i915_gem.c 131 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static int
  58. i915_gem_object_get_pages(struct drm_gem_object *obj,
  59. gfp_t gfpmask);
  60. static void
  61. i915_gem_object_put_pages(struct drm_gem_object *obj);
  62. static LIST_HEAD(shrink_list);
  63. static DEFINE_SPINLOCK(shrink_list_lock);
  64. /* some bookkeeping */
  65. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count++;
  69. dev_priv->mm.object_memory += size;
  70. }
  71. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  72. size_t size)
  73. {
  74. dev_priv->mm.object_count--;
  75. dev_priv->mm.object_memory -= size;
  76. }
  77. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  78. size_t size)
  79. {
  80. dev_priv->mm.gtt_count++;
  81. dev_priv->mm.gtt_memory += size;
  82. }
  83. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  84. size_t size)
  85. {
  86. dev_priv->mm.gtt_count--;
  87. dev_priv->mm.gtt_memory -= size;
  88. }
  89. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  90. size_t size)
  91. {
  92. dev_priv->mm.pin_count++;
  93. dev_priv->mm.pin_memory += size;
  94. }
  95. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  96. size_t size)
  97. {
  98. dev_priv->mm.pin_count--;
  99. dev_priv->mm.pin_memory -= size;
  100. }
  101. int
  102. i915_gem_check_is_wedged(struct drm_device *dev)
  103. {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. struct completion *x = &dev_priv->error_completion;
  106. unsigned long flags;
  107. int ret;
  108. if (!atomic_read(&dev_priv->mm.wedged))
  109. return 0;
  110. ret = wait_for_completion_interruptible(x);
  111. if (ret)
  112. return ret;
  113. /* Success, we reset the GPU! */
  114. if (!atomic_read(&dev_priv->mm.wedged))
  115. return 0;
  116. /* GPU is hung, bump the completion count to account for
  117. * the token we just consumed so that we never hit zero and
  118. * end up waiting upon a subsequent completion event that
  119. * will never happen.
  120. */
  121. spin_lock_irqsave(&x->wait.lock, flags);
  122. x->done++;
  123. spin_unlock_irqrestore(&x->wait.lock, flags);
  124. return -EIO;
  125. }
  126. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  127. {
  128. struct drm_i915_private *dev_priv = dev->dev_private;
  129. int ret;
  130. ret = i915_gem_check_is_wedged(dev);
  131. if (ret)
  132. return ret;
  133. ret = mutex_lock_interruptible(&dev->struct_mutex);
  134. if (ret)
  135. return ret;
  136. if (atomic_read(&dev_priv->mm.wedged)) {
  137. mutex_unlock(&dev->struct_mutex);
  138. return -EAGAIN;
  139. }
  140. WARN_ON(i915_verify_lists(dev));
  141. return 0;
  142. }
  143. static inline bool
  144. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  145. {
  146. return obj_priv->gtt_space &&
  147. !obj_priv->active &&
  148. obj_priv->pin_count == 0;
  149. }
  150. int i915_gem_do_init(struct drm_device *dev,
  151. unsigned long start,
  152. unsigned long end)
  153. {
  154. drm_i915_private_t *dev_priv = dev->dev_private;
  155. if (start >= end ||
  156. (start & (PAGE_SIZE - 1)) != 0 ||
  157. (end & (PAGE_SIZE - 1)) != 0) {
  158. return -EINVAL;
  159. }
  160. drm_mm_init(&dev_priv->mm.gtt_space, start,
  161. end - start);
  162. dev_priv->mm.gtt_total = end - start;
  163. return 0;
  164. }
  165. int
  166. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  167. struct drm_file *file_priv)
  168. {
  169. struct drm_i915_gem_init *args = data;
  170. int ret;
  171. mutex_lock(&dev->struct_mutex);
  172. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  173. mutex_unlock(&dev->struct_mutex);
  174. return ret;
  175. }
  176. int
  177. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  178. struct drm_file *file_priv)
  179. {
  180. struct drm_i915_private *dev_priv = dev->dev_private;
  181. struct drm_i915_gem_get_aperture *args = data;
  182. if (!(dev->driver->driver_features & DRIVER_GEM))
  183. return -ENODEV;
  184. mutex_lock(&dev->struct_mutex);
  185. args->aper_size = dev_priv->mm.gtt_total;
  186. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  187. mutex_unlock(&dev->struct_mutex);
  188. return 0;
  189. }
  190. /**
  191. * Creates a new mm object and returns a handle to it.
  192. */
  193. int
  194. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  195. struct drm_file *file_priv)
  196. {
  197. struct drm_i915_gem_create *args = data;
  198. struct drm_gem_object *obj;
  199. int ret;
  200. u32 handle;
  201. args->size = roundup(args->size, PAGE_SIZE);
  202. /* Allocate the new object */
  203. obj = i915_gem_alloc_object(dev, args->size);
  204. if (obj == NULL)
  205. return -ENOMEM;
  206. ret = drm_gem_handle_create(file_priv, obj, &handle);
  207. if (ret) {
  208. drm_gem_object_release(obj);
  209. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  210. kfree(obj);
  211. return ret;
  212. }
  213. /* drop reference from allocate - handle holds it now */
  214. drm_gem_object_unreference(obj);
  215. trace_i915_gem_object_create(obj);
  216. args->handle = handle;
  217. return 0;
  218. }
  219. static inline int
  220. fast_shmem_read(struct page **pages,
  221. loff_t page_base, int page_offset,
  222. char __user *data,
  223. int length)
  224. {
  225. char *vaddr;
  226. int ret;
  227. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  228. ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  229. kunmap_atomic(vaddr);
  230. return ret;
  231. }
  232. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  233. {
  234. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  235. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  236. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  237. obj_priv->tiling_mode != I915_TILING_NONE;
  238. }
  239. static inline void
  240. slow_shmem_copy(struct page *dst_page,
  241. int dst_offset,
  242. struct page *src_page,
  243. int src_offset,
  244. int length)
  245. {
  246. char *dst_vaddr, *src_vaddr;
  247. dst_vaddr = kmap(dst_page);
  248. src_vaddr = kmap(src_page);
  249. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  250. kunmap(src_page);
  251. kunmap(dst_page);
  252. }
  253. static inline void
  254. slow_shmem_bit17_copy(struct page *gpu_page,
  255. int gpu_offset,
  256. struct page *cpu_page,
  257. int cpu_offset,
  258. int length,
  259. int is_read)
  260. {
  261. char *gpu_vaddr, *cpu_vaddr;
  262. /* Use the unswizzled path if this page isn't affected. */
  263. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  264. if (is_read)
  265. return slow_shmem_copy(cpu_page, cpu_offset,
  266. gpu_page, gpu_offset, length);
  267. else
  268. return slow_shmem_copy(gpu_page, gpu_offset,
  269. cpu_page, cpu_offset, length);
  270. }
  271. gpu_vaddr = kmap(gpu_page);
  272. cpu_vaddr = kmap(cpu_page);
  273. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  274. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  275. */
  276. while (length > 0) {
  277. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  278. int this_length = min(cacheline_end - gpu_offset, length);
  279. int swizzled_gpu_offset = gpu_offset ^ 64;
  280. if (is_read) {
  281. memcpy(cpu_vaddr + cpu_offset,
  282. gpu_vaddr + swizzled_gpu_offset,
  283. this_length);
  284. } else {
  285. memcpy(gpu_vaddr + swizzled_gpu_offset,
  286. cpu_vaddr + cpu_offset,
  287. this_length);
  288. }
  289. cpu_offset += this_length;
  290. gpu_offset += this_length;
  291. length -= this_length;
  292. }
  293. kunmap(cpu_page);
  294. kunmap(gpu_page);
  295. }
  296. /**
  297. * This is the fast shmem pread path, which attempts to copy_from_user directly
  298. * from the backing pages of the object to the user's address space. On a
  299. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  300. */
  301. static int
  302. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  303. struct drm_i915_gem_pread *args,
  304. struct drm_file *file_priv)
  305. {
  306. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  307. ssize_t remain;
  308. loff_t offset, page_base;
  309. char __user *user_data;
  310. int page_offset, page_length;
  311. user_data = (char __user *) (uintptr_t) args->data_ptr;
  312. remain = args->size;
  313. obj_priv = to_intel_bo(obj);
  314. offset = args->offset;
  315. while (remain > 0) {
  316. /* Operation in this page
  317. *
  318. * page_base = page offset within aperture
  319. * page_offset = offset within page
  320. * page_length = bytes to copy for this page
  321. */
  322. page_base = (offset & ~(PAGE_SIZE-1));
  323. page_offset = offset & (PAGE_SIZE-1);
  324. page_length = remain;
  325. if ((page_offset + remain) > PAGE_SIZE)
  326. page_length = PAGE_SIZE - page_offset;
  327. if (fast_shmem_read(obj_priv->pages,
  328. page_base, page_offset,
  329. user_data, page_length))
  330. return -EFAULT;
  331. remain -= page_length;
  332. user_data += page_length;
  333. offset += page_length;
  334. }
  335. return 0;
  336. }
  337. static int
  338. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  339. {
  340. int ret;
  341. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  342. /* If we've insufficient memory to map in the pages, attempt
  343. * to make some space by throwing out some old buffers.
  344. */
  345. if (ret == -ENOMEM) {
  346. struct drm_device *dev = obj->dev;
  347. ret = i915_gem_evict_something(dev, obj->size,
  348. i915_gem_get_gtt_alignment(obj));
  349. if (ret)
  350. return ret;
  351. ret = i915_gem_object_get_pages(obj, 0);
  352. }
  353. return ret;
  354. }
  355. /**
  356. * This is the fallback shmem pread path, which allocates temporary storage
  357. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  358. * can copy out of the object's backing pages while holding the struct mutex
  359. * and not take page faults.
  360. */
  361. static int
  362. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  363. struct drm_i915_gem_pread *args,
  364. struct drm_file *file_priv)
  365. {
  366. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  367. struct mm_struct *mm = current->mm;
  368. struct page **user_pages;
  369. ssize_t remain;
  370. loff_t offset, pinned_pages, i;
  371. loff_t first_data_page, last_data_page, num_pages;
  372. int shmem_page_index, shmem_page_offset;
  373. int data_page_index, data_page_offset;
  374. int page_length;
  375. int ret;
  376. uint64_t data_ptr = args->data_ptr;
  377. int do_bit17_swizzling;
  378. remain = args->size;
  379. /* Pin the user pages containing the data. We can't fault while
  380. * holding the struct mutex, yet we want to hold it while
  381. * dereferencing the user data.
  382. */
  383. first_data_page = data_ptr / PAGE_SIZE;
  384. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  385. num_pages = last_data_page - first_data_page + 1;
  386. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  387. if (user_pages == NULL)
  388. return -ENOMEM;
  389. mutex_unlock(&dev->struct_mutex);
  390. down_read(&mm->mmap_sem);
  391. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  392. num_pages, 1, 0, user_pages, NULL);
  393. up_read(&mm->mmap_sem);
  394. mutex_lock(&dev->struct_mutex);
  395. if (pinned_pages < num_pages) {
  396. ret = -EFAULT;
  397. goto out;
  398. }
  399. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  400. args->offset,
  401. args->size);
  402. if (ret)
  403. goto out;
  404. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  405. obj_priv = to_intel_bo(obj);
  406. offset = args->offset;
  407. while (remain > 0) {
  408. /* Operation in this page
  409. *
  410. * shmem_page_index = page number within shmem file
  411. * shmem_page_offset = offset within page in shmem file
  412. * data_page_index = page number in get_user_pages return
  413. * data_page_offset = offset with data_page_index page.
  414. * page_length = bytes to copy for this page
  415. */
  416. shmem_page_index = offset / PAGE_SIZE;
  417. shmem_page_offset = offset & ~PAGE_MASK;
  418. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  419. data_page_offset = data_ptr & ~PAGE_MASK;
  420. page_length = remain;
  421. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  422. page_length = PAGE_SIZE - shmem_page_offset;
  423. if ((data_page_offset + page_length) > PAGE_SIZE)
  424. page_length = PAGE_SIZE - data_page_offset;
  425. if (do_bit17_swizzling) {
  426. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  427. shmem_page_offset,
  428. user_pages[data_page_index],
  429. data_page_offset,
  430. page_length,
  431. 1);
  432. } else {
  433. slow_shmem_copy(user_pages[data_page_index],
  434. data_page_offset,
  435. obj_priv->pages[shmem_page_index],
  436. shmem_page_offset,
  437. page_length);
  438. }
  439. remain -= page_length;
  440. data_ptr += page_length;
  441. offset += page_length;
  442. }
  443. out:
  444. for (i = 0; i < pinned_pages; i++) {
  445. SetPageDirty(user_pages[i]);
  446. page_cache_release(user_pages[i]);
  447. }
  448. drm_free_large(user_pages);
  449. return ret;
  450. }
  451. /**
  452. * Reads data from the object referenced by handle.
  453. *
  454. * On error, the contents of *data are undefined.
