cgroup.c 128 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943
  1. /*
  2. * Generic process-grouping system.
  3. *
  4. * Based originally on the cpuset system, extracted by Paul Menage
  5. * Copyright (C) 2006 Google, Inc
  6. *
  7. * Notifications support
  8. * Copyright (C) 2009 Nokia Corporation
  9. * Author: Kirill A. Shutemov
  10. *
  11. * Copyright notices from the original cpuset code:
  12. * --------------------------------------------------
  13. * Copyright (C) 2003 BULL SA.
  14. * Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15. *
  16. * Portions derived from Patrick Mochel's sysfs code.
  17. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  18. *
  19. * 2003-10-10 Written by Simon Derr.
  20. * 2003-10-22 Updates by Stephen Hemminger.
  21. * 2004 May-July Rework by Paul Jackson.
  22. * ---------------------------------------------------
  23. *
  24. * This file is subject to the terms and conditions of the GNU General Public
  25. * License. See the file COPYING in the main directory of the Linux
  26. * distribution for more details.
  27. */
  28. #include <linux/cgroup.h>
  29. #include <linux/ctype.h>
  30. #include <linux/errno.h>
  31. #include <linux/fs.h>
  32. #include <linux/kernel.h>
  33. #include <linux/list.h>
  34. #include <linux/mm.h>
  35. #include <linux/mutex.h>
  36. #include <linux/mount.h>
  37. #include <linux/pagemap.h>
  38. #include <linux/proc_fs.h>
  39. #include <linux/rcupdate.h>
  40. #include <linux/sched.h>
  41. #include <linux/backing-dev.h>
  42. #include <linux/seq_file.h>
  43. #include <linux/slab.h>
  44. #include <linux/magic.h>
  45. #include <linux/spinlock.h>
  46. #include <linux/string.h>
  47. #include <linux/sort.h>
  48. #include <linux/kmod.h>
  49. #include <linux/module.h>
  50. #include <linux/delayacct.h>
  51. #include <linux/cgroupstats.h>
  52. #include <linux/hash.h>
  53. #include <linux/namei.h>
  54. #include <linux/pid_namespace.h>
  55. #include <linux/idr.h>
  56. #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
  57. #include <linux/eventfd.h>
  58. #include <linux/poll.h>
  59. #include <asm/atomic.h>
  60. static DEFINE_MUTEX(cgroup_mutex);
  61. /*
  62. * Generate an array of cgroup subsystem pointers. At boot time, this is
  63. * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
  64. * registered after that. The mutable section of this array is protected by
  65. * cgroup_mutex.
  66. */
  67. #define SUBSYS(_x) &_x ## _subsys,
  68. static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
  69. #include <linux/cgroup_subsys.h>
  70. };
  71. #define MAX_CGROUP_ROOT_NAMELEN 64
  72. /*
  73. * A cgroupfs_root represents the root of a cgroup hierarchy,
  74. * and may be associated with a superblock to form an active
  75. * hierarchy
  76. */
  77. struct cgroupfs_root {
  78. struct super_block *sb;
  79. /*
  80. * The bitmask of subsystems intended to be attached to this
  81. * hierarchy
  82. */
  83. unsigned long subsys_bits;
  84. /* Unique id for this hierarchy. */
  85. int hierarchy_id;
  86. /* The bitmask of subsystems currently attached to this hierarchy */
  87. unsigned long actual_subsys_bits;
  88. /* A list running through the attached subsystems */
  89. struct list_head subsys_list;
  90. /* The root cgroup for this hierarchy */
  91. struct cgroup top_cgroup;
  92. /* Tracks how many cgroups are currently defined in hierarchy.*/
  93. int number_of_cgroups;
  94. /* A list running through the active hierarchies */
  95. struct list_head root_list;
  96. /* Hierarchy-specific flags */
  97. unsigned long flags;
  98. /* The path to use for release notifications. */
  99. char release_agent_path[PATH_MAX];
  100. /* The name for this hierarchy - may be empty */
  101. char name[MAX_CGROUP_ROOT_NAMELEN];
  102. };
  103. /*
  104. * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
  105. * subsystems that are otherwise unattached - it never has more than a
  106. * single cgroup, and all tasks are part of that cgroup.
  107. */
  108. static struct cgroupfs_root rootnode;
  109. /*
  110. * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
  111. * cgroup_subsys->use_id != 0.
  112. */
  113. #define CSS_ID_MAX (65535)
  114. struct css_id {
  115. /*
  116. * The css to which this ID points. This pointer is set to valid value
  117. * after cgroup is populated. If cgroup is removed, this will be NULL.
  118. * This pointer is expected to be RCU-safe because destroy()
  119. * is called after synchronize_rcu(). But for safe use, css_is_removed()
  120. * css_tryget() should be used for avoiding race.
  121. */
  122. struct cgroup_subsys_state __rcu *css;
  123. /*
  124. * ID of this css.
  125. */
  126. unsigned short id;
  127. /*
  128. * Depth in hierarchy which this ID belongs to.
  129. */
  130. unsigned short depth;
  131. /*
  132. * ID is freed by RCU. (and lookup routine is RCU safe.)
  133. */
  134. struct rcu_head rcu_head;
  135. /*
  136. * Hierarchy of CSS ID belongs to.
  137. */
  138. unsigned short stack[0]; /* Array of Length (depth+1) */
  139. };
  140. /*
  141. * cgroup_event represents events which userspace want to recieve.
  142. */
  143. struct cgroup_event {
  144. /*
  145. * Cgroup which the event belongs to.
  146. */
  147. struct cgroup *cgrp;
  148. /*
  149. * Control file which the event associated.
  150. */
  151. struct cftype *cft;
  152. /*
  153. * eventfd to signal userspace about the event.
  154. */
  155. struct eventfd_ctx *eventfd;
  156. /*
  157. * Each of these stored in a list by the cgroup.
  158. */
  159. struct list_head list;
  160. /*
  161. * All fields below needed to unregister event when
  162. * userspace closes eventfd.
  163. */
  164. poll_table pt;
  165. wait_queue_head_t *wqh;
  166. wait_queue_t wait;
  167. struct work_struct remove;
  168. };
  169. /* The list of hierarchy roots */
  170. static LIST_HEAD(roots);
  171. static int root_count;
  172. static DEFINE_IDA(hierarchy_ida);
  173. static int next_hierarchy_id;
  174. static DEFINE_SPINLOCK(hierarchy_id_lock);
  175. /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
  176. #define dummytop (&rootnode.top_cgroup)
  177. /* This flag indicates whether tasks in the fork and exit paths should
  178. * check for fork/exit handlers to call. This avoids us having to do
  179. * extra work in the fork/exit path if none of the subsystems need to
  180. * be called.
  181. */
  182. static int need_forkexit_callback __read_mostly;
  183. #ifdef CONFIG_PROVE_LOCKING
  184. int cgroup_lock_is_held(void)
  185. {
  186. return lockdep_is_held(&cgroup_mutex);
  187. }
  188. #else /* #ifdef CONFIG_PROVE_LOCKING */
  189. int cgroup_lock_is_held(void)
  190. {
  191. return mutex_is_locked(&cgroup_mutex);
  192. }
  193. #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
  194. EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
  195. /* convenient tests for these bits */
  196. inline int cgroup_is_removed(const struct cgroup *cgrp)
  197. {
  198. return test_bit(CGRP_REMOVED, &cgrp->flags);
  199. }
  200. /* bits in struct cgroupfs_root flags field */
  201. enum {
  202. ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
  203. };
  204. static int cgroup_is_releasable(const struct cgroup *cgrp)
  205. {
  206. const int bits =
  207. (1 << CGRP_RELEASABLE) |
  208. (1 << CGRP_NOTIFY_ON_RELEASE);
  209. return (cgrp->flags & bits) == bits;
  210. }
  211. static int notify_on_release(const struct cgroup *cgrp)
  212. {
  213. return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  214. }
  215. static int clone_children(const struct cgroup *cgrp)
  216. {
  217. return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
  218. }
  219. /*
  220. * for_each_subsys() allows you to iterate on each subsystem attached to
  221. * an active hierarchy
  222. */
  223. #define for_each_subsys(_root, _ss) \
  224. list_for_each_entry(_ss, &_root->subsys_list, sibling)
  225. /* for_each_active_root() allows you to iterate across the active hierarchies */
  226. #define for_each_active_root(_root) \
  227. list_for_each_entry(_root, &roots, root_list)
  228. /* the list of cgroups eligible for automatic release. Protected by
  229. * release_list_lock */
  230. static LIST_HEAD(release_list);
  231. static DEFINE_SPINLOCK(release_list_lock);
  232. static void cgroup_release_agent(struct work_struct *work);
  233. static DECLARE_WORK(release_agent_work, cgroup_release_agent);
  234. static void check_for_release(struct cgroup *cgrp);
  235. /* Link structure for associating css_set objects with cgroups */
  236. struct cg_cgroup_link {
  237. /*
  238. * List running through cg_cgroup_links associated with a
  239. * cgroup, anchored on cgroup->css_sets
  240. */
  241. struct list_head cgrp_link_list;
  242. struct cgroup *cgrp;
  243. /*
  244. * List running through cg_cgroup_links pointing at a
  245. * single css_set object, anchored on css_set->cg_links
  246. */
  247. struct list_head cg_link_list;
  248. struct css_set *cg;
  249. };
  250. /* The default css_set - used by init and its children prior to any
  251. * hierarchies being mounted. It contains a pointer to the root state
  252. * for each subsystem. Also used to anchor the list of css_sets. Not
  253. * reference-counted, to improve performance when child cgroups
  254. * haven't been created.
  255. */
  256. static struct css_set init_css_set;
  257. static struct cg_cgroup_link init_css_set_link;
  258. static int cgroup_init_idr(struct cgroup_subsys *ss,
  259. struct cgroup_subsys_state *css);
  260. /* css_set_lock protects the list of css_set objects, and the
  261. * chain of tasks off each css_set. Nests outside task->alloc_lock
  262. * due to cgroup_iter_start() */
  263. static DEFINE_RWLOCK(css_set_lock);
  264. static int css_set_count;
  265. /*
  266. * hash table for cgroup groups. This improves the performance to find
  267. * an existing css_set. This hash doesn't (currently) take into
  268. * account cgroups in empty hierarchies.
  269. */
  270. #define CSS_SET_HASH_BITS 7
  271. #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
  272. static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
  273. static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
  274. {
  275. int i;
  276. int index;
  277. unsigned long tmp = 0UL;
  278. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
  279. tmp += (unsigned long)css[i];
  280. tmp = (tmp >> 16) ^ tmp;
  281. index = hash_long(tmp, CSS_SET_HASH_BITS);
  282. return &css_set_table[index];
  283. }
  284. static void free_css_set_rcu(struct rcu_head *obj)
  285. {
  286. struct css_set *cg = container_of(obj, struct css_set, rcu_head);
  287. kfree(cg);
  288. }
  289. /* We don't maintain the lists running through each css_set to its
  290. * task until after the first call to cgroup_iter_start(). This
  291. * reduces the fork()/exit() overhead for people who have cgroups
  292. * compiled into their kernel but not actually in use */
  293. static int use_task_css_set_links __read_mostly;
  294. static void __put_css_set(struct css_set *cg, int taskexit)
  295. {
  296. struct cg_cgroup_link *link;
  297. struct cg_cgroup_link *saved_link;
  298. /*
  299. * Ensure that the refcount doesn't hit zero while any readers
  300. * can see it. Similar to atomic_dec_and_lock(), but for an
  301. * rwlock
  302. */
  303. if (atomic_add_unless(&cg->refcount, -1, 1))
  304. return;
  305. write_lock(&css_set_lock);
  306. if (!atomic_dec_and_test(&cg->refcount)) {
  307. write_unlock(&css_set_lock);
  308. return;
  309. }
  310. /* This css_set is dead. unlink it and release cgroup refcounts */
  311. hlist_del(&cg->hlist);
  312. css_set_count--;
  313. list_for_each_entry_safe(link, saved_link, &cg->cg_links,
  314. cg_link_list) {
  315. struct cgroup *cgrp = link->cgrp;
  316. list_del(&link->cg_link_list);
  317. list_del(&link->cgrp_link_list);
  318. if (atomic_dec_and_test(&cgrp->count) &&
  319. notify_on_release(cgrp)) {
  320. if (taskexit)
  321. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  322. check_for_release(cgrp);
  323. }
  324. kfree(link);
  325. }
  326. write_unlock(&css_set_lock);
  327. call_rcu(&cg->rcu_head, free_css_set_rcu);
  328. }
  329. /*
  330. * refcounted get/put for css_set objects
  331. */
  332. static inline void get_css_set(struct css_set *cg)
  333. {
  334. atomic_inc(&cg->refcount);
  335. }
  336. static inline void put_css_set(struct css_set *cg)
  337. {
  338. __put_css_set(cg, 0);
  339. }
  340. static inline void put_css_set_taskexit(struct css_set *cg)
  341. {
  342. __put_css_set(cg, 1);
  343. }
  344. /*
  345. * compare_css_sets - helper function for find_existing_css_set().
  346. * @cg: candidate css_set being tested
  347. * @old_cg: existing css_set for a task
  348. * @new_cgrp: cgroup that's being entered by the task
  349. * @template: desired set of css pointers in css_set (pre-calculated)
  350. *
  351. * Returns true if "cg" matches "old_cg" except for the hierarchy
  352. * which "new_cgrp" belongs to, for which it should match "new_cgrp".
  353. */
  354. static bool compare_css_sets(struct css_set *cg,
  355. struct css_set *old_cg,
  356. struct cgroup *new_cgrp,
  357. struct cgroup_subsys_state *template[])
  358. {
  359. struct list_head *l1, *l2;
  360. if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
  361. /* Not all subsystems matched */
  362. return false;
  363. }
  364. /*
  365. * Compare cgroup pointers in order to distinguish between
  366. * different cgroups in heirarchies with no subsystems. We
  367. * could get by with just this check alone (and skip the
  368. * memcmp above) but on most setups the memcmp check will
  369. * avoid the need for this more expensive check on almost all
  370. * candidates.
  371. */
  372. l1 = &cg->cg_links;
  373. l2 = &old_cg->cg_links;
  374. while (1) {
  375. struct cg_cgroup_link *cgl1, *cgl2;
  376. struct cgroup *cg1, *cg2;
  377. l1 = l1->next;
  378. l2 = l2->next;
  379. /* See if we reached the end - both lists are equal length. */
  380. if (l1 == &cg->cg_links) {
  381. BUG_ON(l2 != &old_cg->cg_links);
  382. break;
  383. } else {
  384. BUG_ON(l2 == &old_cg->cg_links);
  385. }
  386. /* Locate the cgroups associated with these links. */
  387. cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
  388. cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
  389. cg1 = cgl1->cgrp;
  390. cg2 = cgl2->cgrp;
  391. /* Hierarchies should be linked in the same order. */
  392. BUG_ON(cg1->root != cg2->root);
  393. /*
  394. * If this hierarchy is the hierarchy of the cgroup
  395. * that's changing, then we need to check that this
  396. * css_set points to the new cgroup; if it's any other
  397. * hierarchy, then this css_set should point to the
  398. * same cgroup as the old css_set.
  399. */
  400. if (cg1->root == new_cgrp->root) {
  401. if (cg1 != new_cgrp)
  402. return false;
  403. } else {
  404. if (cg1 != cg2)
  405. return false;
  406. }
  407. }
  408. return true;
  409. }
  410. /*
  411. * find_existing_css_set() is a helper for
  412. * find_css_set(), and checks to see whether an existing
  413. * css_set is suitable.
  414. *
  415. * oldcg: the cgroup group that we're using before the cgroup
  416. * transition
  417. *
  418. * cgrp: the cgroup that we're moving into
  419. *
  420. * template: location in which to build the desired set of subsystem
  421. * state objects for the new cgroup group
  422. */
  423. static struct css_set *find_existing_css_set(
  424. struct css_set *oldcg,
  425. struct cgroup *cgrp,
  426. struct cgroup_subsys_state *template[])
  427. {
  428. int i;
  429. struct cgroupfs_root *root = cgrp->root;
  430. struct hlist_head *hhead;
  431. struct hlist_node *node;
  432. struct css_set *cg;
  433. /*
  434. * Build the set of subsystem state objects that we want to see in the
  435. * new css_set. while subsystems can change globally, the entries here
  436. * won't change, so no need for locking.
  437. */
  438. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  439. if (root->subsys_bits & (1UL << i)) {
  440. /* Subsystem is in this hierarchy. So we want
  441. * the subsystem state from the new
  442. * cgroup */
  443. template[i] = cgrp->subsys[i];
  444. } else {
  445. /* Subsystem is not in this hierarchy, so we
  446. * don't want to change the subsystem state */
  447. template[i] = oldcg->subsys[i];
  448. }
  449. }
  450. hhead = css_set_hash(template);
  451. hlist_for_each_entry(cg, node, hhead, hlist) {
  452. if (!compare_css_sets(cg, oldcg, cgrp, template))
  453. continue;
  454. /* This css_set matches what we need */
  455. return cg;
  456. }
  457. /* No existing cgroup group matched */
  458. return NULL;
  459. }
  460. static void free_cg_links(struct list_head *tmp)
  461. {
  462. struct cg_cgroup_link *link;
  463. struct cg_cgroup_link *saved_link;
  464. list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
  465. list_del(&link->cgrp_link_list);
  466. kfree(link);
  467. }
  468. }
  469. /*
  470. * allocate_cg_links() allocates "count" cg_cgroup_link structures
  471. * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
  472. * success or a negative error
  473. */
  474. static int allocate_cg_links(int count, struct list_head *tmp)
  475. {
  476. struct cg_cgroup_link *link;
  477. int i;
  478. INIT_LIST_HEAD(tmp);
  479. for (i = 0; i < count; i++) {
  480. link = kmalloc(sizeof(*link), GFP_KERNEL);
  481. if (!link) {
  482. free_cg_links(tmp);
  483. return -ENOMEM;
  484. }
  485. list_add(&link->cgrp_link_list, tmp);
  486. }
  487. return 0;
  488. }
  489. /**
  490. * link_css_set - a helper function to link a css_set to a cgroup
  491. * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
  492. * @cg: the css_set to be linked
  493. * @cgrp: the destination cgroup
  494. */
  495. static void link_css_set(struct list_head *tmp_cg_links,
  496. struct css_set *cg, struct cgroup *cgrp)
  497. {
  498. struct cg_cgroup_link *link;
  499. BUG_ON(list_empty(tmp_cg_links));
  500. link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
  501. cgrp_link_list);
  502. link->cg = cg;
  503. link->cgrp = cgrp;
  504. atomic_inc(&cgrp->count);
  505. list_move(&link->cgrp_link_list, &cgrp->css_sets);
  506. /*
  507. * Always add links to the tail of the list so that the list
  508. * is sorted by order of hierarchy creation
  509. */
  510. list_add_tail(&link->cg_link_list, &cg->cg_links);
  511. }
  512. /*
  513. * find_css_set() takes an existing cgroup group and a
  514. * cgroup object, and returns a css_set object that's
  515. * equivalent to the old group, but with the given cgroup
  516. * substituted into the appropriate hierarchy. Must be called with
  517. * cgroup_mutex held
  518. */
  519. static struct css_set *find_css_set(
  520. struct css_set *oldcg, struct cgroup *cgrp)
  521. {
  522. struct css_set *res;
  523. struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
  524. struct list_head tmp_cg_links;
  525. struct hlist_head *hhead;
  526. struct cg_cgroup_link *link;
  527. /* First see if we already have a cgroup group that matches
  528. * the desired set */
  529. read_lock(&css_set_lock);
  530. res = find_existing_css_set(oldcg, cgrp, template);
  531. if (res)
  532. get_css_set(res);
  533. read_unlock(&css_set_lock);
  534. if (res)
  535. return res;
  536. res = kmalloc(sizeof(*res), GFP_KERNEL);
  537. if (!res)
  538. return NULL;
  539. /* Allocate all the cg_cgroup_link objects that we'll need */
  540. if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
  541. kfree(res);
  542. return NULL;
  543. }
  544. atomic_set(&res->refcount, 1);
  545. INIT_LIST_HEAD(&res->cg_links);
  546. INIT_LIST_HEAD(&res->tasks);
  547. INIT_HLIST_NODE(&res->hlist);
  548. /* Copy the set of subsystem state objects generated in
  549. * find_existing_css_set() */
  550. memcpy(res->subsys, template, sizeof(res->subsys));
  551. write_lock(&css_set_lock);
  552. /* Add reference counts and links from the new css_set. */
  553. list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
  554. struct cgroup *c = link->cgrp;
  555. if (c->root == cgrp->root)
  556. c = cgrp;
  557. link_css_set(&tmp_cg_links, res, c);
  558. }
  559. BUG_ON(!list_empty(&tmp_cg_links));
  560. css_set_count++;
  561. /* Add this cgroup group to the hash table */
  562. hhead = css_set_hash(res->subsys);
  563. hlist_add_head(&res->hlist, hhead);
  564. write_unlock(&css_set_lock);
  565. return res;
  566. }
  567. /*
  568. * Return the cgroup for "task" from the given hierarchy. Must be
  569. * called with cgroup_mutex held.
