)
  3181. {
  3182. #ifdef CONFIG_DEBUG_PREEMPT
  3183. /*
  3184. * Underflow?
  3185. */
  3186. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3187. return;
  3188. /*
  3189. * Is the spinlock portion underflowing?
  3190. */
  3191. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3192. !(preempt_count() & PREEMPT_MASK)))
  3193. return;
  3194. #endif
  3195. if (preempt_count() == val)
  3196. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3197. preempt_count() -= val;
  3198. }
  3199. EXPORT_SYMBOL(sub_preempt_count);
  3200. #endif
  3201. /*
  3202. * Print scheduling while atomic bug:
  3203. */
  3204. static noinline void __schedule_bug(struct task_struct *prev)
  3205. {
  3206. struct pt_regs *regs = get_irq_regs();
  3207. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3208. prev->comm, prev->pid, preempt_count());
  3209. debug_show_held_locks(prev);
  3210. print_modules();
  3211. if (irqs_disabled())
  3212. print_irqtrace_events(prev);
  3213. if (regs)
  3214. show_regs(regs);
  3215. else
  3216. dump_stack();
  3217. }
  3218. /*
  3219. * Various schedule()-time debugging checks and statistics:
  3220. */
  3221. static inline void schedule_debug(struct task_struct *prev)
  3222. {
  3223. /*
  3224. * Test if we are atomic. Since do_exit() needs to call into
  3225. * schedule() atomically, we ignore that path for now.
  3226. * Otherwise, whine if we are scheduling when we should not be.
  3227. */
  3228. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3229. __schedule_bug(prev);
  3230. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3231. schedstat_inc(this_rq(), sched_count);
  3232. #ifdef CONFIG_SCHEDSTATS
  3233. if (unlikely(prev->lock_depth >= 0)) {
  3234. schedstat_inc(this_rq(), bkl_count);
  3235. schedstat_inc(prev, sched_info.bkl_count);
  3236. }
  3237. #endif
  3238. }
  3239. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3240. {
  3241. if (prev->se.on_rq)
  3242. update_rq_clock(rq);
  3243. rq->skip_clock_update = 0;
  3244. prev->sched_class->put_prev_task(rq, prev);
  3245. }
  3246. /*
  3247. * Pick up the highest-prio task:
  3248. */
  3249. static inline struct task_struct *
  3250. pick_next_task(struct rq *rq)
  3251. {
  3252. const struct sched_class *class;
  3253. struct task_struct *p;
  3254. /*
  3255. * Optimization: we know that if all tasks are in
  3256. * the fair class we can call that function directly:
  3257. */
  3258. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3259. p = fair_sched_class.pick_next_task(rq);
  3260. if (likely(p))
  3261. return p;
  3262. }
  3263. for_each_class(class) {
  3264. p = class->pick_next_task(rq);
  3265. if (p)
  3266. return p;
  3267. }
  3268. BUG(); /* the idle class will always have a runnable task */
  3269. }
  3270. /*
  3271. * schedule() is the main scheduler function.
  3272. */
  3273. asmlinkage void __sched schedule(void)
  3274. {
  3275. struct task_struct *prev, *next;
  3276. unsigned long *switch_count;
  3277. struct rq *rq;
  3278. int cpu;
  3279. need_resched:
  3280. preempt_disable();
  3281. cpu = smp_processor_id();
  3282. rq = cpu_rq(cpu);
  3283. rcu_note_context_switch(cpu);
  3284. prev = rq->curr;
  3285. release_kernel_lock(prev);
  3286. need_resched_nonpreemptible:
  3287. schedule_debug(prev);
  3288. if (sched_feat(HRTICK))
  3289. hrtick_clear(rq);
  3290. raw_spin_lock_irq(&rq->lock);
  3291. clear_tsk_need_resched(prev);
  3292. switch_count = &prev->nivcsw;
  3293. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3294. if (unlikely(signal_pending_state(prev->state, prev))) {
  3295. prev->state = TASK_RUNNING;
  3296. } else {
  3297. /*
  3298. * If a worker is going to sleep, notify and
  3299. * ask workqueue whether it wants to wake up a
  3300. * task to maintain concurrency. If so, wake
  3301. * up the task.
  3302. */
  3303. if (prev->flags & PF_WQ_WORKER) {
  3304. struct task_struct *to_wakeup;
  3305. to_wakeup = wq_worker_sleeping(prev, cpu);
  3306. if (to_wakeup)
  3307. try_to_wake_up_local(to_wakeup);
  3308. }
  3309. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3310. }
  3311. switch_count = &prev->nvcsw;
  3312. }
  3313. pre_schedule(rq, prev);
  3314. if (unlikely(!rq->nr_running))
  3315. idle_balance(cpu, rq);
  3316. put_prev_task(rq, prev);
  3317. next = pick_next_task(rq);
  3318. if (likely(prev != next)) {
  3319. sched_info_switch(prev, next);
  3320. perf_event_task_sched_out(prev, next);
  3321. rq->nr_switches++;
  3322. rq->curr = next;
  3323. ++*switch_count;
  3324. context_switch(rq, prev, next); /* unlocks the rq */
  3325. /*
  3326. * The context switch have flipped the stack from under us
  3327. * and restored the local variables which were saved when
  3328. * this task called schedule() in the past. prev == current
  3329. * is still correct, but it can be moved to another cpu/rq.
  3330. */
  3331. cpu = smp_processor_id();
  3332. rq = cpu_rq(cpu);
  3333. } else
  3334. raw_spin_unlock_irq(&rq->lock);
  3335. post_schedule(rq);
  3336. if (unlikely(reacquire_kernel_lock(prev)))
  3337. goto need_resched_nonpreemptible;
  3338. preempt_enable_no_resched();
  3339. if (need_resched())
  3340. goto need_resched;
  3341. }
  3342. EXPORT_SYMBOL(schedule);
  3343. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3344. /*
  3345. * Look out! "owner" is an entirely speculative pointer
  3346. * access and not reliable.
  3347. */
  3348. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3349. {
  3350. unsigned int cpu;
  3351. struct rq *rq;
  3352. if (!sched_feat(OWNER_SPIN))
  3353. return 0;
  3354. #ifdef CONFIG_DEBUG_PAGEALLOC
  3355. /*
  3356. * Need to access the cpu field knowing that
  3357. * DEBUG_PAGEALLOC could have unmapped it if
  3358. * the mutex owner just released it and exited.
  3359. */
  3360. if (probe_kernel_address(&owner->cpu, cpu))
  3361. return 0;
  3362. #else
  3363. cpu = owner->cpu;
  3364. #endif
  3365. /*
  3366. * Even if the access succeeded (likely case),
  3367. * the cpu field may no longer be valid.
  3368. */
  3369. if (cpu >= nr_cpumask_bits)
  3370. return 0;
  3371. /*
  3372. * We need to validate that we can do a
  3373. * get_cpu() and that we have the percpu area.
  3374. */
  3375. if (!cpu_online(cpu))
  3376. return 0;
  3377. rq = cpu_rq(cpu);
  3378. for (;;) {
  3379. /*
  3380. * Owner changed, break to re-assess state.
  3381. */
  3382. if (lock->owner != owner) {
  3383. /*
  3384. * If the lock has switched to a different owner,
  3385. * we likely have heavy contention. Return 0 to quit
  3386. * optimistic spinning and not contend further:
  3387. */
  3388. if (lock->owner)
  3389. return 0;
  3390. break;
  3391. }
  3392. /*
  3393. * Is that owner really running on that cpu?
  3394. */
  3395. if (task_thread_info(rq->curr) != owner || need_resched())
  3396. return 0;
  3397. cpu_relax();
  3398. }
  3399. return 1;
  3400. }
  3401. #endif
  3402. #ifdef CONFIG_PREEMPT
  3403. /*
  3404. * this is the entry point to schedule() from in-kernel preemption
  3405. * off of preempt_enable. Kernel preemptions off return from interrupt
  3406. * occur there and call schedule directly.
  3407. */
  3408. asmlinkage void __sched notrace preempt_schedule(void)
  3409. {
  3410. struct thread_info *ti = current_thread_info();
  3411. /*
  3412. * If there is a non-zero preempt_count or interrupts are disabled,
  3413. * we do not want to preempt the current task. Just return..
  3414. */
  3415. if (likely(ti->preempt_count || irqs_disabled()))
  3416. return;
  3417. do {
  3418. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3419. schedule();
  3420. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3421. /*
  3422. * Check again in case we missed a preemption opportunity
  3423. * between schedule and now.
  3424. */
  3425. barrier();
  3426. } while (need_resched());
  3427. }
  3428. EXPORT_SYMBOL(preempt_schedule);
  3429. /*
  3430. * this is the entry point to schedule() from kernel preemption
  3431. * off of irq context.
  3432. * Note, that this is called and return with irqs disabled. This will
  3433. * protect us against recursive calling from irq.
  3434. */
  3435. asmlinkage void __sched preempt_schedule_irq(void)
  3436. {
  3437. struct thread_info *ti = current_thread_info();
  3438. /* Catch callers which need to be fixed */
  3439. BUG_ON(ti->preempt_count || !irqs_disabled());
  3440. do {
  3441. add_preempt_count(PREEMPT_ACTIVE);
  3442. local_irq_enable();
  3443. schedule();
  3444. local_irq_disable();
  3445. sub_preempt_count(PREEMPT_ACTIVE);
  3446. /*
  3447. * Check again in case we missed a preemption opportunity
  3448. * between schedule and now.
  3449. */
  3450. barrier();
  3451. } while (need_resched());
  3452. }
  3453. #endif /* CONFIG_PREEMPT */
  3454. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3455. void *key)
  3456. {
  3457. return try_to_wake_up(curr->private, mode, wake_flags);
  3458. }
  3459. EXPORT_SYMBOL(default_wake_function);
  3460. /*
  3461. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3462. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3463. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3464. *
  3465. * There are circumstances in which we can try to wake a task which has already
  3466. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3467. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3468. */
  3469. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3470. int nr_exclusive, int wake_flags, void *key)
  3471. {
  3472. wait_queue_t *curr, *next;
  3473. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3474. unsigned flags = curr->flags;
  3475. if (curr->func(curr, mode, wake_flags, key) &&
  3476. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3477. break;
  3478. }
  3479. }
  3480. /**
  3481. * __wake_up - wake up threads blocked on a waitqueue.
  3482. * @q: the waitqueue
  3483. * @mode: which threads
  3484. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3485. * @key: is directly passed to the wakeup function
  3486. *
  3487. * It may be assumed that this function implies a write memory barrier before
  3488. * changing the task state if and only if any tasks are woken up.
  3489. */
  3490. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3491. int nr_exclusive, void *key)
  3492. {
  3493. unsigned long flags;
  3494. spin_lock_irqsave(&q->lock, flags);
  3495. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3496. spin_unlock_irqrestore(&q->lock, flags);
  3497. }
  3498. EXPORT_SYMBOL(__wake_up);
  3499. /*
  3500. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3501. */
  3502. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3503. {
  3504. __wake_up_common(q, mode, 1, 0, NULL);
  3505. }
  3506. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3507. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3508. {
  3509. __wake_up_common(q, mode, 1, 0, key);
  3510. }
  3511. /**
  3512. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3513. * @q: the waitqueue
  3514. * @mode: which threads
  3515. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3516. * @key: opaque value to be passed to wakeup targets
  3517. *
  3518. * The sync wakeup differs that the waker knows that it will schedule
  3519. * away soon, so while the target thread will be woken up, it will not
  3520. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3521. * with each other. This can prevent needless bouncing between CPUs.
  3522. *
  3523. * On UP it can prevent extra preemption.
  3524. *
  3525. * It may be assumed that this function implies a write memory barrier before
  3526. * changing the task state if and only if any tasks are woken up.
  3527. */
  3528. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3529. int nr_exclusive, void *key)
  3530. {
  3531. unsigned long flags;
  3532. int wake_flags = WF_SYNC;
  3533. if (unlikely(!q))
  3534. return;
  3535. if (unlikely(!nr_exclusive))
  3536. wake_flags = 0;
  3537. spin_lock_irqsave(&q->lock, flags);
  3538. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3539. spin_unlock_irqrestore(&q->lock, flags);
  3540. }
  3541. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3542. /*
  3543. * __wake_up_sync - see __wake_up_sync_key()
  3544. */
  3545. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3546. {
  3547. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3548. }
  3549. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3550. /**
  3551. * complete: - signals a single thread waiting on this completion
  3552. * @x: holds the state of this particular completion
  3553. *
  3554. * This will wake up a single thread waiting on this completion. Threads will be
  3555. * awakened in the same order in which they were queued.
  3556. *
  3557. * See also complete_all(), wait_for_completion() and related routines.
  3558. *
  3559. * It may be assumed that this function implies a write memory barrier before
  3560. * changing the task state if and only if any tasks are woken up.
  3561. */
  3562. void complete(struct completion *x)
  3563. {
  3564. unsigned long flags;
  3565. spin_lock_irqsave(&x->wait.lock, flags);
  3566. x->done++;
  3567. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3568. spin_unlock_irqrestore(&x->wait.lock, flags);
  3569. }
  3570. EXPORT_SYMBOL(complete);
  3571. /**
  3572. * complete_all: - signals all threads waiting on this completion
  3573. * @x: holds the state of this particular completion
  3574. *
  3575. * This will wake up all threads waiting on this particular completion event.
  3576. *
  3577. * It may be assumed that this function implies a write memory barrier before
  3578. * changing the task state if and only if any tasks are woken up.
  3579. */
  3580. void complete_all(struct completion *x)
  3581. {
  3582. unsigned long flags;
  3583. spin_lock_irqsave(&x->wait.lock, flags);
  3584. x->done += UINT_MAX/2;
  3585. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3586. spin_unlock_irqrestore(&x->wait.lock, flags);
  3587. }
  3588. EXPORT_SYMBOL(complete_all);
  3589. static inline long __sched
  3590. do_wait_for_common(struct completion *x, long timeout, int state)
  3591. {
  3592. if (!x->done) {
  3593. DECLARE_WAITQUEUE(wait, current);
  3594. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3595. do {
  3596. if (signal_pending_state(state, current)) {
  3597. timeout = -ERESTARTSYS;
  3598. break;
  3599. }
  3600. __set_current_state(state);
  3601. spin_unlock_irq(&x->wait.lock);
  3602. timeout = schedule_timeout(timeout);
  3603. spin_lock_irq(&x->wait.lock);
  3604. } while (!x->done && timeout);
  3605. __remove_wait_queue(&x->wait, &wait);
  3606. if (!x->done)
  3607. return timeout;
  3608. }
  3609. x->done--;
  3610. return timeout ?: 1;
  3611. }
  3612. static long __sched
  3613. wait_for_common(struct completion *x, long timeout, int state)
  3614. {
  3615. might_sleep();
  3616. spin_lock_irq(&x->wait.lock);
  3617. timeout = do_wait_for_common(x, timeout, state);
  3618. spin_unlock_irq(&x->wait.lock);
  3619. return timeout;
  3620. }
  3621. /**
  3622. * wait_for_completion: - waits for completion of a task
  3623. * @x: holds the state of this particular completion
  3624. *
  3625. * This waits to be signaled for completion of a specific task. It is NOT
  3626. * interruptible and there is no timeout.
  3627. *
  3628. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3629. * and interrupt capability. Also see complete().
  3630. */
  3631. void __sched wait_for_completion(struct completion *x)
  3632. {
  3633. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3634. }
  3635. EXPORT_SYMBOL(wait_for_completion);
  3636. /**
  3637. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3638. * @x: holds the state of this particular completion
  3639. * @timeout: timeout value in jiffies
  3640. *
  3641. * This waits for either a completion of a specific task to be signaled or for a
  3642. * specified timeout to expire. The timeout is in jiffies. It is not
  3643. * interruptible.
  3644. */
  3645. unsigned long __sched
  3646. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3647. {
  3648. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3649. }
  3650. EXPORT_SYMBOL(wait_for_completion_timeout);
  3651. /**
  3652. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3653. * @x: holds the state of this particular completion
  3654. *
  3655. * This waits for completion of a specific task to be signaled. It is
  3656. * interruptible.
  3657. */
  3658. int __sched wait_for_completion_interruptible(struct completion *x)
  3659. {
  3660. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3661. if (t == -ERESTARTSYS)
  3662. return t;
  3663. return 0;
  3664. }
  3665. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3666. /**
  3667. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3668. * @x: holds the state of this particular completion
  3669. * @timeout: timeout value in jiffies
  3670. *
  3671. * This waits for either a completion of a specific task to be signaled or for a
  3672. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3673. */
  3674. unsigned long __sched
  3675. wait_for_completion_interruptible_timeout(struct completion *x,
  3676. unsigned long timeout)
  3677. {
  3678. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3679. }
  3680. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3681. /**
  3682. * wait_for_completion_killable: - waits for completion of a task (killable)
  3683. * @x: holds the state of this particular completion
  3684. *
  3685. * This waits to be signaled for completion of a specific task. It can be
  3686. * interrupted by a kill signal.
  3687. */
  3688. int __sched wait_for_completion_killable(struct completion *x)
  3689. {
  3690. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3691. if (t == -ERESTARTSYS)
  3692. return t;
  3693. return 0;
  3694. }
  3695. EXPORT_SYMBOL(wait_for_completion_killable);
  3696. /**
  3697. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3698. * @x: holds the state of this particular completion
  3699. * @timeout: timeout value in jiffies
  3700. *
  3701. * This waits for either a completion of a specific task to be
  3702. * signaled or for a specified timeout to expire. It can be
  3703. * interrupted by a kill signal. The timeout is in jiffies.
  3704. */
  3705. unsigned long __sched
  3706. wait_for_completion_killable_timeout(struct completion *x,
  3707. unsigned long timeout)
  3708. {
  3709. return wait_for_common(x, timeout, TASK_KILLABLE);
  3710. }
  3711. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3712. /**
  3713. * try_wait_for_completion - try to decrement a completion without blocking
  3714. * @x: completion structure
  3715. *
  3716. * Returns: 0 if a decrement cannot be done without blocking
  3717. * 1 if a decrement succeeded.
  3718. *
  3719. * If a completion is being used as a counting completion,
  3720. * attempt to decrement the counter without blocking. This
  3721. * enables us to avoid waiting if the resource the completion
  3722. * is protecting is not available.
  3723. */
  3724. bool try_wait_for_completion(struct completion *x)
  3725. {
  3726. unsigned long flags;
  3727. int ret = 1;
  3728. spin_lock_irqsave(&x->wait.lock, flags);
  3729. if (!x->done)
  3730. ret = 0;
  3731. else
  3732. x->done--;
  3733. spin_unlock_irqrestore(&x->wait.lock, flags);
  3734. return ret;
  3735. }
  3736. EXPORT_SYMBOL(try_wait_for_completion);
  3737. /**
  3738. * completion_done - Test to see if a completion has any waiters
  3739. * @x: completion structure
  3740. *
  3741. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3742. * 1 if there are no waiters.
  3743. *
  3744. */
  3745. bool completion_done(struct completion *x)
  3746. {
  3747. unsigned long flags;
  3748. int ret = 1;
  3749. spin_lock_irqsave(&x->wait.lock, flags);
  3750. if (!x->done)
  3751. ret = 0;
  3752. spin_unlock_irqrestore(&x->wait.lock, flags);
  3753. return ret;
  3754. }
  3755. EXPORT_SYMBOL(completion_done);
  3756. static long __sched
  3757. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3758. {
  3759. unsigned long flags;
  3760. wait_queue_t wait;
  3761. init_waitqueue_entry(&wait, current);
  3762. __set_current_state(state);
  3763. spin_lock_irqsave(&q->lock, flags);
  3764. __add_wait_queue(q, &wait);
  3765. spin_unlock(&q->lock);
  3766. timeout = schedule_timeout(timeout);
  3767. spin_lock_irq(&q->lock);
  3768. __remove_wait_queue(q, &wait);
  3769. spin_unlock_irqrestore(&q->lock, flags);
  3770. return timeout;
  3771. }
  3772. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3773. {
  3774. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3775. }
  3776. EXPORT_SYMBOL(interruptible_sleep_on);
  3777. long __sched
  3778. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3779. {
  3780. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3781. }
  3782. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3783. void __sched sleep_on(wait_queue_head_t *q)
  3784. {
  3785. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3786. }
  3787. EXPORT_SYMBOL(sleep_on);
  3788. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3789. {
  3790. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3791. }
  3792. EXPORT_SYMBOL(sleep_on_timeout);
  3793. #ifdef CONFIG_RT_MUTEXES
  3794. /*
  3795. * rt_mutex_setprio - set the current priority of a task
  3796. * @p: task
  3797. * @prio: prio value (kernel-internal form)
  3798. *
  3799. * This function changes the 'effective' priority of a task. It does
  3800. * not touch ->normal_prio like __setscheduler().