  455. */
  456. int
  457. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  458. struct drm_file *file_priv)
  459. {
  460. struct drm_i915_gem_pread *args = data;
  461. struct drm_gem_object *obj;
  462. struct drm_i915_gem_object *obj_priv;
  463. int ret = 0;
  464. if (args->size == 0)
  465. return 0;
  466. if (!access_ok(VERIFY_WRITE,
  467. (char __user *)(uintptr_t)args->data_ptr,
  468. args->size))
  469. return -EFAULT;
  470. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  471. args->size);
  472. if (ret)
  473. return -EFAULT;
  474. ret = i915_mutex_lock_interruptible(dev);
  475. if (ret)
  476. return ret;
  477. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  478. if (obj == NULL) {
  479. ret = -ENOENT;
  480. goto unlock;
  481. }
  482. obj_priv = to_intel_bo(obj);
  483. /* Bounds check source. */
  484. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  485. ret = -EINVAL;
  486. goto out;
  487. }
  488. ret = i915_gem_object_get_pages_or_evict(obj);
  489. if (ret)
  490. goto out;
  491. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  492. args->offset,
  493. args->size);
  494. if (ret)
  495. goto out_put;
  496. ret = -EFAULT;
  497. if (!i915_gem_object_needs_bit17_swizzle(obj))
  498. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  499. if (ret == -EFAULT)
  500. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  501. out_put:
  502. i915_gem_object_put_pages(obj);
  503. out:
  504. drm_gem_object_unreference(obj);
  505. unlock:
  506. mutex_unlock(&dev->struct_mutex);
  507. return ret;
  508. }
  509. /* This is the fast write path which cannot handle
  510. * page faults in the source data
  511. */
  512. static inline int
  513. fast_user_write(struct io_mapping *mapping,
  514. loff_t page_base, int page_offset,
  515. char __user *user_data,
  516. int length)
  517. {
  518. char *vaddr_atomic;
  519. unsigned long unwritten;
  520. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  521. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  522. user_data, length);
  523. io_mapping_unmap_atomic(vaddr_atomic);
  524. return unwritten;
  525. }
  526. /* Here's the write path which can sleep for
  527. * page faults
  528. */
  529. static inline void
  530. slow_kernel_write(struct io_mapping *mapping,
  531. loff_t gtt_base, int gtt_offset,
  532. struct page *user_page, int user_offset,
  533. int length)
  534. {
  535. char __iomem *dst_vaddr;
  536. char *src_vaddr;
  537. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  538. src_vaddr = kmap(user_page);
  539. memcpy_toio(dst_vaddr + gtt_offset,
  540. src_vaddr + user_offset,
  541. length);
  542. kunmap(user_page);
  543. io_mapping_unmap(dst_vaddr);
  544. }
  545. static inline int
  546. fast_shmem_write(struct page **pages,
  547. loff_t page_base, int page_offset,
  548. char __user *data,
  549. int length)
  550. {
  551. char *vaddr;
  552. int ret;
  553. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  554. ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  555. kunmap_atomic(vaddr);
  556. return ret;
  557. }
  558. /**
  559. * This is the fast pwrite path, where we copy the data directly from the
  560. * user into the GTT, uncached.
  561. */
  562. static int
  563. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  564. struct drm_i915_gem_pwrite *args,
  565. struct drm_file *file_priv)
  566. {
  567. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  568. drm_i915_private_t *dev_priv = dev->dev_private;
  569. ssize_t remain;
  570. loff_t offset, page_base;
  571. char __user *user_data;
  572. int page_offset, page_length;
  573. user_data = (char __user *) (uintptr_t) args->data_ptr;
  574. remain = args->size;
  575. obj_priv = to_intel_bo(obj);
  576. offset = obj_priv->gtt_offset + args->offset;
  577. while (remain > 0) {
  578. /* Operation in this page
  579. *
  580. * page_base = page offset within aperture
  581. * page_offset = offset within page
  582. * page_length = bytes to copy for this page
  583. */
  584. page_base = (offset & ~(PAGE_SIZE-1));
  585. page_offset = offset & (PAGE_SIZE-1);
  586. page_length = remain;
  587. if ((page_offset + remain) > PAGE_SIZE)
  588. page_length = PAGE_SIZE - page_offset;
  589. /* If we get a fault while copying data, then (presumably) our
  590. * source page isn't available. Return the error and we'll
  591. * retry in the slow path.
  592. */
  593. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  594. page_offset, user_data, page_length))
  595. return -EFAULT;
  596. remain -= page_length;
  597. user_data += page_length;
  598. offset += page_length;
  599. }
  600. return 0;
  601. }
  602. /**
  603. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  604. * the memory and maps it using kmap_atomic for copying.
  605. *
  606. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  607. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  608. */
  609. static int
  610. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  611. struct drm_i915_gem_pwrite *args,
  612. struct drm_file *file_priv)
  613. {
  614. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  615. drm_i915_private_t *dev_priv = dev->dev_private;
  616. ssize_t remain;
  617. loff_t gtt_page_base, offset;
  618. loff_t first_data_page, last_data_page, num_pages;
  619. loff_t pinned_pages, i;
  620. struct page **user_pages;
  621. struct mm_struct *mm = current->mm;
  622. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  623. int ret;
  624. uint64_t data_ptr = args->data_ptr;
  625. remain = args->size;
  626. /* Pin the user pages containing the data. We can't fault while
  627. * holding the struct mutex, and all of the pwrite implementations
  628. * want to hold it while dereferencing the user data.
  629. */
  630. first_data_page = data_ptr / PAGE_SIZE;
  631. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  632. num_pages = last_data_page - first_data_page + 1;
  633. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  634. if (user_pages == NULL)
  635. return -ENOMEM;
  636. mutex_unlock(&dev->struct_mutex);
  637. down_read(&mm->mmap_sem);
  638. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  639. num_pages, 0, 0, user_pages, NULL);
  640. up_read(&mm->mmap_sem);
  641. mutex_lock(&dev->struct_mutex);
  642. if (pinned_pages < num_pages) {
  643. ret = -EFAULT;
  644. goto out_unpin_pages;
  645. }
  646. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  647. if (ret)
  648. goto out_unpin_pages;
  649. obj_priv = to_intel_bo(obj);
  650. offset = obj_priv->gtt_offset + args->offset;
  651. while (remain > 0) {
  652. /* Operation in this page
  653. *
  654. * gtt_page_base = page offset within aperture
  655. * gtt_page_offset = offset within page in aperture
  656. * data_page_index = page number in get_user_pages return
  657. * data_page_offset = offset with data_page_index page.
  658. * page_length = bytes to copy for this page
  659. */
  660. gtt_page_base = offset & PAGE_MASK;
  661. gtt_page_offset = offset & ~PAGE_MASK;
  662. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  663. data_page_offset = data_ptr & ~PAGE_MASK;
  664. page_length = remain;
  665. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  666. page_length = PAGE_SIZE - gtt_page_offset;
  667. if ((data_page_offset + page_length) > PAGE_SIZE)
  668. page_length = PAGE_SIZE - data_page_offset;
  669. slow_kernel_write(dev_priv->mm.gtt_mapping,
  670. gtt_page_base, gtt_page_offset,
  671. user_pages[data_page_index],
  672. data_page_offset,
  673. page_length);
  674. remain -= page_length;
  675. offset += page_length;
  676. data_ptr += page_length;
  677. }
  678. out_unpin_pages:
  679. for (i = 0; i < pinned_pages; i++)
  680. page_cache_release(user_pages[i]);
  681. drm_free_large(user_pages);
  682. return ret;
  683. }
  684. /**
  685. * This is the fast shmem pwrite path, which attempts to directly
  686. * copy_from_user into the kmapped pages backing the object.
  687. */
  688. static int
  689. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  690. struct drm_i915_gem_pwrite *args,
  691. struct drm_file *file_priv)
  692. {
  693. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  694. ssize_t remain;
  695. loff_t offset, page_base;
  696. char __user *user_data;
  697. int page_offset, page_length;
  698. user_data = (char __user *) (uintptr_t) args->data_ptr;
  699. remain = args->size;
  700. obj_priv = to_intel_bo(obj);
  701. offset = args->offset;
  702. obj_priv->dirty = 1;
  703. while (remain > 0) {
  704. /* Operation in this page
  705. *
  706. * page_base = page offset within aperture
  707. * page_offset = offset within page
  708. * page_length = bytes to copy for this page
  709. */
  710. page_base = (offset & ~(PAGE_SIZE-1));
  711. page_offset = offset & (PAGE_SIZE-1);
  712. page_length = remain;
  713. if ((page_offset + remain) > PAGE_SIZE)
  714. page_length = PAGE_SIZE - page_offset;
  715. if (fast_shmem_write(obj_priv->pages,
  716. page_base, page_offset,
  717. user_data, page_length))
  718. return -EFAULT;
  719. remain -= page_length;
  720. user_data += page_length;
  721. offset += page_length;
  722. }
  723. return 0;
  724. }
  725. /**
  726. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  727. * the memory and maps it using kmap_atomic for copying.
  728. *
  729. * This avoids taking mmap_sem for faulting on the user's address while the
  730. * struct_mutex is held.
  731. */
  732. static int
  733. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  734. struct drm_i915_gem_pwrite *args,
  735. struct drm_file *file_priv)
  736. {
  737. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  738. struct mm_struct *mm = current->mm;
  739. struct page **user_pages;
  740. ssize_t remain;
  741. loff_t offset, pinned_pages, i;
  742. loff_t first_data_page, last_data_page, num_pages;
  743. int shmem_page_index, shmem_page_offset;
  744. int data_page_index, data_page_offset;
  745. int page_length;
  746. int ret;
  747. uint64_t data_ptr = args->data_ptr;
  748. int do_bit17_swizzling;
  749. remain = args->size;
  750. /* Pin the user pages containing the data. We can't fault while
  751. * holding the struct mutex, and all of the pwrite implementations
  752. * want to hold it while dereferencing the user data.
  753. */
  754. first_data_page = data_ptr / PAGE_SIZE;
  755. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  756. num_pages = last_data_page - first_data_page + 1;
  757. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  758. if (user_pages == NULL)
  759. return -ENOMEM;
  760. mutex_unlock(&dev->struct_mutex);
  761. down_read(&mm->mmap_sem);
  762. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  763. num_pages, 0, 0, user_pages, NULL);
  764. up_read(&mm->mmap_sem);
  765. mutex_lock(&dev->struct_mutex);
  766. if (pinned_pages < num_pages) {
  767. ret = -EFAULT;
  768. goto out;
  769. }
  770. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  771. if (ret)
  772. goto out;
  773. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  774. obj_priv = to_intel_bo(obj);
  775. offset = args->offset;
  776. obj_priv->dirty = 1;
  777. while (remain > 0) {
  778. /* Operation in this page
  779. *
  780. * shmem_page_index = page number within shmem file
  781. * shmem_page_offset = offset within page in shmem file
  782. * data_page_index = page number in get_user_pages return
  783. * data_page_offset = offset with data_page_index page.
  784. * page_length = bytes to copy for this page
  785. */
  786. shmem_page_index = offset / PAGE_SIZE;
  787. shmem_page_offset = offset & ~PAGE_MASK;
  788. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  789. data_page_offset = data_ptr & ~PAGE_MASK;
  790. page_length = remain;
  791. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  792. page_length = PAGE_SIZE - shmem_page_offset;
  793. if ((data_page_offset + page_length) > PAGE_SIZE)
  794. page_length = PAGE_SIZE - data_page_offset;
  795. if (do_bit17_swizzling) {
  796. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  797. shmem_page_offset,
  798. user_pages[data_page_index],
  799. data_page_offset,
  800. page_length,
  801. 0);
  802. } else {
  803. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  804. shmem_page_offset,
  805. user_pages[data_page_index],
  806. data_page_offset,
  807. page_length);
  808. }
  809. remain -= page_length;
  810. data_ptr += page_length;
  811. offset += page_length;
  812. }
  813. out:
  814. for (i = 0; i < pinned_pages; i++)
  815. page_cache_release(user_pages[i]);
  816. drm_free_large(user_pages);
  817. return ret;
  818. }
  819. /**
  820. * Writes data to the object referenced by handle.
  821. *
  822. * On error, the contents of the buffer that were to be modified are undefined.
  823. */
  824. int
  825. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  826. struct drm_file *file)
  827. {
  828. struct drm_i915_gem_pwrite *args = data;
  829. struct drm_gem_object *obj;
  830. struct drm_i915_gem_object *obj_priv;
  831. int ret;
  832. if (args->size == 0)
  833. return 0;
  834. if (!access_ok(VERIFY_READ,
  835. (char __user *)(uintptr_t)args->data_ptr,
  836. args->size))
  837. return -EFAULT;
  838. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  839. args->size);
  840. if (ret)
  841. return -EFAULT;
  842. ret = i915_mutex_lock_interruptible(dev);
  843. if (ret)
  844. return ret;
  845. obj = drm_gem_object_lookup(dev, file, args->handle);
  846. if (obj == NULL) {
  847. ret = -ENOENT;
  848. goto unlock;
  849. }
  850. obj_priv = to_intel_bo(obj);
  851. /* Bounds check destination. */
  852. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  853. ret = -EINVAL;
  854. goto out;
  855. }
  856. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  857. * it would end up going through the fenced access, and we'll get
  858. * different detiling behavior between reading and writing.