  570. */
  571. static struct cgroup *task_cgroup_from_root(struct task_struct *task,
  572. struct cgroupfs_root *root)
  573. {
  574. struct css_set *css;
  575. struct cgroup *res = NULL;
  576. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  577. read_lock(&css_set_lock);
  578. /*
  579. * No need to lock the task - since we hold cgroup_mutex the
  580. * task can't change groups, so the only thing that can happen
  581. * is that it exits and its css is set back to init_css_set.
  582. */
  583. css = task->cgroups;
  584. if (css == &init_css_set) {
  585. res = &root->top_cgroup;
  586. } else {
  587. struct cg_cgroup_link *link;
  588. list_for_each_entry(link, &css->cg_links, cg_link_list) {
  589. struct cgroup *c = link->cgrp;
  590. if (c->root == root) {
  591. res = c;
  592. break;
  593. }
  594. }
  595. }
  596. read_unlock(&css_set_lock);
  597. BUG_ON(!res);
  598. return res;
  599. }
  600. /*
  601. * There is one global cgroup mutex. We also require taking
  602. * task_lock() when dereferencing a task's cgroup subsys pointers.
  603. * See "The task_lock() exception", at the end of this comment.
  604. *
  605. * A task must hold cgroup_mutex to modify cgroups.
  606. *
  607. * Any task can increment and decrement the count field without lock.
  608. * So in general, code holding cgroup_mutex can't rely on the count
  609. * field not changing. However, if the count goes to zero, then only
  610. * cgroup_attach_task() can increment it again. Because a count of zero
  611. * means that no tasks are currently attached, therefore there is no
  612. * way a task attached to that cgroup can fork (the other way to
  613. * increment the count). So code holding cgroup_mutex can safely
  614. * assume that if the count is zero, it will stay zero. Similarly, if
  615. * a task holds cgroup_mutex on a cgroup with zero count, it
  616. * knows that the cgroup won't be removed, as cgroup_rmdir()
  617. * needs that mutex.
  618. *
  619. * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
  620. * (usually) take cgroup_mutex. These are the two most performance
  621. * critical pieces of code here. The exception occurs on cgroup_exit(),
  622. * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
  623. * is taken, and if the cgroup count is zero, a usermode call made
  624. * to the release agent with the name of the cgroup (path relative to
  625. * the root of cgroup file system) as the argument.
  626. *
  627. * A cgroup can only be deleted if both its 'count' of using tasks
  628. * is zero, and its list of 'children' cgroups is empty. Since all
  629. * tasks in the system use _some_ cgroup, and since there is always at
  630. * least one task in the system (init, pid == 1), therefore, top_cgroup
  631. * always has either children cgroups and/or using tasks. So we don't
  632. * need a special hack to ensure that top_cgroup cannot be deleted.
  633. *
  634. * The task_lock() exception
  635. *
  636. * The need for this exception arises from the action of
  637. * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
  638. * another. It does so using cgroup_mutex, however there are
  639. * several performance critical places that need to reference
  640. * task->cgroup without the expense of grabbing a system global
  641. * mutex. Therefore except as noted below, when dereferencing or, as
  642. * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
  643. * task_lock(), which acts on a spinlock (task->alloc_lock) already in
  644. * the task_struct routinely used for such matters.
  645. *
  646. * P.S. One more locking exception. RCU is used to guard the
  647. * update of a tasks cgroup pointer by cgroup_attach_task()
  648. */
  649. /**
  650. * cgroup_lock - lock out any changes to cgroup structures
  651. *
  652. */
  653. void cgroup_lock(void)
  654. {
  655. mutex_lock(&cgroup_mutex);
  656. }
  657. EXPORT_SYMBOL_GPL(cgroup_lock);
  658. /**
  659. * cgroup_unlock - release lock on cgroup changes
  660. *
  661. * Undo the lock taken in a previous cgroup_lock() call.
  662. */
  663. void cgroup_unlock(void)
  664. {
  665. mutex_unlock(&cgroup_mutex);
  666. }
  667. EXPORT_SYMBOL_GPL(cgroup_unlock);
  668. /*
  669. * A couple of forward declarations required, due to cyclic reference loop:
  670. * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
  671. * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
  672. * -> cgroup_mkdir.
  673. */
  674. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
  675. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
  676. static int cgroup_populate_dir(struct cgroup *cgrp);
  677. static const struct inode_operations cgroup_dir_inode_operations;
  678. static const struct file_operations proc_cgroupstats_operations;
  679. static struct backing_dev_info cgroup_backing_dev_info = {
  680. .name = "cgroup",
  681. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
  682. };
  683. static int alloc_css_id(struct cgroup_subsys *ss,
  684. struct cgroup *parent, struct cgroup *child);
  685. static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
  686. {
  687. struct inode *inode = new_inode(sb);
  688. if (inode) {
  689. inode->i_ino = get_next_ino();
  690. inode->i_mode = mode;
  691. inode->i_uid = current_fsuid();
  692. inode->i_gid = current_fsgid();
  693. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  694. inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
  695. }
  696. return inode;
  697. }
  698. /*
  699. * Call subsys's pre_destroy handler.
  700. * This is called before css refcnt check.
  701. */
  702. static int cgroup_call_pre_destroy(struct cgroup *cgrp)
  703. {
  704. struct cgroup_subsys *ss;
  705. int ret = 0;
  706. for_each_subsys(cgrp->root, ss)
  707. if (ss->pre_destroy) {
  708. ret = ss->pre_destroy(ss, cgrp);
  709. if (ret)
  710. break;
  711. }
  712. return ret;
  713. }
  714. static void free_cgroup_rcu(struct rcu_head *obj)
  715. {
  716. struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
  717. kfree(cgrp);
  718. }
  719. static void cgroup_diput(struct dentry *dentry, struct inode *inode)
  720. {
  721. /* is dentry a directory ? if so, kfree() associated cgroup */
  722. if (S_ISDIR(inode->i_mode)) {
  723. struct cgroup *cgrp = dentry->d_fsdata;
  724. struct cgroup_subsys *ss;
  725. BUG_ON(!(cgroup_is_removed(cgrp)));
  726. /* It's possible for external users to be holding css
  727. * reference counts on a cgroup; css_put() needs to
  728. * be able to access the cgroup after decrementing
  729. * the reference count in order to know if it needs to
  730. * queue the cgroup to be handled by the release
  731. * agent */
  732. synchronize_rcu();
  733. mutex_lock(&cgroup_mutex);
  734. /*
  735. * Release the subsystem state objects.
  736. */
  737. for_each_subsys(cgrp->root, ss)
  738. ss->destroy(ss, cgrp);
  739. cgrp->root->number_of_cgroups--;
  740. mutex_unlock(&cgroup_mutex);
  741. /*
  742. * Drop the active superblock reference that we took when we
  743. * created the cgroup
  744. */
  745. deactivate_super(cgrp->root->sb);
  746. /*
  747. * if we're getting rid of the cgroup, refcount should ensure
  748. * that there are no pidlists left.
  749. */
  750. BUG_ON(!list_empty(&cgrp->pidlists));
  751. call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
  752. }
  753. iput(inode);
  754. }
  755. static void remove_dir(struct dentry *d)
  756. {
  757. struct dentry *parent = dget(d->d_parent);
  758. d_delete(d);
  759. simple_rmdir(parent->d_inode, d);
  760. dput(parent);
  761. }
  762. static void cgroup_clear_directory(struct dentry *dentry)
  763. {
  764. struct list_head *node;
  765. BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
  766. spin_lock(&dcache_lock);
  767. node = dentry->d_subdirs.next;
  768. while (node != &dentry->d_subdirs) {
  769. struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
  770. list_del_init(node);
  771. if (d->d_inode) {
  772. /* This should never be called on a cgroup
  773. * directory with child cgroups */
  774. BUG_ON(d->d_inode->i_mode & S_IFDIR);
  775. d = dget_locked(d);
  776. spin_unlock(&dcache_lock);
  777. d_delete(d);
  778. simple_unlink(dentry->d_inode, d);
  779. dput(d);
  780. spin_lock(&dcache_lock);
  781. }
  782. node = dentry->d_subdirs.next;
  783. }
  784. spin_unlock(&dcache_lock);
  785. }
  786. /*
  787. * NOTE : the dentry must have been dget()'ed
  788. */
  789. static void cgroup_d_remove_dir(struct dentry *dentry)
  790. {
  791. cgroup_clear_directory(dentry);
  792. spin_lock(&dcache_lock);
  793. list_del_init(&dentry->d_u.d_child);
  794. spin_unlock(&dcache_lock);
  795. remove_dir(dentry);
  796. }
  797. /*
  798. * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
  799. * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
  800. * reference to css->refcnt. In general, this refcnt is expected to goes down
  801. * to zero, soon.
  802. *
  803. * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
  804. */
  805. DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
  806. static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
  807. {
  808. if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
  809. wake_up_all(&cgroup_rmdir_waitq);
  810. }
  811. void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
  812. {
  813. css_get(css);
  814. }
  815. void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
  816. {
  817. cgroup_wakeup_rmdir_waiter(css->cgroup);
  818. css_put(css);
  819. }
  820. /*
  821. * Call with cgroup_mutex held. Drops reference counts on modules, including
  822. * any duplicate ones that parse_cgroupfs_options took. If this function
  823. * returns an error, no reference counts are touched.
  824. */
  825. static int rebind_subsystems(struct cgroupfs_root *root,
  826. unsigned long final_bits)
  827. {
  828. unsigned long added_bits, removed_bits;
  829. struct cgroup *cgrp = &root->top_cgroup;
  830. int i;
  831. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  832. removed_bits = root->actual_subsys_bits & ~final_bits;
  833. added_bits = final_bits & ~root->actual_subsys_bits;
  834. /* Check that any added subsystems are currently free */
  835. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  836. unsigned long bit = 1UL << i;
  837. struct cgroup_subsys *ss = subsys[i];
  838. if (!(bit & added_bits))
  839. continue;
  840. /*
  841. * Nobody should tell us to do a subsys that doesn't exist:
  842. * parse_cgroupfs_options should catch that case and refcounts
  843. * ensure that subsystems won't disappear once selected.
  844. */
  845. BUG_ON(ss == NULL);
  846. if (ss->root != &rootnode) {
  847. /* Subsystem isn't free */
  848. return -EBUSY;
  849. }
  850. }
  851. /* Currently we don't handle adding/removing subsystems when
  852. * any child cgroups exist. This is theoretically supportable
  853. * but involves complex error handling, so it's being left until
  854. * later */
  855. if (root->number_of_cgroups > 1)
  856. return -EBUSY;
  857. /* Process each subsystem */
  858. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  859. struct cgroup_subsys *ss = subsys[i];
  860. unsigned long bit = 1UL << i;
  861. if (bit & added_bits) {
  862. /* We're binding this subsystem to this hierarchy */
  863. BUG_ON(ss == NULL);
  864. BUG_ON(cgrp->subsys[i]);
  865. BUG_ON(!dummytop->subsys[i]);
  866. BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
  867. mutex_lock(&ss->hierarchy_mutex);
  868. cgrp->subsys[i] = dummytop->subsys[i];
  869. cgrp->subsys[i]->cgroup = cgrp;
  870. list_move(&ss->sibling, &root->subsys_list);
  871. ss->root = root;
  872. if (ss->bind)
  873. ss->bind(ss, cgrp);
  874. mutex_unlock(&ss->hierarchy_mutex);
  875. /* refcount was already taken, and we're keeping it */
  876. } else if (bit & removed_bits) {
  877. /* We're removing this subsystem */
  878. BUG_ON(ss == NULL);
  879. BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
  880. BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
  881. mutex_lock(&ss->hierarchy_mutex);
  882. if (ss->bind)
  883. ss->bind(ss, dummytop);
  884. dummytop->subsys[i]->cgroup = dummytop;
  885. cgrp->subsys[i] = NULL;
  886. subsys[i]->root = &rootnode;
  887. list_move(&ss->sibling, &rootnode.subsys_list);
  888. mutex_unlock(&ss->hierarchy_mutex);
  889. /* subsystem is now free - drop reference on module */
  890. module_put(ss->module);
  891. } else if (bit & final_bits) {
  892. /* Subsystem state should already exist */
  893. BUG_ON(ss == NULL);
  894. BUG_ON(!cgrp->subsys[i]);
  895. /*
  896. * a refcount was taken, but we already had one, so
  897. * drop the extra reference.
  898. */
  899. module_put(ss->module);
  900. #ifdef CONFIG_MODULE_UNLOAD
  901. BUG_ON(ss->module && !module_refcount(ss->module));
  902. #endif
  903. } else {
  904. /* Subsystem state shouldn't exist */
  905. BUG_ON(cgrp->subsys[i]);
  906. }
  907. }
  908. root->subsys_bits = root->actual_subsys_bits = final_bits;
  909. synchronize_rcu();
  910. return 0;
  911. }
  912. static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
  913. {
  914. struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
  915. struct cgroup_subsys *ss;
  916. mutex_lock(&cgroup_mutex);
  917. for_each_subsys(root, ss)
  918. seq_printf(seq, ",%s", ss->name);
  919. if (test_bit(ROOT_NOPREFIX, &root->flags))
  920. seq_puts(seq, ",noprefix");
  921. if (strlen(root->release_agent_path))
  922. seq_printf(seq, ",release_agent=%s", root->release_agent_path);
  923. if (clone_children(&root->top_cgroup))
  924. seq_puts(seq, ",clone_children");
  925. if (strlen(root->name))
  926. seq_printf(seq, ",name=%s", root->name);
  927. mutex_unlock(&cgroup_mutex);
  928. return 0;
  929. }
  930. struct cgroup_sb_opts {
  931. unsigned long subsys_bits;
  932. unsigned long flags;
  933. char *release_agent;
  934. bool clone_children;
  935. char *name;
  936. /* User explicitly requested empty subsystem */
  937. bool none;
  938. struct cgroupfs_root *new_root;
  939. };
  940. /*
  941. * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
  942. * with cgroup_mutex held to protect the subsys[] array. This function takes
  943. * refcounts on subsystems to be used, unless it returns error, in which case
  944. * no refcounts are taken.
  945. */
  946. static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
  947. {
  948. char *token, *o = data;
  949. bool all_ss = false, one_ss = false;
  950. unsigned long mask = (unsigned long)-1;
  951. int i;
  952. bool module_pin_failed = false;
  953. BUG_ON(!mutex_is_locked(&cgroup_mutex));
  954. #ifdef CONFIG_CPUSETS
  955. mask = ~(1UL << cpuset_subsys_id);
  956. #endif
  957. memset(opts, 0, sizeof(*opts));
  958. while ((token = strsep(&o, ",")) != NULL) {
  959. if (!*token)
  960. return -EINVAL;
  961. if (!strcmp(token, "none")) {
  962. /* Explicitly have no subsystems */
  963. opts->none = true;
  964. continue;
  965. }
  966. if (!strcmp(token, "all")) {
  967. /* Mutually exclusive option 'all' + subsystem name */
  968. if (one_ss)
  969. return -EINVAL;
  970. all_ss = true;
  971. continue;
  972. }
  973. if (!strcmp(token, "noprefix")) {
  974. set_bit(ROOT_NOPREFIX, &opts->flags);
  975. continue;
  976. }
  977. if (!strcmp(token, "clone_children")) {
  978. opts->clone_children = true;
  979. continue;
  980. }
  981. if (!strncmp(token, "release_agent=", 14)) {
  982. /* Specifying two release agents is forbidden */
  983. if (opts->release_agent)
  984. return -EINVAL;
  985. opts->release_agent =
  986. kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
  987. if (!opts->release_agent)
  988. return -ENOMEM;
  989. continue;
  990. }
  991. if (!strncmp(token, "name=", 5)) {
  992. const char *name = token + 5;
  993. /* Can't specify an empty name */
  994. if (!strlen(name))
  995. return -EINVAL;
  996. /* Must match [\w.-]+ */
  997. for (i = 0; i < strlen(name); i++) {
  998. char c = name[i];
  999. if (isalnum(c))
  1000. continue;
  1001. if ((c == '.') || (c == '-') || (c == '_'))
  1002. continue;
  1003. return -EINVAL;
  1004. }
  1005. /* Specifying two names is forbidden */
  1006. if (opts->name)
  1007. return -EINVAL;
  1008. opts->name = kstrndup(name,
  1009. MAX_CGROUP_ROOT_NAMELEN - 1,
  1010. GFP_KERNEL);
  1011. if (!opts->name)
  1012. return -ENOMEM;
  1013. continue;
  1014. }
  1015. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  1016. struct cgroup_subsys *ss = subsys[i];
  1017. if (ss == NULL)
  1018. continue;
  1019. if (strcmp(token, ss->name))
  1020. continue;
  1021. if (ss->disabled)
  1022. continue;
  1023. /* Mutually exclusive option 'all' + subsystem name */
  1024. if (all_ss)
  1025. return -EINVAL;
  1026. set_bit(i, &opts->subsys_bits);
  1027. one_ss = true;
  1028. break;
  1029. }
  1030. if (i == CGROUP_SUBSYS_COUNT)
  1031. return -ENOENT;
  1032. }
  1033. /*
  1034. * If the 'all' option was specified select all the subsystems,
  1035. * otherwise 'all, 'none' and a subsystem name options were not
  1036. * specified, let's default to 'all'
  1037. */
  1038. if (all_ss || (!all_ss && !one_ss && !opts->none)) {
  1039. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  1040. struct cgroup_subsys *ss = subsys[i];
  1041. if (ss == NULL)
  1042. continue;
  1043. if (ss->disabled)
  1044. continue;
  1045. set_bit(i, &opts->subsys_bits);
  1046. }
  1047. }
  1048. /* Consistency checks */
  1049. /*
  1050. * Option noprefix was introduced just for backward compatibility
  1051. * with the old cpuset, so we allow noprefix only if mounting just
  1052. * the cpuset subsystem.
  1053. */
  1054. if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
  1055. (opts->subsys_bits & mask))
  1056. return -EINVAL;
  1057. /* Can't specify "none" and some subsystems */
  1058. if (opts->subsys_bits && opts->none)
  1059. return -EINVAL;
  1060. /*
  1061. * We either have to specify by name or by subsystems. (So all
  1062. * empty hierarchies must have a name).
  1063. */
  1064. if (!opts->subsys_bits && !opts->name)
  1065. return -EINVAL;
  1066. /*
  1067. * Grab references on all the modules we'll need, so the subsystems
  1068. * don't dance around before rebind_subsystems attaches them. This may
  1069. * take duplicate reference counts on a subsystem that's already used,
  1070. * but rebind_subsystems handles this case.
  1071. */
  1072. for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
  1073. unsigned long bit = 1UL << i;
  1074. if (!(bit & opts->subsys_bits))
  1075. continue;
  1076. if (!try_module_get(subsys[i]->module)) {
  1077. module_pin_failed = true;
  1078. break;
  1079. }
  1080. }
  1081. if (module_pin_failed) {
  1082. /*
  1083. * oops, one of the modules was going away. this means that we
  1084. * raced with a module_delete call, and to the user this is
  1085. * essentially a "subsystem doesn't exist" case.