  3801. *
  3802. * Used by the rt_mutex code to implement priority inheritance logic.
  3803. */
  3804. void rt_mutex_setprio(struct task_struct *p, int prio)
  3805. {
  3806. unsigned long flags;
  3807. int oldprio, on_rq, running;
  3808. struct rq *rq;
  3809. const struct sched_class *prev_class;
  3810. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3811. rq = task_rq_lock(p, &flags);
  3812. trace_sched_pi_setprio(p, prio);
  3813. oldprio = p->prio;
  3814. prev_class = p->sched_class;
  3815. on_rq = p->se.on_rq;
  3816. running = task_current(rq, p);
  3817. if (on_rq)
  3818. dequeue_task(rq, p, 0);
  3819. if (running)
  3820. p->sched_class->put_prev_task(rq, p);
  3821. if (rt_prio(prio))
  3822. p->sched_class = &rt_sched_class;
  3823. else
  3824. p->sched_class = &fair_sched_class;
  3825. p->prio = prio;
  3826. if (running)
  3827. p->sched_class->set_curr_task(rq);
  3828. if (on_rq) {
  3829. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3830. check_class_changed(rq, p, prev_class, oldprio, running);
  3831. }
  3832. task_rq_unlock(rq, &flags);
  3833. }
  3834. #endif
  3835. void set_user_nice(struct task_struct *p, long nice)
  3836. {
  3837. int old_prio, delta, on_rq;
  3838. unsigned long flags;
  3839. struct rq *rq;
  3840. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3841. return;
  3842. /*
  3843. * We have to be careful, if called from sys_setpriority(),
  3844. * the task might be in the middle of scheduling on another CPU.
  3845. */
  3846. rq = task_rq_lock(p, &flags);
  3847. /*
  3848. * The RT priorities are set via sched_setscheduler(), but we still
  3849. * allow the 'normal' nice value to be set - but as expected
  3850. * it wont have any effect on scheduling until the task is
  3851. * SCHED_FIFO/SCHED_RR:
  3852. */
  3853. if (task_has_rt_policy(p)) {
  3854. p->static_prio = NICE_TO_PRIO(nice);
  3855. goto out_unlock;
  3856. }
  3857. on_rq = p->se.on_rq;
  3858. if (on_rq)
  3859. dequeue_task(rq, p, 0);
  3860. p->static_prio = NICE_TO_PRIO(nice);
  3861. set_load_weight(p);
  3862. old_prio = p->prio;
  3863. p->prio = effective_prio(p);
  3864. delta = p->prio - old_prio;
  3865. if (on_rq) {
  3866. enqueue_task(rq, p, 0);
  3867. /*
  3868. * If the task increased its priority or is running and
  3869. * lowered its priority, then reschedule its CPU:
  3870. */
  3871. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3872. resched_task(rq->curr);
  3873. }
  3874. out_unlock:
  3875. task_rq_unlock(rq, &flags);
  3876. }
  3877. EXPORT_SYMBOL(set_user_nice);
  3878. /*
  3879. * can_nice - check if a task can reduce its nice value
  3880. * @p: task
  3881. * @nice: nice value
  3882. */
  3883. int can_nice(const struct task_struct *p, const int nice)
  3884. {
  3885. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3886. int nice_rlim = 20 - nice;
  3887. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3888. capable(CAP_SYS_NICE));
  3889. }
  3890. #ifdef __ARCH_WANT_SYS_NICE
  3891. /*
  3892. * sys_nice - change the priority of the current process.
  3893. * @increment: priority increment
  3894. *
  3895. * sys_setpriority is a more generic, but much slower function that
  3896. * does similar things.
  3897. */
  3898. SYSCALL_DEFINE1(nice, int, increment)
  3899. {
  3900. long nice, retval;
  3901. /*
  3902. * Setpriority might change our priority at the same moment.
  3903. * We don't have to worry. Conceptually one call occurs first
  3904. * and we have a single winner.
  3905. */
  3906. if (increment < -40)
  3907. increment = -40;
  3908. if (increment > 40)
  3909. increment = 40;
  3910. nice = TASK_NICE(current) + increment;
  3911. if (nice < -20)
  3912. nice = -20;
  3913. if (nice > 19)
  3914. nice = 19;
  3915. if (increment < 0 && !can_nice(current, nice))
  3916. return -EPERM;
  3917. retval = security_task_setnice(current, nice);
  3918. if (retval)
  3919. return retval;
  3920. set_user_nice(current, nice);
  3921. return 0;
  3922. }
  3923. #endif
  3924. /**
  3925. * task_prio - return the priority value of a given task.
  3926. * @p: the task in question.
  3927. *
  3928. * This is the priority value as seen by users in /proc.
  3929. * RT tasks are offset by -200. Normal tasks are centered
  3930. * around 0, value goes from -16 to +15.
  3931. */
  3932. int task_prio(const struct task_struct *p)
  3933. {
  3934. return p->prio - MAX_RT_PRIO;
  3935. }
  3936. /**
  3937. * task_nice - return the nice value of a given task.
  3938. * @p: the task in question.
  3939. */
  3940. int task_nice(const struct task_struct *p)
  3941. {
  3942. return TASK_NICE(p);
  3943. }
  3944. EXPORT_SYMBOL(task_nice);
  3945. /**
  3946. * idle_cpu - is a given cpu idle currently?
  3947. * @cpu: the processor in question.
  3948. */
  3949. int idle_cpu(int cpu)
  3950. {
  3951. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3952. }
  3953. /**
  3954. * idle_task - return the idle task for a given cpu.
  3955. * @cpu: the processor in question.
  3956. */
  3957. struct task_struct *idle_task(int cpu)
  3958. {
  3959. return cpu_rq(cpu)->idle;
  3960. }
  3961. /**
  3962. * find_process_by_pid - find a process with a matching PID value.
  3963. * @pid: the pid in question.
  3964. */
  3965. static struct task_struct *find_process_by_pid(pid_t pid)
  3966. {
  3967. return pid ? find_task_by_vpid(pid) : current;
  3968. }
  3969. /* Actually do priority change: must hold rq lock. */
  3970. static void
  3971. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3972. {
  3973. BUG_ON(p->se.on_rq);
  3974. p->policy = policy;
  3975. p->rt_priority = prio;
  3976. p->normal_prio = normal_prio(p);
  3977. /* we are holding p->pi_lock already */
  3978. p->prio = rt_mutex_getprio(p);
  3979. if (rt_prio(p->prio))
  3980. p->sched_class = &rt_sched_class;
  3981. else
  3982. p->sched_class = &fair_sched_class;
  3983. set_load_weight(p);
  3984. }
  3985. /*
  3986. * check the target process has a UID that matches the current process's
  3987. */
  3988. static bool check_same_owner(struct task_struct *p)
  3989. {
  3990. const struct cred *cred = current_cred(), *pcred;
  3991. bool match;
  3992. rcu_read_lock();
  3993. pcred = __task_cred(p);
  3994. match = (cred->euid == pcred->euid ||
  3995. cred->euid == pcred->uid);
  3996. rcu_read_unlock();
  3997. return match;
  3998. }
  3999. static int __sched_setscheduler(struct task_struct *p, int policy,
  4000. struct sched_param *param, bool user)
  4001. {
  4002. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4003. unsigned long flags;
  4004. const struct sched_class *prev_class;
  4005. struct rq *rq;
  4006. int reset_on_fork;
  4007. /* may grab non-irq protected spin_locks */
  4008. BUG_ON(in_interrupt());
  4009. recheck:
  4010. /* double check policy once rq lock held */
  4011. if (policy < 0) {
  4012. reset_on_fork = p->sched_reset_on_fork;
  4013. policy = oldpolicy = p->policy;
  4014. } else {
  4015. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4016. policy &= ~SCHED_RESET_ON_FORK;
  4017. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4018. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4019. policy != SCHED_IDLE)
  4020. return -EINVAL;
  4021. }
  4022. /*
  4023. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4024. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4025. * SCHED_BATCH and SCHED_IDLE is 0.
  4026. */
  4027. if (param->sched_priority < 0 ||
  4028. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4029. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4030. return -EINVAL;
  4031. if (rt_policy(policy) != (param->sched_priority != 0))
  4032. return -EINVAL;
  4033. /*
  4034. * Allow unprivileged RT tasks to decrease priority:
  4035. */
  4036. if (user && !capable(CAP_SYS_NICE)) {
  4037. if (rt_policy(policy)) {
  4038. unsigned long rlim_rtprio =
  4039. task_rlimit(p, RLIMIT_RTPRIO);
  4040. /* can't set/change the rt policy */
  4041. if (policy != p->policy && !rlim_rtprio)
  4042. return -EPERM;
  4043. /* can't increase priority */
  4044. if (param->sched_priority > p->rt_priority &&
  4045. param->sched_priority > rlim_rtprio)
  4046. return -EPERM;
  4047. }
  4048. /*
  4049. * Like positive nice levels, dont allow tasks to
  4050. * move out of SCHED_IDLE either:
  4051. */
  4052. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4053. return -EPERM;
  4054. /* can't change other user's priorities */
  4055. if (!check_same_owner(p))
  4056. return -EPERM;
  4057. /* Normal users shall not reset the sched_reset_on_fork flag */
  4058. if (p->sched_reset_on_fork && !reset_on_fork)
  4059. return -EPERM;
  4060. }
  4061. if (user) {
  4062. retval = security_task_setscheduler(p);
  4063. if (retval)
  4064. return retval;
  4065. }
  4066. /*
  4067. * make sure no PI-waiters arrive (or leave) while we are
  4068. * changing the priority of the task:
  4069. */
  4070. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4071. /*
  4072. * To be able to change p->policy safely, the apropriate
  4073. * runqueue lock must be held.
  4074. */
  4075. rq = __task_rq_lock(p);
  4076. /*
  4077. * Changing the policy of the stop threads its a very bad idea
  4078. */
  4079. if (p == rq->stop) {
  4080. __task_rq_unlock(rq);
  4081. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4082. return -EINVAL;
  4083. }
  4084. #ifdef CONFIG_RT_GROUP_SCHED
  4085. if (user) {
  4086. /*
  4087. * Do not allow realtime tasks into groups that have no runtime
  4088. * assigned.
  4089. */
  4090. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4091. task_group(p)->rt_bandwidth.rt_runtime == 0) {
  4092. __task_rq_unlock(rq);
  4093. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4094. return -EPERM;
  4095. }
  4096. }
  4097. #endif
  4098. /* recheck policy now with rq lock held */
  4099. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4100. policy = oldpolicy = -1;
  4101. __task_rq_unlock(rq);
  4102. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4103. goto recheck;
  4104. }
  4105. on_rq = p->se.on_rq;
  4106. running = task_current(rq, p);
  4107. if (on_rq)
  4108. deactivate_task(rq, p, 0);
  4109. if (running)
  4110. p->sched_class->put_prev_task(rq, p);
  4111. p->sched_reset_on_fork = reset_on_fork;
  4112. oldprio = p->prio;
  4113. prev_class = p->sched_class;
  4114. __setscheduler(rq, p, policy, param->sched_priority);
  4115. if (running)
  4116. p->sched_class->set_curr_task(rq);
  4117. if (on_rq) {
  4118. activate_task(rq, p, 0);
  4119. check_class_changed(rq, p, prev_class, oldprio, running);
  4120. }
  4121. __task_rq_unlock(rq);
  4122. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4123. rt_mutex_adjust_pi(p);
  4124. return 0;
  4125. }
  4126. /**
  4127. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4128. * @p: the task in question.
  4129. * @policy: new policy.
  4130. * @param: structure containing the new RT priority.
  4131. *
  4132. * NOTE that the task may be already dead.
  4133. */
  4134. int sched_setscheduler(struct task_struct *p, int policy,
  4135. struct sched_param *param)
  4136. {
  4137. return __sched_setscheduler(p, policy, param, true);
  4138. }
  4139. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4140. /**
  4141. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4142. * @p: the task in question.
  4143. * @policy: new policy.
  4144. * @param: structure containing the new RT priority.
  4145. *
  4146. * Just like sched_setscheduler, only don't bother checking if the
  4147. * current context has permission. For example, this is needed in
  4148. * stop_machine(): we create temporary high priority worker threads,
  4149. * but our caller might not have that capability.
  4150. */
  4151. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4152. struct sched_param *param)
  4153. {
  4154. return __sched_setscheduler(p, policy, param, false);
  4155. }
  4156. static int
  4157. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4158. {
  4159. struct sched_param lparam;
  4160. struct task_struct *p;
  4161. int retval;
  4162. if (!param || pid < 0)
  4163. return -EINVAL;
  4164. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4165. return -EFAULT;
  4166. rcu_read_lock();
  4167. retval = -ESRCH;
  4168. p = find_process_by_pid(pid);
  4169. if (p != NULL)
  4170. retval = sched_setscheduler(p, policy, &lparam);
  4171. rcu_read_unlock();
  4172. return retval;
  4173. }
  4174. /**
  4175. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4176. * @pid: the pid in question.
  4177. * @policy: new policy.
  4178. * @param: structure containing the new RT priority.
  4179. */
  4180. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4181. struct sched_param __user *, param)
  4182. {
  4183. /* negative values for policy are not valid */
  4184. if (policy < 0)
  4185. return -EINVAL;
  4186. return do_sched_setscheduler(pid, policy, param);
  4187. }
  4188. /**
  4189. * sys_sched_setparam - set/change the RT priority of a thread
  4190. * @pid: the pid in question.
  4191. * @param: structure containing the new RT priority.
  4192. */
  4193. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4194. {
  4195. return do_sched_setscheduler(pid, -1, param);
  4196. }
  4197. /**
  4198. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4199. * @pid: the pid in question.
  4200. */
  4201. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4202. {
  4203. struct task_struct *p;
  4204. int retval;
  4205. if (pid < 0)
  4206. return -EINVAL;
  4207. retval = -ESRCH;
  4208. rcu_read_lock();
  4209. p = find_process_by_pid(pid);
  4210. if (p) {
  4211. retval = security_task_getscheduler(p);
  4212. if (!retval)
  4213. retval = p->policy
  4214. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4215. }
  4216. rcu_read_unlock();
  4217. return retval;
  4218. }
  4219. /**
  4220. * sys_sched_getparam - get the RT priority of a thread
  4221. * @pid: the pid in question.
  4222. * @param: structure containing the RT priority.
  4223. */
  4224. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4225. {
  4226. struct sched_param lp;
  4227. struct task_struct *p;
  4228. int retval;
  4229. if (!param || pid < 0)
  4230. return -EINVAL;
  4231. rcu_read_lock();
  4232. p = find_process_by_pid(pid);
  4233. retval = -ESRCH;
  4234. if (!p)
  4235. goto out_unlock;
  4236. retval = security_task_getscheduler(p);
  4237. if (retval)
  4238. goto out_unlock;
  4239. lp.sched_priority = p->rt_priority;
  4240. rcu_read_unlock();
  4241. /*
  4242. * This one might sleep, we cannot do it with a spinlock held ...
  4243. */
  4244. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4245. return retval;
  4246. out_unlock:
  4247. rcu_read_unlock();
  4248. return retval;
  4249. }
  4250. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4251. {
  4252. cpumask_var_t cpus_allowed, new_mask;
  4253. struct task_struct *p;
  4254. int retval;
  4255. get_online_cpus();
  4256. rcu_read_lock();
  4257. p = find_process_by_pid(pid);
  4258. if (!p) {
  4259. rcu_read_unlock();
  4260. put_online_cpus();
  4261. return -ESRCH;
  4262. }
  4263. /* Prevent p going away */
  4264. get_task_struct(p);
  4265. rcu_read_unlock();
  4266. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4267. retval = -ENOMEM;
  4268. goto out_put_task;
  4269. }
  4270. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4271. retval = -ENOMEM;
  4272. goto out_free_cpus_allowed;
  4273. }
  4274. retval = -EPERM;
  4275. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4276. goto out_unlock;
  4277. retval = security_task_setscheduler(p);
  4278. if (retval)
  4279. goto out_unlock;
  4280. cpuset_cpus_allowed(p, cpus_allowed);
  4281. cpumask_and(new_mask, in_mask, cpus_allowed);
  4282. again:
  4283. retval = set_cpus_allowed_ptr(p, new_mask);
  4284. if (!retval) {
  4285. cpuset_cpus_allowed(p, cpus_allowed);
  4286. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4287. /*
  4288. * We must have raced with a concurrent cpuset
  4289. * update. Just reset the cpus_allowed to the
  4290. * cpuset's cpus_allowed
  4291. */
  4292. cpumask_copy(new_mask, cpus_allowed);
  4293. goto again;
  4294. }
  4295. }
  4296. out_unlock:
  4297. free_cpumask_var(new_mask);
  4298. out_free_cpus_allowed:
  4299. free_cpumask_var(cpus_allowed);
  4300. out_put_task:
  4301. put_task_struct(p);
  4302. put_online_cpus();
  4303. return retval;
  4304. }
  4305. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4306. struct cpumask *new_mask)
  4307. {
  4308. if (len < cpumask_size())
  4309. cpumask_clear(new_mask);
  4310. else if (len > cpumask_size())
  4311. len = cpumask_size();
  4312. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4313. }
  4314. /**
  4315. * sys_sched_setaffinity - set the cpu affinity of a process
  4316. * @pid: pid of the process
  4317. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4318. * @user_mask_ptr: user-space pointer to the new cpu mask
  4319. */
  4320. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4321. unsigned long __user *, user_mask_ptr)
  4322. {
  4323. cpumask_var_t new_mask;
  4324. int retval;
  4325. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4326. return -ENOMEM;
  4327. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4328. if (retval == 0)
  4329. retval = sched_setaffinity(pid, new_mask);
  4330. free_cpumask_var(new_mask);
  4331. return retval;
  4332. }
  4333. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4334. {
  4335. struct task_struct *p;
  4336. unsigned long flags;
  4337. struct rq *rq;
  4338. int retval;
  4339. get_online_cpus();
  4340. rcu_read_lock();
  4341. retval = -ESRCH;
  4342. p = find_process_by_pid(pid);
  4343. if (!p)
  4344. goto out_unlock;
  4345. retval = security_task_getscheduler(p);
  4346. if (retval)
  4347. goto out_unlock;
  4348. rq = task_rq_lock(p, &flags);
  4349. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4350. task_rq_unlock(rq, &flags);
  4351. out_unlock:
  4352. rcu_read_unlock();
  4353. put_online_cpus();
  4354. return retval;
  4355. }
  4356. /**
  4357. * sys_sched_getaffinity - get the cpu affinity of a process
  4358. * @pid: pid of the process
  4359. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4360. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4361. */
  4362. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4363. unsigned long __user *, user_mask_ptr)
  4364. {
  4365. int ret;
  4366. cpumask_var_t mask;
  4367. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4368. return -EINVAL;
  4369. if (len & (sizeof(unsigned long)-1))
  4370. return -EINVAL;
  4371. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4372. return -ENOMEM;
  4373. ret = sched_getaffinity(pid, mask);
  4374. if (ret == 0) {
  4375. size_t retlen = min_t(size_t, len, cpumask_size());
  4376. if (copy_to_user(user_mask_ptr, mask, retlen))
  4377. ret = -EFAULT;
  4378. else
  4379. ret = retlen;
  4380. }
  4381. free_cpumask_var(mask);
  4382. return ret;
  4383. }
  4384. /**
  4385. * sys_sched_yield - yield the current processor to other threads.
  4386. *
  4387. * This function yields the current CPU to other tasks. If there are no
  4388. * other threads running on this CPU then this function will return.