  859. * pread/pwrite currently are reading and writing from the CPU
  860. * perspective, requiring manual detiling by the client.
  861. */
  862. if (obj_priv->phys_obj)
  863. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  864. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  865. obj_priv->gtt_space &&
  866. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  867. ret = i915_gem_object_pin(obj, 0);
  868. if (ret)
  869. goto out;
  870. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  871. if (ret)
  872. goto out_unpin;
  873. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  874. if (ret == -EFAULT)
  875. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  876. out_unpin:
  877. i915_gem_object_unpin(obj);
  878. } else {
  879. ret = i915_gem_object_get_pages_or_evict(obj);
  880. if (ret)
  881. goto out;
  882. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  883. if (ret)
  884. goto out_put;
  885. ret = -EFAULT;
  886. if (!i915_gem_object_needs_bit17_swizzle(obj))
  887. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  888. if (ret == -EFAULT)
  889. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  890. out_put:
  891. i915_gem_object_put_pages(obj);
  892. }
  893. out:
  894. drm_gem_object_unreference(obj);
  895. unlock:
  896. mutex_unlock(&dev->struct_mutex);
  897. return ret;
  898. }
  899. /**
  900. * Called when user space prepares to use an object with the CPU, either
  901. * through the mmap ioctl's mapping or a GTT mapping.
  902. */
  903. int
  904. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  905. struct drm_file *file_priv)
  906. {
  907. struct drm_i915_private *dev_priv = dev->dev_private;
  908. struct drm_i915_gem_set_domain *args = data;
  909. struct drm_gem_object *obj;
  910. struct drm_i915_gem_object *obj_priv;
  911. uint32_t read_domains = args->read_domains;
  912. uint32_t write_domain = args->write_domain;
  913. int ret;
  914. if (!(dev->driver->driver_features & DRIVER_GEM))
  915. return -ENODEV;
  916. /* Only handle setting domains to types used by the CPU. */
  917. if (write_domain & I915_GEM_GPU_DOMAINS)
  918. return -EINVAL;
  919. if (read_domains & I915_GEM_GPU_DOMAINS)
  920. return -EINVAL;
  921. /* Having something in the write domain implies it's in the read
  922. * domain, and only that read domain. Enforce that in the request.
  923. */
  924. if (write_domain != 0 && read_domains != write_domain)
  925. return -EINVAL;
  926. ret = i915_mutex_lock_interruptible(dev);
  927. if (ret)
  928. return ret;
  929. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  930. if (obj == NULL) {
  931. ret = -ENOENT;
  932. goto unlock;
  933. }
  934. obj_priv = to_intel_bo(obj);
  935. intel_mark_busy(dev, obj);
  936. if (read_domains & I915_GEM_DOMAIN_GTT) {
  937. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  938. /* Update the LRU on the fence for the CPU access that's
  939. * about to occur.
  940. */
  941. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  942. struct drm_i915_fence_reg *reg =
  943. &dev_priv->fence_regs[obj_priv->fence_reg];
  944. list_move_tail(&reg->lru_list,
  945. &dev_priv->mm.fence_list);
  946. }
  947. /* Silently promote "you're not bound, there was nothing to do"
  948. * to success, since the client was just asking us to
  949. * make sure everything was done.
  950. */
  951. if (ret == -EINVAL)
  952. ret = 0;
  953. } else {
  954. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  955. }
  956. /* Maintain LRU order of "inactive" objects */
  957. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  958. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  959. drm_gem_object_unreference(obj);
  960. unlock:
  961. mutex_unlock(&dev->struct_mutex);
  962. return ret;
  963. }
  964. /**
  965. * Called when user space has done writes to this buffer
  966. */
  967. int
  968. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  969. struct drm_file *file_priv)
  970. {
  971. struct drm_i915_gem_sw_finish *args = data;
  972. struct drm_gem_object *obj;
  973. int ret = 0;
  974. if (!(dev->driver->driver_features & DRIVER_GEM))
  975. return -ENODEV;
  976. ret = i915_mutex_lock_interruptible(dev);
  977. if (ret)
  978. return ret;
  979. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  980. if (obj == NULL) {
  981. ret = -ENOENT;
  982. goto unlock;
  983. }
  984. /* Pinned buffers may be scanout, so flush the cache */
  985. if (to_intel_bo(obj)->pin_count)
  986. i915_gem_object_flush_cpu_write_domain(obj);
  987. drm_gem_object_unreference(obj);
  988. unlock:
  989. mutex_unlock(&dev->struct_mutex);
  990. return ret;
  991. }
  992. /**
  993. * Maps the contents of an object, returning the address it is mapped
  994. * into.
  995. *
  996. * While the mapping holds a reference on the contents of the object, it doesn't
  997. * imply a ref on the object itself.
  998. */
  999. int
  1000. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1001. struct drm_file *file_priv)
  1002. {
  1003. struct drm_i915_gem_mmap *args = data;
  1004. struct drm_gem_object *obj;
  1005. loff_t offset;
  1006. unsigned long addr;
  1007. if (!(dev->driver->driver_features & DRIVER_GEM))
  1008. return -ENODEV;
  1009. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1010. if (obj == NULL)
  1011. return -ENOENT;
  1012. offset = args->offset;
  1013. down_write(&current->mm->mmap_sem);
  1014. addr = do_mmap(obj->filp, 0, args->size,
  1015. PROT_READ | PROT_WRITE, MAP_SHARED,
  1016. args->offset);
  1017. up_write(&current->mm->mmap_sem);
  1018. drm_gem_object_unreference_unlocked(obj);
  1019. if (IS_ERR((void *)addr))
  1020. return addr;
  1021. args->addr_ptr = (uint64_t) addr;
  1022. return 0;
  1023. }
  1024. /**
  1025. * i915_gem_fault - fault a page into the GTT
  1026. * vma: VMA in question
  1027. * vmf: fault info
  1028. *
  1029. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1030. * from userspace. The fault handler takes care of binding the object to
  1031. * the GTT (if needed), allocating and programming a fence register (again,
  1032. * only if needed based on whether the old reg is still valid or the object
  1033. * is tiled) and inserting a new PTE into the faulting process.
  1034. *
  1035. * Note that the faulting process may involve evicting existing objects
  1036. * from the GTT and/or fence registers to make room. So performance may
  1037. * suffer if the GTT working set is large or there are few fence registers
  1038. * left.
  1039. */
  1040. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1041. {
  1042. struct drm_gem_object *obj = vma->vm_private_data;
  1043. struct drm_device *dev = obj->dev;
  1044. drm_i915_private_t *dev_priv = dev->dev_private;
  1045. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1046. pgoff_t page_offset;
  1047. unsigned long pfn;
  1048. int ret = 0;
  1049. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1050. /* We don't use vmf->pgoff since that has the fake offset */
  1051. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1052. PAGE_SHIFT;
  1053. /* Now bind it into the GTT if needed */
  1054. mutex_lock(&dev->struct_mutex);
  1055. if (!obj_priv->gtt_space) {
  1056. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1057. if (ret)
  1058. goto unlock;
  1059. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1060. if (ret)
  1061. goto unlock;
  1062. }
  1063. /* Need a new fence register? */
  1064. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1065. ret = i915_gem_object_get_fence_reg(obj, true);
  1066. if (ret)
  1067. goto unlock;
  1068. }
  1069. if (i915_gem_object_is_inactive(obj_priv))
  1070. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1071. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1072. page_offset;
  1073. /* Finally, remap it using the new GTT offset */
  1074. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1075. unlock:
  1076. mutex_unlock(&dev->struct_mutex);
  1077. switch (ret) {
  1078. case 0:
  1079. case -ERESTARTSYS:
  1080. return VM_FAULT_NOPAGE;
  1081. case -ENOMEM:
  1082. case -EAGAIN:
  1083. return VM_FAULT_OOM;
  1084. default:
  1085. return VM_FAULT_SIGBUS;
  1086. }
  1087. }
  1088. /**
  1089. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1090. * @obj: obj in question
  1091. *
  1092. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1093. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1094. * up the object based on the offset and sets up the various memory mapping
  1095. * structures.
  1096. *
  1097. * This routine allocates and attaches a fake offset for @obj.
  1098. */
  1099. static int
  1100. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1101. {
  1102. struct drm_device *dev = obj->dev;
  1103. struct drm_gem_mm *mm = dev->mm_private;
  1104. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1105. struct drm_map_list *list;
  1106. struct drm_local_map *map;
  1107. int ret = 0;
  1108. /* Set the object up for mmap'ing */
  1109. list = &obj->map_list;
  1110. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1111. if (!list->map)
  1112. return -ENOMEM;
  1113. map = list->map;
  1114. map->type = _DRM_GEM;
  1115. map->size = obj->size;
  1116. map->handle = obj;
  1117. /* Get a DRM GEM mmap offset allocated... */
  1118. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1119. obj->size / PAGE_SIZE, 0, 0);
  1120. if (!list->file_offset_node) {
  1121. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1122. ret = -ENOSPC;
  1123. goto out_free_list;
  1124. }
  1125. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1126. obj->size / PAGE_SIZE, 0);
  1127. if (!list->file_offset_node) {
  1128. ret = -ENOMEM;
  1129. goto out_free_list;
  1130. }
  1131. list->hash.key = list->file_offset_node->start;
  1132. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1133. if (ret) {
  1134. DRM_ERROR("failed to add to map hash\n");
  1135. goto out_free_mm;
  1136. }
  1137. /* By now we should be all set, any drm_mmap request on the offset
  1138. * below will get to our mmap & fault handler */
  1139. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1140. return 0;
  1141. out_free_mm:
  1142. drm_mm_put_block(list->file_offset_node);
  1143. out_free_list:
  1144. kfree(list->map);
  1145. return ret;
  1146. }
  1147. /**
  1148. * i915_gem_release_mmap - remove physical page mappings
  1149. * @obj: obj in question
  1150. *
  1151. * Preserve the reservation of the mmapping with the DRM core code, but
  1152. * relinquish ownership of the pages back to the system.
  1153. *
  1154. * It is vital that we remove the page mapping if we have mapped a tiled
  1155. * object through the GTT and then lose the fence register due to
  1156. * resource pressure. Similarly if the object has been moved out of the
  1157. * aperture, than pages mapped into userspace must be revoked. Removing the
  1158. * mapping will then trigger a page fault on the next user access, allowing
  1159. * fixup by i915_gem_fault().
  1160. */
  1161. void
  1162. i915_gem_release_mmap(struct drm_gem_object *obj)
  1163. {
  1164. struct drm_device *dev = obj->dev;
  1165. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1166. if (dev->dev_mapping)
  1167. unmap_mapping_range(dev->dev_mapping,
  1168. obj_priv->mmap_offset, obj->size, 1);
  1169. }
  1170. static void
  1171. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1172. {
  1173. struct drm_device *dev = obj->dev;
  1174. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1175. struct drm_gem_mm *mm = dev->mm_private;
  1176. struct drm_map_list *list;
  1177. list = &obj->map_list;
  1178. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1179. if (list->file_offset_node) {
  1180. drm_mm_put_block(list->file_offset_node);
  1181. list->file_offset_node = NULL;
  1182. }
  1183. if (list->map) {
  1184. kfree(list->map);
  1185. list->map = NULL;
  1186. }
  1187. obj_priv->mmap_offset = 0;
  1188. }
  1189. /**
  1190. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1191. * @obj: object to check
  1192. *
  1193. * Return the required GTT alignment for an object, taking into account
  1194. * potential fence register mapping if needed.
  1195. */
  1196. static uint32_t
  1197. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1198. {
  1199. struct drm_device *dev = obj->dev;
  1200. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1201. int start, i;
  1202. /*
  1203. * Minimum alignment is 4k (GTT page size), but might be greater
  1204. * if a fence register is needed for the object.
  1205. */
  1206. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1207. return 4096;
  1208. /*
  1209. * Previous chips need to be aligned to the size of the smallest
  1210. * fence register that can contain the object.
  1211. */
  1212. if (INTEL_INFO(dev)->gen == 3)
  1213. start = 1024*1024;
  1214. else
  1215. start = 512*1024;
  1216. for (i = start; i < obj->size; i <<= 1)
  1217. ;
  1218. return i;
  1219. }
  1220. /**
  1221. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1222. * @dev: DRM device
  1223. * @data: GTT mapping ioctl data
  1224. * @file_priv: GEM object info
  1225. *
  1226. * Simply returns the fake offset to userspace so it can mmap it.
  1227. * The mmap call will end up in drm_gem_mmap(), which will set things
  1228. * up so we can get faults in the handler above.
  1229. *
  1230. * The fault handler will take care of binding the object into the GTT
  1231. * (since it may have been evicted to make room for something), allocating
  1232. * a fence register, and mapping the appropriate aperture address into
  1233. * userspace.