  1086. */
  1087. for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
  1088. /* drop refcounts only on the ones we took */
  1089. unsigned long bit = 1UL << i;
  1090. if (!(bit & opts->subsys_bits))
  1091. continue;
  1092. module_put(subsys[i]->module);
  1093. }
  1094. return -ENOENT;
  1095. }
  1096. return 0;
  1097. }
  1098. static void drop_parsed_module_refcounts(unsigned long subsys_bits)
  1099. {
  1100. int i;
  1101. for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
  1102. unsigned long bit = 1UL << i;
  1103. if (!(bit & subsys_bits))
  1104. continue;
  1105. module_put(subsys[i]->module);
  1106. }
  1107. }
  1108. static int cgroup_remount(struct super_block *sb, int *flags, char *data)
  1109. {
  1110. int ret = 0;
  1111. struct cgroupfs_root *root = sb->s_fs_info;
  1112. struct cgroup *cgrp = &root->top_cgroup;
  1113. struct cgroup_sb_opts opts;
  1114. mutex_lock(&cgrp->dentry->d_inode->i_mutex);
  1115. mutex_lock(&cgroup_mutex);
  1116. /* See what subsystems are wanted */
  1117. ret = parse_cgroupfs_options(data, &opts);
  1118. if (ret)
  1119. goto out_unlock;
  1120. /* Don't allow flags or name to change at remount */
  1121. if (opts.flags != root->flags ||
  1122. (opts.name && strcmp(opts.name, root->name))) {
  1123. ret = -EINVAL;
  1124. drop_parsed_module_refcounts(opts.subsys_bits);
  1125. goto out_unlock;
  1126. }
  1127. ret = rebind_subsystems(root, opts.subsys_bits);
  1128. if (ret) {
  1129. drop_parsed_module_refcounts(opts.subsys_bits);
  1130. goto out_unlock;
  1131. }
  1132. /* (re)populate subsystem files */
  1133. cgroup_populate_dir(cgrp);
  1134. if (opts.release_agent)
  1135. strcpy(root->release_agent_path, opts.release_agent);
  1136. out_unlock:
  1137. kfree(opts.release_agent);
  1138. kfree(opts.name);
  1139. mutex_unlock(&cgroup_mutex);
  1140. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  1141. return ret;
  1142. }
  1143. static const struct super_operations cgroup_ops = {
  1144. .statfs = simple_statfs,
  1145. .drop_inode = generic_delete_inode,
  1146. .show_options = cgroup_show_options,
  1147. .remount_fs = cgroup_remount,
  1148. };
  1149. static void init_cgroup_housekeeping(struct cgroup *cgrp)
  1150. {
  1151. INIT_LIST_HEAD(&cgrp->sibling);
  1152. INIT_LIST_HEAD(&cgrp->children);
  1153. INIT_LIST_HEAD(&cgrp->css_sets);
  1154. INIT_LIST_HEAD(&cgrp->release_list);
  1155. INIT_LIST_HEAD(&cgrp->pidlists);
  1156. mutex_init(&cgrp->pidlist_mutex);
  1157. INIT_LIST_HEAD(&cgrp->event_list);
  1158. spin_lock_init(&cgrp->event_list_lock);
  1159. }
  1160. static void init_cgroup_root(struct cgroupfs_root *root)
  1161. {
  1162. struct cgroup *cgrp = &root->top_cgroup;
  1163. INIT_LIST_HEAD(&root->subsys_list);
  1164. INIT_LIST_HEAD(&root->root_list);
  1165. root->number_of_cgroups = 1;
  1166. cgrp->root = root;
  1167. cgrp->top_cgroup = cgrp;
  1168. init_cgroup_housekeeping(cgrp);
  1169. }
  1170. static bool init_root_id(struct cgroupfs_root *root)
  1171. {
  1172. int ret = 0;
  1173. do {
  1174. if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
  1175. return false;
  1176. spin_lock(&hierarchy_id_lock);
  1177. /* Try to allocate the next unused ID */
  1178. ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
  1179. &root->hierarchy_id);
  1180. if (ret == -ENOSPC)
  1181. /* Try again starting from 0 */
  1182. ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
  1183. if (!ret) {
  1184. next_hierarchy_id = root->hierarchy_id + 1;
  1185. } else if (ret != -EAGAIN) {
  1186. /* Can only get here if the 31-bit IDR is full ... */
  1187. BUG_ON(ret);
  1188. }
  1189. spin_unlock(&hierarchy_id_lock);
  1190. } while (ret);
  1191. return true;
  1192. }
  1193. static int cgroup_test_super(struct super_block *sb, void *data)
  1194. {
  1195. struct cgroup_sb_opts *opts = data;
  1196. struct cgroupfs_root *root = sb->s_fs_info;
  1197. /* If we asked for a name then it must match */
  1198. if (opts->name && strcmp(opts->name, root->name))
  1199. return 0;
  1200. /*
  1201. * If we asked for subsystems (or explicitly for no
  1202. * subsystems) then they must match
  1203. */
  1204. if ((opts->subsys_bits || opts->none)
  1205. && (opts->subsys_bits != root->subsys_bits))
  1206. return 0;
  1207. return 1;
  1208. }
  1209. static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
  1210. {
  1211. struct cgroupfs_root *root;
  1212. if (!opts->subsys_bits && !opts->none)
  1213. return NULL;
  1214. root = kzalloc(sizeof(*root), GFP_KERNEL);
  1215. if (!root)
  1216. return ERR_PTR(-ENOMEM);
  1217. if (!init_root_id(root)) {
  1218. kfree(root);
  1219. return ERR_PTR(-ENOMEM);
  1220. }
  1221. init_cgroup_root(root);
  1222. root->subsys_bits = opts->subsys_bits;
  1223. root->flags = opts->flags;
  1224. if (opts->release_agent)
  1225. strcpy(root->release_agent_path, opts->release_agent);
  1226. if (opts->name)
  1227. strcpy(root->name, opts->name);
  1228. if (opts->clone_children)
  1229. set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
  1230. return root;
  1231. }
  1232. static void cgroup_drop_root(struct cgroupfs_root *root)
  1233. {
  1234. if (!root)
  1235. return;
  1236. BUG_ON(!root->hierarchy_id);
  1237. spin_lock(&hierarchy_id_lock);
  1238. ida_remove(&hierarchy_ida, root->hierarchy_id);
  1239. spin_unlock(&hierarchy_id_lock);
  1240. kfree(root);
  1241. }
  1242. static int cgroup_set_super(struct super_block *sb, void *data)
  1243. {
  1244. int ret;
  1245. struct cgroup_sb_opts *opts = data;
  1246. /* If we don't have a new root, we can't set up a new sb */
  1247. if (!opts->new_root)
  1248. return -EINVAL;
  1249. BUG_ON(!opts->subsys_bits && !opts->none);
  1250. ret = set_anon_super(sb, NULL);
  1251. if (ret)
  1252. return ret;
  1253. sb->s_fs_info = opts->new_root;
  1254. opts->new_root->sb = sb;
  1255. sb->s_blocksize = PAGE_CACHE_SIZE;
  1256. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  1257. sb->s_magic = CGROUP_SUPER_MAGIC;
  1258. sb->s_op = &cgroup_ops;
  1259. return 0;
  1260. }
  1261. static int cgroup_get_rootdir(struct super_block *sb)
  1262. {
  1263. struct inode *inode =
  1264. cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
  1265. struct dentry *dentry;
  1266. if (!inode)
  1267. return -ENOMEM;
  1268. inode->i_fop = &simple_dir_operations;
  1269. inode->i_op = &cgroup_dir_inode_operations;
  1270. /* directories start off with i_nlink == 2 (for "." entry) */
  1271. inc_nlink(inode);
  1272. dentry = d_alloc_root(inode);
  1273. if (!dentry) {
  1274. iput(inode);
  1275. return -ENOMEM;
  1276. }
  1277. sb->s_root = dentry;
  1278. return 0;
  1279. }
  1280. static struct dentry *cgroup_mount(struct file_system_type *fs_type,
  1281. int flags, const char *unused_dev_name,
  1282. void *data)
  1283. {
  1284. struct cgroup_sb_opts opts;
  1285. struct cgroupfs_root *root;
  1286. int ret = 0;
  1287. struct super_block *sb;
  1288. struct cgroupfs_root *new_root;
  1289. /* First find the desired set of subsystems */
  1290. mutex_lock(&cgroup_mutex);
  1291. ret = parse_cgroupfs_options(data, &opts);
  1292. mutex_unlock(&cgroup_mutex);
  1293. if (ret)
  1294. goto out_err;
  1295. /*
  1296. * Allocate a new cgroup root. We may not need it if we're
  1297. * reusing an existing hierarchy.
  1298. */
  1299. new_root = cgroup_root_from_opts(&opts);
  1300. if (IS_ERR(new_root)) {
  1301. ret = PTR_ERR(new_root);
  1302. goto drop_modules;
  1303. }
  1304. opts.new_root = new_root;
  1305. /* Locate an existing or new sb for this hierarchy */
  1306. sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
  1307. if (IS_ERR(sb)) {
  1308. ret = PTR_ERR(sb);
  1309. cgroup_drop_root(opts.new_root);
  1310. goto drop_modules;
  1311. }
  1312. root = sb->s_fs_info;
  1313. BUG_ON(!root);
  1314. if (root == opts.new_root) {
  1315. /* We used the new root structure, so this is a new hierarchy */
  1316. struct list_head tmp_cg_links;
  1317. struct cgroup *root_cgrp = &root->top_cgroup;
  1318. struct inode *inode;
  1319. struct cgroupfs_root *existing_root;
  1320. int i;
  1321. BUG_ON(sb->s_root != NULL);
  1322. ret = cgroup_get_rootdir(sb);
  1323. if (ret)
  1324. goto drop_new_super;
  1325. inode = sb->s_root->d_inode;
  1326. mutex_lock(&inode->i_mutex);
  1327. mutex_lock(&cgroup_mutex);
  1328. if (strlen(root->name)) {
  1329. /* Check for name clashes with existing mounts */
  1330. for_each_active_root(existing_root) {
  1331. if (!strcmp(existing_root->name, root->name)) {
  1332. ret = -EBUSY;
  1333. mutex_unlock(&cgroup_mutex);
  1334. mutex_unlock(&inode->i_mutex);
  1335. goto drop_new_super;
  1336. }
  1337. }
  1338. }
  1339. /*
  1340. * We're accessing css_set_count without locking
  1341. * css_set_lock here, but that's OK - it can only be
  1342. * increased by someone holding cgroup_lock, and
  1343. * that's us. The worst that can happen is that we
  1344. * have some link structures left over
  1345. */
  1346. ret = allocate_cg_links(css_set_count, &tmp_cg_links);
  1347. if (ret) {
  1348. mutex_unlock(&cgroup_mutex);
  1349. mutex_unlock(&inode->i_mutex);
  1350. goto drop_new_super;
  1351. }
  1352. ret = rebind_subsystems(root, root->subsys_bits);
  1353. if (ret == -EBUSY) {
  1354. mutex_unlock(&cgroup_mutex);
  1355. mutex_unlock(&inode->i_mutex);
  1356. free_cg_links(&tmp_cg_links);
  1357. goto drop_new_super;
  1358. }
  1359. /*
  1360. * There must be no failure case after here, since rebinding
  1361. * takes care of subsystems' refcounts, which are explicitly
  1362. * dropped in the failure exit path.
  1363. */
  1364. /* EBUSY should be the only error here */
  1365. BUG_ON(ret);
  1366. list_add(&root->root_list, &roots);
  1367. root_count++;
  1368. sb->s_root->d_fsdata = root_cgrp;
  1369. root->top_cgroup.dentry = sb->s_root;
  1370. /* Link the top cgroup in this hierarchy into all
  1371. * the css_set objects */
  1372. write_lock(&css_set_lock);
  1373. for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
  1374. struct hlist_head *hhead = &css_set_table[i];
  1375. struct hlist_node *node;
  1376. struct css_set *cg;
  1377. hlist_for_each_entry(cg, node, hhead, hlist)
  1378. link_css_set(&tmp_cg_links, cg, root_cgrp);
  1379. }
  1380. write_unlock(&css_set_lock);
  1381. free_cg_links(&tmp_cg_links);
  1382. BUG_ON(!list_empty(&root_cgrp->sibling));
  1383. BUG_ON(!list_empty(&root_cgrp->children));
  1384. BUG_ON(root->number_of_cgroups != 1);
  1385. cgroup_populate_dir(root_cgrp);
  1386. mutex_unlock(&cgroup_mutex);
  1387. mutex_unlock(&inode->i_mutex);
  1388. } else {
  1389. /*
  1390. * We re-used an existing hierarchy - the new root (if
  1391. * any) is not needed
  1392. */
  1393. cgroup_drop_root(opts.new_root);
  1394. /* no subsys rebinding, so refcounts don't change */
  1395. drop_parsed_module_refcounts(opts.subsys_bits);
  1396. }
  1397. kfree(opts.release_agent);
  1398. kfree(opts.name);
  1399. return dget(sb->s_root);
  1400. drop_new_super:
  1401. deactivate_locked_super(sb);
  1402. drop_modules:
  1403. drop_parsed_module_refcounts(opts.subsys_bits);
  1404. out_err:
  1405. kfree(opts.release_agent);
  1406. kfree(opts.name);
  1407. return ERR_PTR(ret);
  1408. }
  1409. static void cgroup_kill_sb(struct super_block *sb) {
  1410. struct cgroupfs_root *root = sb->s_fs_info;
  1411. struct cgroup *cgrp = &root->top_cgroup;
  1412. int ret;
  1413. struct cg_cgroup_link *link;
  1414. struct cg_cgroup_link *saved_link;
  1415. BUG_ON(!root);
  1416. BUG_ON(root->number_of_cgroups != 1);
  1417. BUG_ON(!list_empty(&cgrp->children));
  1418. BUG_ON(!list_empty(&cgrp->sibling));
  1419. mutex_lock(&cgroup_mutex);
  1420. /* Rebind all subsystems back to the default hierarchy */
  1421. ret = rebind_subsystems(root, 0);
  1422. /* Shouldn't be able to fail ... */
  1423. BUG_ON(ret);
  1424. /*
  1425. * Release all the links from css_sets to this hierarchy's
  1426. * root cgroup
  1427. */
  1428. write_lock(&css_set_lock);
  1429. list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
  1430. cgrp_link_list) {
  1431. list_del(&link->cg_link_list);
  1432. list_del(&link->cgrp_link_list);
  1433. kfree(link);
  1434. }
  1435. write_unlock(&css_set_lock);
  1436. if (!list_empty(&root->root_list)) {
  1437. list_del(&root->root_list);
  1438. root_count--;
  1439. }
  1440. mutex_unlock(&cgroup_mutex);
  1441. kill_litter_super(sb);
  1442. cgroup_drop_root(root);
  1443. }
  1444. static struct file_system_type cgroup_fs_type = {
  1445. .name = "cgroup",
  1446. .mount = cgroup_mount,
  1447. .kill_sb = cgroup_kill_sb,
  1448. };
  1449. static struct kobject *cgroup_kobj;
  1450. static inline struct cgroup *__d_cgrp(struct dentry *dentry)
  1451. {
  1452. return dentry->d_fsdata;
  1453. }
  1454. static inline struct cftype *__d_cft(struct dentry *dentry)
  1455. {
  1456. return dentry->d_fsdata;
  1457. }
  1458. /**
  1459. * cgroup_path - generate the path of a cgroup
  1460. * @cgrp: the cgroup in question
  1461. * @buf: the buffer to write the path into
  1462. * @buflen: the length of the buffer
  1463. *
  1464. * Called with cgroup_mutex held or else with an RCU-protected cgroup
  1465. * reference. Writes path of cgroup into buf. Returns 0 on success,
  1466. * -errno on error.
  1467. */
  1468. int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
  1469. {
  1470. char *start;
  1471. struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
  1472. rcu_read_lock_held() ||
  1473. cgroup_lock_is_held());
  1474. if (!dentry || cgrp == dummytop) {
  1475. /*
  1476. * Inactive subsystems have no dentry for their root
  1477. * cgroup
  1478. */
  1479. strcpy(buf, "/");
  1480. return 0;
  1481. }
  1482. start = buf + buflen;
  1483. *--start = '\0';
  1484. for (;;) {
  1485. int len = dentry->d_name.len;
  1486. if ((start -= len) < buf)
  1487. return -ENAMETOOLONG;
  1488. memcpy(start, dentry->d_name.name, len);
  1489. cgrp = cgrp->parent;
  1490. if (!cgrp)
  1491. break;
  1492. dentry = rcu_dereference_check(cgrp->dentry,
  1493. rcu_read_lock_held() ||
  1494. cgroup_lock_is_held());
  1495. if (!cgrp->parent)
  1496. continue;
  1497. if (--start < buf)
  1498. return -ENAMETOOLONG;
  1499. *start = '/';
  1500. }
  1501. memmove(buf, start, buf + buflen - start);
  1502. return 0;
  1503. }
  1504. EXPORT_SYMBOL_GPL(cgroup_path);
  1505. /**
  1506. * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
  1507. * @cgrp: the cgroup the task is attaching to
  1508. * @tsk: the task to be attached
  1509. *
  1510. * Call holding cgroup_mutex. May take task_lock of
  1511. * the task 'tsk' during call.
  1512. */
  1513. int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  1514. {
  1515. int retval = 0;
  1516. struct cgroup_subsys *ss, *failed_ss = NULL;
  1517. struct cgroup *oldcgrp;
  1518. struct css_set *cg;
  1519. struct css_set *newcg;
  1520. struct cgroupfs_root *root = cgrp->root;
  1521. /* Nothing to do if the task is already in that cgroup */
  1522. oldcgrp = task_cgroup_from_root(tsk, root);
  1523. if (cgrp == oldcgrp)
  1524. return 0;
  1525. for_each_subsys(root, ss) {
  1526. if (ss->can_attach) {
  1527. retval = ss->can_attach(ss, cgrp, tsk, false);
  1528. if (retval) {
  1529. /*
  1530. * Remember on which subsystem the can_attach()
  1531. * failed, so that we only call cancel_attach()
  1532. * against the subsystems whose can_attach()
  1533. * succeeded. (See below)
  1534. */
  1535. failed_ss = ss;
  1536. goto out;
  1537. }
  1538. }
  1539. }
  1540. task_lock(tsk);
  1541. cg = tsk->cgroups;
  1542. get_css_set(cg);
  1543. task_unlock(tsk);
  1544. /*
  1545. * Locate or allocate a new css_set for this task,
  1546. * based on its final set of cgroups
  1547. */
  1548. newcg = find_css_set(cg, cgrp);
  1549. put_css_set(cg);
  1550. if (!newcg) {
  1551. retval = -ENOMEM;
  1552. goto out;
  1553. }
  1554. task_lock(tsk);
  1555. if (tsk->flags & PF_EXITING) {
  1556. task_unlock(tsk);
  1557. put_css_set(newcg);
  1558. retval = -ESRCH;
  1559. goto out;
  1560. }
  1561. rcu_assign_pointer(tsk->cgroups, newcg);
  1562. task_unlock(tsk);
  1563. /* Update the css_set linked lists if we're using them */
  1564. write_lock(&css_set_lock);
  1565. if (!list_empty(&tsk->cg_list)) {
  1566. list_del(&tsk->cg_list);
  1567. list_add(&tsk->cg_list, &newcg->tasks);
  1568. }
  1569. write_unlock(&css_set_lock);
  1570. for_each_subsys(root, ss) {
  1571. if (ss->attach)
  1572. ss->attach(ss, cgrp, oldcgrp, tsk, false);
  1573. }
  1574. set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
  1575. synchronize_rcu();
  1576. put_css_set(cg);
  1577. /*
  1578. * wake up rmdir() waiter. the rmdir should fail since the cgroup
  1579. * is no longer empty.
  1580. */
  1581. cgroup_wakeup_rmdir_waiter(cgrp);
  1582. out:
  1583. if (retval) {
  1584. for_each_subsys(root, ss) {
  1585. if (ss == failed_ss)
  1586. /*
  1587. * This subsystem was the one that failed the
  1588. * can_attach() check earlier, so we don't need
  1589. * to call cancel_attach() against it or any
  1590. * remaining subsystems.
  1591. */
  1592. break;
  1593. if (ss->cancel_attach)
  1594. ss->cancel_attach(ss, cgrp, tsk, false);
  1595. }
  1596. }
  1597. return retval;
  1598. }
  1599. /**
  1600. * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
  1601. * @from: attach to all cgroups of a given task
  1602. * @tsk: the task to be attached
  1603. */
  1604. int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
  1605. {
  1606. struct cgroupfs_root *root;
  1607. int retval = 0;
  1608. cgroup_lock();
  1609. for_each_active_root(root) {
  1610. struct cgroup *from_cg = task_cgroup_from_root(from, root);
  1611. retval = cgroup_attach_task(from_cg, tsk);
  1612. if (retval)
  1613. break;
  1614. }
  1615. cgroup_unlock();
  1616. return retval;
  1617. }
  1618. EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
  1619. /*
  1620. * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
  1621. * held. May take task_lock of task
  1622. */
  1623. static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
  1624. {
  1625. struct task_struct *tsk;
  1626. const struct cred *cred = current_cred(), *tcred;
  1627. int ret;
  1628. if (pid) {
  1629. rcu_read_lock();
  1630. tsk = find_task_by_vpid(pid);
  1631. if (!tsk || tsk->flags & PF_EXITING) {
  1632. rcu_read_unlock();
  1633. return -ESRCH;
  1634. }
  1635. tcred = __task_cred(tsk);
  1636. if (cred->euid &&
  1637. cred->euid != tcred->uid &&
  1638. cred->euid != tcred->suid) {
  1639. rcu_read_unlock();
  1640. return -EACCES;
  1641. }
  1642. get_task_struct(tsk);
  1643. rcu_read_unlock();
  1644. } else {
  1645. tsk = current;
  1646. get_task_struct(tsk);
  1647. }
  1648. ret = cgroup_attach_task(cgrp, tsk);
  1649. put_task_struct(tsk);
  1650. return ret;
  1651. }
  1652. static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
  1653. {
  1654. int ret;
  1655. if (!cgroup_lock_live_group(cgrp))
  1656. return -ENODEV;
  1657. ret = attach_task_by_pid(cgrp, pid);
  1658. cgroup_unlock();
  1659. return ret;
  1660. }
  1661. /**
  1662. * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
  1663. * @cgrp: the cgroup to be checked for liveness
  1664. *
  1665. * On success, returns true; the lock should be later released with
  1666. * cgroup_unlock(). On failure returns false with no lock held.