  4389. */
  4390. SYSCALL_DEFINE0(sched_yield)
  4391. {
  4392. struct rq *rq = this_rq_lock();
  4393. schedstat_inc(rq, yld_count);
  4394. current->sched_class->yield_task(rq);
  4395. /*
  4396. * Since we are going to call schedule() anyway, there's
  4397. * no need to preempt or enable interrupts:
  4398. */
  4399. __release(rq->lock);
  4400. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4401. do_raw_spin_unlock(&rq->lock);
  4402. preempt_enable_no_resched();
  4403. schedule();
  4404. return 0;
  4405. }
  4406. static inline int should_resched(void)
  4407. {
  4408. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4409. }
  4410. static void __cond_resched(void)
  4411. {
  4412. add_preempt_count(PREEMPT_ACTIVE);
  4413. schedule();
  4414. sub_preempt_count(PREEMPT_ACTIVE);
  4415. }
  4416. int __sched _cond_resched(void)
  4417. {
  4418. if (should_resched()) {
  4419. __cond_resched();
  4420. return 1;
  4421. }
  4422. return 0;
  4423. }
  4424. EXPORT_SYMBOL(_cond_resched);
  4425. /*
  4426. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4427. * call schedule, and on return reacquire the lock.
  4428. *
  4429. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4430. * operations here to prevent schedule() from being called twice (once via
  4431. * spin_unlock(), once by hand).
  4432. */
  4433. int __cond_resched_lock(spinlock_t *lock)
  4434. {
  4435. int resched = should_resched();
  4436. int ret = 0;
  4437. lockdep_assert_held(lock);
  4438. if (spin_needbreak(lock) || resched) {
  4439. spin_unlock(lock);
  4440. if (resched)
  4441. __cond_resched();
  4442. else
  4443. cpu_relax();
  4444. ret = 1;
  4445. spin_lock(lock);
  4446. }
  4447. return ret;
  4448. }
  4449. EXPORT_SYMBOL(__cond_resched_lock);
  4450. int __sched __cond_resched_softirq(void)
  4451. {
  4452. BUG_ON(!in_softirq());
  4453. if (should_resched()) {
  4454. local_bh_enable();
  4455. __cond_resched();
  4456. local_bh_disable();
  4457. return 1;
  4458. }
  4459. return 0;
  4460. }
  4461. EXPORT_SYMBOL(__cond_resched_softirq);
  4462. /**
  4463. * yield - yield the current processor to other threads.
  4464. *
  4465. * This is a shortcut for kernel-space yielding - it marks the
  4466. * thread runnable and calls sys_sched_yield().
  4467. */
  4468. void __sched yield(void)
  4469. {
  4470. set_current_state(TASK_RUNNING);
  4471. sys_sched_yield();
  4472. }
  4473. EXPORT_SYMBOL(yield);
  4474. /*
  4475. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4476. * that process accounting knows that this is a task in IO wait state.
  4477. */
  4478. void __sched io_schedule(void)
  4479. {
  4480. struct rq *rq = raw_rq();
  4481. delayacct_blkio_start();
  4482. atomic_inc(&rq->nr_iowait);
  4483. current->in_iowait = 1;
  4484. schedule();
  4485. current->in_iowait = 0;
  4486. atomic_dec(&rq->nr_iowait);
  4487. delayacct_blkio_end();
  4488. }
  4489. EXPORT_SYMBOL(io_schedule);
  4490. long __sched io_schedule_timeout(long timeout)
  4491. {
  4492. struct rq *rq = raw_rq();
  4493. long ret;
  4494. delayacct_blkio_start();
  4495. atomic_inc(&rq->nr_iowait);
  4496. current->in_iowait = 1;
  4497. ret = schedule_timeout(timeout);
  4498. current->in_iowait = 0;
  4499. atomic_dec(&rq->nr_iowait);
  4500. delayacct_blkio_end();
  4501. return ret;
  4502. }
  4503. /**
  4504. * sys_sched_get_priority_max - return maximum RT priority.
  4505. * @policy: scheduling class.
  4506. *
  4507. * this syscall returns the maximum rt_priority that can be used
  4508. * by a given scheduling class.
  4509. */
  4510. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4511. {
  4512. int ret = -EINVAL;
  4513. switch (policy) {
  4514. case SCHED_FIFO:
  4515. case SCHED_RR:
  4516. ret = MAX_USER_RT_PRIO-1;
  4517. break;
  4518. case SCHED_NORMAL:
  4519. case SCHED_BATCH:
  4520. case SCHED_IDLE:
  4521. ret = 0;
  4522. break;
  4523. }
  4524. return ret;
  4525. }
  4526. /**
  4527. * sys_sched_get_priority_min - return minimum RT priority.
  4528. * @policy: scheduling class.
  4529. *
  4530. * this syscall returns the minimum rt_priority that can be used
  4531. * by a given scheduling class.
  4532. */
  4533. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4534. {
  4535. int ret = -EINVAL;
  4536. switch (policy) {
  4537. case SCHED_FIFO:
  4538. case SCHED_RR:
  4539. ret = 1;
  4540. break;
  4541. case SCHED_NORMAL:
  4542. case SCHED_BATCH:
  4543. case SCHED_IDLE:
  4544. ret = 0;
  4545. }
  4546. return ret;
  4547. }
  4548. /**
  4549. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4550. * @pid: pid of the process.
  4551. * @interval: userspace pointer to the timeslice value.
  4552. *
  4553. * this syscall writes the default timeslice value of a given process
  4554. * into the user-space timespec buffer. A value of '0' means infinity.
  4555. */
  4556. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4557. struct timespec __user *, interval)
  4558. {
  4559. struct task_struct *p;
  4560. unsigned int time_slice;
  4561. unsigned long flags;
  4562. struct rq *rq;
  4563. int retval;
  4564. struct timespec t;
  4565. if (pid < 0)
  4566. return -EINVAL;
  4567. retval = -ESRCH;
  4568. rcu_read_lock();
  4569. p = find_process_by_pid(pid);
  4570. if (!p)
  4571. goto out_unlock;
  4572. retval = security_task_getscheduler(p);
  4573. if (retval)
  4574. goto out_unlock;
  4575. rq = task_rq_lock(p, &flags);
  4576. time_slice = p->sched_class->get_rr_interval(rq, p);
  4577. task_rq_unlock(rq, &flags);
  4578. rcu_read_unlock();
  4579. jiffies_to_timespec(time_slice, &t);
  4580. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4581. return retval;
  4582. out_unlock:
  4583. rcu_read_unlock();
  4584. return retval;
  4585. }
  4586. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4587. void sched_show_task(struct task_struct *p)
  4588. {
  4589. unsigned long free = 0;
  4590. unsigned state;
  4591. state = p->state ? __ffs(p->state) + 1 : 0;
  4592. printk(KERN_INFO "%-13.13s %c", p->comm,
  4593. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4594. #if BITS_PER_LONG == 32
  4595. if (state == TASK_RUNNING)
  4596. printk(KERN_CONT " running ");
  4597. else
  4598. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4599. #else
  4600. if (state == TASK_RUNNING)
  4601. printk(KERN_CONT " running task ");
  4602. else
  4603. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4604. #endif
  4605. #ifdef CONFIG_DEBUG_STACK_USAGE
  4606. free = stack_not_used(p);
  4607. #endif
  4608. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4609. task_pid_nr(p), task_pid_nr(p->real_parent),
  4610. (unsigned long)task_thread_info(p)->flags);
  4611. show_stack(p, NULL);
  4612. }
  4613. void show_state_filter(unsigned long state_filter)
  4614. {
  4615. struct task_struct *g, *p;
  4616. #if BITS_PER_LONG == 32
  4617. printk(KERN_INFO
  4618. " task PC stack pid father\n");
  4619. #else
  4620. printk(KERN_INFO
  4621. " task PC stack pid father\n");
  4622. #endif
  4623. read_lock(&tasklist_lock);
  4624. do_each_thread(g, p) {
  4625. /*
  4626. * reset the NMI-timeout, listing all files on a slow
  4627. * console might take alot of time:
  4628. */
  4629. touch_nmi_watchdog();
  4630. if (!state_filter || (p->state & state_filter))
  4631. sched_show_task(p);
  4632. } while_each_thread(g, p);
  4633. touch_all_softlockup_watchdogs();
  4634. #ifdef CONFIG_SCHED_DEBUG
  4635. sysrq_sched_debug_show();
  4636. #endif
  4637. read_unlock(&tasklist_lock);
  4638. /*
  4639. * Only show locks if all tasks are dumped:
  4640. */
  4641. if (!state_filter)
  4642. debug_show_all_locks();
  4643. }
  4644. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4645. {
  4646. idle->sched_class = &idle_sched_class;
  4647. }
  4648. /**
  4649. * init_idle - set up an idle thread for a given CPU
  4650. * @idle: task in question
  4651. * @cpu: cpu the idle task belongs to
  4652. *
  4653. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4654. * flag, to make booting more robust.
  4655. */
  4656. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4657. {
  4658. struct rq *rq = cpu_rq(cpu);
  4659. unsigned long flags;
  4660. raw_spin_lock_irqsave(&rq->lock, flags);
  4661. __sched_fork(idle);
  4662. idle->state = TASK_RUNNING;
  4663. idle->se.exec_start = sched_clock();
  4664. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4665. /*
  4666. * We're having a chicken and egg problem, even though we are
  4667. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4668. * lockdep check in task_group() will fail.
  4669. *
  4670. * Similar case to sched_fork(). / Alternatively we could
  4671. * use task_rq_lock() here and obtain the other rq->lock.
  4672. *
  4673. * Silence PROVE_RCU
  4674. */
  4675. rcu_read_lock();
  4676. __set_task_cpu(idle, cpu);
  4677. rcu_read_unlock();
  4678. rq->curr = rq->idle = idle;
  4679. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4680. idle->oncpu = 1;
  4681. #endif
  4682. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4683. /* Set the preempt count _outside_ the spinlocks! */
  4684. #if defined(CONFIG_PREEMPT)
  4685. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4686. #else
  4687. task_thread_info(idle)->preempt_count = 0;
  4688. #endif
  4689. /*
  4690. * The idle tasks have their own, simple scheduling class:
  4691. */
  4692. idle->sched_class = &idle_sched_class;
  4693. ftrace_graph_init_task(idle);
  4694. }
  4695. /*
  4696. * In a system that switches off the HZ timer nohz_cpu_mask
  4697. * indicates which cpus entered this state. This is used
  4698. * in the rcu update to wait only for active cpus. For system
  4699. * which do not switch off the HZ timer nohz_cpu_mask should
  4700. * always be CPU_BITS_NONE.
  4701. */
  4702. cpumask_var_t nohz_cpu_mask;
  4703. /*
  4704. * Increase the granularity value when there are more CPUs,
  4705. * because with more CPUs the 'effective latency' as visible
  4706. * to users decreases. But the relationship is not linear,
  4707. * so pick a second-best guess by going with the log2 of the
  4708. * number of CPUs.
  4709. *
  4710. * This idea comes from the SD scheduler of Con Kolivas:
  4711. */
  4712. static int get_update_sysctl_factor(void)
  4713. {
  4714. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4715. unsigned int factor;
  4716. switch (sysctl_sched_tunable_scaling) {
  4717. case SCHED_TUNABLESCALING_NONE:
  4718. factor = 1;
  4719. break;
  4720. case SCHED_TUNABLESCALING_LINEAR:
  4721. factor = cpus;
  4722. break;
  4723. case SCHED_TUNABLESCALING_LOG:
  4724. default:
  4725. factor = 1 + ilog2(cpus);
  4726. break;
  4727. }
  4728. return factor;
  4729. }
  4730. static void update_sysctl(void)
  4731. {
  4732. unsigned int factor = get_update_sysctl_factor();
  4733. #define SET_SYSCTL(name) \
  4734. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4735. SET_SYSCTL(sched_min_granularity);
  4736. SET_SYSCTL(sched_latency);
  4737. SET_SYSCTL(sched_wakeup_granularity);
  4738. SET_SYSCTL(sched_shares_ratelimit);
  4739. #undef SET_SYSCTL
  4740. }
  4741. static inline void sched_init_granularity(void)
  4742. {
  4743. update_sysctl();
  4744. }
  4745. #ifdef CONFIG_SMP
  4746. /*
  4747. * This is how migration works:
  4748. *
  4749. * 1) we invoke migration_cpu_stop() on the target CPU using
  4750. * stop_one_cpu().
  4751. * 2) stopper starts to run (implicitly forcing the migrated thread
  4752. * off the CPU)
  4753. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4754. * 4) if it's in the wrong runqueue then the migration thread removes
  4755. * it and puts it into the right queue.
  4756. * 5) stopper completes and stop_one_cpu() returns and the migration
  4757. * is done.
  4758. */
  4759. /*
  4760. * Change a given task's CPU affinity. Migrate the thread to a
  4761. * proper CPU and schedule it away if the CPU it's executing on
  4762. * is removed from the allowed bitmask.
  4763. *
  4764. * NOTE: the caller must have a valid reference to the task, the
  4765. * task must not exit() & deallocate itself prematurely. The
  4766. * call is not atomic; no spinlocks may be held.
  4767. */
  4768. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4769. {
  4770. unsigned long flags;
  4771. struct rq *rq;
  4772. unsigned int dest_cpu;
  4773. int ret = 0;
  4774. /*
  4775. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4776. * drop the rq->lock and still rely on ->cpus_allowed.
  4777. */
  4778. again:
  4779. while (task_is_waking(p))
  4780. cpu_relax();
  4781. rq = task_rq_lock(p, &flags);
  4782. if (task_is_waking(p)) {
  4783. task_rq_unlock(rq, &flags);
  4784. goto again;
  4785. }
  4786. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4787. ret = -EINVAL;
  4788. goto out;
  4789. }
  4790. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4791. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4792. ret = -EINVAL;
  4793. goto out;
  4794. }
  4795. if (p->sched_class->set_cpus_allowed)
  4796. p->sched_class->set_cpus_allowed(p, new_mask);
  4797. else {
  4798. cpumask_copy(&p->cpus_allowed, new_mask);
  4799. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4800. }
  4801. /* Can the task run on the task's current CPU? If so, we're done */
  4802. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4803. goto out;
  4804. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4805. if (migrate_task(p, dest_cpu)) {
  4806. struct migration_arg arg = { p, dest_cpu };
  4807. /* Need help from migration thread: drop lock and wait. */
  4808. task_rq_unlock(rq, &flags);
  4809. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4810. tlb_migrate_finish(p->mm);
  4811. return 0;
  4812. }
  4813. out:
  4814. task_rq_unlock(rq, &flags);
  4815. return ret;
  4816. }
  4817. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4818. /*
  4819. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4820. * this because either it can't run here any more (set_cpus_allowed()
  4821. * away from this CPU, or CPU going down), or because we're
  4822. * attempting to rebalance this task on exec (sched_exec).
  4823. *
  4824. * So we race with normal scheduler movements, but that's OK, as long
  4825. * as the task is no longer on this CPU.
  4826. *
  4827. * Returns non-zero if task was successfully migrated.
  4828. */
  4829. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4830. {
  4831. struct rq *rq_dest, *rq_src;
  4832. int ret = 0;
  4833. if (unlikely(!cpu_active(dest_cpu)))
  4834. return ret;
  4835. rq_src = cpu_rq(src_cpu);
  4836. rq_dest = cpu_rq(dest_cpu);
  4837. double_rq_lock(rq_src, rq_dest);
  4838. /* Already moved. */
  4839. if (task_cpu(p) != src_cpu)
  4840. goto done;
  4841. /* Affinity changed (again). */
  4842. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4843. goto fail;
  4844. /*
  4845. * If we're not on a rq, the next wake-up will ensure we're
  4846. * placed properly.
  4847. */
  4848. if (p->se.on_rq) {
  4849. deactivate_task(rq_src, p, 0);
  4850. set_task_cpu(p, dest_cpu);
  4851. activate_task(rq_dest, p, 0);
  4852. check_preempt_curr(rq_dest, p, 0);
  4853. }
  4854. done:
  4855. ret = 1;
  4856. fail:
  4857. double_rq_unlock(rq_src, rq_dest);
  4858. return ret;
  4859. }
  4860. /*
  4861. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4862. * and performs thread migration by bumping thread off CPU then
  4863. * 'pushing' onto another runqueue.
  4864. */
  4865. static int migration_cpu_stop(void *data)
  4866. {
  4867. struct migration_arg *arg = data;
  4868. /*
  4869. * The original target cpu might have gone down and we might
  4870. * be on another cpu but it doesn't matter.
  4871. */
  4872. local_irq_disable();
  4873. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4874. local_irq_enable();
  4875. return 0;
  4876. }
  4877. #ifdef CONFIG_HOTPLUG_CPU
  4878. /*
  4879. * Figure out where task on dead CPU should go, use force if necessary.
  4880. */
  4881. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4882. {
  4883. struct rq *rq = cpu_rq(dead_cpu);
  4884. int needs_cpu, uninitialized_var(dest_cpu);
  4885. unsigned long flags;
  4886. local_irq_save(flags);
  4887. raw_spin_lock(&rq->lock);
  4888. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  4889. if (needs_cpu)
  4890. dest_cpu = select_fallback_rq(dead_cpu, p);
  4891. raw_spin_unlock(&rq->lock);
  4892. /*
  4893. * It can only fail if we race with set_cpus_allowed(),
  4894. * in the racer should migrate the task anyway.
  4895. */
  4896. if (needs_cpu)
  4897. __migrate_task(p, dead_cpu, dest_cpu);
  4898. local_irq_restore(flags);
  4899. }
  4900. /*
  4901. * While a dead CPU has no uninterruptible tasks queued at this point,
  4902. * it might still have a nonzero ->nr_uninterruptible counter, because
  4903. * for performance reasons the counter is not stricly tracking tasks to
  4904. * their home CPUs. So we just add the counter to another CPU's counter,
  4905. * to keep the global sum constant after CPU-down:
  4906. */
  4907. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4908. {
  4909. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4910. unsigned long flags;
  4911. local_irq_save(flags);
  4912. double_rq_lock(rq_src, rq_dest);
  4913. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4914. rq_src->nr_uninterruptible = 0;
  4915. double_rq_unlock(rq_src, rq_dest);
  4916. local_irq_restore(flags);
  4917. }
  4918. /* Run through task list and migrate tasks from the dead cpu. */
  4919. static void migrate_live_tasks(int src_cpu)
  4920. {
  4921. struct task_struct *p, *t;
  4922. read_lock(&tasklist_lock);
  4923. do_each_thread(t, p) {
  4924. if (p == current)
  4925. continue;
  4926. if (task_cpu(p) == src_cpu)
  4927. move_task_off_dead_cpu(src_cpu, p);
  4928. } while_each_thread(t, p);
  4929. read_unlock(&tasklist_lock);
  4930. }
  4931. /*
  4932. * Schedules idle task to be the next runnable task on current CPU.
  4933. * It does so by boosting its priority to highest possible.
  4934. * Used by CPU offline code.
  4935. */
  4936. void sched_idle_next(void)
  4937. {
  4938. int this_cpu = smp_processor_id();
  4939. struct rq *rq = cpu_rq(this_cpu);
  4940. struct task_struct *p = rq->idle;
  4941. unsigned long flags;
  4942. /* cpu has to be offline */
  4943. BUG_ON(cpu_online(this_cpu));
  4944. /*
  4945. * Strictly not necessary since rest of the CPUs are stopped by now
  4946. * and interrupts disabled on the current cpu.
  4947. */
  4948. raw_spin_lock_irqsave(&rq->lock, flags);
  4949. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4950. activate_task(rq, p, 0);
  4951. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4952. }
  4953. /*
  4954. * Ensures that the idle task is using init_mm right before its cpu goes
  4955. * offline.
  4956. */
  4957. void idle_task_exit(void)
  4958. {
  4959. struct mm_struct *mm = current->active_mm;
  4960. BUG_ON(cpu_online(smp_processor_id()));
  4961. if (mm != &init_mm)
  4962. switch_mm(mm, &init_mm, current);
  4963. mmdrop(mm);
  4964. }
  4965. /* called under rq->lock with disabled interrupts */
  4966. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4967. {
  4968. struct rq *rq = cpu_rq(dead_cpu);
  4969. /* Must be exiting, otherwise would be on tasklist. */
  4970. BUG_ON(!p->exit_state);
  4971. /* Cannot have done final schedule yet: would have vanished. */
  4972. BUG_ON(p->state == TASK_DEAD);
  4973. get_task_struct(p);
  4974. /*
  4975. * Drop lock around migration; if someone else moves it,
  4976. * that's OK. No task can be added to this CPU, so iteration is
  4977. * fine.