  1234. */
  1235. int
  1236. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1237. struct drm_file *file_priv)
  1238. {
  1239. struct drm_i915_gem_mmap_gtt *args = data;
  1240. struct drm_gem_object *obj;
  1241. struct drm_i915_gem_object *obj_priv;
  1242. int ret;
  1243. if (!(dev->driver->driver_features & DRIVER_GEM))
  1244. return -ENODEV;
  1245. ret = i915_mutex_lock_interruptible(dev);
  1246. if (ret)
  1247. return ret;
  1248. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1249. if (obj == NULL) {
  1250. ret = -ENOENT;
  1251. goto unlock;
  1252. }
  1253. obj_priv = to_intel_bo(obj);
  1254. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1255. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1256. ret = -EINVAL;
  1257. goto out;
  1258. }
  1259. if (!obj_priv->mmap_offset) {
  1260. ret = i915_gem_create_mmap_offset(obj);
  1261. if (ret)
  1262. goto out;
  1263. }
  1264. args->offset = obj_priv->mmap_offset;
  1265. /*
  1266. * Pull it into the GTT so that we have a page list (makes the
  1267. * initial fault faster and any subsequent flushing possible).
  1268. */
  1269. if (!obj_priv->agp_mem) {
  1270. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1271. if (ret)
  1272. goto out;
  1273. }
  1274. out:
  1275. drm_gem_object_unreference(obj);
  1276. unlock:
  1277. mutex_unlock(&dev->struct_mutex);
  1278. return ret;
  1279. }
  1280. static void
  1281. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1282. {
  1283. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1284. int page_count = obj->size / PAGE_SIZE;
  1285. int i;
  1286. BUG_ON(obj_priv->pages_refcount == 0);
  1287. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1288. if (--obj_priv->pages_refcount != 0)
  1289. return;
  1290. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1291. i915_gem_object_save_bit_17_swizzle(obj);
  1292. if (obj_priv->madv == I915_MADV_DONTNEED)
  1293. obj_priv->dirty = 0;
  1294. for (i = 0; i < page_count; i++) {
  1295. if (obj_priv->dirty)
  1296. set_page_dirty(obj_priv->pages[i]);
  1297. if (obj_priv->madv == I915_MADV_WILLNEED)
  1298. mark_page_accessed(obj_priv->pages[i]);
  1299. page_cache_release(obj_priv->pages[i]);
  1300. }
  1301. obj_priv->dirty = 0;
  1302. drm_free_large(obj_priv->pages);
  1303. obj_priv->pages = NULL;
  1304. }
  1305. static uint32_t
  1306. i915_gem_next_request_seqno(struct drm_device *dev,
  1307. struct intel_ring_buffer *ring)
  1308. {
  1309. drm_i915_private_t *dev_priv = dev->dev_private;
  1310. ring->outstanding_lazy_request = true;
  1311. return dev_priv->next_seqno;
  1312. }
  1313. static void
  1314. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1315. struct intel_ring_buffer *ring)
  1316. {
  1317. struct drm_device *dev = obj->dev;
  1318. struct drm_i915_private *dev_priv = dev->dev_private;
  1319. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1320. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1321. BUG_ON(ring == NULL);
  1322. obj_priv->ring = ring;
  1323. /* Add a reference if we're newly entering the active list. */
  1324. if (!obj_priv->active) {
  1325. drm_gem_object_reference(obj);
  1326. obj_priv->active = 1;
  1327. }
  1328. /* Move from whatever list we were on to the tail of execution. */
  1329. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1330. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1331. obj_priv->last_rendering_seqno = seqno;
  1332. }
  1333. static void
  1334. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1335. {
  1336. struct drm_device *dev = obj->dev;
  1337. drm_i915_private_t *dev_priv = dev->dev_private;
  1338. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1339. BUG_ON(!obj_priv->active);
  1340. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1341. list_del_init(&obj_priv->ring_list);
  1342. obj_priv->last_rendering_seqno = 0;
  1343. }
  1344. /* Immediately discard the backing storage */
  1345. static void
  1346. i915_gem_object_truncate(struct drm_gem_object *obj)
  1347. {
  1348. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1349. struct inode *inode;
  1350. /* Our goal here is to return as much of the memory as
  1351. * is possible back to the system as we are called from OOM.
  1352. * To do this we must instruct the shmfs to drop all of its
  1353. * backing pages, *now*. Here we mirror the actions taken
  1354. * when by shmem_delete_inode() to release the backing store.
  1355. */
  1356. inode = obj->filp->f_path.dentry->d_inode;
  1357. truncate_inode_pages(inode->i_mapping, 0);
  1358. if (inode->i_op->truncate_range)
  1359. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1360. obj_priv->madv = __I915_MADV_PURGED;
  1361. }
  1362. static inline int
  1363. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1364. {
  1365. return obj_priv->madv == I915_MADV_DONTNEED;
  1366. }
  1367. static void
  1368. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1369. {
  1370. struct drm_device *dev = obj->dev;
  1371. drm_i915_private_t *dev_priv = dev->dev_private;
  1372. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1373. if (obj_priv->pin_count != 0)
  1374. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1375. else
  1376. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1377. list_del_init(&obj_priv->ring_list);
  1378. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1379. obj_priv->last_rendering_seqno = 0;
  1380. obj_priv->ring = NULL;
  1381. if (obj_priv->active) {
  1382. obj_priv->active = 0;
  1383. drm_gem_object_unreference(obj);
  1384. }
  1385. WARN_ON(i915_verify_lists(dev));
  1386. }
  1387. static void
  1388. i915_gem_process_flushing_list(struct drm_device *dev,
  1389. uint32_t flush_domains,
  1390. struct intel_ring_buffer *ring)
  1391. {
  1392. drm_i915_private_t *dev_priv = dev->dev_private;
  1393. struct drm_i915_gem_object *obj_priv, *next;
  1394. list_for_each_entry_safe(obj_priv, next,
  1395. &ring->gpu_write_list,
  1396. gpu_write_list) {
  1397. struct drm_gem_object *obj = &obj_priv->base;
  1398. if (obj->write_domain & flush_domains) {
  1399. uint32_t old_write_domain = obj->write_domain;
  1400. obj->write_domain = 0;
  1401. list_del_init(&obj_priv->gpu_write_list);
  1402. i915_gem_object_move_to_active(obj, ring);
  1403. /* update the fence lru list */
  1404. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1405. struct drm_i915_fence_reg *reg =
  1406. &dev_priv->fence_regs[obj_priv->fence_reg];
  1407. list_move_tail(&reg->lru_list,
  1408. &dev_priv->mm.fence_list);
  1409. }
  1410. trace_i915_gem_object_change_domain(obj,
  1411. obj->read_domains,
  1412. old_write_domain);
  1413. }
  1414. }
  1415. }
  1416. uint32_t
  1417. i915_add_request(struct drm_device *dev,
  1418. struct drm_file *file,
  1419. struct drm_i915_gem_request *request,
  1420. struct intel_ring_buffer *ring)
  1421. {
  1422. drm_i915_private_t *dev_priv = dev->dev_private;
  1423. struct drm_i915_file_private *file_priv = NULL;
  1424. uint32_t seqno;
  1425. int was_empty;
  1426. if (file != NULL)
  1427. file_priv = file->driver_priv;
  1428. if (request == NULL) {
  1429. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1430. if (request == NULL)
  1431. return 0;
  1432. }
  1433. seqno = ring->add_request(dev, ring, 0);
  1434. ring->outstanding_lazy_request = false;
  1435. request->seqno = seqno;
  1436. request->ring = ring;
  1437. request->emitted_jiffies = jiffies;
  1438. was_empty = list_empty(&ring->request_list);
  1439. list_add_tail(&request->list, &ring->request_list);
  1440. if (file_priv) {
  1441. spin_lock(&file_priv->mm.lock);
  1442. request->file_priv = file_priv;
  1443. list_add_tail(&request->client_list,
  1444. &file_priv->mm.request_list);
  1445. spin_unlock(&file_priv->mm.lock);
  1446. }
  1447. if (!dev_priv->mm.suspended) {
  1448. mod_timer(&dev_priv->hangcheck_timer,
  1449. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1450. if (was_empty)
  1451. queue_delayed_work(dev_priv->wq,
  1452. &dev_priv->mm.retire_work, HZ);
  1453. }
  1454. return seqno;
  1455. }
  1456. /**
  1457. * Command execution barrier
  1458. *
  1459. * Ensures that all commands in the ring are finished
  1460. * before signalling the CPU
  1461. */
  1462. static void
  1463. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1464. {
  1465. uint32_t flush_domains = 0;
  1466. /* The sampler always gets flushed on i965 (sigh) */
  1467. if (INTEL_INFO(dev)->gen >= 4)
  1468. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1469. ring->flush(dev, ring,
  1470. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1471. }
  1472. static inline void
  1473. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1474. {
  1475. struct drm_i915_file_private *file_priv = request->file_priv;
  1476. if (!file_priv)
  1477. return;
  1478. spin_lock(&file_priv->mm.lock);
  1479. list_del(&request->client_list);
  1480. request->file_priv = NULL;
  1481. spin_unlock(&file_priv->mm.lock);
  1482. }
  1483. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1484. struct intel_ring_buffer *ring)
  1485. {
  1486. while (!list_empty(&ring->request_list)) {
  1487. struct drm_i915_gem_request *request;
  1488. request = list_first_entry(&ring->request_list,
  1489. struct drm_i915_gem_request,
  1490. list);
  1491. list_del(&request->list);
  1492. i915_gem_request_remove_from_client(request);
  1493. kfree(request);
  1494. }
  1495. while (!list_empty(&ring->active_list)) {
  1496. struct drm_i915_gem_object *obj_priv;
  1497. obj_priv = list_first_entry(&ring->active_list,
  1498. struct drm_i915_gem_object,
  1499. ring_list);
  1500. obj_priv->base.write_domain = 0;
  1501. list_del_init(&obj_priv->gpu_write_list);
  1502. i915_gem_object_move_to_inactive(&obj_priv->base);
  1503. }
  1504. }
  1505. void i915_gem_reset(struct drm_device *dev)
  1506. {
  1507. struct drm_i915_private *dev_priv = dev->dev_private;
  1508. struct drm_i915_gem_object *obj_priv;
  1509. int i;
  1510. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1511. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1512. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1513. /* Remove anything from the flushing lists. The GPU cache is likely
  1514. * to be lost on reset along with the data, so simply move the
  1515. * lost bo to the inactive list.
  1516. */
  1517. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1518. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1519. struct drm_i915_gem_object,
  1520. mm_list);
  1521. obj_priv->base.write_domain = 0;
  1522. list_del_init(&obj_priv->gpu_write_list);
  1523. i915_gem_object_move_to_inactive(&obj_priv->base);
  1524. }
  1525. /* Move everything out of the GPU domains to ensure we do any
  1526. * necessary invalidation upon reuse.
  1527. */
  1528. list_for_each_entry(obj_priv,
  1529. &dev_priv->mm.inactive_list,
  1530. mm_list)
  1531. {
  1532. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1533. }
  1534. /* The fence registers are invalidated so clear them out */
  1535. for (i = 0; i < 16; i++) {
  1536. struct drm_i915_fence_reg *reg;
  1537. reg = &dev_priv->fence_regs[i];
  1538. if (!reg->obj)
  1539. continue;
  1540. i915_gem_clear_fence_reg(reg->obj);
  1541. }
  1542. }
  1543. /**
  1544. * This function clears the request list as sequence numbers are passed.
  1545. */
  1546. static void
  1547. i915_gem_retire_requests_ring(struct drm_device *dev,
  1548. struct intel_ring_buffer *ring)
  1549. {
  1550. drm_i915_private_t *dev_priv = dev->dev_private;
  1551. uint32_t seqno;
  1552. if (!ring->status_page.page_addr ||
  1553. list_empty(&ring->request_list))
  1554. return;
  1555. WARN_ON(i915_verify_lists(dev));
  1556. seqno = ring->get_seqno(dev, ring);
  1557. while (!list_empty(&ring->request_list)) {
  1558. struct drm_i915_gem_request *request;
  1559. request = list_first_entry(&ring->request_list,
  1560. struct drm_i915_gem_request,
  1561. list);
  1562. if (!i915_seqno_passed(seqno, request->seqno))
  1563. break;
  1564. trace_i915_gem_request_retire(dev, request->seqno);
  1565. list_del(&request->list);
  1566. i915_gem_request_remove_from_client(request);
  1567. kfree(request);
  1568. }
  1569. /* Move any buffers on the active list that are no longer referenced
  1570. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1571. */
  1572. while (!list_empty(&ring->active_list)) {
  1573. struct drm_gem_object *obj;
  1574. struct drm_i915_gem_object *obj_priv;
  1575. obj_priv = list_first_entry(&ring->active_list,
  1576. struct drm_i915_gem_object,
  1577. ring_list);
  1578. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1579. break;
  1580. obj = &obj_priv->base;
  1581. if (obj->write_domain != 0)
  1582. i915_gem_object_move_to_flushing(obj);
  1583. else
  1584. i915_gem_object_move_to_inactive(obj);
  1585. }
  1586. if (unlikely (dev_priv->trace_irq_seqno &&
  1587. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1588. ring->user_irq_put(dev, ring);
  1589. dev_priv->trace_irq_seqno = 0;
  1590. }
  1591. WARN_ON(i915_verify_lists(dev));
  1592. }
  1593. void
  1594. i915_gem_retire_requests(struct drm_device *dev)
  1595. {
  1596. drm_i915_private_t *dev_priv = dev->dev_private;
  1597. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1598. struct drm_i915_gem_object *obj_priv, *tmp;
  1599. /* We must be careful that during unbind() we do not
  1600. * accidentally infinitely recurse into retire requests.