  1667. */
  1668. bool cgroup_lock_live_group(struct cgroup *cgrp)
  1669. {
  1670. mutex_lock(&cgroup_mutex);
  1671. if (cgroup_is_removed(cgrp)) {
  1672. mutex_unlock(&cgroup_mutex);
  1673. return false;
  1674. }
  1675. return true;
  1676. }
  1677. EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
  1678. static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
  1679. const char *buffer)
  1680. {
  1681. BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
  1682. if (strlen(buffer) >= PATH_MAX)
  1683. return -EINVAL;
  1684. if (!cgroup_lock_live_group(cgrp))
  1685. return -ENODEV;
  1686. strcpy(cgrp->root->release_agent_path, buffer);
  1687. cgroup_unlock();
  1688. return 0;
  1689. }
  1690. static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
  1691. struct seq_file *seq)
  1692. {
  1693. if (!cgroup_lock_live_group(cgrp))
  1694. return -ENODEV;
  1695. seq_puts(seq, cgrp->root->release_agent_path);
  1696. seq_putc(seq, '\n');
  1697. cgroup_unlock();
  1698. return 0;
  1699. }
  1700. /* A buffer size big enough for numbers or short strings */
  1701. #define CGROUP_LOCAL_BUFFER_SIZE 64
  1702. static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
  1703. struct file *file,
  1704. const char __user *userbuf,
  1705. size_t nbytes, loff_t *unused_ppos)
  1706. {
  1707. char buffer[CGROUP_LOCAL_BUFFER_SIZE];
  1708. int retval = 0;
  1709. char *end;
  1710. if (!nbytes)
  1711. return -EINVAL;
  1712. if (nbytes >= sizeof(buffer))
  1713. return -E2BIG;
  1714. if (copy_from_user(buffer, userbuf, nbytes))
  1715. return -EFAULT;
  1716. buffer[nbytes] = 0; /* nul-terminate */
  1717. if (cft->write_u64) {
  1718. u64 val = simple_strtoull(strstrip(buffer), &end, 0);
  1719. if (*end)
  1720. return -EINVAL;
  1721. retval = cft->write_u64(cgrp, cft, val);
  1722. } else {
  1723. s64 val = simple_strtoll(strstrip(buffer), &end, 0);
  1724. if (*end)
  1725. return -EINVAL;
  1726. retval = cft->write_s64(cgrp, cft, val);
  1727. }
  1728. if (!retval)
  1729. retval = nbytes;
  1730. return retval;
  1731. }
  1732. static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
  1733. struct file *file,
  1734. const char __user *userbuf,
  1735. size_t nbytes, loff_t *unused_ppos)
  1736. {
  1737. char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
  1738. int retval = 0;
  1739. size_t max_bytes = cft->max_write_len;
  1740. char *buffer = local_buffer;
  1741. if (!max_bytes)
  1742. max_bytes = sizeof(local_buffer) - 1;
  1743. if (nbytes >= max_bytes)
  1744. return -E2BIG;
  1745. /* Allocate a dynamic buffer if we need one */
  1746. if (nbytes >= sizeof(local_buffer)) {
  1747. buffer = kmalloc(nbytes + 1, GFP_KERNEL);
  1748. if (buffer == NULL)
  1749. return -ENOMEM;
  1750. }
  1751. if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
  1752. retval = -EFAULT;
  1753. goto out;
  1754. }
  1755. buffer[nbytes] = 0; /* nul-terminate */
  1756. retval = cft->write_string(cgrp, cft, strstrip(buffer));
  1757. if (!retval)
  1758. retval = nbytes;
  1759. out:
  1760. if (buffer != local_buffer)
  1761. kfree(buffer);
  1762. return retval;
  1763. }
  1764. static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
  1765. size_t nbytes, loff_t *ppos)
  1766. {
  1767. struct cftype *cft = __d_cft(file->f_dentry);
  1768. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  1769. if (cgroup_is_removed(cgrp))
  1770. return -ENODEV;
  1771. if (cft->write)
  1772. return cft->write(cgrp, cft, file, buf, nbytes, ppos);
  1773. if (cft->write_u64 || cft->write_s64)
  1774. return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
  1775. if (cft->write_string)
  1776. return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
  1777. if (cft->trigger) {
  1778. int ret = cft->trigger(cgrp, (unsigned int)cft->private);
  1779. return ret ? ret : nbytes;
  1780. }
  1781. return -EINVAL;
  1782. }
  1783. static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
  1784. struct file *file,
  1785. char __user *buf, size_t nbytes,
  1786. loff_t *ppos)
  1787. {
  1788. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  1789. u64 val = cft->read_u64(cgrp, cft);
  1790. int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
  1791. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  1792. }
  1793. static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
  1794. struct file *file,
  1795. char __user *buf, size_t nbytes,
  1796. loff_t *ppos)
  1797. {
  1798. char tmp[CGROUP_LOCAL_BUFFER_SIZE];
  1799. s64 val = cft->read_s64(cgrp, cft);
  1800. int len = sprintf(tmp, "%lld\n", (long long) val);
  1801. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  1802. }
  1803. static ssize_t cgroup_file_read(struct file *file, char __user *buf,
  1804. size_t nbytes, loff_t *ppos)
  1805. {
  1806. struct cftype *cft = __d_cft(file->f_dentry);
  1807. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  1808. if (cgroup_is_removed(cgrp))
  1809. return -ENODEV;
  1810. if (cft->read)
  1811. return cft->read(cgrp, cft, file, buf, nbytes, ppos);
  1812. if (cft->read_u64)
  1813. return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
  1814. if (cft->read_s64)
  1815. return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
  1816. return -EINVAL;
  1817. }
  1818. /*
  1819. * seqfile ops/methods for returning structured data. Currently just
  1820. * supports string->u64 maps, but can be extended in future.
  1821. */
  1822. struct cgroup_seqfile_state {
  1823. struct cftype *cft;
  1824. struct cgroup *cgroup;
  1825. };
  1826. static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
  1827. {
  1828. struct seq_file *sf = cb->state;
  1829. return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
  1830. }
  1831. static int cgroup_seqfile_show(struct seq_file *m, void *arg)
  1832. {
  1833. struct cgroup_seqfile_state *state = m->private;
  1834. struct cftype *cft = state->cft;
  1835. if (cft->read_map) {
  1836. struct cgroup_map_cb cb = {
  1837. .fill = cgroup_map_add,
  1838. .state = m,
  1839. };
  1840. return cft->read_map(state->cgroup, cft, &cb);
  1841. }
  1842. return cft->read_seq_string(state->cgroup, cft, m);
  1843. }
  1844. static int cgroup_seqfile_release(struct inode *inode, struct file *file)
  1845. {
  1846. struct seq_file *seq = file->private_data;
  1847. kfree(seq->private);
  1848. return single_release(inode, file);
  1849. }
  1850. static const struct file_operations cgroup_seqfile_operations = {
  1851. .read = seq_read,
  1852. .write = cgroup_file_write,
  1853. .llseek = seq_lseek,
  1854. .release = cgroup_seqfile_release,
  1855. };
  1856. static int cgroup_file_open(struct inode *inode, struct file *file)
  1857. {
  1858. int err;
  1859. struct cftype *cft;
  1860. err = generic_file_open(inode, file);
  1861. if (err)
  1862. return err;
  1863. cft = __d_cft(file->f_dentry);
  1864. if (cft->read_map || cft->read_seq_string) {
  1865. struct cgroup_seqfile_state *state =
  1866. kzalloc(sizeof(*state), GFP_USER);
  1867. if (!state)
  1868. return -ENOMEM;
  1869. state->cft = cft;
  1870. state->cgroup = __d_cgrp(file->f_dentry->d_parent);
  1871. file->f_op = &cgroup_seqfile_operations;
  1872. err = single_open(file, cgroup_seqfile_show, state);
  1873. if (err < 0)
  1874. kfree(state);
  1875. } else if (cft->open)
  1876. err = cft->open(inode, file);
  1877. else
  1878. err = 0;
  1879. return err;
  1880. }
  1881. static int cgroup_file_release(struct inode *inode, struct file *file)
  1882. {
  1883. struct cftype *cft = __d_cft(file->f_dentry);
  1884. if (cft->release)
  1885. return cft->release(inode, file);
  1886. return 0;
  1887. }
  1888. /*
  1889. * cgroup_rename - Only allow simple rename of directories in place.
  1890. */
  1891. static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
  1892. struct inode *new_dir, struct dentry *new_dentry)
  1893. {
  1894. if (!S_ISDIR(old_dentry->d_inode->i_mode))
  1895. return -ENOTDIR;
  1896. if (new_dentry->d_inode)
  1897. return -EEXIST;
  1898. if (old_dir != new_dir)
  1899. return -EIO;
  1900. return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
  1901. }
  1902. static const struct file_operations cgroup_file_operations = {
  1903. .read = cgroup_file_read,
  1904. .write = cgroup_file_write,
  1905. .llseek = generic_file_llseek,
  1906. .open = cgroup_file_open,
  1907. .release = cgroup_file_release,
  1908. };
  1909. static const struct inode_operations cgroup_dir_inode_operations = {
  1910. .lookup = simple_lookup,
  1911. .mkdir = cgroup_mkdir,
  1912. .rmdir = cgroup_rmdir,
  1913. .rename = cgroup_rename,
  1914. };
  1915. /*
  1916. * Check if a file is a control file
  1917. */
  1918. static inline struct cftype *__file_cft(struct file *file)
  1919. {
  1920. if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
  1921. return ERR_PTR(-EINVAL);
  1922. return __d_cft(file->f_dentry);
  1923. }
  1924. static int cgroup_create_file(struct dentry *dentry, mode_t mode,
  1925. struct super_block *sb)
  1926. {
  1927. static const struct dentry_operations cgroup_dops = {
  1928. .d_iput = cgroup_diput,
  1929. };
  1930. struct inode *inode;
  1931. if (!dentry)
  1932. return -ENOENT;
  1933. if (dentry->d_inode)
  1934. return -EEXIST;
  1935. inode = cgroup_new_inode(mode, sb);
  1936. if (!inode)
  1937. return -ENOMEM;
  1938. if (S_ISDIR(mode)) {
  1939. inode->i_op = &cgroup_dir_inode_operations;
  1940. inode->i_fop = &simple_dir_operations;
  1941. /* start off with i_nlink == 2 (for "." entry) */
  1942. inc_nlink(inode);
  1943. /* start with the directory inode held, so that we can
  1944. * populate it without racing with another mkdir */
  1945. mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
  1946. } else if (S_ISREG(mode)) {
  1947. inode->i_size = 0;
  1948. inode->i_fop = &cgroup_file_operations;
  1949. }
  1950. dentry->d_op = &cgroup_dops;
  1951. d_instantiate(dentry, inode);
  1952. dget(dentry); /* Extra count - pin the dentry in core */
  1953. return 0;
  1954. }
  1955. /*
  1956. * cgroup_create_dir - create a directory for an object.
  1957. * @cgrp: the cgroup we create the directory for. It must have a valid
  1958. * ->parent field. And we are going to fill its ->dentry field.
  1959. * @dentry: dentry of the new cgroup
  1960. * @mode: mode to set on new directory.
  1961. */
  1962. static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
  1963. mode_t mode)
  1964. {
  1965. struct dentry *parent;
  1966. int error = 0;
  1967. parent = cgrp->parent->dentry;
  1968. error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
  1969. if (!error) {
  1970. dentry->d_fsdata = cgrp;
  1971. inc_nlink(parent->d_inode);
  1972. rcu_assign_pointer(cgrp->dentry, dentry);
  1973. dget(dentry);
  1974. }
  1975. dput(dentry);
  1976. return error;
  1977. }
  1978. /**
  1979. * cgroup_file_mode - deduce file mode of a control file
  1980. * @cft: the control file in question
  1981. *
  1982. * returns cft->mode if ->mode is not 0
  1983. * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
  1984. * returns S_IRUGO if it has only a read handler
  1985. * returns S_IWUSR if it has only a write hander
  1986. */
  1987. static mode_t cgroup_file_mode(const struct cftype *cft)
  1988. {
  1989. mode_t mode = 0;
  1990. if (cft->mode)
  1991. return cft->mode;
  1992. if (cft->read || cft->read_u64 || cft->read_s64 ||
  1993. cft->read_map || cft->read_seq_string)
  1994. mode |= S_IRUGO;
  1995. if (cft->write || cft->write_u64 || cft->write_s64 ||
  1996. cft->write_string || cft->trigger)
  1997. mode |= S_IWUSR;
  1998. return mode;
  1999. }
  2000. int cgroup_add_file(struct cgroup *cgrp,
  2001. struct cgroup_subsys *subsys,
  2002. const struct cftype *cft)
  2003. {
  2004. struct dentry *dir = cgrp->dentry;
  2005. struct dentry *dentry;
  2006. int error;
  2007. mode_t mode;
  2008. char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
  2009. if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
  2010. strcpy(name, subsys->name);
  2011. strcat(name, ".");
  2012. }
  2013. strcat(name, cft->name);
  2014. BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
  2015. dentry = lookup_one_len(name, dir, strlen(name));
  2016. if (!IS_ERR(dentry)) {
  2017. mode = cgroup_file_mode(cft);
  2018. error = cgroup_create_file(dentry, mode | S_IFREG,
  2019. cgrp->root->sb);
  2020. if (!error)
  2021. dentry->d_fsdata = (void *)cft;
  2022. dput(dentry);
  2023. } else
  2024. error = PTR_ERR(dentry);
  2025. return error;
  2026. }
  2027. EXPORT_SYMBOL_GPL(cgroup_add_file);
  2028. int cgroup_add_files(struct cgroup *cgrp,
  2029. struct cgroup_subsys *subsys,
  2030. const struct cftype cft[],
  2031. int count)
  2032. {
  2033. int i, err;
  2034. for (i = 0; i < count; i++) {
  2035. err = cgroup_add_file(cgrp, subsys, &cft[i]);
  2036. if (err)
  2037. return err;
  2038. }
  2039. return 0;
  2040. }
  2041. EXPORT_SYMBOL_GPL(cgroup_add_files);
  2042. /**
  2043. * cgroup_task_count - count the number of tasks in a cgroup.
  2044. * @cgrp: the cgroup in question
  2045. *
  2046. * Return the number of tasks in the cgroup.
  2047. */
  2048. int cgroup_task_count(const struct cgroup *cgrp)
  2049. {
  2050. int count = 0;
  2051. struct cg_cgroup_link *link;
  2052. read_lock(&css_set_lock);
  2053. list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
  2054. count += atomic_read(&link->cg->refcount);
  2055. }
  2056. read_unlock(&css_set_lock);
  2057. return count;
  2058. }
  2059. /*
  2060. * Advance a list_head iterator. The iterator should be positioned at
  2061. * the start of a css_set
  2062. */
  2063. static void cgroup_advance_iter(struct cgroup *cgrp,
  2064. struct cgroup_iter *it)
  2065. {
  2066. struct list_head *l = it->cg_link;
  2067. struct cg_cgroup_link *link;
  2068. struct css_set *cg;
  2069. /* Advance to the next non-empty css_set */
  2070. do {
  2071. l = l->next;
  2072. if (l == &cgrp->css_sets) {
  2073. it->cg_link = NULL;
  2074. return;
  2075. }
  2076. link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
  2077. cg = link->cg;
  2078. } while (list_empty(&cg->tasks));
  2079. it->cg_link = l;
  2080. it->task = cg->tasks.next;
  2081. }
  2082. /*
  2083. * To reduce the fork() overhead for systems that are not actually
  2084. * using their cgroups capability, we don't maintain the lists running
  2085. * through each css_set to its tasks until we see the list actually
  2086. * used - in other words after the first call to cgroup_iter_start().
  2087. *
  2088. * The tasklist_lock is not held here, as do_each_thread() and
  2089. * while_each_thread() are protected by RCU.
  2090. */
  2091. static void cgroup_enable_task_cg_lists(void)
  2092. {
  2093. struct task_struct *p, *g;
  2094. write_lock(&css_set_lock);
  2095. use_task_css_set_links = 1;
  2096. do_each_thread(g, p) {
  2097. task_lock(p);
  2098. /*
  2099. * We should check if the process is exiting, otherwise
  2100. * it will race with cgroup_exit() in that the list
  2101. * entry won't be deleted though the process has exited.
  2102. */
  2103. if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
  2104. list_add(&p->cg_list, &p->cgroups->tasks);
  2105. task_unlock(p);
  2106. } while_each_thread(g, p);
  2107. write_unlock(&css_set_lock);
  2108. }
  2109. void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
  2110. {
  2111. /*
  2112. * The first time anyone tries to iterate across a cgroup,
  2113. * we need to enable the list linking each css_set to its
  2114. * tasks, and fix up all existing tasks.
  2115. */
  2116. if (!use_task_css_set_links)
  2117. cgroup_enable_task_cg_lists();
  2118. read_lock(&css_set_lock);
  2119. it->cg_link = &cgrp->css_sets;
  2120. cgroup_advance_iter(cgrp, it);
  2121. }
  2122. struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
  2123. struct cgroup_iter *it)
  2124. {
  2125. struct task_struct *res;
  2126. struct list_head *l = it->task;
  2127. struct cg_cgroup_link *link;
  2128. /* If the iterator cg is NULL, we have no tasks */
  2129. if (!it->cg_link)
  2130. return NULL;
  2131. res = list_entry(l, struct task_struct, cg_list);
  2132. /* Advance iterator to find next entry */
  2133. l = l->next;
  2134. link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
  2135. if (l == &link->cg->tasks) {
  2136. /* We reached the end of this task list - move on to
  2137. * the next cg_cgroup_link */
  2138. cgroup_advance_iter(cgrp, it);
  2139. } else {
  2140. it->task = l;
  2141. }
  2142. return res;
  2143. }
  2144. void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
  2145. {
  2146. read_unlock(&css_set_lock);
  2147. }
  2148. static inline int started_after_time(struct task_struct *t1,
  2149. struct timespec *time,
  2150. struct task_struct *t2)
  2151. {
  2152. int start_diff = timespec_compare(&t1->start_time, time);
  2153. if (start_diff > 0) {
  2154. return 1;
  2155. } else if (start_diff < 0) {
  2156. return 0;
  2157. } else {
  2158. /*
  2159. * Arbitrarily, if two processes started at the same
  2160. * time, we'll say that the lower pointer value
  2161. * started first. Note that t2 may have exited by now
  2162. * so this may not be a valid pointer any longer, but
  2163. * that's fine - it still serves to distinguish
  2164. * between two tasks started (effectively) simultaneously.
  2165. */
  2166. return t1 > t2;
  2167. }
  2168. }
  2169. /*
  2170. * This function is a callback from heap_insert() and is used to order
  2171. * the heap.
  2172. * In this case we order the heap in descending task start time.
  2173. */
  2174. static inline int started_after(void *p1, void *p2)
  2175. {
  2176. struct task_struct *t1 = p1;
  2177. struct task_struct *t2 = p2;
  2178. return started_after_time(t1, &t2->start_time, t2);
  2179. }
  2180. /**
  2181. * cgroup_scan_tasks - iterate though all the tasks in a cgroup
  2182. * @scan: struct cgroup_scanner containing arguments for the scan
  2183. *
  2184. * Arguments include pointers to callback functions test_task() and
  2185. * process_task().
  2186. * Iterate through all the tasks in a cgroup, calling test_task() for each,
  2187. * and if it returns true, call process_task() for it also.
  2188. * The test_task pointer may be NULL, meaning always true (select all tasks).
  2189. * Effectively duplicates cgroup_iter_{start,next,end}()
  2190. * but does not lock css_set_lock for the call to process_task().
  2191. * The struct cgroup_scanner may be embedded in any structure of the caller's
  2192. * creation.
  2193. * It is guaranteed that process_task() will act on every task that
  2194. * is a member of the cgroup for the duration of this call. This
  2195. * function may or may not call process_task() for tasks that exit
  2196. * or move to a different cgroup during the call, or are forked or
  2197. * move into the cgroup during the call.