  4978. */
  4979. raw_spin_unlock_irq(&rq->lock);
  4980. move_task_off_dead_cpu(dead_cpu, p);
  4981. raw_spin_lock_irq(&rq->lock);
  4982. put_task_struct(p);
  4983. }
  4984. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4985. static void migrate_dead_tasks(unsigned int dead_cpu)
  4986. {
  4987. struct rq *rq = cpu_rq(dead_cpu);
  4988. struct task_struct *next;
  4989. for ( ; ; ) {
  4990. if (!rq->nr_running)
  4991. break;
  4992. next = pick_next_task(rq);
  4993. if (!next)
  4994. break;
  4995. next->sched_class->put_prev_task(rq, next);
  4996. migrate_dead(dead_cpu, next);
  4997. }
  4998. }
  4999. /*
  5000. * remove the tasks which were accounted by rq from calc_load_tasks.
  5001. */
  5002. static void calc_global_load_remove(struct rq *rq)
  5003. {
  5004. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5005. rq->calc_load_active = 0;
  5006. }
  5007. #endif /* CONFIG_HOTPLUG_CPU */
  5008. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5009. static struct ctl_table sd_ctl_dir[] = {
  5010. {
  5011. .procname = "sched_domain",
  5012. .mode = 0555,
  5013. },
  5014. {}
  5015. };
  5016. static struct ctl_table sd_ctl_root[] = {
  5017. {
  5018. .procname = "kernel",
  5019. .mode = 0555,
  5020. .child = sd_ctl_dir,
  5021. },
  5022. {}
  5023. };
  5024. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5025. {
  5026. struct ctl_table *entry =
  5027. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5028. return entry;
  5029. }
  5030. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5031. {
  5032. struct ctl_table *entry;
  5033. /*
  5034. * In the intermediate directories, both the child directory and
  5035. * procname are dynamically allocated and could fail but the mode
  5036. * will always be set. In the lowest directory the names are
  5037. * static strings and all have proc handlers.
  5038. */
  5039. for (entry = *tablep; entry->mode; entry++) {
  5040. if (entry->child)
  5041. sd_free_ctl_entry(&entry->child);
  5042. if (entry->proc_handler == NULL)
  5043. kfree(entry->procname);
  5044. }
  5045. kfree(*tablep);
  5046. *tablep = NULL;
  5047. }
  5048. static void
  5049. set_table_entry(struct ctl_table *entry,
  5050. const char *procname, void *data, int maxlen,
  5051. mode_t mode, proc_handler *proc_handler)
  5052. {
  5053. entry->procname = procname;
  5054. entry->data = data;
  5055. entry->maxlen = maxlen;
  5056. entry->mode = mode;
  5057. entry->proc_handler = proc_handler;
  5058. }
  5059. static struct ctl_table *
  5060. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5061. {
  5062. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5063. if (table == NULL)
  5064. return NULL;
  5065. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5066. sizeof(long), 0644, proc_doulongvec_minmax);
  5067. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5068. sizeof(long), 0644, proc_doulongvec_minmax);
  5069. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5070. sizeof(int), 0644, proc_dointvec_minmax);
  5071. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5072. sizeof(int), 0644, proc_dointvec_minmax);
  5073. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5074. sizeof(int), 0644, proc_dointvec_minmax);
  5075. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5076. sizeof(int), 0644, proc_dointvec_minmax);
  5077. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5078. sizeof(int), 0644, proc_dointvec_minmax);
  5079. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5080. sizeof(int), 0644, proc_dointvec_minmax);
  5081. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5082. sizeof(int), 0644, proc_dointvec_minmax);
  5083. set_table_entry(&table[9], "cache_nice_tries",
  5084. &sd->cache_nice_tries,
  5085. sizeof(int), 0644, proc_dointvec_minmax);
  5086. set_table_entry(&table[10], "flags", &sd->flags,
  5087. sizeof(int), 0644, proc_dointvec_minmax);
  5088. set_table_entry(&table[11], "name", sd->name,
  5089. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5090. /* &table[12] is terminator */
  5091. return table;
  5092. }
  5093. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5094. {
  5095. struct ctl_table *entry, *table;
  5096. struct sched_domain *sd;
  5097. int domain_num = 0, i;
  5098. char buf[32];
  5099. for_each_domain(cpu, sd)
  5100. domain_num++;
  5101. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5102. if (table == NULL)
  5103. return NULL;
  5104. i = 0;
  5105. for_each_domain(cpu, sd) {
  5106. snprintf(buf, 32, "domain%d", i);
  5107. entry->procname = kstrdup(buf, GFP_KERNEL);
  5108. entry->mode = 0555;
  5109. entry->child = sd_alloc_ctl_domain_table(sd);
  5110. entry++;
  5111. i++;
  5112. }
  5113. return table;
  5114. }
  5115. static struct ctl_table_header *sd_sysctl_header;
  5116. static void register_sched_domain_sysctl(void)
  5117. {
  5118. int i, cpu_num = num_possible_cpus();
  5119. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5120. char buf[32];
  5121. WARN_ON(sd_ctl_dir[0].child);
  5122. sd_ctl_dir[0].child = entry;
  5123. if (entry == NULL)
  5124. return;
  5125. for_each_possible_cpu(i) {
  5126. snprintf(buf, 32, "cpu%d", i);
  5127. entry->procname = kstrdup(buf, GFP_KERNEL);
  5128. entry->mode = 0555;
  5129. entry->child = sd_alloc_ctl_cpu_table(i);
  5130. entry++;
  5131. }
  5132. WARN_ON(sd_sysctl_header);
  5133. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5134. }
  5135. /* may be called multiple times per register */
  5136. static void unregister_sched_domain_sysctl(void)
  5137. {
  5138. if (sd_sysctl_header)
  5139. unregister_sysctl_table(sd_sysctl_header);
  5140. sd_sysctl_header = NULL;
  5141. if (sd_ctl_dir[0].child)
  5142. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5143. }
  5144. #else
  5145. static void register_sched_domain_sysctl(void)
  5146. {
  5147. }
  5148. static void unregister_sched_domain_sysctl(void)
  5149. {
  5150. }
  5151. #endif
  5152. static void set_rq_online(struct rq *rq)
  5153. {
  5154. if (!rq->online) {
  5155. const struct sched_class *class;
  5156. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5157. rq->online = 1;
  5158. for_each_class(class) {
  5159. if (class->rq_online)
  5160. class->rq_online(rq);
  5161. }
  5162. }
  5163. }
  5164. static void set_rq_offline(struct rq *rq)
  5165. {
  5166. if (rq->online) {
  5167. const struct sched_class *class;
  5168. for_each_class(class) {
  5169. if (class->rq_offline)
  5170. class->rq_offline(rq);
  5171. }
  5172. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5173. rq->online = 0;
  5174. }
  5175. }
  5176. /*
  5177. * migration_call - callback that gets triggered when a CPU is added.
  5178. * Here we can start up the necessary migration thread for the new CPU.
  5179. */
  5180. static int __cpuinit
  5181. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5182. {
  5183. int cpu = (long)hcpu;
  5184. unsigned long flags;
  5185. struct rq *rq = cpu_rq(cpu);
  5186. switch (action) {
  5187. case CPU_UP_PREPARE:
  5188. case CPU_UP_PREPARE_FROZEN:
  5189. rq->calc_load_update = calc_load_update;
  5190. break;
  5191. case CPU_ONLINE:
  5192. case CPU_ONLINE_FROZEN:
  5193. /* Update our root-domain */
  5194. raw_spin_lock_irqsave(&rq->lock, flags);
  5195. if (rq->rd) {
  5196. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5197. set_rq_online(rq);
  5198. }
  5199. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5200. break;
  5201. #ifdef CONFIG_HOTPLUG_CPU
  5202. case CPU_DEAD:
  5203. case CPU_DEAD_FROZEN:
  5204. migrate_live_tasks(cpu);
  5205. /* Idle task back to normal (off runqueue, low prio) */
  5206. raw_spin_lock_irq(&rq->lock);
  5207. deactivate_task(rq, rq->idle, 0);
  5208. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5209. rq->idle->sched_class = &idle_sched_class;
  5210. migrate_dead_tasks(cpu);
  5211. raw_spin_unlock_irq(&rq->lock);
  5212. migrate_nr_uninterruptible(rq);
  5213. BUG_ON(rq->nr_running != 0);
  5214. calc_global_load_remove(rq);
  5215. break;
  5216. case CPU_DYING:
  5217. case CPU_DYING_FROZEN:
  5218. /* Update our root-domain */
  5219. raw_spin_lock_irqsave(&rq->lock, flags);
  5220. if (rq->rd) {
  5221. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5222. set_rq_offline(rq);
  5223. }
  5224. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5225. break;
  5226. #endif
  5227. }
  5228. return NOTIFY_OK;
  5229. }
  5230. /*
  5231. * Register at high priority so that task migration (migrate_all_tasks)
  5232. * happens before everything else. This has to be lower priority than
  5233. * the notifier in the perf_event subsystem, though.
  5234. */
  5235. static struct notifier_block __cpuinitdata migration_notifier = {
  5236. .notifier_call = migration_call,
  5237. .priority = CPU_PRI_MIGRATION,
  5238. };
  5239. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5240. unsigned long action, void *hcpu)
  5241. {
  5242. switch (action & ~CPU_TASKS_FROZEN) {
  5243. case CPU_ONLINE:
  5244. case CPU_DOWN_FAILED:
  5245. set_cpu_active((long)hcpu, true);
  5246. return NOTIFY_OK;
  5247. default:
  5248. return NOTIFY_DONE;
  5249. }
  5250. }
  5251. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5252. unsigned long action, void *hcpu)
  5253. {
  5254. switch (action & ~CPU_TASKS_FROZEN) {
  5255. case CPU_DOWN_PREPARE:
  5256. set_cpu_active((long)hcpu, false);
  5257. return NOTIFY_OK;
  5258. default:
  5259. return NOTIFY_DONE;
  5260. }
  5261. }
  5262. static int __init migration_init(void)
  5263. {
  5264. void *cpu = (void *)(long)smp_processor_id();
  5265. int err;
  5266. /* Initialize migration for the boot CPU */
  5267. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5268. BUG_ON(err == NOTIFY_BAD);
  5269. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5270. register_cpu_notifier(&migration_notifier);
  5271. /* Register cpu active notifiers */
  5272. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5273. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5274. return 0;
  5275. }
  5276. early_initcall(migration_init);
  5277. #endif
  5278. #ifdef CONFIG_SMP
  5279. #ifdef CONFIG_SCHED_DEBUG
  5280. static __read_mostly int sched_domain_debug_enabled;
  5281. static int __init sched_domain_debug_setup(char *str)
  5282. {
  5283. sched_domain_debug_enabled = 1;
  5284. return 0;
  5285. }
  5286. early_param("sched_debug", sched_domain_debug_setup);
  5287. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5288. struct cpumask *groupmask)
  5289. {
  5290. struct sched_group *group = sd->groups;
  5291. char str[256];
  5292. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5293. cpumask_clear(groupmask);
  5294. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5295. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5296. printk("does not load-balance\n");
  5297. if (sd->parent)
  5298. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5299. " has parent");
  5300. return -1;
  5301. }
  5302. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5303. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5304. printk(KERN_ERR "ERROR: domain->span does not contain "
  5305. "CPU%d\n", cpu);
  5306. }
  5307. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5308. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5309. " CPU%d\n", cpu);
  5310. }
  5311. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5312. do {
  5313. if (!group) {
  5314. printk("\n");
  5315. printk(KERN_ERR "ERROR: group is NULL\n");
  5316. break;
  5317. }
  5318. if (!group->cpu_power) {
  5319. printk(KERN_CONT "\n");
  5320. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5321. "set\n");
  5322. break;
  5323. }
  5324. if (!cpumask_weight(sched_group_cpus(group))) {
  5325. printk(KERN_CONT "\n");
  5326. printk(KERN_ERR "ERROR: empty group\n");
  5327. break;
  5328. }
  5329. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5330. printk(KERN_CONT "\n");
  5331. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5332. break;
  5333. }
  5334. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5335. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5336. printk(KERN_CONT " %s", str);
  5337. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5338. printk(KERN_CONT " (cpu_power = %d)",
  5339. group->cpu_power);
  5340. }
  5341. group = group->next;
  5342. } while (group != sd->groups);
  5343. printk(KERN_CONT "\n");
  5344. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5345. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5346. if (sd->parent &&
  5347. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5348. printk(KERN_ERR "ERROR: parent span is not a superset "
  5349. "of domain->span\n");
  5350. return 0;
  5351. }
  5352. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5353. {
  5354. cpumask_var_t groupmask;
  5355. int level = 0;
  5356. if (!sched_domain_debug_enabled)
  5357. return;
  5358. if (!sd) {
  5359. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5360. return;
  5361. }
  5362. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5363. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5364. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5365. return;
  5366. }
  5367. for (;;) {
  5368. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5369. break;
  5370. level++;
  5371. sd = sd->parent;
  5372. if (!sd)
  5373. break;
  5374. }
  5375. free_cpumask_var(groupmask);
  5376. }
  5377. #else /* !CONFIG_SCHED_DEBUG */
  5378. # define sched_domain_debug(sd, cpu) do { } while (0)
  5379. #endif /* CONFIG_SCHED_DEBUG */
  5380. static int sd_degenerate(struct sched_domain *sd)
  5381. {
  5382. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5383. return 1;
  5384. /* Following flags need at least 2 groups */
  5385. if (sd->flags & (SD_LOAD_BALANCE |
  5386. SD_BALANCE_NEWIDLE |
  5387. SD_BALANCE_FORK |
  5388. SD_BALANCE_EXEC |
  5389. SD_SHARE_CPUPOWER |
  5390. SD_SHARE_PKG_RESOURCES)) {
  5391. if (sd->groups != sd->groups->next)
  5392. return 0;
  5393. }
  5394. /* Following flags don't use groups */
  5395. if (sd->flags & (SD_WAKE_AFFINE))
  5396. return 0;
  5397. return 1;
  5398. }
  5399. static int
  5400. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5401. {
  5402. unsigned long cflags = sd->flags, pflags = parent->flags;
  5403. if (sd_degenerate(parent))
  5404. return 1;
  5405. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5406. return 0;
  5407. /* Flags needing groups don't count if only 1 group in parent */
  5408. if (parent->groups == parent->groups->next) {
  5409. pflags &= ~(SD_LOAD_BALANCE |
  5410. SD_BALANCE_NEWIDLE |
  5411. SD_BALANCE_FORK |
  5412. SD_BALANCE_EXEC |
  5413. SD_SHARE_CPUPOWER |
  5414. SD_SHARE_PKG_RESOURCES);
  5415. if (nr_node_ids == 1)
  5416. pflags &= ~SD_SERIALIZE;
  5417. }
  5418. if (~cflags & pflags)
  5419. return 0;
  5420. return 1;
  5421. }
  5422. static void free_rootdomain(struct root_domain *rd)
  5423. {
  5424. synchronize_sched();
  5425. cpupri_cleanup(&rd->cpupri);
  5426. free_cpumask_var(rd->rto_mask);
  5427. free_cpumask_var(rd->online);
  5428. free_cpumask_var(rd->span);
  5429. kfree(rd);
  5430. }
  5431. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5432. {
  5433. struct root_domain *old_rd = NULL;
  5434. unsigned long flags;
  5435. raw_spin_lock_irqsave(&rq->lock, flags);
  5436. if (rq->rd) {
  5437. old_rd = rq->rd;
  5438. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5439. set_rq_offline(rq);
  5440. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5441. /*
  5442. * If we dont want to free the old_rt yet then
  5443. * set old_rd to NULL to skip the freeing later
  5444. * in this function:
  5445. */
  5446. if (!atomic_dec_and_test(&old_rd->refcount))
  5447. old_rd = NULL;
  5448. }
  5449. atomic_inc(&rd->refcount);
  5450. rq->rd = rd;
  5451. cpumask_set_cpu(rq->cpu, rd->span);
  5452. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5453. set_rq_online(rq);
  5454. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5455. if (old_rd)
  5456. free_rootdomain(old_rd);
  5457. }
  5458. static int init_rootdomain(struct root_domain *rd)
  5459. {
  5460. memset(rd, 0, sizeof(*rd));
  5461. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5462. goto out;
  5463. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5464. goto free_span;
  5465. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5466. goto free_online;
  5467. if (cpupri_init(&rd->cpupri) != 0)
  5468. goto free_rto_mask;
  5469. return 0;
  5470. free_rto_mask:
  5471. free_cpumask_var(rd->rto_mask);
  5472. free_online:
  5473. free_cpumask_var(rd->online);
  5474. free_span:
  5475. free_cpumask_var(rd->span);
  5476. out:
  5477. return -ENOMEM;
  5478. }
  5479. static void init_defrootdomain(void)
  5480. {
  5481. init_rootdomain(&def_root_domain);
  5482. atomic_set(&def_root_domain.refcount, 1);
  5483. }
  5484. static struct root_domain *alloc_rootdomain(void)
  5485. {
  5486. struct root_domain *rd;
  5487. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5488. if (!rd)
  5489. return NULL;
  5490. if (init_rootdomain(rd) != 0) {
  5491. kfree(rd);
  5492. return NULL;
  5493. }
  5494. return rd;
  5495. }
  5496. /*
  5497. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5498. * hold the hotplug lock.
  5499. */
  5500. static void
  5501. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5502. {
  5503. struct rq *rq = cpu_rq(cpu);
  5504. struct sched_domain *tmp;
  5505. for (tmp = sd; tmp; tmp = tmp->parent)
  5506. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5507. /* Remove the sched domains which do not contribute to scheduling. */
  5508. for (tmp = sd; tmp; ) {
  5509. struct sched_domain *parent = tmp->parent;
  5510. if (!parent)
  5511. break;
  5512. if (sd_parent_degenerate(tmp, parent)) {
  5513. tmp->parent = parent->parent;
  5514. if (parent->parent)
  5515. parent->parent->child = tmp;
  5516. } else
  5517. tmp = tmp->parent;
  5518. }
  5519. if (sd && sd_degenerate(sd)) {
  5520. sd = sd->parent;
  5521. if (sd)
  5522. sd->child = NULL;
  5523. }
  5524. sched_domain_debug(sd, cpu);
  5525. rq_attach_root(rq, rd);
  5526. rcu_assign_pointer(rq->sd, sd);
  5527. }
  5528. /* cpus with isolated domains */
  5529. static cpumask_var_t cpu_isolated_map;
  5530. /* Setup the mask of cpus configured for isolated domains */
  5531. static int __init isolated_cpu_setup(char *str)
  5532. {
  5533. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5534. cpulist_parse(str, cpu_isolated_map);
  5535. return 1;
  5536. }
  5537. __setup("isolcpus=", isolated_cpu_setup);
  5538. /*
  5539. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5540. * to a function which identifies what group(along with sched group) a CPU
  5541. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5542. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5543. *
  5544. * init_sched_build_groups will build a circular linked list of the groups
  5545. * covered by the given span, and will set each group's ->cpumask correctly,
  5546. * and ->cpu_power to 0.
  5547. */
  5548. static void
  5549. init_sched_build_groups(const struct cpumask *span,
  5550. const struct cpumask *cpu_map,
  5551. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5552. struct sched_group **sg,
  5553. struct cpumask *tmpmask),
  5554. struct cpumask *covered, struct cpumask *tmpmask)
  5555. {
  5556. struct sched_group *first = NULL, *last = NULL;
  5557. int i;
  5558. cpumask_clear(covered);
  5559. for_each_cpu(i, span) {
  5560. struct sched_group *sg;
  5561. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5562. int j;
  5563. if (cpumask_test_cpu(i, covered))
  5564. continue;
  5565. cpumask_clear(sched_group_cpus(sg));
  5566. sg->cpu_power = 0;
  5567. for_each_cpu(j, span) {
  5568. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5569. continue;
  5570. cpumask_set_cpu(j, covered);
  5571. cpumask_set_cpu(j, sched_group_cpus(sg));
  5572. }
  5573. if (!first)
  5574. first = sg;
  5575. if (last)
  5576. last->next = sg;
  5577. last = sg;
  5578. }
  5579. last->next = first;
  5580. }
  5581. #define SD_NODES_PER_DOMAIN 16
  5582. #ifdef CONFIG_NUMA
  5583. /**
  5584. * find_next_best_node - find the next node to include in a sched_domain
  5585. * @node: node whose sched_domain we're building
  5586. * @used_nodes: nodes already in the sched_domain
  5587. *
  5588. * Find the next node to include in a given scheduling domain. Simply
  5589. * finds the closest node not already in the @used_nodes map.