  1601. * Currently:
  1602. * retire -> free -> unbind -> wait -> retire_ring
  1603. */
  1604. list_for_each_entry_safe(obj_priv, tmp,
  1605. &dev_priv->mm.deferred_free_list,
  1606. mm_list)
  1607. i915_gem_free_object_tail(&obj_priv->base);
  1608. }
  1609. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1610. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1611. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1612. }
  1613. static void
  1614. i915_gem_retire_work_handler(struct work_struct *work)
  1615. {
  1616. drm_i915_private_t *dev_priv;
  1617. struct drm_device *dev;
  1618. dev_priv = container_of(work, drm_i915_private_t,
  1619. mm.retire_work.work);
  1620. dev = dev_priv->dev;
  1621. /* Come back later if the device is busy... */
  1622. if (!mutex_trylock(&dev->struct_mutex)) {
  1623. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1624. return;
  1625. }
  1626. i915_gem_retire_requests(dev);
  1627. if (!dev_priv->mm.suspended &&
  1628. (!list_empty(&dev_priv->render_ring.request_list) ||
  1629. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1630. !list_empty(&dev_priv->blt_ring.request_list)))
  1631. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1632. mutex_unlock(&dev->struct_mutex);
  1633. }
  1634. int
  1635. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1636. bool interruptible, struct intel_ring_buffer *ring)
  1637. {
  1638. drm_i915_private_t *dev_priv = dev->dev_private;
  1639. u32 ier;
  1640. int ret = 0;
  1641. BUG_ON(seqno == 0);
  1642. if (atomic_read(&dev_priv->mm.wedged))
  1643. return -EAGAIN;
  1644. if (ring->outstanding_lazy_request) {
  1645. seqno = i915_add_request(dev, NULL, NULL, ring);
  1646. if (seqno == 0)
  1647. return -ENOMEM;
  1648. }
  1649. BUG_ON(seqno == dev_priv->next_seqno);
  1650. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  1651. if (HAS_PCH_SPLIT(dev))
  1652. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1653. else
  1654. ier = I915_READ(IER);
  1655. if (!ier) {
  1656. DRM_ERROR("something (likely vbetool) disabled "
  1657. "interrupts, re-enabling\n");
  1658. i915_driver_irq_preinstall(dev);
  1659. i915_driver_irq_postinstall(dev);
  1660. }
  1661. trace_i915_gem_request_wait_begin(dev, seqno);
  1662. ring->waiting_gem_seqno = seqno;
  1663. ring->user_irq_get(dev, ring);
  1664. if (interruptible)
  1665. ret = wait_event_interruptible(ring->irq_queue,
  1666. i915_seqno_passed(
  1667. ring->get_seqno(dev, ring), seqno)
  1668. || atomic_read(&dev_priv->mm.wedged));
  1669. else
  1670. wait_event(ring->irq_queue,
  1671. i915_seqno_passed(
  1672. ring->get_seqno(dev, ring), seqno)
  1673. || atomic_read(&dev_priv->mm.wedged));
  1674. ring->user_irq_put(dev, ring);
  1675. ring->waiting_gem_seqno = 0;
  1676. trace_i915_gem_request_wait_end(dev, seqno);
  1677. }
  1678. if (atomic_read(&dev_priv->mm.wedged))
  1679. ret = -EAGAIN;
  1680. if (ret && ret != -ERESTARTSYS)
  1681. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1682. __func__, ret, seqno, ring->get_seqno(dev, ring),
  1683. dev_priv->next_seqno);
  1684. /* Directly dispatch request retiring. While we have the work queue
  1685. * to handle this, the waiter on a request often wants an associated
  1686. * buffer to have made it to the inactive list, and we would need
  1687. * a separate wait queue to handle that.
  1688. */
  1689. if (ret == 0)
  1690. i915_gem_retire_requests_ring(dev, ring);
  1691. return ret;
  1692. }
  1693. /**
  1694. * Waits for a sequence number to be signaled, and cleans up the
  1695. * request and object lists appropriately for that event.
  1696. */
  1697. static int
  1698. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1699. struct intel_ring_buffer *ring)
  1700. {
  1701. return i915_do_wait_request(dev, seqno, 1, ring);
  1702. }
  1703. static void
  1704. i915_gem_flush_ring(struct drm_device *dev,
  1705. struct drm_file *file_priv,
  1706. struct intel_ring_buffer *ring,
  1707. uint32_t invalidate_domains,
  1708. uint32_t flush_domains)
  1709. {
  1710. ring->flush(dev, ring, invalidate_domains, flush_domains);
  1711. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1712. }
  1713. static void
  1714. i915_gem_flush(struct drm_device *dev,
  1715. struct drm_file *file_priv,
  1716. uint32_t invalidate_domains,
  1717. uint32_t flush_domains,
  1718. uint32_t flush_rings)
  1719. {
  1720. drm_i915_private_t *dev_priv = dev->dev_private;
  1721. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1722. drm_agp_chipset_flush(dev);
  1723. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1724. if (flush_rings & RING_RENDER)
  1725. i915_gem_flush_ring(dev, file_priv,
  1726. &dev_priv->render_ring,
  1727. invalidate_domains, flush_domains);
  1728. if (flush_rings & RING_BSD)
  1729. i915_gem_flush_ring(dev, file_priv,
  1730. &dev_priv->bsd_ring,
  1731. invalidate_domains, flush_domains);
  1732. if (flush_rings & RING_BLT)
  1733. i915_gem_flush_ring(dev, file_priv,
  1734. &dev_priv->blt_ring,
  1735. invalidate_domains, flush_domains);
  1736. }
  1737. }
  1738. /**
  1739. * Ensures that all rendering to the object has completed and the object is
  1740. * safe to unbind from the GTT or access from the CPU.
  1741. */
  1742. static int
  1743. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1744. bool interruptible)
  1745. {
  1746. struct drm_device *dev = obj->dev;
  1747. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1748. int ret;
  1749. /* This function only exists to support waiting for existing rendering,
  1750. * not for emitting required flushes.
  1751. */
  1752. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1753. /* If there is rendering queued on the buffer being evicted, wait for
  1754. * it.
  1755. */
  1756. if (obj_priv->active) {
  1757. ret = i915_do_wait_request(dev,
  1758. obj_priv->last_rendering_seqno,
  1759. interruptible,
  1760. obj_priv->ring);
  1761. if (ret)
  1762. return ret;
  1763. }
  1764. return 0;
  1765. }
  1766. /**
  1767. * Unbinds an object from the GTT aperture.
  1768. */
  1769. int
  1770. i915_gem_object_unbind(struct drm_gem_object *obj)
  1771. {
  1772. struct drm_device *dev = obj->dev;
  1773. struct drm_i915_private *dev_priv = dev->dev_private;
  1774. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1775. int ret = 0;
  1776. if (obj_priv->gtt_space == NULL)
  1777. return 0;
  1778. if (obj_priv->pin_count != 0) {
  1779. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1780. return -EINVAL;
  1781. }
  1782. /* blow away mappings if mapped through GTT */
  1783. i915_gem_release_mmap(obj);
  1784. /* Move the object to the CPU domain to ensure that
  1785. * any possible CPU writes while it's not in the GTT
  1786. * are flushed when we go to remap it. This will
  1787. * also ensure that all pending GPU writes are finished
  1788. * before we unbind.
  1789. */
  1790. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1791. if (ret == -ERESTARTSYS)
  1792. return ret;
  1793. /* Continue on if we fail due to EIO, the GPU is hung so we
  1794. * should be safe and we need to cleanup or else we might
  1795. * cause memory corruption through use-after-free.
  1796. */
  1797. if (ret) {
  1798. i915_gem_clflush_object(obj);
  1799. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1800. }
  1801. /* release the fence reg _after_ flushing */
  1802. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1803. i915_gem_clear_fence_reg(obj);
  1804. drm_unbind_agp(obj_priv->agp_mem);
  1805. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1806. i915_gem_object_put_pages(obj);
  1807. BUG_ON(obj_priv->pages_refcount);
  1808. i915_gem_info_remove_gtt(dev_priv, obj->size);
  1809. list_del_init(&obj_priv->mm_list);
  1810. drm_mm_put_block(obj_priv->gtt_space);
  1811. obj_priv->gtt_space = NULL;
  1812. obj_priv->gtt_offset = 0;
  1813. if (i915_gem_object_is_purgeable(obj_priv))
  1814. i915_gem_object_truncate(obj);
  1815. trace_i915_gem_object_unbind(obj);
  1816. return ret;
  1817. }
  1818. static int i915_ring_idle(struct drm_device *dev,
  1819. struct intel_ring_buffer *ring)
  1820. {
  1821. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1822. return 0;
  1823. i915_gem_flush_ring(dev, NULL, ring,
  1824. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1825. return i915_wait_request(dev,
  1826. i915_gem_next_request_seqno(dev, ring),
  1827. ring);
  1828. }
  1829. int
  1830. i915_gpu_idle(struct drm_device *dev)
  1831. {
  1832. drm_i915_private_t *dev_priv = dev->dev_private;
  1833. bool lists_empty;
  1834. int ret;
  1835. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1836. list_empty(&dev_priv->mm.active_list));
  1837. if (lists_empty)
  1838. return 0;
  1839. /* Flush everything onto the inactive list. */
  1840. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1841. if (ret)
  1842. return ret;
  1843. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1844. if (ret)
  1845. return ret;
  1846. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1847. if (ret)
  1848. return ret;
  1849. return 0;
  1850. }
  1851. static int
  1852. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1853. gfp_t gfpmask)
  1854. {
  1855. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1856. int page_count, i;
  1857. struct address_space *mapping;
  1858. struct inode *inode;
  1859. struct page *page;
  1860. BUG_ON(obj_priv->pages_refcount
  1861. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1862. if (obj_priv->pages_refcount++ != 0)
  1863. return 0;
  1864. /* Get the list of pages out of our struct file. They'll be pinned
  1865. * at this point until we release them.