  2198. *
  2199. * Note that test_task() may be called with locks held, and may in some
  2200. * situations be called multiple times for the same task, so it should
  2201. * be cheap.
  2202. * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
  2203. * pre-allocated and will be used for heap operations (and its "gt" member will
  2204. * be overwritten), else a temporary heap will be used (allocation of which
  2205. * may cause this function to fail).
  2206. */
  2207. int cgroup_scan_tasks(struct cgroup_scanner *scan)
  2208. {
  2209. int retval, i;
  2210. struct cgroup_iter it;
  2211. struct task_struct *p, *dropped;
  2212. /* Never dereference latest_task, since it's not refcounted */
  2213. struct task_struct *latest_task = NULL;
  2214. struct ptr_heap tmp_heap;
  2215. struct ptr_heap *heap;
  2216. struct timespec latest_time = { 0, 0 };
  2217. if (scan->heap) {
  2218. /* The caller supplied our heap and pre-allocated its memory */
  2219. heap = scan->heap;
  2220. heap->gt = &started_after;
  2221. } else {
  2222. /* We need to allocate our own heap memory */
  2223. heap = &tmp_heap;
  2224. retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
  2225. if (retval)
  2226. /* cannot allocate the heap */
  2227. return retval;
  2228. }
  2229. again:
  2230. /*
  2231. * Scan tasks in the cgroup, using the scanner's "test_task" callback
  2232. * to determine which are of interest, and using the scanner's
  2233. * "process_task" callback to process any of them that need an update.
  2234. * Since we don't want to hold any locks during the task updates,
  2235. * gather tasks to be processed in a heap structure.
  2236. * The heap is sorted by descending task start time.
  2237. * If the statically-sized heap fills up, we overflow tasks that
  2238. * started later, and in future iterations only consider tasks that
  2239. * started after the latest task in the previous pass. This
  2240. * guarantees forward progress and that we don't miss any tasks.
  2241. */
  2242. heap->size = 0;
  2243. cgroup_iter_start(scan->cg, &it);
  2244. while ((p = cgroup_iter_next(scan->cg, &it))) {
  2245. /*
  2246. * Only affect tasks that qualify per the caller's callback,
  2247. * if he provided one
  2248. */
  2249. if (scan->test_task && !scan->test_task(p, scan))
  2250. continue;
  2251. /*
  2252. * Only process tasks that started after the last task
  2253. * we processed
  2254. */
  2255. if (!started_after_time(p, &latest_time, latest_task))
  2256. continue;
  2257. dropped = heap_insert(heap, p);
  2258. if (dropped == NULL) {
  2259. /*
  2260. * The new task was inserted; the heap wasn't
  2261. * previously full
  2262. */
  2263. get_task_struct(p);
  2264. } else if (dropped != p) {
  2265. /*
  2266. * The new task was inserted, and pushed out a
  2267. * different task
  2268. */
  2269. get_task_struct(p);
  2270. put_task_struct(dropped);
  2271. }
  2272. /*
  2273. * Else the new task was newer than anything already in
  2274. * the heap and wasn't inserted
  2275. */
  2276. }
  2277. cgroup_iter_end(scan->cg, &it);
  2278. if (heap->size) {
  2279. for (i = 0; i < heap->size; i++) {
  2280. struct task_struct *q = heap->ptrs[i];
  2281. if (i == 0) {
  2282. latest_time = q->start_time;
  2283. latest_task = q;
  2284. }
  2285. /* Process the task per the caller's callback */
  2286. scan->process_task(q, scan);
  2287. put_task_struct(q);
  2288. }
  2289. /*
  2290. * If we had to process any tasks at all, scan again
  2291. * in case some of them were in the middle of forking
  2292. * children that didn't get processed.
  2293. * Not the most efficient way to do it, but it avoids
  2294. * having to take callback_mutex in the fork path
  2295. */
  2296. goto again;
  2297. }
  2298. if (heap == &tmp_heap)
  2299. heap_free(&tmp_heap);
  2300. return 0;
  2301. }
  2302. /*
  2303. * Stuff for reading the 'tasks'/'procs' files.
  2304. *
  2305. * Reading this file can return large amounts of data if a cgroup has
  2306. * *lots* of attached tasks. So it may need several calls to read(),
  2307. * but we cannot guarantee that the information we produce is correct
  2308. * unless we produce it entirely atomically.
  2309. *
  2310. */
  2311. /*
  2312. * The following two functions "fix" the issue where there are more pids
  2313. * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
  2314. * TODO: replace with a kernel-wide solution to this problem
  2315. */
  2316. #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
  2317. static void *pidlist_allocate(int count)
  2318. {
  2319. if (PIDLIST_TOO_LARGE(count))
  2320. return vmalloc(count * sizeof(pid_t));
  2321. else
  2322. return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
  2323. }
  2324. static void pidlist_free(void *p)
  2325. {
  2326. if (is_vmalloc_addr(p))
  2327. vfree(p);
  2328. else
  2329. kfree(p);
  2330. }
  2331. static void *pidlist_resize(void *p, int newcount)
  2332. {
  2333. void *newlist;
  2334. /* note: if new alloc fails, old p will still be valid either way */
  2335. if (is_vmalloc_addr(p)) {
  2336. newlist = vmalloc(newcount * sizeof(pid_t));
  2337. if (!newlist)
  2338. return NULL;
  2339. memcpy(newlist, p, newcount * sizeof(pid_t));
  2340. vfree(p);
  2341. } else {
  2342. newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
  2343. }
  2344. return newlist;
  2345. }
  2346. /*
  2347. * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
  2348. * If the new stripped list is sufficiently smaller and there's enough memory
  2349. * to allocate a new buffer, will let go of the unneeded memory. Returns the
  2350. * number of unique elements.
  2351. */
  2352. /* is the size difference enough that we should re-allocate the array? */
  2353. #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
  2354. static int pidlist_uniq(pid_t **p, int length)
  2355. {
  2356. int src, dest = 1;
  2357. pid_t *list = *p;
  2358. pid_t *newlist;
  2359. /*
  2360. * we presume the 0th element is unique, so i starts at 1. trivial
  2361. * edge cases first; no work needs to be done for either
  2362. */
  2363. if (length == 0 || length == 1)
  2364. return length;
  2365. /* src and dest walk down the list; dest counts unique elements */
  2366. for (src = 1; src < length; src++) {
  2367. /* find next unique element */
  2368. while (list[src] == list[src-1]) {
  2369. src++;
  2370. if (src == length)
  2371. goto after;
  2372. }
  2373. /* dest always points to where the next unique element goes */
  2374. list[dest] = list[src];
  2375. dest++;
  2376. }
  2377. after:
  2378. /*
  2379. * if the length difference is large enough, we want to allocate a
  2380. * smaller buffer to save memory. if this fails due to out of memory,
  2381. * we'll just stay with what we've got.
  2382. */
  2383. if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
  2384. newlist = pidlist_resize(list, dest);
  2385. if (newlist)
  2386. *p = newlist;
  2387. }
  2388. return dest;
  2389. }
  2390. static int cmppid(const void *a, const void *b)
  2391. {
  2392. return *(pid_t *)a - *(pid_t *)b;
  2393. }
  2394. /*
  2395. * find the appropriate pidlist for our purpose (given procs vs tasks)
  2396. * returns with the lock on that pidlist already held, and takes care
  2397. * of the use count, or returns NULL with no locks held if we're out of
  2398. * memory.
  2399. */
  2400. static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
  2401. enum cgroup_filetype type)
  2402. {
  2403. struct cgroup_pidlist *l;
  2404. /* don't need task_nsproxy() if we're looking at ourself */
  2405. struct pid_namespace *ns = current->nsproxy->pid_ns;
  2406. /*
  2407. * We can't drop the pidlist_mutex before taking the l->mutex in case
  2408. * the last ref-holder is trying to remove l from the list at the same
  2409. * time. Holding the pidlist_mutex precludes somebody taking whichever
  2410. * list we find out from under us - compare release_pid_array().
  2411. */
  2412. mutex_lock(&cgrp->pidlist_mutex);
  2413. list_for_each_entry(l, &cgrp->pidlists, links) {
  2414. if (l->key.type == type && l->key.ns == ns) {
  2415. /* make sure l doesn't vanish out from under us */
  2416. down_write(&l->mutex);
  2417. mutex_unlock(&cgrp->pidlist_mutex);
  2418. return l;
  2419. }
  2420. }
  2421. /* entry not found; create a new one */
  2422. l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
  2423. if (!l) {
  2424. mutex_unlock(&cgrp->pidlist_mutex);
  2425. return l;
  2426. }
  2427. init_rwsem(&l->mutex);
  2428. down_write(&l->mutex);
  2429. l->key.type = type;
  2430. l->key.ns = get_pid_ns(ns);
  2431. l->use_count = 0; /* don't increment here */
  2432. l->list = NULL;
  2433. l->owner = cgrp;
  2434. list_add(&l->links, &cgrp->pidlists);
  2435. mutex_unlock(&cgrp->pidlist_mutex);
  2436. return l;
  2437. }
  2438. /*
  2439. * Load a cgroup's pidarray with either procs' tgids or tasks' pids
  2440. */
  2441. static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
  2442. struct cgroup_pidlist **lp)
  2443. {
  2444. pid_t *array;
  2445. int length;
  2446. int pid, n = 0; /* used for populating the array */
  2447. struct cgroup_iter it;
  2448. struct task_struct *tsk;
  2449. struct cgroup_pidlist *l;
  2450. /*
  2451. * If cgroup gets more users after we read count, we won't have
  2452. * enough space - tough. This race is indistinguishable to the
  2453. * caller from the case that the additional cgroup users didn't
  2454. * show up until sometime later on.
  2455. */
  2456. length = cgroup_task_count(cgrp);
  2457. array = pidlist_allocate(length);
  2458. if (!array)
  2459. return -ENOMEM;
  2460. /* now, populate the array */
  2461. cgroup_iter_start(cgrp, &it);
  2462. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  2463. if (unlikely(n == length))
  2464. break;
  2465. /* get tgid or pid for procs or tasks file respectively */
  2466. if (type == CGROUP_FILE_PROCS)
  2467. pid = task_tgid_vnr(tsk);
  2468. else
  2469. pid = task_pid_vnr(tsk);
  2470. if (pid > 0) /* make sure to only use valid results */
  2471. array[n++] = pid;
  2472. }
  2473. cgroup_iter_end(cgrp, &it);
  2474. length = n;
  2475. /* now sort & (if procs) strip out duplicates */
  2476. sort(array, length, sizeof(pid_t), cmppid, NULL);
  2477. if (type == CGROUP_FILE_PROCS)
  2478. length = pidlist_uniq(&array, length);
  2479. l = cgroup_pidlist_find(cgrp, type);
  2480. if (!l) {
  2481. pidlist_free(array);
  2482. return -ENOMEM;
  2483. }
  2484. /* store array, freeing old if necessary - lock already held */
  2485. pidlist_free(l->list);
  2486. l->list = array;
  2487. l->length = length;
  2488. l->use_count++;
  2489. up_write(&l->mutex);
  2490. *lp = l;
  2491. return 0;
  2492. }
  2493. /**
  2494. * cgroupstats_build - build and fill cgroupstats
  2495. * @stats: cgroupstats to fill information into
  2496. * @dentry: A dentry entry belonging to the cgroup for which stats have
  2497. * been requested.
  2498. *
  2499. * Build and fill cgroupstats so that taskstats can export it to user
  2500. * space.
  2501. */
  2502. int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
  2503. {
  2504. int ret = -EINVAL;
  2505. struct cgroup *cgrp;
  2506. struct cgroup_iter it;
  2507. struct task_struct *tsk;
  2508. /*
  2509. * Validate dentry by checking the superblock operations,
  2510. * and make sure it's a directory.
  2511. */
  2512. if (dentry->d_sb->s_op != &cgroup_ops ||
  2513. !S_ISDIR(dentry->d_inode->i_mode))
  2514. goto err;
  2515. ret = 0;
  2516. cgrp = dentry->d_fsdata;
  2517. cgroup_iter_start(cgrp, &it);
  2518. while ((tsk = cgroup_iter_next(cgrp, &it))) {
  2519. switch (tsk->state) {
  2520. case TASK_RUNNING:
  2521. stats->nr_running++;
  2522. break;
  2523. case TASK_INTERRUPTIBLE:
  2524. stats->nr_sleeping++;
  2525. break;
  2526. case TASK_UNINTERRUPTIBLE:
  2527. stats->nr_uninterruptible++;
  2528. break;
  2529. case TASK_STOPPED:
  2530. stats->nr_stopped++;
  2531. break;
  2532. default:
  2533. if (delayacct_is_task_waiting_on_io(tsk))
  2534. stats->nr_io_wait++;
  2535. break;
  2536. }
  2537. }
  2538. cgroup_iter_end(cgrp, &it);
  2539. err:
  2540. return ret;
  2541. }
  2542. /*
  2543. * seq_file methods for the tasks/procs files. The seq_file position is the
  2544. * next pid to display; the seq_file iterator is a pointer to the pid
  2545. * in the cgroup->l->list array.
  2546. */
  2547. static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
  2548. {
  2549. /*
  2550. * Initially we receive a position value that corresponds to
  2551. * one more than the last pid shown (or 0 on the first call or
  2552. * after a seek to the start). Use a binary-search to find the
  2553. * next pid to display, if any
  2554. */
  2555. struct cgroup_pidlist *l = s->private;
  2556. int index = 0, pid = *pos;
  2557. int *iter;
  2558. down_read(&l->mutex);
  2559. if (pid) {
  2560. int end = l->length;
  2561. while (index < end) {
  2562. int mid = (index + end) / 2;
  2563. if (l->list[mid] == pid) {
  2564. index = mid;
  2565. break;
  2566. } else if (l->list[mid] <= pid)
  2567. index = mid + 1;
  2568. else
  2569. end = mid;
  2570. }
  2571. }
  2572. /* If we're off the end of the array, we're done */
  2573. if (index >= l->length)
  2574. return NULL;
  2575. /* Update the abstract position to be the actual pid that we found */
  2576. iter = l->list + index;
  2577. *pos = *iter;
  2578. return iter;
  2579. }
  2580. static void cgroup_pidlist_stop(struct seq_file *s, void *v)
  2581. {
  2582. struct cgroup_pidlist *l = s->private;
  2583. up_read(&l->mutex);
  2584. }
  2585. static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
  2586. {
  2587. struct cgroup_pidlist *l = s->private;
  2588. pid_t *p = v;
  2589. pid_t *end = l->list + l->length;
  2590. /*
  2591. * Advance to the next pid in the array. If this goes off the
  2592. * end, we're done
  2593. */
  2594. p++;
  2595. if (p >= end) {
  2596. return NULL;
  2597. } else {
  2598. *pos = *p;
  2599. return p;
  2600. }
  2601. }
  2602. static int cgroup_pidlist_show(struct seq_file *s, void *v)
  2603. {
  2604. return seq_printf(s, "%d\n", *(int *)v);
  2605. }
  2606. /*
  2607. * seq_operations functions for iterating on pidlists through seq_file -
  2608. * independent of whether it's tasks or procs
  2609. */
  2610. static const struct seq_operations cgroup_pidlist_seq_operations = {
  2611. .start = cgroup_pidlist_start,
  2612. .stop = cgroup_pidlist_stop,
  2613. .next = cgroup_pidlist_next,
  2614. .show = cgroup_pidlist_show,
  2615. };
  2616. static void cgroup_release_pid_array(struct cgroup_pidlist *l)
  2617. {
  2618. /*
  2619. * the case where we're the last user of this particular pidlist will
  2620. * have us remove it from the cgroup's list, which entails taking the
  2621. * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
  2622. * pidlist_mutex, we have to take pidlist_mutex first.
  2623. */
  2624. mutex_lock(&l->owner->pidlist_mutex);
  2625. down_write(&l->mutex);
  2626. BUG_ON(!l->use_count);
  2627. if (!--l->use_count) {
  2628. /* we're the last user if refcount is 0; remove and free */
  2629. list_del(&l->links);
  2630. mutex_unlock(&l->owner->pidlist_mutex);
  2631. pidlist_free(l->list);
  2632. put_pid_ns(l->key.ns);
  2633. up_write(&l->mutex);
  2634. kfree(l);
  2635. return;
  2636. }
  2637. mutex_unlock(&l->owner->pidlist_mutex);
  2638. up_write(&l->mutex);
  2639. }
  2640. static int cgroup_pidlist_release(struct inode *inode, struct file *file)
  2641. {
  2642. struct cgroup_pidlist *l;
  2643. if (!(file->f_mode & FMODE_READ))
  2644. return 0;
  2645. /*
  2646. * the seq_file will only be initialized if the file was opened for
  2647. * reading; hence we check if it's not null only in that case.
  2648. */
  2649. l = ((struct seq_file *)file->private_data)->private;
  2650. cgroup_release_pid_array(l);
  2651. return seq_release(inode, file);
  2652. }
  2653. static const struct file_operations cgroup_pidlist_operations = {
  2654. .read = seq_read,
  2655. .llseek = seq_lseek,
  2656. .write = cgroup_file_write,
  2657. .release = cgroup_pidlist_release,
  2658. };
  2659. /*
  2660. * The following functions handle opens on a file that displays a pidlist
  2661. * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
  2662. * in the cgroup.
  2663. */
  2664. /* helper function for the two below it */
  2665. static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
  2666. {
  2667. struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
  2668. struct cgroup_pidlist *l;
  2669. int retval;
  2670. /* Nothing to do for write-only files */
  2671. if (!(file->f_mode & FMODE_READ))
  2672. return 0;
  2673. /* have the array populated */
  2674. retval = pidlist_array_load(cgrp, type, &l);
  2675. if (retval)
  2676. return retval;
  2677. /* configure file information */
  2678. file->f_op = &cgroup_pidlist_operations;
  2679. retval = seq_open(file, &cgroup_pidlist_seq_operations);
  2680. if (retval) {
  2681. cgroup_release_pid_array(l);
  2682. return retval;
  2683. }
  2684. ((struct seq_file *)file->private_data)->private = l;
  2685. return 0;
  2686. }
  2687. static int cgroup_tasks_open(struct inode *unused, struct file *file)
  2688. {
  2689. return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
  2690. }
  2691. static int cgroup_procs_open(struct inode *unused, struct file *file)
  2692. {
  2693. return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
  2694. }
  2695. static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
  2696. struct cftype *cft)
  2697. {
  2698. return notify_on_release(cgrp);
  2699. }
  2700. static int cgroup_write_notify_on_release(struct cgroup *cgrp,
  2701. struct cftype *cft,
  2702. u64 val)
  2703. {
  2704. clear_bit(CGRP_RELEASABLE, &cgrp->flags);
  2705. if (val)
  2706. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  2707. else
  2708. clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  2709. return 0;
  2710. }
  2711. /*
  2712. * Unregister event and free resources.
  2713. *
  2714. * Gets called from workqueue.
  2715. */
  2716. static void cgroup_event_remove(struct work_struct *work)
  2717. {
  2718. struct cgroup_event *event = container_of(work, struct cgroup_event,
  2719. remove);
  2720. struct cgroup *cgrp = event->cgrp;
  2721. event->cft->unregister_event(cgrp, event->cft, event->eventfd);
  2722. eventfd_ctx_put(event->eventfd);
  2723. kfree(event);
  2724. dput(cgrp->dentry);
  2725. }
  2726. /*
  2727. * Gets called on POLLHUP on eventfd when user closes it.
  2728. *
  2729. * Called with wqh->lock held and interrupts disabled.
  2730. */
  2731. static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
  2732. int sync, void *key)
  2733. {
  2734. struct cgroup_event *event = container_of(wait,
  2735. struct cgroup_event, wait);
  2736. struct cgroup *cgrp = event->cgrp;
  2737. unsigned long flags = (unsigned long)key;
  2738. if (flags & POLLHUP) {
  2739. __remove_wait_queue(event->wqh, &event->wait);
  2740. spin_lock(&cgrp->event_list_lock);
  2741. list_del(&event->list);
  2742. spin_unlock(&cgrp->event_list_lock);
  2743. /*
  2744. * We are in atomic context, but cgroup_event_remove() may
  2745. * sleep, so we have to call it in workqueue.
  2746. */
  2747. schedule_work(&event->remove);
  2748. }
  2749. return 0;
  2750. }
  2751. static void cgroup_event_ptable_queue_proc(struct file *file,
  2752. wait_queue_head_t *wqh, poll_table *pt)
  2753. {
  2754. struct cgroup_event *event = container_of(pt,
  2755. struct cgroup_event, pt);
  2756. event->wqh = wqh;
  2757. add_wait_queue(wqh, &event->wait);
  2758. }
  2759. /*
  2760. * Parse input and register new cgroup event handler.