  5590. *
  5591. * Should use nodemask_t.
  5592. */
  5593. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5594. {
  5595. int i, n, val, min_val, best_node = 0;
  5596. min_val = INT_MAX;
  5597. for (i = 0; i < nr_node_ids; i++) {
  5598. /* Start at @node */
  5599. n = (node + i) % nr_node_ids;
  5600. if (!nr_cpus_node(n))
  5601. continue;
  5602. /* Skip already used nodes */
  5603. if (node_isset(n, *used_nodes))
  5604. continue;
  5605. /* Simple min distance search */
  5606. val = node_distance(node, n);
  5607. if (val < min_val) {
  5608. min_val = val;
  5609. best_node = n;
  5610. }
  5611. }
  5612. node_set(best_node, *used_nodes);
  5613. return best_node;
  5614. }
  5615. /**
  5616. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5617. * @node: node whose cpumask we're constructing
  5618. * @span: resulting cpumask
  5619. *
  5620. * Given a node, construct a good cpumask for its sched_domain to span. It
  5621. * should be one that prevents unnecessary balancing, but also spreads tasks
  5622. * out optimally.
  5623. */
  5624. static void sched_domain_node_span(int node, struct cpumask *span)
  5625. {
  5626. nodemask_t used_nodes;
  5627. int i;
  5628. cpumask_clear(span);
  5629. nodes_clear(used_nodes);
  5630. cpumask_or(span, span, cpumask_of_node(node));
  5631. node_set(node, used_nodes);
  5632. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5633. int next_node = find_next_best_node(node, &used_nodes);
  5634. cpumask_or(span, span, cpumask_of_node(next_node));
  5635. }
  5636. }
  5637. #endif /* CONFIG_NUMA */
  5638. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5639. /*
  5640. * The cpus mask in sched_group and sched_domain hangs off the end.
  5641. *
  5642. * ( See the the comments in include/linux/sched.h:struct sched_group
  5643. * and struct sched_domain. )
  5644. */
  5645. struct static_sched_group {
  5646. struct sched_group sg;
  5647. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5648. };
  5649. struct static_sched_domain {
  5650. struct sched_domain sd;
  5651. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5652. };
  5653. struct s_data {
  5654. #ifdef CONFIG_NUMA
  5655. int sd_allnodes;
  5656. cpumask_var_t domainspan;
  5657. cpumask_var_t covered;
  5658. cpumask_var_t notcovered;
  5659. #endif
  5660. cpumask_var_t nodemask;
  5661. cpumask_var_t this_sibling_map;
  5662. cpumask_var_t this_core_map;
  5663. cpumask_var_t this_book_map;
  5664. cpumask_var_t send_covered;
  5665. cpumask_var_t tmpmask;
  5666. struct sched_group **sched_group_nodes;
  5667. struct root_domain *rd;
  5668. };
  5669. enum s_alloc {
  5670. sa_sched_groups = 0,
  5671. sa_rootdomain,
  5672. sa_tmpmask,
  5673. sa_send_covered,
  5674. sa_this_book_map,
  5675. sa_this_core_map,
  5676. sa_this_sibling_map,
  5677. sa_nodemask,
  5678. sa_sched_group_nodes,
  5679. #ifdef CONFIG_NUMA
  5680. sa_notcovered,
  5681. sa_covered,
  5682. sa_domainspan,
  5683. #endif
  5684. sa_none,
  5685. };
  5686. /*
  5687. * SMT sched-domains:
  5688. */
  5689. #ifdef CONFIG_SCHED_SMT
  5690. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5691. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5692. static int
  5693. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5694. struct sched_group **sg, struct cpumask *unused)
  5695. {
  5696. if (sg)
  5697. *sg = &per_cpu(sched_groups, cpu).sg;
  5698. return cpu;
  5699. }
  5700. #endif /* CONFIG_SCHED_SMT */
  5701. /*
  5702. * multi-core sched-domains:
  5703. */
  5704. #ifdef CONFIG_SCHED_MC
  5705. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5706. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5707. static int
  5708. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5709. struct sched_group **sg, struct cpumask *mask)
  5710. {
  5711. int group;
  5712. #ifdef CONFIG_SCHED_SMT
  5713. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5714. group = cpumask_first(mask);
  5715. #else
  5716. group = cpu;
  5717. #endif
  5718. if (sg)
  5719. *sg = &per_cpu(sched_group_core, group).sg;
  5720. return group;
  5721. }
  5722. #endif /* CONFIG_SCHED_MC */
  5723. /*
  5724. * book sched-domains:
  5725. */
  5726. #ifdef CONFIG_SCHED_BOOK
  5727. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5728. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5729. static int
  5730. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5731. struct sched_group **sg, struct cpumask *mask)
  5732. {
  5733. int group = cpu;
  5734. #ifdef CONFIG_SCHED_MC
  5735. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5736. group = cpumask_first(mask);
  5737. #elif defined(CONFIG_SCHED_SMT)
  5738. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5739. group = cpumask_first(mask);
  5740. #endif
  5741. if (sg)
  5742. *sg = &per_cpu(sched_group_book, group).sg;
  5743. return group;
  5744. }
  5745. #endif /* CONFIG_SCHED_BOOK */
  5746. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5747. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5748. static int
  5749. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5750. struct sched_group **sg, struct cpumask *mask)
  5751. {
  5752. int group;
  5753. #ifdef CONFIG_SCHED_BOOK
  5754. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5755. group = cpumask_first(mask);
  5756. #elif defined(CONFIG_SCHED_MC)
  5757. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5758. group = cpumask_first(mask);
  5759. #elif defined(CONFIG_SCHED_SMT)
  5760. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5761. group = cpumask_first(mask);
  5762. #else
  5763. group = cpu;
  5764. #endif
  5765. if (sg)
  5766. *sg = &per_cpu(sched_group_phys, group).sg;
  5767. return group;
  5768. }
  5769. #ifdef CONFIG_NUMA
  5770. /*
  5771. * The init_sched_build_groups can't handle what we want to do with node
  5772. * groups, so roll our own. Now each node has its own list of groups which
  5773. * gets dynamically allocated.
  5774. */
  5775. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5776. static struct sched_group ***sched_group_nodes_bycpu;
  5777. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5778. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5779. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5780. struct sched_group **sg,
  5781. struct cpumask *nodemask)
  5782. {
  5783. int group;
  5784. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5785. group = cpumask_first(nodemask);
  5786. if (sg)
  5787. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5788. return group;
  5789. }
  5790. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5791. {
  5792. struct sched_group *sg = group_head;
  5793. int j;
  5794. if (!sg)
  5795. return;
  5796. do {
  5797. for_each_cpu(j, sched_group_cpus(sg)) {
  5798. struct sched_domain *sd;
  5799. sd = &per_cpu(phys_domains, j).sd;
  5800. if (j != group_first_cpu(sd->groups)) {
  5801. /*
  5802. * Only add "power" once for each
  5803. * physical package.
  5804. */
  5805. continue;
  5806. }
  5807. sg->cpu_power += sd->groups->cpu_power;
  5808. }
  5809. sg = sg->next;
  5810. } while (sg != group_head);
  5811. }
  5812. static int build_numa_sched_groups(struct s_data *d,
  5813. const struct cpumask *cpu_map, int num)
  5814. {
  5815. struct sched_domain *sd;
  5816. struct sched_group *sg, *prev;
  5817. int n, j;
  5818. cpumask_clear(d->covered);
  5819. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5820. if (cpumask_empty(d->nodemask)) {
  5821. d->sched_group_nodes[num] = NULL;
  5822. goto out;
  5823. }
  5824. sched_domain_node_span(num, d->domainspan);
  5825. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5826. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5827. GFP_KERNEL, num);
  5828. if (!sg) {
  5829. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5830. num);
  5831. return -ENOMEM;
  5832. }
  5833. d->sched_group_nodes[num] = sg;
  5834. for_each_cpu(j, d->nodemask) {
  5835. sd = &per_cpu(node_domains, j).sd;
  5836. sd->groups = sg;
  5837. }
  5838. sg->cpu_power = 0;
  5839. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5840. sg->next = sg;
  5841. cpumask_or(d->covered, d->covered, d->nodemask);
  5842. prev = sg;
  5843. for (j = 0; j < nr_node_ids; j++) {
  5844. n = (num + j) % nr_node_ids;
  5845. cpumask_complement(d->notcovered, d->covered);
  5846. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5847. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5848. if (cpumask_empty(d->tmpmask))
  5849. break;
  5850. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5851. if (cpumask_empty(d->tmpmask))
  5852. continue;
  5853. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5854. GFP_KERNEL, num);
  5855. if (!sg) {
  5856. printk(KERN_WARNING
  5857. "Can not alloc domain group for node %d\n", j);
  5858. return -ENOMEM;
  5859. }
  5860. sg->cpu_power = 0;
  5861. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5862. sg->next = prev->next;
  5863. cpumask_or(d->covered, d->covered, d->tmpmask);
  5864. prev->next = sg;
  5865. prev = sg;
  5866. }
  5867. out:
  5868. return 0;
  5869. }
  5870. #endif /* CONFIG_NUMA */
  5871. #ifdef CONFIG_NUMA
  5872. /* Free memory allocated for various sched_group structures */
  5873. static void free_sched_groups(const struct cpumask *cpu_map,
  5874. struct cpumask *nodemask)
  5875. {
  5876. int cpu, i;
  5877. for_each_cpu(cpu, cpu_map) {
  5878. struct sched_group **sched_group_nodes
  5879. = sched_group_nodes_bycpu[cpu];
  5880. if (!sched_group_nodes)
  5881. continue;
  5882. for (i = 0; i < nr_node_ids; i++) {
  5883. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5884. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5885. if (cpumask_empty(nodemask))
  5886. continue;
  5887. if (sg == NULL)
  5888. continue;
  5889. sg = sg->next;
  5890. next_sg:
  5891. oldsg = sg;
  5892. sg = sg->next;
  5893. kfree(oldsg);
  5894. if (oldsg != sched_group_nodes[i])
  5895. goto next_sg;
  5896. }
  5897. kfree(sched_group_nodes);
  5898. sched_group_nodes_bycpu[cpu] = NULL;
  5899. }
  5900. }
  5901. #else /* !CONFIG_NUMA */
  5902. static void free_sched_groups(const struct cpumask *cpu_map,
  5903. struct cpumask *nodemask)
  5904. {
  5905. }
  5906. #endif /* CONFIG_NUMA */
  5907. /*
  5908. * Initialize sched groups cpu_power.
  5909. *
  5910. * cpu_power indicates the capacity of sched group, which is used while
  5911. * distributing the load between different sched groups in a sched domain.
  5912. * Typically cpu_power for all the groups in a sched domain will be same unless
  5913. * there are asymmetries in the topology. If there are asymmetries, group
  5914. * having more cpu_power will pickup more load compared to the group having
  5915. * less cpu_power.
  5916. */
  5917. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5918. {
  5919. struct sched_domain *child;
  5920. struct sched_group *group;
  5921. long power;
  5922. int weight;
  5923. WARN_ON(!sd || !sd->groups);
  5924. if (cpu != group_first_cpu(sd->groups))
  5925. return;
  5926. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  5927. child = sd->child;
  5928. sd->groups->cpu_power = 0;
  5929. if (!child) {
  5930. power = SCHED_LOAD_SCALE;
  5931. weight = cpumask_weight(sched_domain_span(sd));
  5932. /*
  5933. * SMT siblings share the power of a single core.
  5934. * Usually multiple threads get a better yield out of
  5935. * that one core than a single thread would have,
  5936. * reflect that in sd->smt_gain.
  5937. */
  5938. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5939. power *= sd->smt_gain;
  5940. power /= weight;
  5941. power >>= SCHED_LOAD_SHIFT;
  5942. }
  5943. sd->groups->cpu_power += power;
  5944. return;
  5945. }
  5946. /*
  5947. * Add cpu_power of each child group to this groups cpu_power.
  5948. */
  5949. group = child->groups;
  5950. do {
  5951. sd->groups->cpu_power += group->cpu_power;
  5952. group = group->next;
  5953. } while (group != child->groups);
  5954. }
  5955. /*
  5956. * Initializers for schedule domains
  5957. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5958. */
  5959. #ifdef CONFIG_SCHED_DEBUG
  5960. # define SD_INIT_NAME(sd, type) sd->name = #type
  5961. #else
  5962. # define SD_INIT_NAME(sd, type) do { } while (0)
  5963. #endif
  5964. #define SD_INIT(sd, type) sd_init_##type(sd)
  5965. #define SD_INIT_FUNC(type) \
  5966. static noinline void sd_init_##type(struct sched_domain *sd) \
  5967. { \
  5968. memset(sd, 0, sizeof(*sd)); \
  5969. *sd = SD_##type##_INIT; \
  5970. sd->level = SD_LV_##type; \
  5971. SD_INIT_NAME(sd, type); \
  5972. }
  5973. SD_INIT_FUNC(CPU)
  5974. #ifdef CONFIG_NUMA
  5975. SD_INIT_FUNC(ALLNODES)
  5976. SD_INIT_FUNC(NODE)
  5977. #endif
  5978. #ifdef CONFIG_SCHED_SMT
  5979. SD_INIT_FUNC(SIBLING)
  5980. #endif
  5981. #ifdef CONFIG_SCHED_MC
  5982. SD_INIT_FUNC(MC)
  5983. #endif
  5984. #ifdef CONFIG_SCHED_BOOK
  5985. SD_INIT_FUNC(BOOK)
  5986. #endif
  5987. static int default_relax_domain_level = -1;
  5988. static int __init setup_relax_domain_level(char *str)
  5989. {
  5990. unsigned long val;
  5991. val = simple_strtoul(str, NULL, 0);
  5992. if (val < SD_LV_MAX)
  5993. default_relax_domain_level = val;
  5994. return 1;
  5995. }
  5996. __setup("relax_domain_level=", setup_relax_domain_level);
  5997. static void set_domain_attribute(struct sched_domain *sd,
  5998. struct sched_domain_attr *attr)
  5999. {
  6000. int request;
  6001. if (!attr || attr->relax_domain_level < 0) {
  6002. if (default_relax_domain_level < 0)
  6003. return;
  6004. else
  6005. request = default_relax_domain_level;
  6006. } else
  6007. request = attr->relax_domain_level;
  6008. if (request < sd->level) {
  6009. /* turn off idle balance on this domain */
  6010. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6011. } else {
  6012. /* turn on idle balance on this domain */
  6013. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6014. }
  6015. }
  6016. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6017. const struct cpumask *cpu_map)
  6018. {
  6019. switch (what) {
  6020. case sa_sched_groups:
  6021. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  6022. d->sched_group_nodes = NULL;
  6023. case sa_rootdomain:
  6024. free_rootdomain(d->rd); /* fall through */
  6025. case sa_tmpmask:
  6026. free_cpumask_var(d->tmpmask); /* fall through */
  6027. case sa_send_covered:
  6028. free_cpumask_var(d->send_covered); /* fall through */
  6029. case sa_this_book_map:
  6030. free_cpumask_var(d->this_book_map); /* fall through */
  6031. case sa_this_core_map:
  6032. free_cpumask_var(d->this_core_map); /* fall through */
  6033. case sa_this_sibling_map:
  6034. free_cpumask_var(d->this_sibling_map); /* fall through */
  6035. case sa_nodemask:
  6036. free_cpumask_var(d->nodemask); /* fall through */
  6037. case sa_sched_group_nodes:
  6038. #ifdef CONFIG_NUMA
  6039. kfree(d->sched_group_nodes); /* fall through */
  6040. case sa_notcovered:
  6041. free_cpumask_var(d->notcovered); /* fall through */
  6042. case sa_covered:
  6043. free_cpumask_var(d->covered); /* fall through */
  6044. case sa_domainspan:
  6045. free_cpumask_var(d->domainspan); /* fall through */
  6046. #endif
  6047. case sa_none:
  6048. break;
  6049. }
  6050. }
  6051. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6052. const struct cpumask *cpu_map)
  6053. {
  6054. #ifdef CONFIG_NUMA
  6055. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6056. return sa_none;
  6057. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6058. return sa_domainspan;
  6059. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6060. return sa_covered;
  6061. /* Allocate the per-node list of sched groups */
  6062. d->sched_group_nodes = kcalloc(nr_node_ids,
  6063. sizeof(struct sched_group *), GFP_KERNEL);
  6064. if (!d->sched_group_nodes) {
  6065. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6066. return sa_notcovered;
  6067. }
  6068. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6069. #endif
  6070. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6071. return sa_sched_group_nodes;
  6072. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6073. return sa_nodemask;
  6074. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6075. return sa_this_sibling_map;
  6076. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6077. return sa_this_core_map;
  6078. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6079. return sa_this_book_map;
  6080. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6081. return sa_send_covered;
  6082. d->rd = alloc_rootdomain();
  6083. if (!d->rd) {
  6084. printk(KERN_WARNING "Cannot alloc root domain\n");
  6085. return sa_tmpmask;
  6086. }
  6087. return sa_rootdomain;
  6088. }
  6089. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6090. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6091. {
  6092. struct sched_domain *sd = NULL;
  6093. #ifdef CONFIG_NUMA
  6094. struct sched_domain *parent;
  6095. d->sd_allnodes = 0;
  6096. if (cpumask_weight(cpu_map) >
  6097. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6098. sd = &per_cpu(allnodes_domains, i).sd;
  6099. SD_INIT(sd, ALLNODES);
  6100. set_domain_attribute(sd, attr);
  6101. cpumask_copy(sched_domain_span(sd), cpu_map);
  6102. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6103. d->sd_allnodes = 1;
  6104. }
  6105. parent = sd;
  6106. sd = &per_cpu(node_domains, i).sd;
  6107. SD_INIT(sd, NODE);
  6108. set_domain_attribute(sd, attr);
  6109. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6110. sd->parent = parent;
  6111. if (parent)
  6112. parent->child = sd;
  6113. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6114. #endif
  6115. return sd;
  6116. }
  6117. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6118. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6119. struct sched_domain *parent, int i)
  6120. {
  6121. struct sched_domain *sd;
  6122. sd = &per_cpu(phys_domains, i).sd;
  6123. SD_INIT(sd, CPU);
  6124. set_domain_attribute(sd, attr);
  6125. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6126. sd->parent = parent;
  6127. if (parent)
  6128. parent->child = sd;
  6129. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6130. return sd;
  6131. }
  6132. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6133. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6134. struct sched_domain *parent, int i)
  6135. {
  6136. struct sched_domain *sd = parent;
  6137. #ifdef CONFIG_SCHED_BOOK
  6138. sd = &per_cpu(book_domains, i).sd;
  6139. SD_INIT(sd, BOOK);
  6140. set_domain_attribute(sd, attr);
  6141. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6142. sd->parent = parent;
  6143. parent->child = sd;
  6144. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6145. #endif
  6146. return sd;
  6147. }
  6148. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6149. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6150. struct sched_domain *parent, int i)
  6151. {
  6152. struct sched_domain *sd = parent;
  6153. #ifdef CONFIG_SCHED_MC
  6154. sd = &per_cpu(core_domains, i).sd;
  6155. SD_INIT(sd, MC);
  6156. set_domain_attribute(sd, attr);
  6157. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6158. sd->parent = parent;
  6159. parent->child = sd;
  6160. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6161. #endif
  6162. return sd;
  6163. }
  6164. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6165. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6166. struct sched_domain *parent, int i)
  6167. {
  6168. struct sched_domain *sd = parent;
  6169. #ifdef CONFIG_SCHED_SMT
  6170. sd = &per_cpu(cpu_domains, i).sd;
  6171. SD_INIT(sd, SIBLING);
  6172. set_domain_attribute(sd, attr);
  6173. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6174. sd->parent = parent;
  6175. parent->child = sd;
  6176. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6177. #endif
  6178. return sd;
  6179. }
  6180. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6181. const struct cpumask *cpu_map, int cpu)
  6182. {
  6183. switch (l) {
  6184. #ifdef CONFIG_SCHED_SMT
  6185. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6186. cpumask_and(d->this_sibling_map, cpu_map,
  6187. topology_thread_cpumask(cpu));
  6188. if (cpu == cpumask_first(d->this_sibling_map))
  6189. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6190. &cpu_to_cpu_group,
  6191. d->send_covered, d->tmpmask);
  6192. break;
  6193. #endif
  6194. #ifdef CONFIG_SCHED_MC
  6195. case SD_LV_MC: /* set up multi-core groups */
  6196. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6197. if (cpu == cpumask_first(d->this_core_map))
  6198. init_sched_build_groups(d->this_core_map, cpu_map,
  6199. &cpu_to_core_group,
  6200. d->send_covered, d->tmpmask);
  6201. break;
  6202. #endif
  6203. #ifdef CONFIG_SCHED_BOOK
  6204. case SD_LV_BOOK: /* set up book groups */
  6205. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6206. if (cpu == cpumask_first(d->this_book_map))
  6207. init_sched_build_groups(d->this_book_map, cpu_map,
  6208. &cpu_to_book_group,
  6209. d->send_covered, d->tmpmask);
  6210. break;
  6211. #endif
  6212. case SD_LV_CPU: /* set up physical groups */
  6213. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6214. if (!cpumask_empty(d->nodemask))
  6215. init_sched_build_groups(d->nodemask, cpu_map,
  6216. &cpu_to_phys_group,
  6217. d->send_covered, d->tmpmask);
  6218. break;
  6219. #ifdef CONFIG_NUMA
  6220. case SD_LV_ALLNODES:
  6221. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6222. d->send_covered, d->tmpmask);
  6223. break;
  6224. #endif
  6225. default:
  6226. break;
  6227. }
  6228. }
  6229. /*
  6230. * Build sched domains for a given set of cpus and attach the sched domains
  6231. * to the individual cpus
  6232. */
  6233. static int __build_sched_domains(const struct cpumask *cpu_map,
  6234. struct sched_domain_attr *attr)
  6235. {
  6236. enum s_alloc alloc_state = sa_none;
  6237. struct s_data d;
  6238. struct sched_domain *sd;
  6239. int i;
  6240. #ifdef CONFIG_NUMA
  6241. d.sd_allnodes = 0;
  6242. #endif
  6243. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6244. if (alloc_state != sa_rootdomain)
  6245. goto error;
  6246. alloc_state = sa_sched_groups;
  6247. /*
  6248. * Set up domains for cpus specified by the cpu_map.