  1866. */
  1867. page_count = obj->size / PAGE_SIZE;
  1868. BUG_ON(obj_priv->pages != NULL);
  1869. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1870. if (obj_priv->pages == NULL) {
  1871. obj_priv->pages_refcount--;
  1872. return -ENOMEM;
  1873. }
  1874. inode = obj->filp->f_path.dentry->d_inode;
  1875. mapping = inode->i_mapping;
  1876. for (i = 0; i < page_count; i++) {
  1877. page = read_cache_page_gfp(mapping, i,
  1878. GFP_HIGHUSER |
  1879. __GFP_COLD |
  1880. __GFP_RECLAIMABLE |
  1881. gfpmask);
  1882. if (IS_ERR(page))
  1883. goto err_pages;
  1884. obj_priv->pages[i] = page;
  1885. }
  1886. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1887. i915_gem_object_do_bit_17_swizzle(obj);
  1888. return 0;
  1889. err_pages:
  1890. while (i--)
  1891. page_cache_release(obj_priv->pages[i]);
  1892. drm_free_large(obj_priv->pages);
  1893. obj_priv->pages = NULL;
  1894. obj_priv->pages_refcount--;
  1895. return PTR_ERR(page);
  1896. }
  1897. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1898. {
  1899. struct drm_gem_object *obj = reg->obj;
  1900. struct drm_device *dev = obj->dev;
  1901. drm_i915_private_t *dev_priv = dev->dev_private;
  1902. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1903. int regnum = obj_priv->fence_reg;
  1904. uint64_t val;
  1905. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1906. 0xfffff000) << 32;
  1907. val |= obj_priv->gtt_offset & 0xfffff000;
  1908. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1909. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1910. if (obj_priv->tiling_mode == I915_TILING_Y)
  1911. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1912. val |= I965_FENCE_REG_VALID;
  1913. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1914. }
  1915. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1916. {
  1917. struct drm_gem_object *obj = reg->obj;
  1918. struct drm_device *dev = obj->dev;
  1919. drm_i915_private_t *dev_priv = dev->dev_private;
  1920. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1921. int regnum = obj_priv->fence_reg;
  1922. uint64_t val;
  1923. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1924. 0xfffff000) << 32;
  1925. val |= obj_priv->gtt_offset & 0xfffff000;
  1926. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1927. if (obj_priv->tiling_mode == I915_TILING_Y)
  1928. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1929. val |= I965_FENCE_REG_VALID;
  1930. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1931. }
  1932. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1933. {
  1934. struct drm_gem_object *obj = reg->obj;
  1935. struct drm_device *dev = obj->dev;
  1936. drm_i915_private_t *dev_priv = dev->dev_private;
  1937. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1938. int regnum = obj_priv->fence_reg;
  1939. int tile_width;
  1940. uint32_t fence_reg, val;
  1941. uint32_t pitch_val;
  1942. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1943. (obj_priv->gtt_offset & (obj->size - 1))) {
  1944. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1945. __func__, obj_priv->gtt_offset, obj->size);
  1946. return;
  1947. }
  1948. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1949. HAS_128_BYTE_Y_TILING(dev))
  1950. tile_width = 128;
  1951. else
  1952. tile_width = 512;
  1953. /* Note: pitch better be a power of two tile widths */
  1954. pitch_val = obj_priv->stride / tile_width;
  1955. pitch_val = ffs(pitch_val) - 1;
  1956. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1957. HAS_128_BYTE_Y_TILING(dev))
  1958. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1959. else
  1960. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1961. val = obj_priv->gtt_offset;
  1962. if (obj_priv->tiling_mode == I915_TILING_Y)
  1963. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1964. val |= I915_FENCE_SIZE_BITS(obj->size);
  1965. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1966. val |= I830_FENCE_REG_VALID;
  1967. if (regnum < 8)
  1968. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1969. else
  1970. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1971. I915_WRITE(fence_reg, val);
  1972. }
  1973. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1974. {
  1975. struct drm_gem_object *obj = reg->obj;
  1976. struct drm_device *dev = obj->dev;
  1977. drm_i915_private_t *dev_priv = dev->dev_private;
  1978. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1979. int regnum = obj_priv->fence_reg;
  1980. uint32_t val;
  1981. uint32_t pitch_val;
  1982. uint32_t fence_size_bits;
  1983. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1984. (obj_priv->gtt_offset & (obj->size - 1))) {
  1985. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1986. __func__, obj_priv->gtt_offset);
  1987. return;
  1988. }
  1989. pitch_val = obj_priv->stride / 128;
  1990. pitch_val = ffs(pitch_val) - 1;
  1991. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1992. val = obj_priv->gtt_offset;
  1993. if (obj_priv->tiling_mode == I915_TILING_Y)
  1994. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1995. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1996. WARN_ON(fence_size_bits & ~0x00000f00);
  1997. val |= fence_size_bits;
  1998. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1999. val |= I830_FENCE_REG_VALID;
  2000. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2001. }
  2002. static int i915_find_fence_reg(struct drm_device *dev,
  2003. bool interruptible)
  2004. {
  2005. struct drm_i915_fence_reg *reg = NULL;
  2006. struct drm_i915_gem_object *obj_priv = NULL;
  2007. struct drm_i915_private *dev_priv = dev->dev_private;
  2008. struct drm_gem_object *obj = NULL;
  2009. int i, avail, ret;
  2010. /* First try to find a free reg */
  2011. avail = 0;
  2012. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2013. reg = &dev_priv->fence_regs[i];
  2014. if (!reg->obj)
  2015. return i;
  2016. obj_priv = to_intel_bo(reg->obj);
  2017. if (!obj_priv->pin_count)
  2018. avail++;
  2019. }
  2020. if (avail == 0)
  2021. return -ENOSPC;
  2022. /* None available, try to steal one or wait for a user to finish */
  2023. i = I915_FENCE_REG_NONE;
  2024. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2025. lru_list) {
  2026. obj = reg->obj;
  2027. obj_priv = to_intel_bo(obj);
  2028. if (obj_priv->pin_count)
  2029. continue;
  2030. /* found one! */
  2031. i = obj_priv->fence_reg;
  2032. break;
  2033. }
  2034. BUG_ON(i == I915_FENCE_REG_NONE);
  2035. /* We only have a reference on obj from the active list. put_fence_reg
  2036. * might drop that one, causing a use-after-free in it. So hold a
  2037. * private reference to obj like the other callers of put_fence_reg
  2038. * (set_tiling ioctl) do. */
  2039. drm_gem_object_reference(obj);
  2040. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2041. drm_gem_object_unreference(obj);
  2042. if (ret != 0)
  2043. return ret;
  2044. return i;
  2045. }
  2046. /**
  2047. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2048. * @obj: object to map through a fence reg
  2049. *
  2050. * When mapping objects through the GTT, userspace wants to be able to write
  2051. * to them without having to worry about swizzling if the object is tiled.
  2052. *
  2053. * This function walks the fence regs looking for a free one for @obj,
  2054. * stealing one if it can't find any.
  2055. *
  2056. * It then sets up the reg based on the object's properties: address, pitch
  2057. * and tiling format.
  2058. */
  2059. int
  2060. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2061. bool interruptible)
  2062. {
  2063. struct drm_device *dev = obj->dev;
  2064. struct drm_i915_private *dev_priv = dev->dev_private;
  2065. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2066. struct drm_i915_fence_reg *reg = NULL;
  2067. int ret;
  2068. /* Just update our place in the LRU if our fence is getting used. */
  2069. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2070. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2071. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2072. return 0;
  2073. }
  2074. switch (obj_priv->tiling_mode) {
  2075. case I915_TILING_NONE:
  2076. WARN(1, "allocating a fence for non-tiled object?\n");
  2077. break;
  2078. case I915_TILING_X:
  2079. if (!obj_priv->stride)
  2080. return -EINVAL;
  2081. WARN((obj_priv->stride & (512 - 1)),
  2082. "object 0x%08x is X tiled but has non-512B pitch\n",
  2083. obj_priv->gtt_offset);
  2084. break;
  2085. case I915_TILING_Y:
  2086. if (!obj_priv->stride)
  2087. return -EINVAL;
  2088. WARN((obj_priv->stride & (128 - 1)),
  2089. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2090. obj_priv->gtt_offset);
  2091. break;
  2092. }
  2093. ret = i915_find_fence_reg(dev, interruptible);
  2094. if (ret < 0)
  2095. return ret;
  2096. obj_priv->fence_reg = ret;
  2097. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2098. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2099. reg->obj = obj;
  2100. switch (INTEL_INFO(dev)->gen) {
  2101. case 6:
  2102. sandybridge_write_fence_reg(reg);
  2103. break;
  2104. case 5:
  2105. case 4:
  2106. i965_write_fence_reg(reg);
  2107. break;
  2108. case 3:
  2109. i915_write_fence_reg(reg);
  2110. break;
  2111. case 2:
  2112. i830_write_fence_reg(reg);
  2113. break;
  2114. }
  2115. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2116. obj_priv->tiling_mode);
  2117. return 0;
  2118. }
  2119. /**
  2120. * i915_gem_clear_fence_reg - clear out fence register info
  2121. * @obj: object to clear
  2122. *
  2123. * Zeroes out the fence register itself and clears out the associated
  2124. * data structures in dev_priv and obj_priv.
  2125. */
  2126. static void
  2127. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2128. {
  2129. struct drm_device *dev = obj->dev;
  2130. drm_i915_private_t *dev_priv = dev->dev_private;
  2131. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2132. struct drm_i915_fence_reg *reg =
  2133. &dev_priv->fence_regs[obj_priv->fence_reg];
  2134. uint32_t fence_reg;
  2135. switch (INTEL_INFO(dev)->gen) {
  2136. case 6:
  2137. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2138. (obj_priv->fence_reg * 8), 0);
  2139. break;
  2140. case 5:
  2141. case 4:
  2142. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2143. break;
  2144. case 3:
  2145. if (obj_priv->fence_reg >= 8)
  2146. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2147. else
  2148. case 2:
  2149. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2150. I915_WRITE(fence_reg, 0);
  2151. break;
  2152. }
  2153. reg->obj = NULL;
  2154. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2155. list_del_init(&reg->lru_list);
  2156. }
  2157. /**
  2158. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2159. * to the buffer to finish, and then resets the fence register.
  2160. * @obj: tiled object holding a fence register.
  2161. * @bool: whether the wait upon the fence is interruptible
  2162. *
  2163. * Zeroes out the fence register itself and clears out the associated
  2164. * data structures in dev_priv and obj_priv.
  2165. */
  2166. int
  2167. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2168. bool interruptible)
  2169. {
  2170. struct drm_device *dev = obj->dev;
  2171. struct drm_i915_private *dev_priv = dev->dev_private;
  2172. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2173. struct drm_i915_fence_reg *reg;
  2174. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2175. return 0;
  2176. /* If we've changed tiling, GTT-mappings of the object
  2177. * need to re-fault to ensure that the correct fence register
  2178. * setup is in place.
  2179. */
  2180. i915_gem_release_mmap(obj);
  2181. /* On the i915, GPU access to tiled buffers is via a fence,
  2182. * therefore we must wait for any outstanding access to complete
  2183. * before clearing the fence.
  2184. */
  2185. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2186. if (reg->gpu) {
  2187. int ret;
  2188. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2189. if (ret)
  2190. return ret;
  2191. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2192. if (ret)
  2193. return ret;
  2194. reg->gpu = false;
  2195. }
  2196. i915_gem_object_flush_gtt_write_domain(obj);
  2197. i915_gem_clear_fence_reg(obj);
  2198. return 0;
  2199. }
  2200. /**
  2201. * Finds free space in the GTT aperture and binds the object there.
  2202. */
  2203. static int
  2204. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2205. {
  2206. struct drm_device *dev = obj->dev;
  2207. drm_i915_private_t *dev_priv = dev->dev_private;
  2208. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2209. struct drm_mm_node *free_space;
  2210. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2211. int ret;
  2212. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2213. DRM_ERROR("Attempting to bind a purgeable object\n");
  2214. return -EINVAL;
  2215. }
  2216. if (alignment == 0)
  2217. alignment = i915_gem_get_gtt_alignment(obj);
  2218. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2219. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2220. return -EINVAL;
  2221. }
  2222. /* If the object is bigger than the entire aperture, reject it early
  2223. * before evicting everything in a vain attempt to find space.
  2224. */
  2225. if (obj->size > dev_priv->mm.gtt_total) {
  2226. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2227. return -E2BIG;
  2228. }
  2229. search_free:
  2230. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2231. obj->size, alignment, 0);
  2232. if (free_space != NULL)
  2233. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2234. alignment);
  2235. if (obj_priv->gtt_space == NULL) {
  2236. /* If the gtt is empty and we're still having trouble
  2237. * fitting our object in, we're out of memory.
  2238. */
  2239. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2240. if (ret)
  2241. return ret;
  2242. goto search_free;
  2243. }
  2244. ret = i915_gem_object_get_pages(obj, gfpmask);
  2245. if (ret) {
  2246. drm_mm_put_block(obj_priv->gtt_space);
  2247. obj_priv->gtt_space = NULL;
  2248. if (ret == -ENOMEM) {
  2249. /* first try to clear up some space from the GTT */
  2250. ret = i915_gem_evict_something(dev, obj->size,
  2251. alignment);
  2252. if (ret) {
  2253. /* now try to shrink everyone else */
  2254. if (gfpmask) {
  2255. gfpmask = 0;
  2256. goto search_free;
  2257. }
  2258. return ret;
  2259. }
  2260. goto search_free;
  2261. }
  2262. return ret;
  2263. }
  2264. /* Create an AGP memory structure pointing at our pages, and bind it
  2265. * into the GTT.
  2266. */
  2267. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2268. obj_priv->pages,
  2269. obj->size >> PAGE_SHIFT,
  2270. obj_priv->gtt_space->start,
  2271. obj_priv->agp_type);
  2272. if (obj_priv->agp_mem == NULL) {
  2273. i915_gem_object_put_pages(obj);
  2274. drm_mm_put_block(obj_priv->gtt_space);
  2275. obj_priv->gtt_space = NULL;
  2276. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2277. if (ret)
  2278. return ret;
  2279. goto search_free;
  2280. }
  2281. /* keep track of bounds object by adding it to the inactive list */
  2282. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2283. i915_gem_info_add_gtt(dev_priv, obj->size);
  2284. /* Assert that the object is not currently in any GPU domain. As it
  2285. * wasn't in the GTT, there shouldn't be any way it could have been in
  2286. * a GPU cache
  2287. */
  2288. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2289. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2290. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2291. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2292. return 0;
  2293. }
  2294. void
  2295. i915_gem_clflush_object(struct drm_gem_object *obj)
  2296. {
  2297. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2298. /* If we don't have a page list set up, then we're not pinned
  2299. * to GPU, and we can ignore the cache flush because it'll happen
  2300. * again at bind time.
  2301. */
  2302. if (obj_priv->pages == NULL)
  2303. return;
  2304. trace_i915_gem_object_clflush(obj);
  2305. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2306. }
  2307. /** Flushes any GPU write domain for the object if it's dirty. */
  2308. static int
  2309. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2310. bool pipelined)
  2311. {
  2312. struct drm_device *dev = obj->dev;
  2313. uint32_t old_write_domain;
  2314. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2315. return 0;
  2316. /* Queue the GPU write cache flushing we need. */
  2317. old_write_domain = obj->write_domain;
  2318. i915_gem_flush_ring(dev, NULL,
  2319. to_intel_bo(obj)->ring,
  2320. 0, obj->write_domain);
  2321. BUG_ON(obj->write_domain);
  2322. trace_i915_gem_object_change_domain(obj,
  2323. obj->read_domains,
  2324. old_write_domain);
  2325. if (pipelined)
  2326. return 0;
  2327. return i915_gem_object_wait_rendering(obj, true);
  2328. }
  2329. /** Flushes the GTT write domain for the object if it's dirty. */
  2330. static void
  2331. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2332. {
  2333. uint32_t old_write_domain;
  2334. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2335. return;
  2336. /* No actual flushing is required for the GTT write domain. Writes
  2337. * to it immediately go to main memory as far as we know, so there's
  2338. * no chipset flush. It also doesn't land in render cache.