  2761. *
  2762. * Input must be in format '<event_fd> <control_fd> <args>'.
  2763. * Interpretation of args is defined by control file implementation.
  2764. */
  2765. static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
  2766. const char *buffer)
  2767. {
  2768. struct cgroup_event *event = NULL;
  2769. unsigned int efd, cfd;
  2770. struct file *efile = NULL;
  2771. struct file *cfile = NULL;
  2772. char *endp;
  2773. int ret;
  2774. efd = simple_strtoul(buffer, &endp, 10);
  2775. if (*endp != ' ')
  2776. return -EINVAL;
  2777. buffer = endp + 1;
  2778. cfd = simple_strtoul(buffer, &endp, 10);
  2779. if ((*endp != ' ') && (*endp != '\0'))
  2780. return -EINVAL;
  2781. buffer = endp + 1;
  2782. event = kzalloc(sizeof(*event), GFP_KERNEL);
  2783. if (!event)
  2784. return -ENOMEM;
  2785. event->cgrp = cgrp;
  2786. INIT_LIST_HEAD(&event->list);
  2787. init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
  2788. init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
  2789. INIT_WORK(&event->remove, cgroup_event_remove);
  2790. efile = eventfd_fget(efd);
  2791. if (IS_ERR(efile)) {
  2792. ret = PTR_ERR(efile);
  2793. goto fail;
  2794. }
  2795. event->eventfd = eventfd_ctx_fileget(efile);
  2796. if (IS_ERR(event->eventfd)) {
  2797. ret = PTR_ERR(event->eventfd);
  2798. goto fail;
  2799. }
  2800. cfile = fget(cfd);
  2801. if (!cfile) {
  2802. ret = -EBADF;
  2803. goto fail;
  2804. }
  2805. /* the process need read permission on control file */
  2806. ret = file_permission(cfile, MAY_READ);
  2807. if (ret < 0)
  2808. goto fail;
  2809. event->cft = __file_cft(cfile);
  2810. if (IS_ERR(event->cft)) {
  2811. ret = PTR_ERR(event->cft);
  2812. goto fail;
  2813. }
  2814. if (!event->cft->register_event || !event->cft->unregister_event) {
  2815. ret = -EINVAL;
  2816. goto fail;
  2817. }
  2818. ret = event->cft->register_event(cgrp, event->cft,
  2819. event->eventfd, buffer);
  2820. if (ret)
  2821. goto fail;
  2822. if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
  2823. event->cft->unregister_event(cgrp, event->cft, event->eventfd);
  2824. ret = 0;
  2825. goto fail;
  2826. }
  2827. /*
  2828. * Events should be removed after rmdir of cgroup directory, but before
  2829. * destroying subsystem state objects. Let's take reference to cgroup
  2830. * directory dentry to do that.
  2831. */
  2832. dget(cgrp->dentry);
  2833. spin_lock(&cgrp->event_list_lock);
  2834. list_add(&event->list, &cgrp->event_list);
  2835. spin_unlock(&cgrp->event_list_lock);
  2836. fput(cfile);
  2837. fput(efile);
  2838. return 0;
  2839. fail:
  2840. if (cfile)
  2841. fput(cfile);
  2842. if (event && event->eventfd && !IS_ERR(event->eventfd))
  2843. eventfd_ctx_put(event->eventfd);
  2844. if (!IS_ERR_OR_NULL(efile))
  2845. fput(efile);
  2846. kfree(event);
  2847. return ret;
  2848. }
  2849. static u64 cgroup_clone_children_read(struct cgroup *cgrp,
  2850. struct cftype *cft)
  2851. {
  2852. return clone_children(cgrp);
  2853. }
  2854. static int cgroup_clone_children_write(struct cgroup *cgrp,
  2855. struct cftype *cft,
  2856. u64 val)
  2857. {
  2858. if (val)
  2859. set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
  2860. else
  2861. clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
  2862. return 0;
  2863. }
  2864. /*
  2865. * for the common functions, 'private' gives the type of file
  2866. */
  2867. /* for hysterical raisins, we can't put this on the older files */
  2868. #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
  2869. static struct cftype files[] = {
  2870. {
  2871. .name = "tasks",
  2872. .open = cgroup_tasks_open,
  2873. .write_u64 = cgroup_tasks_write,
  2874. .release = cgroup_pidlist_release,
  2875. .mode = S_IRUGO | S_IWUSR,
  2876. },
  2877. {
  2878. .name = CGROUP_FILE_GENERIC_PREFIX "procs",
  2879. .open = cgroup_procs_open,
  2880. /* .write_u64 = cgroup_procs_write, TODO */
  2881. .release = cgroup_pidlist_release,
  2882. .mode = S_IRUGO,
  2883. },
  2884. {
  2885. .name = "notify_on_release",
  2886. .read_u64 = cgroup_read_notify_on_release,
  2887. .write_u64 = cgroup_write_notify_on_release,
  2888. },
  2889. {
  2890. .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
  2891. .write_string = cgroup_write_event_control,
  2892. .mode = S_IWUGO,
  2893. },
  2894. {
  2895. .name = "cgroup.clone_children",
  2896. .read_u64 = cgroup_clone_children_read,
  2897. .write_u64 = cgroup_clone_children_write,
  2898. },
  2899. };
  2900. static struct cftype cft_release_agent = {
  2901. .name = "release_agent",
  2902. .read_seq_string = cgroup_release_agent_show,
  2903. .write_string = cgroup_release_agent_write,
  2904. .max_write_len = PATH_MAX,
  2905. };
  2906. static int cgroup_populate_dir(struct cgroup *cgrp)
  2907. {
  2908. int err;
  2909. struct cgroup_subsys *ss;
  2910. /* First clear out any existing files */
  2911. cgroup_clear_directory(cgrp->dentry);
  2912. err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
  2913. if (err < 0)
  2914. return err;
  2915. if (cgrp == cgrp->top_cgroup) {
  2916. if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
  2917. return err;
  2918. }
  2919. for_each_subsys(cgrp->root, ss) {
  2920. if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
  2921. return err;
  2922. }
  2923. /* This cgroup is ready now */
  2924. for_each_subsys(cgrp->root, ss) {
  2925. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  2926. /*
  2927. * Update id->css pointer and make this css visible from
  2928. * CSS ID functions. This pointer will be dereferened
  2929. * from RCU-read-side without locks.
  2930. */
  2931. if (css->id)
  2932. rcu_assign_pointer(css->id->css, css);
  2933. }
  2934. return 0;
  2935. }
  2936. static void init_cgroup_css(struct cgroup_subsys_state *css,
  2937. struct cgroup_subsys *ss,
  2938. struct cgroup *cgrp)
  2939. {
  2940. css->cgroup = cgrp;
  2941. atomic_set(&css->refcnt, 1);
  2942. css->flags = 0;
  2943. css->id = NULL;
  2944. if (cgrp == dummytop)
  2945. set_bit(CSS_ROOT, &css->flags);
  2946. BUG_ON(cgrp->subsys[ss->subsys_id]);
  2947. cgrp->subsys[ss->subsys_id] = css;
  2948. }
  2949. static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
  2950. {
  2951. /* We need to take each hierarchy_mutex in a consistent order */
  2952. int i;
  2953. /*
  2954. * No worry about a race with rebind_subsystems that might mess up the
  2955. * locking order, since both parties are under cgroup_mutex.
  2956. */
  2957. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2958. struct cgroup_subsys *ss = subsys[i];
  2959. if (ss == NULL)
  2960. continue;
  2961. if (ss->root == root)
  2962. mutex_lock(&ss->hierarchy_mutex);
  2963. }
  2964. }
  2965. static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
  2966. {
  2967. int i;
  2968. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  2969. struct cgroup_subsys *ss = subsys[i];
  2970. if (ss == NULL)
  2971. continue;
  2972. if (ss->root == root)
  2973. mutex_unlock(&ss->hierarchy_mutex);
  2974. }
  2975. }
  2976. /*
  2977. * cgroup_create - create a cgroup
  2978. * @parent: cgroup that will be parent of the new cgroup
  2979. * @dentry: dentry of the new cgroup
  2980. * @mode: mode to set on new inode
  2981. *
  2982. * Must be called with the mutex on the parent inode held
  2983. */
  2984. static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
  2985. mode_t mode)
  2986. {
  2987. struct cgroup *cgrp;
  2988. struct cgroupfs_root *root = parent->root;
  2989. int err = 0;
  2990. struct cgroup_subsys *ss;
  2991. struct super_block *sb = root->sb;
  2992. cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
  2993. if (!cgrp)
  2994. return -ENOMEM;
  2995. /* Grab a reference on the superblock so the hierarchy doesn't
  2996. * get deleted on unmount if there are child cgroups. This
  2997. * can be done outside cgroup_mutex, since the sb can't
  2998. * disappear while someone has an open control file on the
  2999. * fs */
  3000. atomic_inc(&sb->s_active);
  3001. mutex_lock(&cgroup_mutex);
  3002. init_cgroup_housekeeping(cgrp);
  3003. cgrp->parent = parent;
  3004. cgrp->root = parent->root;
  3005. cgrp->top_cgroup = parent->top_cgroup;
  3006. if (notify_on_release(parent))
  3007. set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
  3008. if (clone_children(parent))
  3009. set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
  3010. for_each_subsys(root, ss) {
  3011. struct cgroup_subsys_state *css = ss->create(ss, cgrp);
  3012. if (IS_ERR(css)) {
  3013. err = PTR_ERR(css);
  3014. goto err_destroy;
  3015. }
  3016. init_cgroup_css(css, ss, cgrp);
  3017. if (ss->use_id) {
  3018. err = alloc_css_id(ss, parent, cgrp);
  3019. if (err)
  3020. goto err_destroy;
  3021. }
  3022. /* At error, ->destroy() callback has to free assigned ID. */
  3023. if (clone_children(parent) && ss->post_clone)
  3024. ss->post_clone(ss, cgrp);
  3025. }
  3026. cgroup_lock_hierarchy(root);
  3027. list_add(&cgrp->sibling, &cgrp->parent->children);
  3028. cgroup_unlock_hierarchy(root);
  3029. root->number_of_cgroups++;
  3030. err = cgroup_create_dir(cgrp, dentry, mode);
  3031. if (err < 0)
  3032. goto err_remove;
  3033. /* The cgroup directory was pre-locked for us */
  3034. BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
  3035. err = cgroup_populate_dir(cgrp);
  3036. /* If err < 0, we have a half-filled directory - oh well ;) */
  3037. mutex_unlock(&cgroup_mutex);
  3038. mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
  3039. return 0;
  3040. err_remove:
  3041. cgroup_lock_hierarchy(root);
  3042. list_del(&cgrp->sibling);
  3043. cgroup_unlock_hierarchy(root);
  3044. root->number_of_cgroups--;
  3045. err_destroy:
  3046. for_each_subsys(root, ss) {
  3047. if (cgrp->subsys[ss->subsys_id])
  3048. ss->destroy(ss, cgrp);
  3049. }
  3050. mutex_unlock(&cgroup_mutex);
  3051. /* Release the reference count that we took on the superblock */
  3052. deactivate_super(sb);
  3053. kfree(cgrp);
  3054. return err;
  3055. }
  3056. static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  3057. {
  3058. struct cgroup *c_parent = dentry->d_parent->d_fsdata;
  3059. /* the vfs holds inode->i_mutex already */
  3060. return cgroup_create(c_parent, dentry, mode | S_IFDIR);
  3061. }
  3062. static int cgroup_has_css_refs(struct cgroup *cgrp)
  3063. {
  3064. /* Check the reference count on each subsystem. Since we
  3065. * already established that there are no tasks in the
  3066. * cgroup, if the css refcount is also 1, then there should
  3067. * be no outstanding references, so the subsystem is safe to
  3068. * destroy. We scan across all subsystems rather than using
  3069. * the per-hierarchy linked list of mounted subsystems since
  3070. * we can be called via check_for_release() with no
  3071. * synchronization other than RCU, and the subsystem linked
  3072. * list isn't RCU-safe */
  3073. int i;
  3074. /*
  3075. * We won't need to lock the subsys array, because the subsystems
  3076. * we're concerned about aren't going anywhere since our cgroup root
  3077. * has a reference on them.
  3078. */
  3079. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  3080. struct cgroup_subsys *ss = subsys[i];
  3081. struct cgroup_subsys_state *css;
  3082. /* Skip subsystems not present or not in this hierarchy */
  3083. if (ss == NULL || ss->root != cgrp->root)
  3084. continue;
  3085. css = cgrp->subsys[ss->subsys_id];
  3086. /* When called from check_for_release() it's possible
  3087. * that by this point the cgroup has been removed
  3088. * and the css deleted. But a false-positive doesn't
  3089. * matter, since it can only happen if the cgroup
  3090. * has been deleted and hence no longer needs the
  3091. * release agent to be called anyway. */
  3092. if (css && (atomic_read(&css->refcnt) > 1))
  3093. return 1;
  3094. }
  3095. return 0;
  3096. }
  3097. /*
  3098. * Atomically mark all (or else none) of the cgroup's CSS objects as
  3099. * CSS_REMOVED. Return true on success, or false if the cgroup has
  3100. * busy subsystems. Call with cgroup_mutex held
  3101. */
  3102. static int cgroup_clear_css_refs(struct cgroup *cgrp)
  3103. {
  3104. struct cgroup_subsys *ss;
  3105. unsigned long flags;
  3106. bool failed = false;
  3107. local_irq_save(flags);
  3108. for_each_subsys(cgrp->root, ss) {
  3109. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3110. int refcnt;
  3111. while (1) {
  3112. /* We can only remove a CSS with a refcnt==1 */
  3113. refcnt = atomic_read(&css->refcnt);
  3114. if (refcnt > 1) {
  3115. failed = true;
  3116. goto done;
  3117. }
  3118. BUG_ON(!refcnt);
  3119. /*
  3120. * Drop the refcnt to 0 while we check other
  3121. * subsystems. This will cause any racing
  3122. * css_tryget() to spin until we set the
  3123. * CSS_REMOVED bits or abort
  3124. */
  3125. if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
  3126. break;
  3127. cpu_relax();
  3128. }
  3129. }
  3130. done:
  3131. for_each_subsys(cgrp->root, ss) {
  3132. struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
  3133. if (failed) {
  3134. /*
  3135. * Restore old refcnt if we previously managed
  3136. * to clear it from 1 to 0
  3137. */
  3138. if (!atomic_read(&css->refcnt))
  3139. atomic_set(&css->refcnt, 1);
  3140. } else {
  3141. /* Commit the fact that the CSS is removed */
  3142. set_bit(CSS_REMOVED, &css->flags);
  3143. }
  3144. }
  3145. local_irq_restore(flags);
  3146. return !failed;
  3147. }
  3148. static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
  3149. {
  3150. struct cgroup *cgrp = dentry->d_fsdata;
  3151. struct dentry *d;
  3152. struct cgroup *parent;
  3153. DEFINE_WAIT(wait);
  3154. struct cgroup_event *event, *tmp;
  3155. int ret;
  3156. /* the vfs holds both inode->i_mutex already */
  3157. again:
  3158. mutex_lock(&cgroup_mutex);
  3159. if (atomic_read(&cgrp->count) != 0) {
  3160. mutex_unlock(&cgroup_mutex);
  3161. return -EBUSY;
  3162. }
  3163. if (!list_empty(&cgrp->children)) {
  3164. mutex_unlock(&cgroup_mutex);
  3165. return -EBUSY;
  3166. }
  3167. mutex_unlock(&cgroup_mutex);
  3168. /*
  3169. * In general, subsystem has no css->refcnt after pre_destroy(). But
  3170. * in racy cases, subsystem may have to get css->refcnt after
  3171. * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
  3172. * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
  3173. * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
  3174. * and subsystem's reference count handling. Please see css_get/put
  3175. * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
  3176. */
  3177. set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3178. /*
  3179. * Call pre_destroy handlers of subsys. Notify subsystems
  3180. * that rmdir() request comes.
  3181. */
  3182. ret = cgroup_call_pre_destroy(cgrp);
  3183. if (ret) {
  3184. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3185. return ret;
  3186. }
  3187. mutex_lock(&cgroup_mutex);
  3188. parent = cgrp->parent;
  3189. if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
  3190. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3191. mutex_unlock(&cgroup_mutex);
  3192. return -EBUSY;
  3193. }
  3194. prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
  3195. if (!cgroup_clear_css_refs(cgrp)) {
  3196. mutex_unlock(&cgroup_mutex);
  3197. /*
  3198. * Because someone may call cgroup_wakeup_rmdir_waiter() before
  3199. * prepare_to_wait(), we need to check this flag.
  3200. */
  3201. if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
  3202. schedule();
  3203. finish_wait(&cgroup_rmdir_waitq, &wait);
  3204. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3205. if (signal_pending(current))
  3206. return -EINTR;
  3207. goto again;
  3208. }
  3209. /* NO css_tryget() can success after here. */
  3210. finish_wait(&cgroup_rmdir_waitq, &wait);
  3211. clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
  3212. spin_lock(&release_list_lock);
  3213. set_bit(CGRP_REMOVED, &cgrp->flags);
  3214. if (!list_empty(&cgrp->release_list))
  3215. list_del(&cgrp->release_list);
  3216. spin_unlock(&release_list_lock);
  3217. cgroup_lock_hierarchy(cgrp->root);
  3218. /* delete this cgroup from parent->children */
  3219. list_del(&cgrp->sibling);
  3220. cgroup_unlock_hierarchy(cgrp->root);
  3221. spin_lock(&cgrp->dentry->d_lock);
  3222. d = dget(cgrp->dentry);
  3223. spin_unlock(&d->d_lock);
  3224. cgroup_d_remove_dir(d);
  3225. dput(d);
  3226. set_bit(CGRP_RELEASABLE, &parent->flags);
  3227. check_for_release(parent);
  3228. /*
  3229. * Unregister events and notify userspace.
  3230. * Notify userspace about cgroup removing only after rmdir of cgroup
  3231. * directory to avoid race between userspace and kernelspace
  3232. */
  3233. spin_lock(&cgrp->event_list_lock);
  3234. list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
  3235. list_del(&event->list);
  3236. remove_wait_queue(event->wqh, &event->wait);
  3237. eventfd_signal(event->eventfd, 1);
  3238. schedule_work(&event->remove);
  3239. }
  3240. spin_unlock(&cgrp->event_list_lock);
  3241. mutex_unlock(&cgroup_mutex);
  3242. return 0;
  3243. }
  3244. static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
  3245. {
  3246. struct cgroup_subsys_state *css;
  3247. printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
  3248. /* Create the top cgroup state for this subsystem */
  3249. list_add(&ss->sibling, &rootnode.subsys_list);
  3250. ss->root = &rootnode;
  3251. css = ss->create(ss, dummytop);
  3252. /* We don't handle early failures gracefully */
  3253. BUG_ON(IS_ERR(css));
  3254. init_cgroup_css(css, ss, dummytop);
  3255. /* Update the init_css_set to contain a subsys
  3256. * pointer to this state - since the subsystem is
  3257. * newly registered, all tasks and hence the
  3258. * init_css_set is in the subsystem's top cgroup. */
  3259. init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
  3260. need_forkexit_callback |= ss->fork || ss->exit;
  3261. /* At system boot, before all subsystems have been
  3262. * registered, no tasks have been forked, so we don't
  3263. * need to invoke fork callbacks here. */
  3264. BUG_ON(!list_empty(&init_task.tasks));
  3265. mutex_init(&ss->hierarchy_mutex);
  3266. lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
  3267. ss->active = 1;
  3268. /* this function shouldn't be used with modular subsystems, since they
  3269. * need to register a subsys_id, among other things */
  3270. BUG_ON(ss->module);
  3271. }
  3272. /**
  3273. * cgroup_load_subsys: load and register a modular subsystem at runtime
  3274. * @ss: the subsystem to load
  3275. *
  3276. * This function should be called in a modular subsystem's initcall. If the
  3277. * subsystem is built as a module, it will be assigned a new subsys_id and set
  3278. * up for use. If the subsystem is built-in anyway, work is delegated to the
  3279. * simpler cgroup_init_subsys.
  3280. */
  3281. int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
  3282. {
  3283. int i;
  3284. struct cgroup_subsys_state *css;
  3285. /* check name and function validity */
  3286. if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
  3287. ss->create == NULL || ss->destroy == NULL)
  3288. return -EINVAL;
  3289. /*
  3290. * we don't support callbacks in modular subsystems. this check is
  3291. * before the ss->module check for consistency; a subsystem that could
  3292. * be a module should still have no callbacks even if the user isn't
  3293. * compiling it as one.
  3294. */
  3295. if (ss->fork || ss->exit)
  3296. return -EINVAL;
  3297. /*
  3298. * an optionally modular subsystem is built-in: we want to do nothing,
  3299. * since cgroup_init_subsys will have already taken care of it.