  6249. */
  6250. for_each_cpu(i, cpu_map) {
  6251. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6252. cpu_map);
  6253. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6254. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6255. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6256. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6257. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6258. }
  6259. for_each_cpu(i, cpu_map) {
  6260. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6261. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6262. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6263. }
  6264. /* Set up physical groups */
  6265. for (i = 0; i < nr_node_ids; i++)
  6266. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6267. #ifdef CONFIG_NUMA
  6268. /* Set up node groups */
  6269. if (d.sd_allnodes)
  6270. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6271. for (i = 0; i < nr_node_ids; i++)
  6272. if (build_numa_sched_groups(&d, cpu_map, i))
  6273. goto error;
  6274. #endif
  6275. /* Calculate CPU power for physical packages and nodes */
  6276. #ifdef CONFIG_SCHED_SMT
  6277. for_each_cpu(i, cpu_map) {
  6278. sd = &per_cpu(cpu_domains, i).sd;
  6279. init_sched_groups_power(i, sd);
  6280. }
  6281. #endif
  6282. #ifdef CONFIG_SCHED_MC
  6283. for_each_cpu(i, cpu_map) {
  6284. sd = &per_cpu(core_domains, i).sd;
  6285. init_sched_groups_power(i, sd);
  6286. }
  6287. #endif
  6288. #ifdef CONFIG_SCHED_BOOK
  6289. for_each_cpu(i, cpu_map) {
  6290. sd = &per_cpu(book_domains, i).sd;
  6291. init_sched_groups_power(i, sd);
  6292. }
  6293. #endif
  6294. for_each_cpu(i, cpu_map) {
  6295. sd = &per_cpu(phys_domains, i).sd;
  6296. init_sched_groups_power(i, sd);
  6297. }
  6298. #ifdef CONFIG_NUMA
  6299. for (i = 0; i < nr_node_ids; i++)
  6300. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6301. if (d.sd_allnodes) {
  6302. struct sched_group *sg;
  6303. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6304. d.tmpmask);
  6305. init_numa_sched_groups_power(sg);
  6306. }
  6307. #endif
  6308. /* Attach the domains */
  6309. for_each_cpu(i, cpu_map) {
  6310. #ifdef CONFIG_SCHED_SMT
  6311. sd = &per_cpu(cpu_domains, i).sd;
  6312. #elif defined(CONFIG_SCHED_MC)
  6313. sd = &per_cpu(core_domains, i).sd;
  6314. #elif defined(CONFIG_SCHED_BOOK)
  6315. sd = &per_cpu(book_domains, i).sd;
  6316. #else
  6317. sd = &per_cpu(phys_domains, i).sd;
  6318. #endif
  6319. cpu_attach_domain(sd, d.rd, i);
  6320. }
  6321. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6322. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6323. return 0;
  6324. error:
  6325. __free_domain_allocs(&d, alloc_state, cpu_map);
  6326. return -ENOMEM;
  6327. }
  6328. static int build_sched_domains(const struct cpumask *cpu_map)
  6329. {
  6330. return __build_sched_domains(cpu_map, NULL);
  6331. }
  6332. static cpumask_var_t *doms_cur; /* current sched domains */
  6333. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6334. static struct sched_domain_attr *dattr_cur;
  6335. /* attribues of custom domains in 'doms_cur' */
  6336. /*
  6337. * Special case: If a kmalloc of a doms_cur partition (array of
  6338. * cpumask) fails, then fallback to a single sched domain,
  6339. * as determined by the single cpumask fallback_doms.
  6340. */
  6341. static cpumask_var_t fallback_doms;
  6342. /*
  6343. * arch_update_cpu_topology lets virtualized architectures update the
  6344. * cpu core maps. It is supposed to return 1 if the topology changed
  6345. * or 0 if it stayed the same.
  6346. */
  6347. int __attribute__((weak)) arch_update_cpu_topology(void)
  6348. {
  6349. return 0;
  6350. }
  6351. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6352. {
  6353. int i;
  6354. cpumask_var_t *doms;
  6355. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6356. if (!doms)
  6357. return NULL;
  6358. for (i = 0; i < ndoms; i++) {
  6359. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6360. free_sched_domains(doms, i);
  6361. return NULL;
  6362. }
  6363. }
  6364. return doms;
  6365. }
  6366. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6367. {
  6368. unsigned int i;
  6369. for (i = 0; i < ndoms; i++)
  6370. free_cpumask_var(doms[i]);
  6371. kfree(doms);
  6372. }
  6373. /*
  6374. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6375. * For now this just excludes isolated cpus, but could be used to
  6376. * exclude other special cases in the future.
  6377. */
  6378. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6379. {
  6380. int err;
  6381. arch_update_cpu_topology();
  6382. ndoms_cur = 1;
  6383. doms_cur = alloc_sched_domains(ndoms_cur);
  6384. if (!doms_cur)
  6385. doms_cur = &fallback_doms;
  6386. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6387. dattr_cur = NULL;
  6388. err = build_sched_domains(doms_cur[0]);
  6389. register_sched_domain_sysctl();
  6390. return err;
  6391. }
  6392. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6393. struct cpumask *tmpmask)
  6394. {
  6395. free_sched_groups(cpu_map, tmpmask);
  6396. }
  6397. /*
  6398. * Detach sched domains from a group of cpus specified in cpu_map
  6399. * These cpus will now be attached to the NULL domain
  6400. */
  6401. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6402. {
  6403. /* Save because hotplug lock held. */
  6404. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6405. int i;
  6406. for_each_cpu(i, cpu_map)
  6407. cpu_attach_domain(NULL, &def_root_domain, i);
  6408. synchronize_sched();
  6409. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6410. }
  6411. /* handle null as "default" */
  6412. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6413. struct sched_domain_attr *new, int idx_new)
  6414. {
  6415. struct sched_domain_attr tmp;
  6416. /* fast path */
  6417. if (!new && !cur)
  6418. return 1;
  6419. tmp = SD_ATTR_INIT;
  6420. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6421. new ? (new + idx_new) : &tmp,
  6422. sizeof(struct sched_domain_attr));
  6423. }
  6424. /*
  6425. * Partition sched domains as specified by the 'ndoms_new'
  6426. * cpumasks in the array doms_new[] of cpumasks. This compares
  6427. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6428. * It destroys each deleted domain and builds each new domain.
  6429. *
  6430. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6431. * The masks don't intersect (don't overlap.) We should setup one
  6432. * sched domain for each mask. CPUs not in any of the cpumasks will
  6433. * not be load balanced. If the same cpumask appears both in the
  6434. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6435. * it as it is.
  6436. *
  6437. * The passed in 'doms_new' should be allocated using
  6438. * alloc_sched_domains. This routine takes ownership of it and will
  6439. * free_sched_domains it when done with it. If the caller failed the
  6440. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6441. * and partition_sched_domains() will fallback to the single partition
  6442. * 'fallback_doms', it also forces the domains to be rebuilt.
  6443. *
  6444. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6445. * ndoms_new == 0 is a special case for destroying existing domains,
  6446. * and it will not create the default domain.
  6447. *
  6448. * Call with hotplug lock held
  6449. */
  6450. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6451. struct sched_domain_attr *dattr_new)
  6452. {
  6453. int i, j, n;
  6454. int new_topology;
  6455. mutex_lock(&sched_domains_mutex);
  6456. /* always unregister in case we don't destroy any domains */
  6457. unregister_sched_domain_sysctl();
  6458. /* Let architecture update cpu core mappings. */
  6459. new_topology = arch_update_cpu_topology();
  6460. n = doms_new ? ndoms_new : 0;
  6461. /* Destroy deleted domains */
  6462. for (i = 0; i < ndoms_cur; i++) {
  6463. for (j = 0; j < n && !new_topology; j++) {
  6464. if (cpumask_equal(doms_cur[i], doms_new[j])
  6465. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6466. goto match1;
  6467. }
  6468. /* no match - a current sched domain not in new doms_new[] */
  6469. detach_destroy_domains(doms_cur[i]);
  6470. match1:
  6471. ;
  6472. }
  6473. if (doms_new == NULL) {
  6474. ndoms_cur = 0;
  6475. doms_new = &fallback_doms;
  6476. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6477. WARN_ON_ONCE(dattr_new);
  6478. }
  6479. /* Build new domains */
  6480. for (i = 0; i < ndoms_new; i++) {
  6481. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6482. if (cpumask_equal(doms_new[i], doms_cur[j])
  6483. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6484. goto match2;
  6485. }
  6486. /* no match - add a new doms_new */
  6487. __build_sched_domains(doms_new[i],
  6488. dattr_new ? dattr_new + i : NULL);
  6489. match2:
  6490. ;
  6491. }
  6492. /* Remember the new sched domains */
  6493. if (doms_cur != &fallback_doms)
  6494. free_sched_domains(doms_cur, ndoms_cur);
  6495. kfree(dattr_cur); /* kfree(NULL) is safe */
  6496. doms_cur = doms_new;
  6497. dattr_cur = dattr_new;
  6498. ndoms_cur = ndoms_new;
  6499. register_sched_domain_sysctl();
  6500. mutex_unlock(&sched_domains_mutex);
  6501. }
  6502. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6503. static void arch_reinit_sched_domains(void)
  6504. {
  6505. get_online_cpus();
  6506. /* Destroy domains first to force the rebuild */
  6507. partition_sched_domains(0, NULL, NULL);
  6508. rebuild_sched_domains();
  6509. put_online_cpus();
  6510. }
  6511. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6512. {
  6513. unsigned int level = 0;
  6514. if (sscanf(buf, "%u", &level) != 1)
  6515. return -EINVAL;
  6516. /*
  6517. * level is always be positive so don't check for
  6518. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6519. * What happens on 0 or 1 byte write,
  6520. * need to check for count as well?
  6521. */
  6522. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6523. return -EINVAL;
  6524. if (smt)
  6525. sched_smt_power_savings = level;
  6526. else
  6527. sched_mc_power_savings = level;
  6528. arch_reinit_sched_domains();
  6529. return count;
  6530. }
  6531. #ifdef CONFIG_SCHED_MC
  6532. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6533. struct sysdev_class_attribute *attr,
  6534. char *page)
  6535. {
  6536. return sprintf(page, "%u\n", sched_mc_power_savings);
  6537. }
  6538. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6539. struct sysdev_class_attribute *attr,
  6540. const char *buf, size_t count)
  6541. {
  6542. return sched_power_savings_store(buf, count, 0);
  6543. }
  6544. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6545. sched_mc_power_savings_show,
  6546. sched_mc_power_savings_store);
  6547. #endif
  6548. #ifdef CONFIG_SCHED_SMT
  6549. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6550. struct sysdev_class_attribute *attr,
  6551. char *page)
  6552. {
  6553. return sprintf(page, "%u\n", sched_smt_power_savings);
  6554. }
  6555. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6556. struct sysdev_class_attribute *attr,
  6557. const char *buf, size_t count)
  6558. {
  6559. return sched_power_savings_store(buf, count, 1);
  6560. }
  6561. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6562. sched_smt_power_savings_show,
  6563. sched_smt_power_savings_store);
  6564. #endif
  6565. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6566. {
  6567. int err = 0;
  6568. #ifdef CONFIG_SCHED_SMT
  6569. if (smt_capable())
  6570. err = sysfs_create_file(&cls->kset.kobj,
  6571. &attr_sched_smt_power_savings.attr);
  6572. #endif
  6573. #ifdef CONFIG_SCHED_MC
  6574. if (!err && mc_capable())
  6575. err = sysfs_create_file(&cls->kset.kobj,
  6576. &attr_sched_mc_power_savings.attr);
  6577. #endif
  6578. return err;
  6579. }
  6580. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6581. /*
  6582. * Update cpusets according to cpu_active mask. If cpusets are
  6583. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6584. * around partition_sched_domains().
  6585. */
  6586. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6587. void *hcpu)
  6588. {
  6589. switch (action & ~CPU_TASKS_FROZEN) {
  6590. case CPU_ONLINE:
  6591. case CPU_DOWN_FAILED:
  6592. cpuset_update_active_cpus();
  6593. return NOTIFY_OK;
  6594. default:
  6595. return NOTIFY_DONE;
  6596. }
  6597. }
  6598. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6599. void *hcpu)
  6600. {
  6601. switch (action & ~CPU_TASKS_FROZEN) {
  6602. case CPU_DOWN_PREPARE:
  6603. cpuset_update_active_cpus();
  6604. return NOTIFY_OK;
  6605. default:
  6606. return NOTIFY_DONE;
  6607. }
  6608. }
  6609. static int update_runtime(struct notifier_block *nfb,
  6610. unsigned long action, void *hcpu)
  6611. {
  6612. int cpu = (int)(long)hcpu;
  6613. switch (action) {
  6614. case CPU_DOWN_PREPARE:
  6615. case CPU_DOWN_PREPARE_FROZEN:
  6616. disable_runtime(cpu_rq(cpu));
  6617. return NOTIFY_OK;
  6618. case CPU_DOWN_FAILED:
  6619. case CPU_DOWN_FAILED_FROZEN:
  6620. case CPU_ONLINE:
  6621. case CPU_ONLINE_FROZEN:
  6622. enable_runtime(cpu_rq(cpu));
  6623. return NOTIFY_OK;
  6624. default:
  6625. return NOTIFY_DONE;
  6626. }
  6627. }
  6628. void __init sched_init_smp(void)
  6629. {
  6630. cpumask_var_t non_isolated_cpus;
  6631. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6632. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6633. #if defined(CONFIG_NUMA)
  6634. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6635. GFP_KERNEL);
  6636. BUG_ON(sched_group_nodes_bycpu == NULL);
  6637. #endif
  6638. get_online_cpus();
  6639. mutex_lock(&sched_domains_mutex);
  6640. arch_init_sched_domains(cpu_active_mask);
  6641. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6642. if (cpumask_empty(non_isolated_cpus))
  6643. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6644. mutex_unlock(&sched_domains_mutex);
  6645. put_online_cpus();
  6646. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6647. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6648. /* RT runtime code needs to handle some hotplug events */
  6649. hotcpu_notifier(update_runtime, 0);
  6650. init_hrtick();
  6651. /* Move init over to a non-isolated CPU */
  6652. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6653. BUG();
  6654. sched_init_granularity();
  6655. free_cpumask_var(non_isolated_cpus);
  6656. init_sched_rt_class();
  6657. }
  6658. #else
  6659. void __init sched_init_smp(void)
  6660. {
  6661. sched_init_granularity();
  6662. }
  6663. #endif /* CONFIG_SMP */
  6664. const_debug unsigned int sysctl_timer_migration = 1;
  6665. int in_sched_functions(unsigned long addr)
  6666. {
  6667. return in_lock_functions(addr) ||
  6668. (addr >= (unsigned long)__sched_text_start
  6669. && addr < (unsigned long)__sched_text_end);
  6670. }
  6671. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6672. {
  6673. cfs_rq->tasks_timeline = RB_ROOT;
  6674. INIT_LIST_HEAD(&cfs_rq->tasks);
  6675. #ifdef CONFIG_FAIR_GROUP_SCHED
  6676. cfs_rq->rq = rq;
  6677. #endif
  6678. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6679. }
  6680. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6681. {
  6682. struct rt_prio_array *array;
  6683. int i;
  6684. array = &rt_rq->active;
  6685. for (i = 0; i < MAX_RT_PRIO; i++) {
  6686. INIT_LIST_HEAD(array->queue + i);
  6687. __clear_bit(i, array->bitmap);
  6688. }
  6689. /* delimiter for bitsearch: */
  6690. __set_bit(MAX_RT_PRIO, array->bitmap);
  6691. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6692. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6693. #ifdef CONFIG_SMP
  6694. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6695. #endif
  6696. #endif
  6697. #ifdef CONFIG_SMP
  6698. rt_rq->rt_nr_migratory = 0;
  6699. rt_rq->overloaded = 0;
  6700. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6701. #endif
  6702. rt_rq->rt_time = 0;
  6703. rt_rq->rt_throttled = 0;
  6704. rt_rq->rt_runtime = 0;
  6705. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6706. #ifdef CONFIG_RT_GROUP_SCHED
  6707. rt_rq->rt_nr_boosted = 0;
  6708. rt_rq->rq = rq;
  6709. #endif
  6710. }
  6711. #ifdef CONFIG_FAIR_GROUP_SCHED
  6712. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6713. struct sched_entity *se, int cpu, int add,
  6714. struct sched_entity *parent)
  6715. {
  6716. struct rq *rq = cpu_rq(cpu);
  6717. tg->cfs_rq[cpu] = cfs_rq;
  6718. init_cfs_rq(cfs_rq, rq);
  6719. cfs_rq->tg = tg;
  6720. if (add)
  6721. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6722. tg->se[cpu] = se;
  6723. /* se could be NULL for init_task_group */
  6724. if (!se)
  6725. return;
  6726. if (!parent)
  6727. se->cfs_rq = &rq->cfs;
  6728. else
  6729. se->cfs_rq = parent->my_q;
  6730. se->my_q = cfs_rq;
  6731. se->load.weight = tg->shares;
  6732. se->load.inv_weight = 0;
  6733. se->parent = parent;
  6734. }
  6735. #endif
  6736. #ifdef CONFIG_RT_GROUP_SCHED
  6737. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6738. struct sched_rt_entity *rt_se, int cpu, int add,
  6739. struct sched_rt_entity *parent)
  6740. {
  6741. struct rq *rq = cpu_rq(cpu);
  6742. tg->rt_rq[cpu] = rt_rq;
  6743. init_rt_rq(rt_rq, rq);
  6744. rt_rq->tg = tg;
  6745. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6746. if (add)
  6747. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6748. tg->rt_se[cpu] = rt_se;
  6749. if (!rt_se)
  6750. return;
  6751. if (!parent)
  6752. rt_se->rt_rq = &rq->rt;
  6753. else
  6754. rt_se->rt_rq = parent->my_q;
  6755. rt_se->my_q = rt_rq;
  6756. rt_se->parent = parent;
  6757. INIT_LIST_HEAD(&rt_se->run_list);
  6758. }
  6759. #endif
  6760. void __init sched_init(void)
  6761. {
  6762. int i, j;
  6763. unsigned long alloc_size = 0, ptr;
  6764. #ifdef CONFIG_FAIR_GROUP_SCHED
  6765. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6766. #endif
  6767. #ifdef CONFIG_RT_GROUP_SCHED
  6768. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6769. #endif
  6770. #ifdef CONFIG_CPUMASK_OFFSTACK
  6771. alloc_size += num_possible_cpus() * cpumask_size();
  6772. #endif
  6773. if (alloc_size) {
  6774. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6775. #ifdef CONFIG_FAIR_GROUP_SCHED
  6776. init_task_group.se = (struct sched_entity **)ptr;
  6777. ptr += nr_cpu_ids * sizeof(void **);
  6778. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6779. ptr += nr_cpu_ids * sizeof(void **);
  6780. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6781. #ifdef CONFIG_RT_GROUP_SCHED
  6782. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6783. ptr += nr_cpu_ids * sizeof(void **);
  6784. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6785. ptr += nr_cpu_ids * sizeof(void **);
  6786. #endif /* CONFIG_RT_GROUP_SCHED */
  6787. #ifdef CONFIG_CPUMASK_OFFSTACK
  6788. for_each_possible_cpu(i) {
  6789. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6790. ptr += cpumask_size();
  6791. }
  6792. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6793. }
  6794. #ifdef CONFIG_SMP
  6795. init_defrootdomain();
  6796. #endif
  6797. init_rt_bandwidth(&def_rt_bandwidth,
  6798. global_rt_period(), global_rt_runtime());
  6799. #ifdef CONFIG_RT_GROUP_SCHED
  6800. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6801. global_rt_period(), global_rt_runtime());
  6802. #endif /* CONFIG_RT_GROUP_SCHED */
  6803. #ifdef CONFIG_CGROUP_SCHED
  6804. list_add(&init_task_group.list, &task_groups);
  6805. INIT_LIST_HEAD(&init_task_group.children);
  6806. #endif /* CONFIG_CGROUP_SCHED */
  6807. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6808. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6809. __alignof__(unsigned long));
  6810. #endif
  6811. for_each_possible_cpu(i) {
  6812. struct rq *rq;
  6813. rq = cpu_rq(i);
  6814. raw_spin_lock_init(&rq->lock);
  6815. rq->nr_running = 0;
  6816. rq->calc_load_active = 0;
  6817. rq->calc_load_update = jiffies + LOAD_FREQ;
  6818. init_cfs_rq(&rq->cfs, rq);
  6819. init_rt_rq(&rq->rt, rq);
  6820. #ifdef CONFIG_FAIR_GROUP_SCHED
  6821. init_task_group.shares = init_task_group_load;
  6822. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6823. #ifdef CONFIG_CGROUP_SCHED
  6824. /*
  6825. * How much cpu bandwidth does init_task_group get?