  2339. */
  2340. old_write_domain = obj->write_domain;
  2341. obj->write_domain = 0;
  2342. trace_i915_gem_object_change_domain(obj,
  2343. obj->read_domains,
  2344. old_write_domain);
  2345. }
  2346. /** Flushes the CPU write domain for the object if it's dirty. */
  2347. static void
  2348. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2349. {
  2350. struct drm_device *dev = obj->dev;
  2351. uint32_t old_write_domain;
  2352. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2353. return;
  2354. i915_gem_clflush_object(obj);
  2355. drm_agp_chipset_flush(dev);
  2356. old_write_domain = obj->write_domain;
  2357. obj->write_domain = 0;
  2358. trace_i915_gem_object_change_domain(obj,
  2359. obj->read_domains,
  2360. old_write_domain);
  2361. }
  2362. /**
  2363. * Moves a single object to the GTT read, and possibly write domain.
  2364. *
  2365. * This function returns when the move is complete, including waiting on
  2366. * flushes to occur.
  2367. */
  2368. int
  2369. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2370. {
  2371. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2372. uint32_t old_write_domain, old_read_domains;
  2373. int ret;
  2374. /* Not valid to be called on unbound objects. */
  2375. if (obj_priv->gtt_space == NULL)
  2376. return -EINVAL;
  2377. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2378. if (ret != 0)
  2379. return ret;
  2380. i915_gem_object_flush_cpu_write_domain(obj);
  2381. if (write) {
  2382. ret = i915_gem_object_wait_rendering(obj, true);
  2383. if (ret)
  2384. return ret;
  2385. }
  2386. old_write_domain = obj->write_domain;
  2387. old_read_domains = obj->read_domains;
  2388. /* It should now be out of any other write domains, and we can update
  2389. * the domain values for our changes.
  2390. */
  2391. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2392. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2393. if (write) {
  2394. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2395. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2396. obj_priv->dirty = 1;
  2397. }
  2398. trace_i915_gem_object_change_domain(obj,
  2399. old_read_domains,
  2400. old_write_domain);
  2401. return 0;
  2402. }
  2403. /*
  2404. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2405. * wait, as in modesetting process we're not supposed to be interrupted.
  2406. */
  2407. int
  2408. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2409. bool pipelined)
  2410. {
  2411. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2412. uint32_t old_read_domains;
  2413. int ret;
  2414. /* Not valid to be called on unbound objects. */
  2415. if (obj_priv->gtt_space == NULL)
  2416. return -EINVAL;
  2417. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2418. if (ret)
  2419. return ret;
  2420. /* Currently, we are always called from an non-interruptible context. */
  2421. if (!pipelined) {
  2422. ret = i915_gem_object_wait_rendering(obj, false);
  2423. if (ret)
  2424. return ret;
  2425. }
  2426. i915_gem_object_flush_cpu_write_domain(obj);
  2427. old_read_domains = obj->read_domains;
  2428. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2429. trace_i915_gem_object_change_domain(obj,
  2430. old_read_domains,
  2431. obj->write_domain);
  2432. return 0;
  2433. }
  2434. int
  2435. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
  2436. bool interruptible)
  2437. {
  2438. if (!obj->active)
  2439. return 0;
  2440. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
  2441. i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
  2442. 0, obj->base.write_domain);
  2443. return i915_gem_object_wait_rendering(&obj->base, interruptible);
  2444. }
  2445. /**
  2446. * Moves a single object to the CPU read, and possibly write domain.
  2447. *
  2448. * This function returns when the move is complete, including waiting on
  2449. * flushes to occur.
  2450. */
  2451. static int
  2452. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2453. {
  2454. uint32_t old_write_domain, old_read_domains;
  2455. int ret;
  2456. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2457. if (ret != 0)
  2458. return ret;
  2459. i915_gem_object_flush_gtt_write_domain(obj);
  2460. /* If we have a partially-valid cache of the object in the CPU,
  2461. * finish invalidating it and free the per-page flags.
  2462. */
  2463. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2464. if (write) {
  2465. ret = i915_gem_object_wait_rendering(obj, true);
  2466. if (ret)
  2467. return ret;
  2468. }
  2469. old_write_domain = obj->write_domain;
  2470. old_read_domains = obj->read_domains;
  2471. /* Flush the CPU cache if it's still invalid. */
  2472. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2473. i915_gem_clflush_object(obj);
  2474. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2475. }
  2476. /* It should now be out of any other write domains, and we can update
  2477. * the domain values for our changes.
  2478. */
  2479. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2480. /* If we're writing through the CPU, then the GPU read domains will
  2481. * need to be invalidated at next use.
  2482. */
  2483. if (write) {
  2484. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2485. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2486. }
  2487. trace_i915_gem_object_change_domain(obj,
  2488. old_read_domains,
  2489. old_write_domain);
  2490. return 0;
  2491. }
  2492. /*
  2493. * Set the next domain for the specified object. This
  2494. * may not actually perform the necessary flushing/invaliding though,
  2495. * as that may want to be batched with other set_domain operations
  2496. *
  2497. * This is (we hope) the only really tricky part of gem. The goal
  2498. * is fairly simple -- track which caches hold bits of the object
  2499. * and make sure they remain coherent. A few concrete examples may
  2500. * help to explain how it works. For shorthand, we use the notation
  2501. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2502. * a pair of read and write domain masks.
  2503. *
  2504. * Case 1: the batch buffer
  2505. *
  2506. * 1. Allocated
  2507. * 2. Written by CPU
  2508. * 3. Mapped to GTT
  2509. * 4. Read by GPU
  2510. * 5. Unmapped from GTT
  2511. * 6. Freed
  2512. *
  2513. * Let's take these a step at a time
  2514. *
  2515. * 1. Allocated
  2516. * Pages allocated from the kernel may still have
  2517. * cache contents, so we set them to (CPU, CPU) always.
  2518. * 2. Written by CPU (using pwrite)
  2519. * The pwrite function calls set_domain (CPU, CPU) and
  2520. * this function does nothing (as nothing changes)
  2521. * 3. Mapped by GTT
  2522. * This function asserts that the object is not
  2523. * currently in any GPU-based read or write domains
  2524. * 4. Read by GPU
  2525. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2526. * As write_domain is zero, this function adds in the
  2527. * current read domains (CPU+COMMAND, 0).
  2528. * flush_domains is set to CPU.
  2529. * invalidate_domains is set to COMMAND
  2530. * clflush is run to get data out of the CPU caches
  2531. * then i915_dev_set_domain calls i915_gem_flush to
  2532. * emit an MI_FLUSH and drm_agp_chipset_flush
  2533. * 5. Unmapped from GTT
  2534. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2535. * flush_domains and invalidate_domains end up both zero
  2536. * so no flushing/invalidating happens
  2537. * 6. Freed
  2538. * yay, done
  2539. *
  2540. * Case 2: The shared render buffer
  2541. *
  2542. * 1. Allocated
  2543. * 2. Mapped to GTT
  2544. * 3. Read/written by GPU
  2545. * 4. set_domain to (CPU,CPU)
  2546. * 5. Read/written by CPU
  2547. * 6. Read/written by GPU
  2548. *
  2549. * 1. Allocated
  2550. * Same as last example, (CPU, CPU)
  2551. * 2. Mapped to GTT
  2552. * Nothing changes (assertions find that it is not in the GPU)
  2553. * 3. Read/written by GPU
  2554. * execbuffer calls set_domain (RENDER, RENDER)
  2555. * flush_domains gets CPU
  2556. * invalidate_domains gets GPU
  2557. * clflush (obj)
  2558. * MI_FLUSH and drm_agp_chipset_flush
  2559. * 4. set_domain (CPU, CPU)
  2560. * flush_domains gets GPU
  2561. * invalidate_domains gets CPU
  2562. * wait_rendering (obj) to make sure all drawing is complete.
  2563. * This will include an MI_FLUSH to get the data from GPU
  2564. * to memory
  2565. * clflush (obj) to invalidate the CPU cache
  2566. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2567. * 5. Read/written by CPU
  2568. * cache lines are loaded and dirtied
  2569. * 6. Read written by GPU
  2570. * Same as last GPU access
  2571. *
  2572. * Case 3: The constant buffer
  2573. *
  2574. * 1. Allocated
  2575. * 2. Written by CPU
  2576. * 3. Read by GPU
  2577. * 4. Updated (written) by CPU again
  2578. * 5. Read by GPU
  2579. *
  2580. * 1. Allocated
  2581. * (CPU, CPU)
  2582. * 2. Written by CPU
  2583. * (CPU, CPU)
  2584. * 3. Read by GPU
  2585. * (CPU+RENDER, 0)
  2586. * flush_domains = CPU
  2587. * invalidate_domains = RENDER
  2588. * clflush (obj)
  2589. * MI_FLUSH
  2590. * drm_agp_chipset_flush
  2591. * 4. Updated (written) by CPU again
  2592. * (CPU, CPU)
  2593. * flush_domains = 0 (no previous write domain)
  2594. * invalidate_domains = 0 (no new read domains)
  2595. * 5. Read by GPU
  2596. * (CPU+RENDER, 0)
  2597. * flush_domains = CPU
  2598. * invalidate_domains = RENDER
  2599. * clflush (obj)
  2600. * MI_FLUSH
  2601. * drm_agp_chipset_flush
  2602. */
  2603. static void
  2604. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2605. struct intel_ring_buffer *ring)
  2606. {
  2607. struct drm_device *dev = obj->dev;
  2608. struct drm_i915_private *dev_priv = dev->dev_private;
  2609. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2610. uint32_t invalidate_domains = 0;
  2611. uint32_t flush_domains = 0;
  2612. uint32_t old_read_domains;
  2613. intel_mark_busy(dev, obj);
  2614. /*
  2615. * If the object isn't moving to a new write domain,
  2616. * let the object stay in multiple read domains
  2617. */
  2618. if (obj->pending_write_domain == 0)
  2619. obj->pending_read_domains |= obj->read_domains;
  2620. else
  2621. obj_priv->dirty = 1;
  2622. /*
  2623. * Flush the current write domain if
  2624. * the new read domains don't match. Invalidate
  2625. * any read domains which differ from the old
  2626. * write domain
  2627. */
  2628. if (obj->write_domain &&
  2629. (obj->write_domain != obj->pending_read_domains ||
  2630. obj_priv->ring != ring)) {
  2631. flush_domains |= obj->write_domain;
  2632. invalidate_domains |=
  2633. obj->pending_read_domains & ~obj->write_domain;
  2634. }
  2635. /*
  2636. * Invalidate any read caches which may have
  2637. * stale data. That is, any new read domains.
  2638. */
  2639. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2640. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2641. i915_gem_clflush_object(obj);
  2642. old_read_domains = obj->read_domains;
  2643. /* The actual obj->write_domain will be updated with
  2644. * pending_write_domain after we emit the accumulated flush for all
  2645. * of our domain changes in execbuffers (which clears objects'
  2646. * write_domains). So if we have a current write domain that we
  2647. * aren't changing, set pending_write_domain to that.
  2648. */
  2649. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2650. obj->pending_write_domain = obj->write_domain;
  2651. obj->read_domains = obj->pending_read_domains;
  2652. dev->invalidate_domains |= invalidate_domains;
  2653. dev->flush_domains |= flush_domains;
  2654. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2655. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2656. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2657. dev_priv->mm.flush_rings |= ring->id;
  2658. trace_i915_gem_object_change_domain(obj,
  2659. old_read_domains,
  2660. obj->write_domain);
  2661. }
  2662. /**
  2663. * Moves the object from a partially CPU read to a full one.
  2664. *
  2665. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2666. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2667. */
  2668. static void
  2669. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2670. {
  2671. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2672. if (!obj_priv->page_cpu_valid)
  2673. return;
  2674. /* If we're partially in the CPU read domain, finish moving it in.
  2675. */
  2676. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2677. int i;
  2678. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2679. if (obj_priv->page_cpu_valid[i])
  2680. continue;
  2681. drm_clflush_pages(obj_priv->pages + i, 1);
  2682. }
  2683. }
  2684. /* Free the page_cpu_valid mappings which are now stale, whether
  2685. * or not we've got I915_GEM_DOMAIN_CPU.
  2686. */
  2687. kfree(obj_priv->page_cpu_valid);
  2688. obj_priv->page_cpu_valid = NULL;
  2689. }
  2690. /**
  2691. * Set the CPU read domain on a range of the object.
  2692. *
  2693. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2694. * not entirely valid. The page_cpu_valid member of the object flags which
  2695. * pages have been flushed, and will be respected by
  2696. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2697. * of the whole object.
  2698. *
  2699. * This function returns when the move is complete, including waiting on
  2700. * flushes to occur.