  3300. */
  3301. if (ss->module == NULL) {
  3302. /* a few sanity checks */
  3303. BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
  3304. BUG_ON(subsys[ss->subsys_id] != ss);
  3305. return 0;
  3306. }
  3307. /*
  3308. * need to register a subsys id before anything else - for example,
  3309. * init_cgroup_css needs it.
  3310. */
  3311. mutex_lock(&cgroup_mutex);
  3312. /* find the first empty slot in the array */
  3313. for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
  3314. if (subsys[i] == NULL)
  3315. break;
  3316. }
  3317. if (i == CGROUP_SUBSYS_COUNT) {
  3318. /* maximum number of subsystems already registered! */
  3319. mutex_unlock(&cgroup_mutex);
  3320. return -EBUSY;
  3321. }
  3322. /* assign ourselves the subsys_id */
  3323. ss->subsys_id = i;
  3324. subsys[i] = ss;
  3325. /*
  3326. * no ss->create seems to need anything important in the ss struct, so
  3327. * this can happen first (i.e. before the rootnode attachment).
  3328. */
  3329. css = ss->create(ss, dummytop);
  3330. if (IS_ERR(css)) {
  3331. /* failure case - need to deassign the subsys[] slot. */
  3332. subsys[i] = NULL;
  3333. mutex_unlock(&cgroup_mutex);
  3334. return PTR_ERR(css);
  3335. }
  3336. list_add(&ss->sibling, &rootnode.subsys_list);
  3337. ss->root = &rootnode;
  3338. /* our new subsystem will be attached to the dummy hierarchy. */
  3339. init_cgroup_css(css, ss, dummytop);
  3340. /* init_idr must be after init_cgroup_css because it sets css->id. */
  3341. if (ss->use_id) {
  3342. int ret = cgroup_init_idr(ss, css);
  3343. if (ret) {
  3344. dummytop->subsys[ss->subsys_id] = NULL;
  3345. ss->destroy(ss, dummytop);
  3346. subsys[i] = NULL;
  3347. mutex_unlock(&cgroup_mutex);
  3348. return ret;
  3349. }
  3350. }
  3351. /*
  3352. * Now we need to entangle the css into the existing css_sets. unlike
  3353. * in cgroup_init_subsys, there are now multiple css_sets, so each one
  3354. * will need a new pointer to it; done by iterating the css_set_table.
  3355. * furthermore, modifying the existing css_sets will corrupt the hash
  3356. * table state, so each changed css_set will need its hash recomputed.
  3357. * this is all done under the css_set_lock.
  3358. */
  3359. write_lock(&css_set_lock);
  3360. for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
  3361. struct css_set *cg;
  3362. struct hlist_node *node, *tmp;
  3363. struct hlist_head *bucket = &css_set_table[i], *new_bucket;
  3364. hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
  3365. /* skip entries that we already rehashed */
  3366. if (cg->subsys[ss->subsys_id])
  3367. continue;
  3368. /* remove existing entry */
  3369. hlist_del(&cg->hlist);
  3370. /* set new value */
  3371. cg->subsys[ss->subsys_id] = css;
  3372. /* recompute hash and restore entry */
  3373. new_bucket = css_set_hash(cg->subsys);
  3374. hlist_add_head(&cg->hlist, new_bucket);
  3375. }
  3376. }
  3377. write_unlock(&css_set_lock);
  3378. mutex_init(&ss->hierarchy_mutex);
  3379. lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
  3380. ss->active = 1;
  3381. /* success! */
  3382. mutex_unlock(&cgroup_mutex);
  3383. return 0;
  3384. }
  3385. EXPORT_SYMBOL_GPL(cgroup_load_subsys);
  3386. /**
  3387. * cgroup_unload_subsys: unload a modular subsystem
  3388. * @ss: the subsystem to unload
  3389. *
  3390. * This function should be called in a modular subsystem's exitcall. When this
  3391. * function is invoked, the refcount on the subsystem's module will be 0, so
  3392. * the subsystem will not be attached to any hierarchy.
  3393. */
  3394. void cgroup_unload_subsys(struct cgroup_subsys *ss)
  3395. {
  3396. struct cg_cgroup_link *link;
  3397. struct hlist_head *hhead;
  3398. BUG_ON(ss->module == NULL);
  3399. /*
  3400. * we shouldn't be called if the subsystem is in use, and the use of
  3401. * try_module_get in parse_cgroupfs_options should ensure that it
  3402. * doesn't start being used while we're killing it off.
  3403. */
  3404. BUG_ON(ss->root != &rootnode);
  3405. mutex_lock(&cgroup_mutex);
  3406. /* deassign the subsys_id */
  3407. BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
  3408. subsys[ss->subsys_id] = NULL;
  3409. /* remove subsystem from rootnode's list of subsystems */
  3410. list_del(&ss->sibling);
  3411. /*
  3412. * disentangle the css from all css_sets attached to the dummytop. as
  3413. * in loading, we need to pay our respects to the hashtable gods.
  3414. */
  3415. write_lock(&css_set_lock);
  3416. list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
  3417. struct css_set *cg = link->cg;
  3418. hlist_del(&cg->hlist);
  3419. BUG_ON(!cg->subsys[ss->subsys_id]);
  3420. cg->subsys[ss->subsys_id] = NULL;
  3421. hhead = css_set_hash(cg->subsys);
  3422. hlist_add_head(&cg->hlist, hhead);
  3423. }
  3424. write_unlock(&css_set_lock);
  3425. /*
  3426. * remove subsystem's css from the dummytop and free it - need to free
  3427. * before marking as null because ss->destroy needs the cgrp->subsys
  3428. * pointer to find their state. note that this also takes care of
  3429. * freeing the css_id.
  3430. */
  3431. ss->destroy(ss, dummytop);
  3432. dummytop->subsys[ss->subsys_id] = NULL;
  3433. mutex_unlock(&cgroup_mutex);
  3434. }
  3435. EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
  3436. /**
  3437. * cgroup_init_early - cgroup initialization at system boot
  3438. *
  3439. * Initialize cgroups at system boot, and initialize any
  3440. * subsystems that request early init.
  3441. */
  3442. int __init cgroup_init_early(void)
  3443. {
  3444. int i;
  3445. atomic_set(&init_css_set.refcount, 1);
  3446. INIT_LIST_HEAD(&init_css_set.cg_links);
  3447. INIT_LIST_HEAD(&init_css_set.tasks);
  3448. INIT_HLIST_NODE(&init_css_set.hlist);
  3449. css_set_count = 1;
  3450. init_cgroup_root(&rootnode);
  3451. root_count = 1;
  3452. init_task.cgroups = &init_css_set;
  3453. init_css_set_link.cg = &init_css_set;
  3454. init_css_set_link.cgrp = dummytop;
  3455. list_add(&init_css_set_link.cgrp_link_list,
  3456. &rootnode.top_cgroup.css_sets);
  3457. list_add(&init_css_set_link.cg_link_list,
  3458. &init_css_set.cg_links);
  3459. for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
  3460. INIT_HLIST_HEAD(&css_set_table[i]);
  3461. /* at bootup time, we don't worry about modular subsystems */
  3462. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  3463. struct cgroup_subsys *ss = subsys[i];
  3464. BUG_ON(!ss->name);
  3465. BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
  3466. BUG_ON(!ss->create);
  3467. BUG_ON(!ss->destroy);
  3468. if (ss->subsys_id != i) {
  3469. printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
  3470. ss->name, ss->subsys_id);
  3471. BUG();
  3472. }
  3473. if (ss->early_init)
  3474. cgroup_init_subsys(ss);
  3475. }
  3476. return 0;
  3477. }
  3478. /**
  3479. * cgroup_init - cgroup initialization
  3480. *
  3481. * Register cgroup filesystem and /proc file, and initialize
  3482. * any subsystems that didn't request early init.
  3483. */
  3484. int __init cgroup_init(void)
  3485. {
  3486. int err;
  3487. int i;
  3488. struct hlist_head *hhead;
  3489. err = bdi_init(&cgroup_backing_dev_info);
  3490. if (err)
  3491. return err;
  3492. /* at bootup time, we don't worry about modular subsystems */
  3493. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  3494. struct cgroup_subsys *ss = subsys[i];
  3495. if (!ss->early_init)
  3496. cgroup_init_subsys(ss);
  3497. if (ss->use_id)
  3498. cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
  3499. }
  3500. /* Add init_css_set to the hash table */
  3501. hhead = css_set_hash(init_css_set.subsys);
  3502. hlist_add_head(&init_css_set.hlist, hhead);
  3503. BUG_ON(!init_root_id(&rootnode));
  3504. cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
  3505. if (!cgroup_kobj) {
  3506. err = -ENOMEM;
  3507. goto out;
  3508. }
  3509. err = register_filesystem(&cgroup_fs_type);
  3510. if (err < 0) {
  3511. kobject_put(cgroup_kobj);
  3512. goto out;
  3513. }
  3514. proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
  3515. out:
  3516. if (err)
  3517. bdi_destroy(&cgroup_backing_dev_info);
  3518. return err;
  3519. }
  3520. /*
  3521. * proc_cgroup_show()
  3522. * - Print task's cgroup paths into seq_file, one line for each hierarchy
  3523. * - Used for /proc/<pid>/cgroup.
  3524. * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
  3525. * doesn't really matter if tsk->cgroup changes after we read it,
  3526. * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
  3527. * anyway. No need to check that tsk->cgroup != NULL, thanks to
  3528. * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
  3529. * cgroup to top_cgroup.
  3530. */
  3531. /* TODO: Use a proper seq_file iterator */
  3532. static int proc_cgroup_show(struct seq_file *m, void *v)
  3533. {
  3534. struct pid *pid;
  3535. struct task_struct *tsk;
  3536. char *buf;
  3537. int retval;
  3538. struct cgroupfs_root *root;
  3539. retval = -ENOMEM;
  3540. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3541. if (!buf)
  3542. goto out;
  3543. retval = -ESRCH;
  3544. pid = m->private;
  3545. tsk = get_pid_task(pid, PIDTYPE_PID);
  3546. if (!tsk)
  3547. goto out_free;
  3548. retval = 0;
  3549. mutex_lock(&cgroup_mutex);
  3550. for_each_active_root(root) {
  3551. struct cgroup_subsys *ss;
  3552. struct cgroup *cgrp;
  3553. int count = 0;
  3554. seq_printf(m, "%d:", root->hierarchy_id);
  3555. for_each_subsys(root, ss)
  3556. seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
  3557. if (strlen(root->name))
  3558. seq_printf(m, "%sname=%s", count ? "," : "",
  3559. root->name);
  3560. seq_putc(m, ':');
  3561. cgrp = task_cgroup_from_root(tsk, root);
  3562. retval = cgroup_path(cgrp, buf, PAGE_SIZE);
  3563. if (retval < 0)
  3564. goto out_unlock;
  3565. seq_puts(m, buf);
  3566. seq_putc(m, '\n');
  3567. }
  3568. out_unlock:
  3569. mutex_unlock(&cgroup_mutex);
  3570. put_task_struct(tsk);
  3571. out_free:
  3572. kfree(buf);
  3573. out:
  3574. return retval;
  3575. }
  3576. static int cgroup_open(struct inode *inode, struct file *file)
  3577. {
  3578. struct pid *pid = PROC_I(inode)->pid;
  3579. return single_open(file, proc_cgroup_show, pid);
  3580. }
  3581. const struct file_operations proc_cgroup_operations = {
  3582. .open = cgroup_open,
  3583. .read = seq_read,
  3584. .llseek = seq_lseek,
  3585. .release = single_release,
  3586. };
  3587. /* Display information about each subsystem and each hierarchy */
  3588. static int proc_cgroupstats_show(struct seq_file *m, void *v)
  3589. {
  3590. int i;
  3591. seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
  3592. /*
  3593. * ideally we don't want subsystems moving around while we do this.
  3594. * cgroup_mutex is also necessary to guarantee an atomic snapshot of
  3595. * subsys/hierarchy state.
  3596. */
  3597. mutex_lock(&cgroup_mutex);
  3598. for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
  3599. struct cgroup_subsys *ss = subsys[i];
  3600. if (ss == NULL)
  3601. continue;
  3602. seq_printf(m, "%s\t%d\t%d\t%d\n",
  3603. ss->name, ss->root->hierarchy_id,
  3604. ss->root->number_of_cgroups, !ss->disabled);
  3605. }
  3606. mutex_unlock(&cgroup_mutex);
  3607. return 0;
  3608. }
  3609. static int cgroupstats_open(struct inode *inode, struct file *file)
  3610. {
  3611. return single_open(file, proc_cgroupstats_show, NULL);
  3612. }
  3613. static const struct file_operations proc_cgroupstats_operations = {
  3614. .open = cgroupstats_open,
  3615. .read = seq_read,
  3616. .llseek = seq_lseek,
  3617. .release = single_release,
  3618. };
  3619. /**
  3620. * cgroup_fork - attach newly forked task to its parents cgroup.
  3621. * @child: pointer to task_struct of forking parent process.
  3622. *
  3623. * Description: A task inherits its parent's cgroup at fork().
  3624. *
  3625. * A pointer to the shared css_set was automatically copied in
  3626. * fork.c by dup_task_struct(). However, we ignore that copy, since
  3627. * it was not made under the protection of RCU or cgroup_mutex, so
  3628. * might no longer be a valid cgroup pointer. cgroup_attach_task() might
  3629. * have already changed current->cgroups, allowing the previously
  3630. * referenced cgroup group to be removed and freed.
  3631. *
  3632. * At the point that cgroup_fork() is called, 'current' is the parent
  3633. * task, and the passed argument 'child' points to the child task.
  3634. */
  3635. void cgroup_fork(struct task_struct *child)
  3636. {
  3637. task_lock(current);
  3638. child->cgroups = current->cgroups;
  3639. get_css_set(child->cgroups);
  3640. task_unlock(current);
  3641. INIT_LIST_HEAD(&child->cg_list);
  3642. }
  3643. /**
  3644. * cgroup_fork_callbacks - run fork callbacks
  3645. * @child: the new task
  3646. *
  3647. * Called on a new task very soon before adding it to the
  3648. * tasklist. No need to take any locks since no-one can
  3649. * be operating on this task.
  3650. */
  3651. void cgroup_fork_callbacks(struct task_struct *child)
  3652. {
  3653. if (need_forkexit_callback) {
  3654. int i;
  3655. /*
  3656. * forkexit callbacks are only supported for builtin
  3657. * subsystems, and the builtin section of the subsys array is
  3658. * immutable, so we don't need to lock the subsys array here.
  3659. */
  3660. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  3661. struct cgroup_subsys *ss = subsys[i];
  3662. if (ss->fork)
  3663. ss->fork(ss, child);
  3664. }
  3665. }
  3666. }
  3667. /**
  3668. * cgroup_post_fork - called on a new task after adding it to the task list
  3669. * @child: the task in question
  3670. *
  3671. * Adds the task to the list running through its css_set if necessary.
  3672. * Has to be after the task is visible on the task list in case we race
  3673. * with the first call to cgroup_iter_start() - to guarantee that the
  3674. * new task ends up on its list.
  3675. */
  3676. void cgroup_post_fork(struct task_struct *child)
  3677. {
  3678. if (use_task_css_set_links) {
  3679. write_lock(&css_set_lock);
  3680. task_lock(child);
  3681. if (list_empty(&child->cg_list))
  3682. list_add(&child->cg_list, &child->cgroups->tasks);
  3683. task_unlock(child);
  3684. write_unlock(&css_set_lock);
  3685. }
  3686. }
  3687. /**
  3688. * cgroup_exit - detach cgroup from exiting task
  3689. * @tsk: pointer to task_struct of exiting process
  3690. * @run_callback: run exit callbacks?
  3691. *
  3692. * Description: Detach cgroup from @tsk and release it.
  3693. *
  3694. * Note that cgroups marked notify_on_release force every task in
  3695. * them to take the global cgroup_mutex mutex when exiting.
  3696. * This could impact scaling on very large systems. Be reluctant to
  3697. * use notify_on_release cgroups where very high task exit scaling
  3698. * is required on large systems.
  3699. *
  3700. * the_top_cgroup_hack:
  3701. *
  3702. * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
  3703. *
  3704. * We call cgroup_exit() while the task is still competent to
  3705. * handle notify_on_release(), then leave the task attached to the
  3706. * root cgroup in each hierarchy for the remainder of its exit.
  3707. *
  3708. * To do this properly, we would increment the reference count on
  3709. * top_cgroup, and near the very end of the kernel/exit.c do_exit()
  3710. * code we would add a second cgroup function call, to drop that
  3711. * reference. This would just create an unnecessary hot spot on
  3712. * the top_cgroup reference count, to no avail.
  3713. *
  3714. * Normally, holding a reference to a cgroup without bumping its
  3715. * count is unsafe. The cgroup could go away, or someone could
  3716. * attach us to a different cgroup, decrementing the count on
  3717. * the first cgroup that we never incremented. But in this case,
  3718. * top_cgroup isn't going away, and either task has PF_EXITING set,
  3719. * which wards off any cgroup_attach_task() attempts, or task is a failed
  3720. * fork, never visible to cgroup_attach_task.
  3721. */
  3722. void cgroup_exit(struct task_struct *tsk, int run_callbacks)
  3723. {
  3724. int i;
  3725. struct css_set *cg;
  3726. if (run_callbacks && need_forkexit_callback) {
  3727. /*
  3728. * modular subsystems can't use callbacks, so no need to lock
  3729. * the subsys array
  3730. */
  3731. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  3732. struct cgroup_subsys *ss = subsys[i];
  3733. if (ss->exit)
  3734. ss->exit(ss, tsk);
  3735. }
  3736. }
  3737. /*
  3738. * Unlink from the css_set task list if necessary.
  3739. * Optimistically check cg_list before taking
  3740. * css_set_lock
  3741. */
  3742. if (!list_empty(&tsk->cg_list)) {
  3743. write_lock(&css_set_lock);
  3744. if (!list_empty(&tsk->cg_list))
  3745. list_del(&tsk->cg_list);
  3746. write_unlock(&css_set_lock);
  3747. }
  3748. /* Reassign the task to the init_css_set. */
  3749. task_lock(tsk);
  3750. cg = tsk->cgroups;
  3751. tsk->cgroups = &init_css_set;
  3752. task_unlock(tsk);
  3753. if (cg)
  3754. put_css_set_taskexit(cg);
  3755. }
  3756. /**
  3757. * cgroup_clone - clone the cgroup the given subsystem is attached to
  3758. * @tsk: the task to be moved
  3759. * @subsys: the given subsystem
  3760. * @nodename: the name for the new cgroup
  3761. *
  3762. * Duplicate the current cgroup in the hierarchy that the given
  3763. * subsystem is attached to, and move this task into the new
  3764. * child.