  6826. *
  6827. * In case of task-groups formed thr' the cgroup filesystem, it
  6828. * gets 100% of the cpu resources in the system. This overall
  6829. * system cpu resource is divided among the tasks of
  6830. * init_task_group and its child task-groups in a fair manner,
  6831. * based on each entity's (task or task-group's) weight
  6832. * (se->load.weight).
  6833. *
  6834. * In other words, if init_task_group has 10 tasks of weight
  6835. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6836. * then A0's share of the cpu resource is:
  6837. *
  6838. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6839. *
  6840. * We achieve this by letting init_task_group's tasks sit
  6841. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6842. */
  6843. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6844. #endif
  6845. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6846. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6847. #ifdef CONFIG_RT_GROUP_SCHED
  6848. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6849. #ifdef CONFIG_CGROUP_SCHED
  6850. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6851. #endif
  6852. #endif
  6853. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6854. rq->cpu_load[j] = 0;
  6855. rq->last_load_update_tick = jiffies;
  6856. #ifdef CONFIG_SMP
  6857. rq->sd = NULL;
  6858. rq->rd = NULL;
  6859. rq->cpu_power = SCHED_LOAD_SCALE;
  6860. rq->post_schedule = 0;
  6861. rq->active_balance = 0;
  6862. rq->next_balance = jiffies;
  6863. rq->push_cpu = 0;
  6864. rq->cpu = i;
  6865. rq->online = 0;
  6866. rq->idle_stamp = 0;
  6867. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6868. rq_attach_root(rq, &def_root_domain);
  6869. #ifdef CONFIG_NO_HZ
  6870. rq->nohz_balance_kick = 0;
  6871. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6872. #endif
  6873. #endif
  6874. init_rq_hrtick(rq);
  6875. atomic_set(&rq->nr_iowait, 0);
  6876. }
  6877. set_load_weight(&init_task);
  6878. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6879. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6880. #endif
  6881. #ifdef CONFIG_SMP
  6882. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6883. #endif
  6884. #ifdef CONFIG_RT_MUTEXES
  6885. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6886. #endif
  6887. /*
  6888. * The boot idle thread does lazy MMU switching as well:
  6889. */
  6890. atomic_inc(&init_mm.mm_count);
  6891. enter_lazy_tlb(&init_mm, current);
  6892. /*
  6893. * Make us the idle thread. Technically, schedule() should not be
  6894. * called from this thread, however somewhere below it might be,
  6895. * but because we are the idle thread, we just pick up running again
  6896. * when this runqueue becomes "idle".
  6897. */
  6898. init_idle(current, smp_processor_id());
  6899. calc_load_update = jiffies + LOAD_FREQ;
  6900. /*
  6901. * During early bootup we pretend to be a normal task:
  6902. */
  6903. current->sched_class = &fair_sched_class;
  6904. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6905. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6906. #ifdef CONFIG_SMP
  6907. #ifdef CONFIG_NO_HZ
  6908. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6909. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6910. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6911. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6912. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6913. #endif
  6914. /* May be allocated at isolcpus cmdline parse time */
  6915. if (cpu_isolated_map == NULL)
  6916. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6917. #endif /* SMP */
  6918. perf_event_init();
  6919. scheduler_running = 1;
  6920. }
  6921. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6922. static inline int preempt_count_equals(int preempt_offset)
  6923. {
  6924. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6925. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6926. }
  6927. void __might_sleep(const char *file, int line, int preempt_offset)
  6928. {
  6929. #ifdef in_atomic
  6930. static unsigned long prev_jiffy; /* ratelimiting */
  6931. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6932. system_state != SYSTEM_RUNNING || oops_in_progress)
  6933. return;
  6934. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6935. return;
  6936. prev_jiffy = jiffies;
  6937. printk(KERN_ERR
  6938. "BUG: sleeping function called from invalid context at %s:%d\n",
  6939. file, line);
  6940. printk(KERN_ERR
  6941. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6942. in_atomic(), irqs_disabled(),
  6943. current->pid, current->comm);
  6944. debug_show_held_locks(current);
  6945. if (irqs_disabled())
  6946. print_irqtrace_events(current);
  6947. dump_stack();
  6948. #endif
  6949. }
  6950. EXPORT_SYMBOL(__might_sleep);
  6951. #endif
  6952. #ifdef CONFIG_MAGIC_SYSRQ
  6953. static void normalize_task(struct rq *rq, struct task_struct *p)
  6954. {
  6955. int on_rq;
  6956. on_rq = p->se.on_rq;
  6957. if (on_rq)
  6958. deactivate_task(rq, p, 0);
  6959. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6960. if (on_rq) {
  6961. activate_task(rq, p, 0);
  6962. resched_task(rq->curr);
  6963. }
  6964. }
  6965. void normalize_rt_tasks(void)
  6966. {
  6967. struct task_struct *g, *p;
  6968. unsigned long flags;
  6969. struct rq *rq;
  6970. read_lock_irqsave(&tasklist_lock, flags);
  6971. do_each_thread(g, p) {
  6972. /*
  6973. * Only normalize user tasks:
  6974. */
  6975. if (!p->mm)
  6976. continue;
  6977. p->se.exec_start = 0;
  6978. #ifdef CONFIG_SCHEDSTATS
  6979. p->se.statistics.wait_start = 0;
  6980. p->se.statistics.sleep_start = 0;
  6981. p->se.statistics.block_start = 0;
  6982. #endif
  6983. if (!rt_task(p)) {
  6984. /*
  6985. * Renice negative nice level userspace
  6986. * tasks back to 0:
  6987. */
  6988. if (TASK_NICE(p) < 0 && p->mm)
  6989. set_user_nice(p, 0);
  6990. continue;
  6991. }
  6992. raw_spin_lock(&p->pi_lock);
  6993. rq = __task_rq_lock(p);
  6994. normalize_task(rq, p);
  6995. __task_rq_unlock(rq);
  6996. raw_spin_unlock(&p->pi_lock);
  6997. } while_each_thread(g, p);
  6998. read_unlock_irqrestore(&tasklist_lock, flags);
  6999. }
  7000. #endif /* CONFIG_MAGIC_SYSRQ */
  7001. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7002. /*
  7003. * These functions are only useful for the IA64 MCA handling, or kdb.
  7004. *
  7005. * They can only be called when the whole system has been
  7006. * stopped - every CPU needs to be quiescent, and no scheduling
  7007. * activity can take place. Using them for anything else would
  7008. * be a serious bug, and as a result, they aren't even visible
  7009. * under any other configuration.
  7010. */
  7011. /**
  7012. * curr_task - return the current task for a given cpu.
  7013. * @cpu: the processor in question.
  7014. *
  7015. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7016. */
  7017. struct task_struct *curr_task(int cpu)
  7018. {
  7019. return cpu_curr(cpu);
  7020. }
  7021. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7022. #ifdef CONFIG_IA64
  7023. /**
  7024. * set_curr_task - set the current task for a given cpu.
  7025. * @cpu: the processor in question.
  7026. * @p: the task pointer to set.
  7027. *
  7028. * Description: This function must only be used when non-maskable interrupts
  7029. * are serviced on a separate stack. It allows the architecture to switch the
  7030. * notion of the current task on a cpu in a non-blocking manner. This function
  7031. * must be called with all CPU's synchronized, and interrupts disabled, the
  7032. * and caller must save the original value of the current task (see
  7033. * curr_task() above) and restore that value before reenabling interrupts and
  7034. * re-starting the system.
  7035. *
  7036. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7037. */
  7038. void set_curr_task(int cpu, struct task_struct *p)
  7039. {
  7040. cpu_curr(cpu) = p;
  7041. }
  7042. #endif
  7043. #ifdef CONFIG_FAIR_GROUP_SCHED
  7044. static void free_fair_sched_group(struct task_group *tg)
  7045. {
  7046. int i;
  7047. for_each_possible_cpu(i) {
  7048. if (tg->cfs_rq)
  7049. kfree(tg->cfs_rq[i]);
  7050. if (tg->se)
  7051. kfree(tg->se[i]);
  7052. }
  7053. kfree(tg->cfs_rq);
  7054. kfree(tg->se);
  7055. }
  7056. static
  7057. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7058. {
  7059. struct cfs_rq *cfs_rq;
  7060. struct sched_entity *se;
  7061. struct rq *rq;
  7062. int i;
  7063. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7064. if (!tg->cfs_rq)
  7065. goto err;
  7066. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7067. if (!tg->se)
  7068. goto err;
  7069. tg->shares = NICE_0_LOAD;
  7070. for_each_possible_cpu(i) {
  7071. rq = cpu_rq(i);
  7072. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7073. GFP_KERNEL, cpu_to_node(i));
  7074. if (!cfs_rq)
  7075. goto err;
  7076. se = kzalloc_node(sizeof(struct sched_entity),
  7077. GFP_KERNEL, cpu_to_node(i));
  7078. if (!se)
  7079. goto err_free_rq;
  7080. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7081. }
  7082. return 1;
  7083. err_free_rq:
  7084. kfree(cfs_rq);
  7085. err:
  7086. return 0;
  7087. }
  7088. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7089. {
  7090. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7091. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7092. }
  7093. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7094. {
  7095. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7096. }
  7097. #else /* !CONFG_FAIR_GROUP_SCHED */
  7098. static inline void free_fair_sched_group(struct task_group *tg)
  7099. {
  7100. }
  7101. static inline
  7102. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7103. {
  7104. return 1;
  7105. }
  7106. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7107. {
  7108. }
  7109. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7110. {
  7111. }
  7112. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7113. #ifdef CONFIG_RT_GROUP_SCHED
  7114. static void free_rt_sched_group(struct task_group *tg)
  7115. {
  7116. int i;
  7117. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7118. for_each_possible_cpu(i) {
  7119. if (tg->rt_rq)
  7120. kfree(tg->rt_rq[i]);
  7121. if (tg->rt_se)
  7122. kfree(tg->rt_se[i]);
  7123. }
  7124. kfree(tg->rt_rq);
  7125. kfree(tg->rt_se);
  7126. }
  7127. static
  7128. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7129. {
  7130. struct rt_rq *rt_rq;
  7131. struct sched_rt_entity *rt_se;
  7132. struct rq *rq;
  7133. int i;
  7134. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7135. if (!tg->rt_rq)
  7136. goto err;
  7137. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7138. if (!tg->rt_se)
  7139. goto err;
  7140. init_rt_bandwidth(&tg->rt_bandwidth,
  7141. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7142. for_each_possible_cpu(i) {
  7143. rq = cpu_rq(i);
  7144. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7145. GFP_KERNEL, cpu_to_node(i));
  7146. if (!rt_rq)
  7147. goto err;
  7148. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7149. GFP_KERNEL, cpu_to_node(i));
  7150. if (!rt_se)
  7151. goto err_free_rq;
  7152. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7153. }
  7154. return 1;
  7155. err_free_rq:
  7156. kfree(rt_rq);
  7157. err:
  7158. return 0;
  7159. }
  7160. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7161. {
  7162. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7163. &cpu_rq(cpu)->leaf_rt_rq_list);
  7164. }
  7165. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7166. {
  7167. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7168. }
  7169. #else /* !CONFIG_RT_GROUP_SCHED */
  7170. static inline void free_rt_sched_group(struct task_group *tg)
  7171. {
  7172. }
  7173. static inline
  7174. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7175. {
  7176. return 1;
  7177. }
  7178. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7179. {
  7180. }
  7181. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7182. {
  7183. }
  7184. #endif /* CONFIG_RT_GROUP_SCHED */
  7185. #ifdef CONFIG_CGROUP_SCHED
  7186. static void free_sched_group(struct task_group *tg)
  7187. {
  7188. free_fair_sched_group(tg);
  7189. free_rt_sched_group(tg);
  7190. kfree(tg);
  7191. }
  7192. /* allocate runqueue etc for a new task group */
  7193. struct task_group *sched_create_group(struct task_group *parent)
  7194. {
  7195. struct task_group *tg;
  7196. unsigned long flags;
  7197. int i;
  7198. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7199. if (!tg)
  7200. return ERR_PTR(-ENOMEM);
  7201. if (!alloc_fair_sched_group(tg, parent))
  7202. goto err;
  7203. if (!alloc_rt_sched_group(tg, parent))
  7204. goto err;
  7205. spin_lock_irqsave(&task_group_lock, flags);
  7206. for_each_possible_cpu(i) {
  7207. register_fair_sched_group(tg, i);
  7208. register_rt_sched_group(tg, i);
  7209. }
  7210. list_add_rcu(&tg->list, &task_groups);
  7211. WARN_ON(!parent); /* root should already exist */
  7212. tg->parent = parent;
  7213. INIT_LIST_HEAD(&tg->children);
  7214. list_add_rcu(&tg->siblings, &parent->children);
  7215. spin_unlock_irqrestore(&task_group_lock, flags);
  7216. return tg;
  7217. err:
  7218. free_sched_group(tg);
  7219. return ERR_PTR(-ENOMEM);
  7220. }
  7221. /* rcu callback to free various structures associated with a task group */
  7222. static void free_sched_group_rcu(struct rcu_head *rhp)
  7223. {
  7224. /* now it should be safe to free those cfs_rqs */
  7225. free_sched_group(container_of(rhp, struct task_group, rcu));
  7226. }
  7227. /* Destroy runqueue etc associated with a task group */
  7228. void sched_destroy_group(struct task_group *tg)
  7229. {
  7230. unsigned long flags;
  7231. int i;
  7232. spin_lock_irqsave(&task_group_lock, flags);
  7233. for_each_possible_cpu(i) {
  7234. unregister_fair_sched_group(tg, i);
  7235. unregister_rt_sched_group(tg, i);
  7236. }
  7237. list_del_rcu(&tg->list);
  7238. list_del_rcu(&tg->siblings);
  7239. spin_unlock_irqrestore(&task_group_lock, flags);
  7240. /* wait for possible concurrent references to cfs_rqs complete */
  7241. call_rcu(&tg->rcu, free_sched_group_rcu);
  7242. }
  7243. /* change task's runqueue when it moves between groups.
  7244. * The caller of this function should have put the task in its new group
  7245. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7246. * reflect its new group.
  7247. */
  7248. void sched_move_task(struct task_struct *tsk)
  7249. {
  7250. int on_rq, running;
  7251. unsigned long flags;
  7252. struct rq *rq;
  7253. rq = task_rq_lock(tsk, &flags);
  7254. running = task_current(rq, tsk);
  7255. on_rq = tsk->se.on_rq;
  7256. if (on_rq)
  7257. dequeue_task(rq, tsk, 0);
  7258. if (unlikely(running))
  7259. tsk->sched_class->put_prev_task(rq, tsk);
  7260. #ifdef CONFIG_FAIR_GROUP_SCHED
  7261. if (tsk->sched_class->task_move_group)
  7262. tsk->sched_class->task_move_group(tsk, on_rq);
  7263. else
  7264. #endif
  7265. set_task_rq(tsk, task_cpu(tsk));
  7266. if (unlikely(running))
  7267. tsk->sched_class->set_curr_task(rq);
  7268. if (on_rq)
  7269. enqueue_task(rq, tsk, 0);
  7270. task_rq_unlock(rq, &flags);
  7271. }
  7272. #endif /* CONFIG_CGROUP_SCHED */
  7273. #ifdef CONFIG_FAIR_GROUP_SCHED
  7274. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7275. {
  7276. struct cfs_rq *cfs_rq = se->cfs_rq;
  7277. int on_rq;
  7278. on_rq = se->on_rq;
  7279. if (on_rq)
  7280. dequeue_entity(cfs_rq, se, 0);
  7281. se->load.weight = shares;
  7282. se->load.inv_weight = 0;
  7283. if (on_rq)
  7284. enqueue_entity(cfs_rq, se, 0);
  7285. }
  7286. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7287. {
  7288. struct cfs_rq *cfs_rq = se->cfs_rq;
  7289. struct rq *rq = cfs_rq->rq;
  7290. unsigned long flags;
  7291. raw_spin_lock_irqsave(&rq->lock, flags);
  7292. __set_se_shares(se, shares);
  7293. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7294. }
  7295. static DEFINE_MUTEX(shares_mutex);
  7296. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7297. {
  7298. int i;
  7299. unsigned long flags;
  7300. /*
  7301. * We can't change the weight of the root cgroup.
  7302. */
  7303. if (!tg->se[0])
  7304. return -EINVAL;
  7305. if (shares < MIN_SHARES)
  7306. shares = MIN_SHARES;
  7307. else if (shares > MAX_SHARES)
  7308. shares = MAX_SHARES;
  7309. mutex_lock(&shares_mutex);
  7310. if (tg->shares == shares)
  7311. goto done;
  7312. spin_lock_irqsave(&task_group_lock, flags);
  7313. for_each_possible_cpu(i)
  7314. unregister_fair_sched_group(tg, i);
  7315. list_del_rcu(&tg->siblings);
  7316. spin_unlock_irqrestore(&task_group_lock, flags);
  7317. /* wait for any ongoing reference to this group to finish */
  7318. synchronize_sched();
  7319. /*
  7320. * Now we are free to modify the group's share on each cpu
  7321. * w/o tripping rebalance_share or load_balance_fair.
  7322. */
  7323. tg->shares = shares;
  7324. for_each_possible_cpu(i) {
  7325. /*
  7326. * force a rebalance
  7327. */
  7328. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7329. set_se_shares(tg->se[i], shares);
  7330. }
  7331. /*
  7332. * Enable load balance activity on this group, by inserting it back on
  7333. * each cpu's rq->leaf_cfs_rq_list.
  7334. */
  7335. spin_lock_irqsave(&task_group_lock, flags);
  7336. for_each_possible_cpu(i)
  7337. register_fair_sched_group(tg, i);
  7338. list_add_rcu(&tg->siblings, &tg->parent->children);
  7339. spin_unlock_irqrestore(&task_group_lock, flags);
  7340. done:
  7341. mutex_unlock(&shares_mutex);
  7342. return 0;
  7343. }
  7344. unsigned long sched_group_shares(struct task_group *tg)
  7345. {
  7346. return tg->shares;
  7347. }
  7348. #endif
  7349. #ifdef CONFIG_RT_GROUP_SCHED
  7350. /*
  7351. * Ensure that the real time constraints are schedulable.
  7352. */
  7353. static DEFINE_MUTEX(rt_constraints_mutex);
  7354. static unsigned long to_ratio(u64 period, u64 runtime)
  7355. {
  7356. if (runtime == RUNTIME_INF)
  7357. return 1ULL << 20;
  7358. return div64_u64(runtime << 20, period);
  7359. }
  7360. /* Must be called with tasklist_lock held */
  7361. static inline int tg_has_rt_tasks(struct task_group *tg)
  7362. {
  7363. struct task_struct *g, *p;
  7364. do_each_thread(g, p) {
  7365. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7366. return 1;
  7367. } while_each_thread(g, p);
  7368. return 0;
  7369. }
  7370. struct rt_schedulable_data {
  7371. struct task_group *tg;
  7372. u64 rt_period;
  7373. u64 rt_runtime;
  7374. };
  7375. static int tg_schedulable(struct task_group *tg, void *data)
  7376. {
  7377. struct rt_schedulable_data *d = data;
  7378. struct task_group *child;
  7379. unsigned long total, sum = 0;
  7380. u64 period, runtime;
  7381. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7382. runtime = tg->rt_bandwidth.rt_runtime;
  7383. if (tg == d->tg) {
  7384. period = d->rt_period;
  7385. runtime = d->rt_runtime;
  7386. }
  7387. /*
  7388. * Cannot have more runtime than the period.
  7389. */
  7390. if (runtime > period && runtime != RUNTIME_INF)
  7391. return -EINVAL;
  7392. /*
  7393. * Ensure we don't starve existing RT tasks.
  7394. */
  7395. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7396. return -EBUSY;
  7397. total = to_ratio(period, runtime);
  7398. /*
  7399. * Nobody can have more than the global setting allows.
  7400. */
  7401. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7402. return -EINVAL;
  7403. /*
  7404. * The sum of our children's runtime should not exceed our own.
  7405. */
  7406. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7407. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7408. runtime = child->rt_bandwidth.rt_runtime;
  7409. if (child == d->tg) {
  7410. period = d->rt_period;
  7411. runtime = d->rt_runtime;
  7412. }
  7413. sum += to_ratio(period, runtime);
  7414. }
  7415. if (sum > total)
  7416. return -EINVAL;
  7417. return 0;
  7418. }
  7419. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7420. {
  7421. struct rt_schedulable_data data = {
  7422. .tg = tg,
  7423. .rt_period = period,
  7424. .rt_runtime = runtime,
  7425. };
  7426. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7427. }
  7428. static int tg_set_bandwidth(struct task_group *tg,
  7429. u64 rt_period, u64 rt_runtime)
  7430. {
  7431. int i, err = 0;
  7432. mutex_lock(&rt_constraints_mutex);
  7433. read_lock(&tasklist_lock);
  7434. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7435. if (err)
  7436. goto unlock;
  7437. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7438. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7439. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7440. for_each_possible_cpu(i) {
  7441. struct rt_rq *rt_rq = tg->rt_rq[i];
  7442. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7443. rt_rq->rt_runtime = rt_runtime;
  7444. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7445. }
  7446. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7447. unlock:
  7448. read_unlock(&tasklist_lock);
  7449. mutex_unlock(&rt_constraints_mutex);
  7450. return err;
  7451. }
  7452. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7453. {
  7454. u64 rt_runtime, rt_period;
  7455. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7456. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7457. if (rt_runtime_us < 0)
  7458. rt_runtime = RUNTIME_INF;
  7459. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7460. }
  7461. long sched_group_rt_runtime(struct task_group *tg)
  7462. {
  7463. u64 rt_runtime_us;
  7464. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7465. return -1;
  7466. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7467. do_div(rt_runtime_us, NSEC_PER_USEC);
  7468. return rt_runtime_us;
  7469. }
  7470. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7471. {
  7472. u64 rt_runtime, rt_period;
  7473. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7474. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7475. if (rt_period == 0)
  7476. return -EINVAL;
  7477. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7478. }
  7479. long sched_group_rt_period(struct task_group *tg)
  7480. {
  7481. u64 rt_period_us;
  7482. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7483. do_div(rt_period_us, NSEC_PER_USEC);
  7484. return rt_period_us;
  7485. }
  7486. static int sched_rt_global_constraints(void)
  7487. {
  7488. u64 runtime, period;
  7489. int ret = 0;
  7490. if (sysctl_sched_rt_period <= 0)
  7491. return -EINVAL;
  7492. runtime = global_rt_runtime();
  7493. period = global_rt_period();
  7494. /*
  7495. * Sanity check on the sysctl variables.
  7496. */
  7497. if (runtime > period && runtime != RUNTIME_INF)
  7498. return -EINVAL;
  7499. mutex_lock(&rt_constraints_mutex);
  7500. read_lock(&tasklist_lock);
  7501. ret = __rt_schedulable(NULL, 0, 0);
  7502. read_unlock(&tasklist_lock);
  7503. mutex_unlock(&rt_constraints_mutex);
  7504. return ret;
  7505. }
  7506. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7507. {
  7508. /* Don't accept realtime tasks when there is no way for them to run */
  7509. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7510. return 0;
  7511. return 1;
  7512. }
  7513. #else /* !CONFIG_RT_GROUP_SCHED */
  7514. static int sched_rt_global_constraints(void)
  7515. {
  7516. unsigned long flags;
  7517. int i;
  7518. if (sysctl_sched_rt_period <= 0)
  7519. return -EINVAL;
  7520. /*
  7521. * There's always some RT tasks in the root group
  7522. * -- migration, kstopmachine etc..
  7523. */
  7524. if (sysctl_sched_rt_runtime == 0)
  7525. return -EBUSY;
  7526. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7527. for_each_possible_cpu(i) {
  7528. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7529. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7530. rt_rq->rt_runtime = global_rt_runtime();
  7531. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7532. }
  7533. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7534. return 0;
  7535. }
  7536. #endif /* CONFIG_RT_GROUP_SCHED */
  7537. int sched_rt_handler(struct ctl_table *table, int write,
  7538. void __user *buffer, size_t *lenp,
  7539. loff_t *ppos)
  7540. {
  7541. int ret;
  7542. int old_period, old_runtime;
  7543. static DEFINE_MUTEX(mutex);
  7544. mutex_lock(&mutex);
  7545. old_period = sysctl_sched_rt_period;
  7546. old_runtime = sysctl_sched_rt_runtime;
  7547. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7548. if (!ret && write) {
  7549. ret = sched_rt_global_constraints();
  7550. if (ret) {
  7551. sysctl_sched_rt_period = old_period;
  7552. sysctl_sched_rt_runtime = old_runtime;
  7553. } else {
  7554. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7555. def_rt_bandwidth.rt_period =
  7556. ns_to_ktime(global_rt_period());
  7557. }
  7558. }
  7559. mutex_unlock(&mutex);
  7560. return ret;
  7561. }
  7562. #ifdef CONFIG_CGROUP_SCHED
  7563. /* return corresponding task_group object of a cgroup */
  7564. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7565. {
  7566. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7567. struct task_group, css);
  7568. }
  7569. static struct cgroup_subsys_state *
  7570. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7571. {
  7572. struct task_group *tg, *parent;
  7573. if (!cgrp->parent) {
  7574. /* This is early initialization for the top cgroup */
  7575. return &init_task_group.css;
  7576. }
  7577. parent = cgroup_tg(cgrp->parent);
  7578. tg = sched_create_group(parent);
  7579. if (IS_ERR(tg))
  7580. return ERR_PTR(-ENOMEM);
  7581. return &tg->css;
  7582. }
  7583. static void
  7584. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7585. {
  7586. struct task_group *tg = cgroup_tg(cgrp);
  7587. sched_destroy_group(tg);
  7588. }
  7589. static int
  7590. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7591. {
  7592. #ifdef CONFIG_RT_GROUP_SCHED
  7593. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7594. return -EINVAL;
  7595. #else
  7596. /* We don't support RT-tasks being in separate groups */
  7597. if (tsk->sched_class != &fair_sched_class)
  7598. return -EINVAL;
  7599. #endif
  7600. return 0;
  7601. }
  7602. static int
  7603. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7604. struct task_struct *tsk, bool threadgroup)
  7605. {
  7606. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7607. if (retval)
  7608. return retval;
  7609. if (threadgroup) {
  7610. struct task_struct *c;
  7611. rcu_read_lock();
  7612. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7613. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7614. if (retval) {
  7615. rcu_read_unlock();
  7616. return retval;
  7617. }
  7618. }
  7619. rcu_read_unlock();
  7620. }
  7621. return 0;
  7622. }
  7623. static void
  7624. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7625. struct cgroup *old_cont, struct task_struct *tsk,
  7626. bool threadgroup)
  7627. {
  7628. sched_move_task(tsk);
  7629. if (threadgroup) {
  7630. struct task_struct *c;
  7631. rcu_read_lock();
  7632. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7633. sched_move_task(c);
  7634. }
  7635. rcu_read_unlock();
  7636. }
  7637. }
  7638. #ifdef CONFIG_FAIR_GROUP_SCHED
  7639. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7640. u64 shareval)
  7641. {
  7642. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7643. }
  7644. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7645. {
  7646. struct task_group *tg = cgroup_tg(cgrp);
  7647. return (u64) tg->shares;
  7648. }
  7649. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7650. #ifdef CONFIG_RT_GROUP_SCHED
  7651. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7652. s64 val)
  7653. {
  7654. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7655. }
  7656. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7657. {
  7658. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7659. }
  7660. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7661. u64 rt_period_us)
  7662. {
  7663. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7664. }
  7665. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7666. {
  7667. return sched_group_rt_period(cgroup_tg(cgrp));
  7668. }
  7669. #endif /* CONFIG_RT_GROUP_SCHED */
  7670. static struct cftype cpu_files[] = {
  7671. #ifdef CONFIG_FAIR_GROUP_SCHED
  7672. {
  7673. .name = "shares",
  7674. .read_u64 = cpu_shares_read_u64,
  7675. .write_u64 = cpu_shares_write_u64,
  7676. },
  7677. #endif
  7678. #ifdef CONFIG_RT_GROUP_SCHED
  7679. {
  7680. .name = "rt_runtime_us",
  7681. .read_s64 = cpu_rt_runtime_read,
  7682. .write_s64 = cpu_rt_runtime_write,
  7683. },
  7684. {
  7685. .name = "rt_period_us",
  7686. .read_u64 = cpu_rt_period_read_uint,
  7687. .write_u64 = cpu_rt_period_write_uint,
  7688. },
  7689. #endif
  7690. };
  7691. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7692. {
  7693. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7694. }
  7695. struct cgroup_subsys cpu_cgroup_subsys = {
  7696. .name = "cpu",
  7697. .create = cpu_cgroup_create,
  7698. .destroy = cpu_cgroup_destroy,
  7699. .can_attach = cpu_cgroup_can_attach,
  7700. .attach = cpu_cgroup_attach,
  7701. .populate = cpu_cgroup_populate,
  7702. .subsys_id = cpu_cgroup_subsys_id,
  7703. .early_init = 1,
  7704. };
  7705. #endif /* CONFIG_CGROUP_SCHED */
  7706. #ifdef CONFIG_CGROUP_CPUACCT
  7707. /*
  7708. * CPU accounting code for task groups.
  7709. *
  7710. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7711. * (balbir@in.ibm.com).
  7712. */
  7713. /* track cpu usage of a group of tasks and its child groups */
  7714. struct cpuacct {
  7715. struct cgroup_subsys_state css;
  7716. /* cpuusage holds pointer to a u64-type object on every cpu */
  7717. u64 __percpu *cpuusage;
  7718. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7719. struct cpuacct *parent;
  7720. };
  7721. struct cgroup_subsys cpuacct_subsys;
  7722. /* return cpu accounting group corresponding to this container */
  7723. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7724. {
  7725. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7726. struct cpuacct, css);
  7727. }
  7728. /* return cpu accounting group to which this task belongs */
  7729. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7730. {
  7731. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7732. struct cpuacct, css);
  7733. }
  7734. /* create a new cpu accounting group */
  7735. static struct cgroup_subsys_state *cpuacct_create(
  7736. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7737. {
  7738. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7739. int i;
  7740. if (!ca)
  7741. goto out;
  7742. ca->cpuusage = alloc_percpu(u64);
  7743. if (!ca->cpuusage)
  7744. goto out_free_ca;
  7745. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7746. if (percpu_counter_init(&ca->cpustat[i], 0))
  7747. goto out_free_counters;
  7748. if (cgrp->parent)
  7749. ca->parent = cgroup_ca(cgrp->parent);
  7750. return &ca->css;
  7751. out_free_counters:
  7752. while (--i >= 0)
  7753. percpu_counter_destroy(&ca->cpustat[i]);
  7754. free_percpu(ca->cpuusage);
  7755. out_free_ca:
  7756. kfree(ca);
  7757. out:
  7758. return ERR_PTR(-ENOMEM);
  7759. }
  7760. /* destroy an existing cpu accounting group */
  7761. static void
  7762. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7763. {
  7764. struct cpuacct *ca = cgroup_ca(cgrp);
  7765. int i;
  7766. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7767. percpu_counter_destroy(&ca->cpustat[i]);
  7768. free_percpu(ca->cpuusage);
  7769. kfree(ca);
  7770. }
  7771. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7772. {
  7773. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7774. u64 data;
  7775. #ifndef CONFIG_64BIT
  7776. /*
  7777. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7778. */
  7779. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7780. data = *cpuusage;
  7781. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7782. #else
  7783. data = *cpuusage;
  7784. #endif
  7785. return data;
  7786. }
  7787. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7788. {
  7789. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7790. #ifndef CONFIG_64BIT
  7791. /*
  7792. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7793. */
  7794. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7795. *cpuusage = val;
  7796. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7797. #else
  7798. *cpuusage = val;
  7799. #endif
  7800. }
  7801. /* return total cpu usage (in nanoseconds) of a group */
  7802. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7803. {
  7804. struct cpuacct *ca = cgroup_ca(cgrp);
  7805. u64 totalcpuusage = 0;
  7806. int i;
  7807. for_each_present_cpu(i)
  7808. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7809. return totalcpuusage;
  7810. }
  7811. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7812. u64 reset)
  7813. {
  7814. struct cpuacct *ca = cgroup_ca(cgrp);
  7815. int err = 0;
  7816. int i;
  7817. if (reset) {
  7818. err = -EINVAL;
  7819. goto out;
  7820. }
  7821. for_each_present_cpu(i)
  7822. cpuacct_cpuusage_write(ca, i, 0);
  7823. out:
  7824. return err;
  7825. }
  7826. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7827. struct seq_file *m)
  7828. {
  7829. struct cpuacct *ca = cgroup_ca(cgroup);
  7830. u64 percpu;
  7831. int i;
  7832. for_each_present_cpu(i) {
  7833. percpu = cpuacct_cpuusage_read(ca, i);
  7834. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7835. }
  7836. seq_printf(m, "\n");
  7837. return 0;
  7838. }
  7839. static const char *cpuacct_stat_desc[] = {
  7840. [CPUACCT_STAT_USER] = "user",
  7841. [CPUACCT_STAT_SYSTEM] = "system",
  7842. };
  7843. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7844. struct cgroup_map_cb *cb)
  7845. {
  7846. struct cpuacct *ca = cgroup_ca(cgrp);
  7847. int i;
  7848. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7849. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7850. val = cputime64_to_clock_t(val);
  7851. cb->fill(cb, cpuacct_stat_desc[i], val);
  7852. }
  7853. return 0;
  7854. }
  7855. static struct cftype files[] = {
  7856. {
  7857. .name = "usage",
  7858. .read_u64 = cpuusage_read,
  7859. .write_u64 = cpuusage_write,
  7860. },
  7861. {
  7862. .name = "usage_percpu",
  7863. .read_seq_string = cpuacct_percpu_seq_read,
  7864. },
  7865. {
  7866. .name = "stat",
  7867. .read_map = cpuacct_stats_show,
  7868. },
  7869. };
  7870. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7871. {
  7872. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7873. }
  7874. /*
  7875. * charge this task's execution time to its accounting group.
  7876. *
  7877. * called with rq->lock held.
  7878. */
  7879. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7880. {
  7881. struct cpuacct *ca;
  7882. int cpu;
  7883. if (unlikely(!cpuacct_subsys.active))
  7884. return;
  7885. cpu = task_cpu(tsk);
  7886. rcu_read_lock();
  7887. ca = task_ca(tsk);
  7888. for (; ca; ca = ca->parent) {
  7889. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7890. *cpuusage += cputime;
  7891. }
  7892. rcu_read_unlock();
  7893. }
  7894. /*
  7895. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7896. * in cputime_t units. As a result, cpuacct_update_stats calls
  7897. * percpu_counter_add with values large enough to always overflow the
  7898. * per cpu batch limit causing bad SMP scalability.
  7899. *
  7900. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7901. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7902. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7903. */
  7904. #ifdef CONFIG_SMP
  7905. #define CPUACCT_BATCH \
  7906. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7907. #else
  7908. #define CPUACCT_BATCH 0
  7909. #endif
  7910. /*
  7911. * Charge the system/user time to the task's accounting group.
  7912. */
  7913. static void cpuacct_update_stats(struct task_struct *tsk,
  7914. enum cpuacct_stat_index idx, cputime_t val)
  7915. {
  7916. struct cpuacct *ca;
  7917. int batch = CPUACCT_BATCH;
  7918. if (unlikely(!cpuacct_subsys.active))
  7919. return;
  7920. rcu_read_lock();
  7921. ca = task_ca(tsk);
  7922. do {
  7923. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7924. ca = ca->parent;
  7925. } while (ca);
  7926. rcu_read_unlock();
  7927. }
  7928. struct cgroup_subsys cpuacct_subsys = {
  7929. .name = "cpuacct",
  7930. .create = cpuacct_create,
  7931. .destroy = cpuacct_destroy,
  7932. .populate = cpuacct_populate,
  7933. .subsys_id = cpuacct_subsys_id,
  7934. };
  7935. #endif /* CONFIG_CGROUP_CPUACCT */
  7936. #ifndef CONFIG_SMP
  7937. void synchronize_sched_expedited(void)
  7938. {
  7939. barrier();
  7940. }
  7941. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7942. #else /* #ifndef CONFIG_SMP */
  7943. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7944. static int synchronize_sched_expedited_cpu_stop(void *data)
  7945. {
  7946. /*
  7947. * There must be a full memory barrier on each affected CPU
  7948. * between the time that try_stop_cpus() is called and the
  7949. * time that it returns.
  7950. *
  7951. * In the current initial implementation of cpu_stop, the
  7952. * above condition is already met when the control reaches
  7953. * this point and the following smp_mb() is not strictly
  7954. * necessary. Do smp_mb() anyway for documentation and
  7955. * robustness against future implementation changes.
  7956. */
  7957. smp_mb(); /* See above comment block. */
  7958. return 0;
  7959. }
  7960. /*
  7961. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7962. * approach to force grace period to end quickly. This consumes
  7963. * significant time on all CPUs, and is thus not recommended for
  7964. * any sort of common-case code.
  7965. *
  7966. * Note that it is illegal to call this function while holding any
  7967. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7968. * observe this restriction will result in deadlock.
  7969. */
  7970. void synchronize_sched_expedited(void)
  7971. {
  7972. int snap, trycount = 0;
  7973. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7974. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7975. get_online_cpus();
  7976. while (try_stop_cpus(cpu_online_mask,
  7977. synchronize_sched_expedited_cpu_stop,
  7978. NULL) == -EAGAIN) {
  7979. put_online_cpus();
  7980. if (trycount++ < 10)
  7981. udelay(trycount * num_online_cpus());
  7982. else {
  7983. synchronize_sched();
  7984. return;
  7985. }
  7986. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7987. smp_mb(); /* ensure test happens before caller kfree */
  7988. return;
  7989. }
  7990. get_online_cpus();
  7991. }
  7992. atomic_inc(&synchronize_sched_expedited_count);
  7993. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7994. put_online_cpus();
  7995. }
  7996. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7997. #endif /* #else #ifndef CONFIG_SMP */