  3765. */
  3766. int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
  3767. char *nodename)
  3768. {
  3769. struct dentry *dentry;
  3770. int ret = 0;
  3771. struct cgroup *parent, *child;
  3772. struct inode *inode;
  3773. struct css_set *cg;
  3774. struct cgroupfs_root *root;
  3775. struct cgroup_subsys *ss;
  3776. /* We shouldn't be called by an unregistered subsystem */
  3777. BUG_ON(!subsys->active);
  3778. /* First figure out what hierarchy and cgroup we're dealing
  3779. * with, and pin them so we can drop cgroup_mutex */
  3780. mutex_lock(&cgroup_mutex);
  3781. again:
  3782. root = subsys->root;
  3783. if (root == &rootnode) {
  3784. mutex_unlock(&cgroup_mutex);
  3785. return 0;
  3786. }
  3787. /* Pin the hierarchy */
  3788. if (!atomic_inc_not_zero(&root->sb->s_active)) {
  3789. /* We race with the final deactivate_super() */
  3790. mutex_unlock(&cgroup_mutex);
  3791. return 0;
  3792. }
  3793. /* Keep the cgroup alive */
  3794. task_lock(tsk);
  3795. parent = task_cgroup(tsk, subsys->subsys_id);
  3796. cg = tsk->cgroups;
  3797. get_css_set(cg);
  3798. task_unlock(tsk);
  3799. mutex_unlock(&cgroup_mutex);
  3800. /* Now do the VFS work to create a cgroup */
  3801. inode = parent->dentry->d_inode;
  3802. /* Hold the parent directory mutex across this operation to
  3803. * stop anyone else deleting the new cgroup */
  3804. mutex_lock(&inode->i_mutex);
  3805. dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
  3806. if (IS_ERR(dentry)) {
  3807. printk(KERN_INFO
  3808. "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
  3809. PTR_ERR(dentry));
  3810. ret = PTR_ERR(dentry);
  3811. goto out_release;
  3812. }
  3813. /* Create the cgroup directory, which also creates the cgroup */
  3814. ret = vfs_mkdir(inode, dentry, 0755);
  3815. child = __d_cgrp(dentry);
  3816. dput(dentry);
  3817. if (ret) {
  3818. printk(KERN_INFO
  3819. "Failed to create cgroup %s: %d\n", nodename,
  3820. ret);
  3821. goto out_release;
  3822. }
  3823. /* The cgroup now exists. Retake cgroup_mutex and check
  3824. * that we're still in the same state that we thought we
  3825. * were. */
  3826. mutex_lock(&cgroup_mutex);
  3827. if ((root != subsys->root) ||
  3828. (parent != task_cgroup(tsk, subsys->subsys_id))) {
  3829. /* Aargh, we raced ... */
  3830. mutex_unlock(&inode->i_mutex);
  3831. put_css_set(cg);
  3832. deactivate_super(root->sb);
  3833. /* The cgroup is still accessible in the VFS, but
  3834. * we're not going to try to rmdir() it at this
  3835. * point. */
  3836. printk(KERN_INFO
  3837. "Race in cgroup_clone() - leaking cgroup %s\n",
  3838. nodename);
  3839. goto again;
  3840. }
  3841. /* do any required auto-setup */
  3842. for_each_subsys(root, ss) {
  3843. if (ss->post_clone)
  3844. ss->post_clone(ss, child);
  3845. }
  3846. /* All seems fine. Finish by moving the task into the new cgroup */
  3847. ret = cgroup_attach_task(child, tsk);
  3848. mutex_unlock(&cgroup_mutex);
  3849. out_release:
  3850. mutex_unlock(&inode->i_mutex);
  3851. mutex_lock(&cgroup_mutex);
  3852. put_css_set(cg);
  3853. mutex_unlock(&cgroup_mutex);
  3854. deactivate_super(root->sb);
  3855. return ret;
  3856. }
  3857. /**
  3858. * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
  3859. * @cgrp: the cgroup in question
  3860. * @task: the task in question
  3861. *
  3862. * See if @cgrp is a descendant of @task's cgroup in the appropriate
  3863. * hierarchy.
  3864. *
  3865. * If we are sending in dummytop, then presumably we are creating
  3866. * the top cgroup in the subsystem.
  3867. *
  3868. * Called only by the ns (nsproxy) cgroup.
  3869. */
  3870. int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
  3871. {
  3872. int ret;
  3873. struct cgroup *target;
  3874. if (cgrp == dummytop)
  3875. return 1;
  3876. target = task_cgroup_from_root(task, cgrp->root);
  3877. while (cgrp != target && cgrp!= cgrp->top_cgroup)
  3878. cgrp = cgrp->parent;
  3879. ret = (cgrp == target);
  3880. return ret;
  3881. }
  3882. static void check_for_release(struct cgroup *cgrp)
  3883. {
  3884. /* All of these checks rely on RCU to keep the cgroup
  3885. * structure alive */
  3886. if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
  3887. && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
  3888. /* Control Group is currently removeable. If it's not
  3889. * already queued for a userspace notification, queue
  3890. * it now */
  3891. int need_schedule_work = 0;
  3892. spin_lock(&release_list_lock);
  3893. if (!cgroup_is_removed(cgrp) &&
  3894. list_empty(&cgrp->release_list)) {
  3895. list_add(&cgrp->release_list, &release_list);
  3896. need_schedule_work = 1;
  3897. }
  3898. spin_unlock(&release_list_lock);
  3899. if (need_schedule_work)
  3900. schedule_work(&release_agent_work);
  3901. }
  3902. }
  3903. /* Caller must verify that the css is not for root cgroup */
  3904. void __css_put(struct cgroup_subsys_state *css, int count)
  3905. {
  3906. struct cgroup *cgrp = css->cgroup;
  3907. int val;
  3908. rcu_read_lock();
  3909. val = atomic_sub_return(count, &css->refcnt);
  3910. if (val == 1) {
  3911. if (notify_on_release(cgrp)) {
  3912. set_bit(CGRP_RELEASABLE, &cgrp->flags);
  3913. check_for_release(cgrp);
  3914. }
  3915. cgroup_wakeup_rmdir_waiter(cgrp);
  3916. }
  3917. rcu_read_unlock();
  3918. WARN_ON_ONCE(val < 1);
  3919. }
  3920. EXPORT_SYMBOL_GPL(__css_put);
  3921. /*
  3922. * Notify userspace when a cgroup is released, by running the
  3923. * configured release agent with the name of the cgroup (path
  3924. * relative to the root of cgroup file system) as the argument.
  3925. *
  3926. * Most likely, this user command will try to rmdir this cgroup.
  3927. *
  3928. * This races with the possibility that some other task will be
  3929. * attached to this cgroup before it is removed, or that some other
  3930. * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
  3931. * The presumed 'rmdir' will fail quietly if this cgroup is no longer
  3932. * unused, and this cgroup will be reprieved from its death sentence,
  3933. * to continue to serve a useful existence. Next time it's released,
  3934. * we will get notified again, if it still has 'notify_on_release' set.
  3935. *
  3936. * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
  3937. * means only wait until the task is successfully execve()'d. The
  3938. * separate release agent task is forked by call_usermodehelper(),
  3939. * then control in this thread returns here, without waiting for the
  3940. * release agent task. We don't bother to wait because the caller of
  3941. * this routine has no use for the exit status of the release agent
  3942. * task, so no sense holding our caller up for that.
  3943. */
  3944. static void cgroup_release_agent(struct work_struct *work)
  3945. {
  3946. BUG_ON(work != &release_agent_work);
  3947. mutex_lock(&cgroup_mutex);
  3948. spin_lock(&release_list_lock);
  3949. while (!list_empty(&release_list)) {
  3950. char *argv[3], *envp[3];
  3951. int i;
  3952. char *pathbuf = NULL, *agentbuf = NULL;
  3953. struct cgroup *cgrp = list_entry(release_list.next,
  3954. struct cgroup,
  3955. release_list);
  3956. list_del_init(&cgrp->release_list);
  3957. spin_unlock(&release_list_lock);
  3958. pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3959. if (!pathbuf)
  3960. goto continue_free;
  3961. if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
  3962. goto continue_free;
  3963. agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
  3964. if (!agentbuf)
  3965. goto continue_free;
  3966. i = 0;
  3967. argv[i++] = agentbuf;
  3968. argv[i++] = pathbuf;
  3969. argv[i] = NULL;
  3970. i = 0;
  3971. /* minimal command environment */
  3972. envp[i++] = "HOME=/";
  3973. envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
  3974. envp[i] = NULL;
  3975. /* Drop the lock while we invoke the usermode helper,
  3976. * since the exec could involve hitting disk and hence
  3977. * be a slow process */
  3978. mutex_unlock(&cgroup_mutex);
  3979. call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
  3980. mutex_lock(&cgroup_mutex);
  3981. continue_free:
  3982. kfree(pathbuf);
  3983. kfree(agentbuf);
  3984. spin_lock(&release_list_lock);
  3985. }
  3986. spin_unlock(&release_list_lock);
  3987. mutex_unlock(&cgroup_mutex);
  3988. }
  3989. static int __init cgroup_disable(char *str)
  3990. {
  3991. int i;
  3992. char *token;
  3993. while ((token = strsep(&str, ",")) != NULL) {
  3994. if (!*token)
  3995. continue;
  3996. /*
  3997. * cgroup_disable, being at boot time, can't know about module
  3998. * subsystems, so we don't worry about them.
  3999. */
  4000. for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
  4001. struct cgroup_subsys *ss = subsys[i];
  4002. if (!strcmp(token, ss->name)) {
  4003. ss->disabled = 1;
  4004. printk(KERN_INFO "Disabling %s control group"
  4005. " subsystem\n", ss->name);
  4006. break;
  4007. }
  4008. }
  4009. }
  4010. return 1;
  4011. }
  4012. __setup("cgroup_disable=", cgroup_disable);
  4013. /*
  4014. * Functons for CSS ID.
  4015. */
  4016. /*
  4017. *To get ID other than 0, this should be called when !cgroup_is_removed().
  4018. */
  4019. unsigned short css_id(struct cgroup_subsys_state *css)
  4020. {
  4021. struct css_id *cssid;
  4022. /*
  4023. * This css_id() can return correct value when somone has refcnt
  4024. * on this or this is under rcu_read_lock(). Once css->id is allocated,
  4025. * it's unchanged until freed.
  4026. */
  4027. cssid = rcu_dereference_check(css->id,
  4028. rcu_read_lock_held() || atomic_read(&css->refcnt));
  4029. if (cssid)
  4030. return cssid->id;
  4031. return 0;
  4032. }
  4033. EXPORT_SYMBOL_GPL(css_id);
  4034. unsigned short css_depth(struct cgroup_subsys_state *css)
  4035. {
  4036. struct css_id *cssid;
  4037. cssid = rcu_dereference_check(css->id,
  4038. rcu_read_lock_held() || atomic_read(&css->refcnt));
  4039. if (cssid)
  4040. return cssid->depth;
  4041. return 0;
  4042. }
  4043. EXPORT_SYMBOL_GPL(css_depth);
  4044. /**
  4045. * css_is_ancestor - test "root" css is an ancestor of "child"
  4046. * @child: the css to be tested.
  4047. * @root: the css supporsed to be an ancestor of the child.
  4048. *
  4049. * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
  4050. * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
  4051. * But, considering usual usage, the csses should be valid objects after test.
  4052. * Assuming that the caller will do some action to the child if this returns
  4053. * returns true, the caller must take "child";s reference count.
  4054. * If "child" is valid object and this returns true, "root" is valid, too.
  4055. */
  4056. bool css_is_ancestor(struct cgroup_subsys_state *child,
  4057. const struct cgroup_subsys_state *root)
  4058. {
  4059. struct css_id *child_id;
  4060. struct css_id *root_id;
  4061. bool ret = true;
  4062. rcu_read_lock();
  4063. child_id = rcu_dereference(child->id);
  4064. root_id = rcu_dereference(root->id);
  4065. if (!child_id
  4066. || !root_id
  4067. || (child_id->depth < root_id->depth)
  4068. || (child_id->stack[root_id->depth] != root_id->id))
  4069. ret = false;
  4070. rcu_read_unlock();
  4071. return ret;
  4072. }
  4073. static void __free_css_id_cb(struct rcu_head *head)
  4074. {
  4075. struct css_id *id;
  4076. id = container_of(head, struct css_id, rcu_head);
  4077. kfree(id);
  4078. }
  4079. void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
  4080. {
  4081. struct css_id *id = css->id;
  4082. /* When this is called before css_id initialization, id can be NULL */
  4083. if (!id)
  4084. return;
  4085. BUG_ON(!ss->use_id);
  4086. rcu_assign_pointer(id->css, NULL);
  4087. rcu_assign_pointer(css->id, NULL);
  4088. spin_lock(&ss->id_lock);
  4089. idr_remove(&ss->idr, id->id);
  4090. spin_unlock(&ss->id_lock);
  4091. call_rcu(&id->rcu_head, __free_css_id_cb);
  4092. }
  4093. EXPORT_SYMBOL_GPL(free_css_id);
  4094. /*
  4095. * This is called by init or create(). Then, calls to this function are
  4096. * always serialized (By cgroup_mutex() at create()).
  4097. */
  4098. static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
  4099. {
  4100. struct css_id *newid;
  4101. int myid, error, size;
  4102. BUG_ON(!ss->use_id);
  4103. size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
  4104. newid = kzalloc(size, GFP_KERNEL);
  4105. if (!newid)
  4106. return ERR_PTR(-ENOMEM);
  4107. /* get id */
  4108. if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
  4109. error = -ENOMEM;
  4110. goto err_out;
  4111. }
  4112. spin_lock(&ss->id_lock);
  4113. /* Don't use 0. allocates an ID of 1-65535 */
  4114. error = idr_get_new_above(&ss->idr, newid, 1, &myid);
  4115. spin_unlock(&ss->id_lock);
  4116. /* Returns error when there are no free spaces for new ID.*/
  4117. if (error) {
  4118. error = -ENOSPC;
  4119. goto err_out;
  4120. }
  4121. if (myid > CSS_ID_MAX)
  4122. goto remove_idr;
  4123. newid->id = myid;
  4124. newid->depth = depth;
  4125. return newid;
  4126. remove_idr:
  4127. error = -ENOSPC;
  4128. spin_lock(&ss->id_lock);
  4129. idr_remove(&ss->idr, myid);
  4130. spin_unlock(&ss->id_lock);
  4131. err_out:
  4132. kfree(newid);
  4133. return ERR_PTR(error);
  4134. }
  4135. static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
  4136. struct cgroup_subsys_state *rootcss)
  4137. {
  4138. struct css_id *newid;
  4139. spin_lock_init(&ss->id_lock);
  4140. idr_init(&ss->idr);
  4141. newid = get_new_cssid(ss, 0);
  4142. if (IS_ERR(newid))
  4143. return PTR_ERR(newid);
  4144. newid->stack[0] = newid->id;
  4145. newid->css = rootcss;
  4146. rootcss->id = newid;
  4147. return 0;
  4148. }
  4149. static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
  4150. struct cgroup *child)
  4151. {
  4152. int subsys_id, i, depth = 0;
  4153. struct cgroup_subsys_state *parent_css, *child_css;
  4154. struct css_id *child_id, *parent_id;
  4155. subsys_id = ss->subsys_id;
  4156. parent_css = parent->subsys[subsys_id];
  4157. child_css = child->subsys[subsys_id];
  4158. parent_id = parent_css->id;
  4159. depth = parent_id->depth + 1;
  4160. child_id = get_new_cssid(ss, depth);
  4161. if (IS_ERR(child_id))
  4162. return PTR_ERR(child_id);
  4163. for (i = 0; i < depth; i++)
  4164. child_id->stack[i] = parent_id->stack[i];
  4165. child_id->stack[depth] = child_id->id;
  4166. /*
  4167. * child_id->css pointer will be set after this cgroup is available
  4168. * see cgroup_populate_dir()
  4169. */
  4170. rcu_assign_pointer(child_css->id, child_id);
  4171. return 0;
  4172. }
  4173. /**
  4174. * css_lookup - lookup css by id
  4175. * @ss: cgroup subsys to be looked into.
  4176. * @id: the id
  4177. *
  4178. * Returns pointer to cgroup_subsys_state if there is valid one with id.
  4179. * NULL if not. Should be called under rcu_read_lock()
  4180. */
  4181. struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
  4182. {
  4183. struct css_id *cssid = NULL;
  4184. BUG_ON(!ss->use_id);
  4185. cssid = idr_find(&ss->idr, id);
  4186. if (unlikely(!cssid))
  4187. return NULL;
  4188. return rcu_dereference(cssid->css);
  4189. }
  4190. EXPORT_SYMBOL_GPL(css_lookup);
  4191. /**
  4192. * css_get_next - lookup next cgroup under specified hierarchy.
  4193. * @ss: pointer to subsystem
  4194. * @id: current position of iteration.
  4195. * @root: pointer to css. search tree under this.
  4196. * @foundid: position of found object.
  4197. *
  4198. * Search next css under the specified hierarchy of rootid. Calling under
  4199. * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
  4200. */
  4201. struct cgroup_subsys_state *
  4202. css_get_next(struct cgroup_subsys *ss, int id,
  4203. struct cgroup_subsys_state *root, int *foundid)
  4204. {
  4205. struct cgroup_subsys_state *ret = NULL;
  4206. struct css_id *tmp;
  4207. int tmpid;
  4208. int rootid = css_id(root);
  4209. int depth = css_depth(root);
  4210. if (!rootid)
  4211. return NULL;
  4212. BUG_ON(!ss->use_id);
  4213. /* fill start point for scan */
  4214. tmpid = id;
  4215. while (1) {
  4216. /*
  4217. * scan next entry from bitmap(tree), tmpid is updated after
  4218. * idr_get_next().
  4219. */
  4220. spin_lock(&ss->id_lock);
  4221. tmp = idr_get_next(&ss->idr, &tmpid);
  4222. spin_unlock(&ss->id_lock);
  4223. if (!tmp)
  4224. break;
  4225. if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
  4226. ret = rcu_dereference(tmp->css);
  4227. if (ret) {
  4228. *foundid = tmpid;
  4229. break;
  4230. }
  4231. }
  4232. /* continue to scan from next id */
  4233. tmpid = tmpid + 1;
  4234. }
  4235. return ret;
  4236. }
  4237. #ifdef CONFIG_CGROUP_DEBUG
  4238. static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
  4239. struct cgroup *cont)
  4240. {
  4241. struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
  4242. if (!css)
  4243. return ERR_PTR(-ENOMEM);
  4244. return css;
  4245. }
  4246. static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  4247. {
  4248. kfree(cont->subsys[debug_subsys_id]);
  4249. }
  4250. static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
  4251. {
  4252. return atomic_read(&cont->count);
  4253. }
  4254. static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
  4255. {
  4256. return cgroup_task_count(cont);
  4257. }
  4258. static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
  4259. {
  4260. return (u64)(unsigned long)current->cgroups;
  4261. }
  4262. static u64 current_css_set_refcount_read(struct cgroup *cont,
  4263. struct cftype *cft)
  4264. {
  4265. u64 count;
  4266. rcu_read_lock();
  4267. count = atomic_read(&current->cgroups->refcount);
  4268. rcu_read_unlock();
  4269. return count;
  4270. }
  4271. static int current_css_set_cg_links_read(struct cgroup *cont,
  4272. struct cftype *cft,
  4273. struct seq_file *seq)
  4274. {
  4275. struct cg_cgroup_link *link;
  4276. struct css_set *cg;
  4277. read_lock(&css_set_lock);
  4278. rcu_read_lock();
  4279. cg = rcu_dereference(current->cgroups);
  4280. list_for_each_entry(link, &cg->cg_links, cg_link_list) {
  4281. struct cgroup *c = link->cgrp;
  4282. const char *name;
  4283. if (c->dentry)
  4284. name = c->dentry->d_name.name;
  4285. else
  4286. name = "?";
  4287. seq_printf(seq, "Root %d group %s\n",
  4288. c->root->hierarchy_id, name);
  4289. }
  4290. rcu_read_unlock();
  4291. read_unlock(&css_set_lock);
  4292. return 0;
  4293. }
  4294. #define MAX_TASKS_SHOWN_PER_CSS 25
  4295. static int cgroup_css_links_read(struct cgroup *cont,
  4296. struct cftype *cft,
  4297. struct seq_file *seq)
  4298. {
  4299. struct cg_cgroup_link *link;
  4300. read_lock(&css_set_lock);
  4301. list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
  4302. struct css_set *cg = link->cg;
  4303. struct task_struct *task;
  4304. int count = 0;
  4305. seq_printf(seq, "css_set %p\n", cg);
  4306. list_for_each_entry(task, &cg->tasks, cg_list) {
  4307. if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
  4308. seq_puts(seq, " ...\n");
  4309. break;
  4310. } else {
  4311. seq_printf(seq, " task %d\n",
  4312. task_pid_vnr(task));
  4313. }
  4314. }
  4315. }
  4316. read_unlock(&css_set_lock);
  4317. return 0;
  4318. }
  4319. static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
  4320. {
  4321. return test_bit(CGRP_RELEASABLE, &cgrp->flags);
  4322. }
  4323. static struct cftype debug_files[] = {
  4324. {
  4325. .name = "cgroup_refcount",
  4326. .read_u64 = cgroup_refcount_read,
  4327. },
  4328. {
  4329. .name = "taskcount",
  4330. .read_u64 = debug_taskcount_read,
  4331. },
  4332. {
  4333. .name = "current_css_set",
  4334. .read_u64 = current_css_set_read,
  4335. },
  4336. {
  4337. .name = "current_css_set_refcount",
  4338. .read_u64 = current_css_set_refcount_read,
  4339. },
  4340. {
  4341. .name = "current_css_set_cg_links",
  4342. .read_seq_string = current_css_set_cg_links_read,
  4343. },
  4344. {
  4345. .name = "cgroup_css_links",
  4346. .read_seq_string = cgroup_css_links_read,
  4347. },
  4348. {
  4349. .name = "releasable",
  4350. .read_u64 = releasable_read,
  4351. },
  4352. };
  4353. static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  4354. {
  4355. return cgroup_add_files(cont, ss, debug_files,
  4356. ARRAY_SIZE(debug_files));
  4357. }
  4358. struct cgroup_subsys debug_subsys = {
  4359. .name = "debug",
  4360. .create = debug_create,
  4361. .destroy = debug_destroy,
  4362. .populate = debug_populate,
  4363. .subsys_id = debug_subsys_id,
  4364. };
  4365. #endif /* CONFIG_CGROUP_DEBUG */