  2701. */
  2702. static int
  2703. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2704. uint64_t offset, uint64_t size)
  2705. {
  2706. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2707. uint32_t old_read_domains;
  2708. int i, ret;
  2709. if (offset == 0 && size == obj->size)
  2710. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2711. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2712. if (ret != 0)
  2713. return ret;
  2714. i915_gem_object_flush_gtt_write_domain(obj);
  2715. /* If we're already fully in the CPU read domain, we're done. */
  2716. if (obj_priv->page_cpu_valid == NULL &&
  2717. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2718. return 0;
  2719. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2720. * newly adding I915_GEM_DOMAIN_CPU
  2721. */
  2722. if (obj_priv->page_cpu_valid == NULL) {
  2723. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2724. GFP_KERNEL);
  2725. if (obj_priv->page_cpu_valid == NULL)
  2726. return -ENOMEM;
  2727. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2728. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2729. /* Flush the cache on any pages that are still invalid from the CPU's
  2730. * perspective.
  2731. */
  2732. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2733. i++) {
  2734. if (obj_priv->page_cpu_valid[i])
  2735. continue;
  2736. drm_clflush_pages(obj_priv->pages + i, 1);
  2737. obj_priv->page_cpu_valid[i] = 1;
  2738. }
  2739. /* It should now be out of any other write domains, and we can update
  2740. * the domain values for our changes.
  2741. */
  2742. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2743. old_read_domains = obj->read_domains;
  2744. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2745. trace_i915_gem_object_change_domain(obj,
  2746. old_read_domains,
  2747. obj->write_domain);
  2748. return 0;
  2749. }
  2750. /**
  2751. * Pin an object to the GTT and evaluate the relocations landing in it.
  2752. */
  2753. static int
  2754. i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
  2755. struct drm_file *file_priv,
  2756. struct drm_i915_gem_exec_object2 *entry)
  2757. {
  2758. struct drm_device *dev = obj->base.dev;
  2759. drm_i915_private_t *dev_priv = dev->dev_private;
  2760. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2761. struct drm_gem_object *target_obj = NULL;
  2762. uint32_t target_handle = 0;
  2763. int i, ret = 0;
  2764. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2765. for (i = 0; i < entry->relocation_count; i++) {
  2766. struct drm_i915_gem_relocation_entry reloc;
  2767. uint32_t target_offset;
  2768. if (__copy_from_user_inatomic(&reloc,
  2769. user_relocs+i,
  2770. sizeof(reloc))) {
  2771. ret = -EFAULT;
  2772. break;
  2773. }
  2774. if (reloc.target_handle != target_handle) {
  2775. drm_gem_object_unreference(target_obj);
  2776. target_obj = drm_gem_object_lookup(dev, file_priv,
  2777. reloc.target_handle);
  2778. if (target_obj == NULL) {
  2779. ret = -ENOENT;
  2780. break;
  2781. }
  2782. target_handle = reloc.target_handle;
  2783. }
  2784. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2785. #if WATCH_RELOC
  2786. DRM_INFO("%s: obj %p offset %08x target %d "
  2787. "read %08x write %08x gtt %08x "
  2788. "presumed %08x delta %08x\n",
  2789. __func__,
  2790. obj,
  2791. (int) reloc.offset,
  2792. (int) reloc.target_handle,
  2793. (int) reloc.read_domains,
  2794. (int) reloc.write_domain,
  2795. (int) target_offset,
  2796. (int) reloc.presumed_offset,
  2797. reloc.delta);
  2798. #endif
  2799. /* The target buffer should have appeared before us in the
  2800. * exec_object list, so it should have a GTT space bound by now.
  2801. */
  2802. if (target_offset == 0) {
  2803. DRM_ERROR("No GTT space found for object %d\n",
  2804. reloc.target_handle);
  2805. ret = -EINVAL;
  2806. break;
  2807. }
  2808. /* Validate that the target is in a valid r/w GPU domain */
  2809. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2810. DRM_ERROR("reloc with multiple write domains: "
  2811. "obj %p target %d offset %d "
  2812. "read %08x write %08x",
  2813. obj, reloc.target_handle,
  2814. (int) reloc.offset,
  2815. reloc.read_domains,
  2816. reloc.write_domain);
  2817. ret = -EINVAL;
  2818. break;
  2819. }
  2820. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2821. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2822. DRM_ERROR("reloc with read/write CPU domains: "
  2823. "obj %p target %d offset %d "
  2824. "read %08x write %08x",
  2825. obj, reloc.target_handle,
  2826. (int) reloc.offset,
  2827. reloc.read_domains,
  2828. reloc.write_domain);
  2829. ret = -EINVAL;
  2830. break;
  2831. }
  2832. if (reloc.write_domain && target_obj->pending_write_domain &&
  2833. reloc.write_domain != target_obj->pending_write_domain) {
  2834. DRM_ERROR("Write domain conflict: "
  2835. "obj %p target %d offset %d "
  2836. "new %08x old %08x\n",
  2837. obj, reloc.target_handle,
  2838. (int) reloc.offset,
  2839. reloc.write_domain,
  2840. target_obj->pending_write_domain);
  2841. ret = -EINVAL;
  2842. break;
  2843. }
  2844. target_obj->pending_read_domains |= reloc.read_domains;
  2845. target_obj->pending_write_domain |= reloc.write_domain;
  2846. /* If the relocation already has the right value in it, no
  2847. * more work needs to be done.
  2848. */
  2849. if (target_offset == reloc.presumed_offset)
  2850. continue;
  2851. /* Check that the relocation address is valid... */
  2852. if (reloc.offset > obj->base.size - 4) {
  2853. DRM_ERROR("Relocation beyond object bounds: "
  2854. "obj %p target %d offset %d size %d.\n",
  2855. obj, reloc.target_handle,
  2856. (int) reloc.offset, (int) obj->base.size);
  2857. ret = -EINVAL;
  2858. break;
  2859. }
  2860. if (reloc.offset & 3) {
  2861. DRM_ERROR("Relocation not 4-byte aligned: "
  2862. "obj %p target %d offset %d.\n",
  2863. obj, reloc.target_handle,
  2864. (int) reloc.offset);
  2865. ret = -EINVAL;
  2866. break;
  2867. }
  2868. /* and points to somewhere within the target object. */
  2869. if (reloc.delta >= target_obj->size) {
  2870. DRM_ERROR("Relocation beyond target object bounds: "
  2871. "obj %p target %d delta %d size %d.\n",
  2872. obj, reloc.target_handle,
  2873. (int) reloc.delta, (int) target_obj->size);
  2874. ret = -EINVAL;
  2875. break;
  2876. }
  2877. reloc.delta += target_offset;
  2878. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2879. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2880. char *vaddr;
  2881. vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
  2882. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2883. kunmap_atomic(vaddr);
  2884. } else {
  2885. uint32_t __iomem *reloc_entry;
  2886. void __iomem *reloc_page;
  2887. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2888. if (ret)
  2889. break;
  2890. /* Map the page containing the relocation we're going to perform. */
  2891. reloc.offset += obj->gtt_offset;
  2892. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2893. reloc.offset & PAGE_MASK);
  2894. reloc_entry = (uint32_t __iomem *)
  2895. (reloc_page + (reloc.offset & ~PAGE_MASK));
  2896. iowrite32(reloc.delta, reloc_entry);
  2897. io_mapping_unmap_atomic(reloc_page);
  2898. }
  2899. /* and update the user's relocation entry */
  2900. reloc.presumed_offset = target_offset;
  2901. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  2902. &reloc.presumed_offset,
  2903. sizeof(reloc.presumed_offset))) {
  2904. ret = -EFAULT;
  2905. break;
  2906. }
  2907. }
  2908. drm_gem_object_unreference(target_obj);
  2909. return ret;
  2910. }
  2911. static int
  2912. i915_gem_execbuffer_pin(struct drm_device *dev,
  2913. struct drm_file *file,
  2914. struct drm_gem_object **object_list,
  2915. struct drm_i915_gem_exec_object2 *exec_list,
  2916. int count)
  2917. {
  2918. struct drm_i915_private *dev_priv = dev->dev_private;
  2919. int ret, i, retry;
  2920. /* attempt to pin all of the buffers into the GTT */
  2921. for (retry = 0; retry < 2; retry++) {
  2922. ret = 0;
  2923. for (i = 0; i < count; i++) {
  2924. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  2925. struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
  2926. bool need_fence =
  2927. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2928. obj->tiling_mode != I915_TILING_NONE;
  2929. /* Check fence reg constraints and rebind if necessary */
  2930. if (need_fence &&
  2931. !i915_gem_object_fence_offset_ok(&obj->base,
  2932. obj->tiling_mode)) {
  2933. ret = i915_gem_object_unbind(&obj->base);
  2934. if (ret)
  2935. break;
  2936. }
  2937. ret = i915_gem_object_pin(&obj->base, entry->alignment);
  2938. if (ret)
  2939. break;
  2940. /*
  2941. * Pre-965 chips need a fence register set up in order
  2942. * to properly handle blits to/from tiled surfaces.
  2943. */
  2944. if (need_fence) {
  2945. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  2946. if (ret) {
  2947. i915_gem_object_unpin(&obj->base);
  2948. break;
  2949. }
  2950. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  2951. }
  2952. entry->offset = obj->gtt_offset;
  2953. }
  2954. while (i--)
  2955. i915_gem_object_unpin(object_list[i]);
  2956. if (ret == 0)
  2957. break;
  2958. if (ret != -ENOSPC || retry)
  2959. return ret;
  2960. ret = i915_gem_evict_everything(dev);
  2961. if (ret)
  2962. return ret;
  2963. }
  2964. return 0;
  2965. }
  2966. static int
  2967. i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
  2968. struct drm_file *file,
  2969. struct intel_ring_buffer *ring,
  2970. struct drm_gem_object **objects,
  2971. int count)
  2972. {
  2973. struct drm_i915_private *dev_priv = dev->dev_private;
  2974. int ret, i;
  2975. /* Zero the global flush/invalidate flags. These
  2976. * will be modified as new domains are computed
  2977. * for each object
  2978. */
  2979. dev->invalidate_domains = 0;
  2980. dev->flush_domains = 0;
  2981. dev_priv->mm.flush_rings = 0;
  2982. for (i = 0; i < count; i++)
  2983. i915_gem_object_set_to_gpu_domain(objects[i], ring);
  2984. if (dev->invalidate_domains | dev->flush_domains) {
  2985. #if WATCH_EXEC
  2986. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2987. __func__,
  2988. dev->invalidate_domains,
  2989. dev->flush_domains);
  2990. #endif
  2991. i915_gem_flush(dev, file,
  2992. dev->invalidate_domains,
  2993. dev->flush_domains,
  2994. dev_priv->mm.flush_rings);
  2995. }
  2996. for (i = 0; i < count; i++) {
  2997. struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
  2998. /* XXX replace with semaphores */
  2999. if (obj->ring && ring != obj->ring) {
  3000. ret = i915_gem_object_wait_rendering(&obj->base, true);
  3001. if (ret)
  3002. return ret;
  3003. }
  3004. }
  3005. return 0;
  3006. }
  3007. /* Throttle our rendering by waiting until the ring has completed our requests
  3008. * emitted over 20 msec ago.
  3009. *
  3010. * Note that if we were to use the current jiffies each time around the loop,
  3011. * we wouldn't escape the function with any frames outstanding if the time to
  3012. * render a frame was over 20ms.
  3013. *
  3014. * This should get us reasonable parallelism between CPU and GPU but also
  3015. * relatively low latency when blocking on a particular request to finish.
  3016. */
  3017. static int
  3018. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3019. {
  3020. struct drm_i915_private *dev_priv = dev->dev_private;
  3021. struct drm_i915_file_private *file_priv = file->driver_priv;
  3022. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3023. struct drm_i915_gem_request *request;
  3024. struct intel_ring_buffer *ring = NULL;
  3025. u32 seqno = 0;
  3026. int ret;
  3027. spin_lock(&file_priv->mm.lock);
  3028. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3029. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3030. break;
  3031. ring = request->ring;
  3032. seqno = request->seqno;
  3033. }
  3034. spin_unlock(&file_priv->mm.lock);
  3035. if (seqno == 0)
  3036. return 0;
  3037. ret = 0;
  3038. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  3039. /* And wait for the seqno passing without holding any locks and
  3040. * causing extra latency for others. This is safe as the irq
  3041. * generation is designed to be run atomically and so is
  3042. * lockless.
  3043. */
  3044. ring->user_irq_get(dev, ring);
  3045. ret = wait_event_interruptible(ring->irq_queue,
  3046. i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
  3047. || atomic_read(&dev_priv->mm.wedged));
  3048. ring->user_irq_put(dev, ring);
  3049. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3050. ret = -EIO;
  3051. }
  3052. if (ret == 0)
  3053. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3054. return ret;
  3055. }
  3056. static int
  3057. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3058. uint64_t exec_offset)
  3059. {
  3060. uint32_t exec_start, exec_len;
  3061. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3062. exec_len = (uint32_t) exec->batch_len;
  3063. if ((exec_start | exec_len) & 0x7)
  3064. return -EINVAL;
  3065. if (!exec_start)
  3066. return -EINVAL;
  3067. return 0;
  3068. }
  3069. static int
  3070. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3071. int count)
  3072. {
  3073. int i;
  3074. for (i = 0; i < count; i++) {
  3075. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3076. size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
  3077. if (!access_ok(VERIFY_READ, ptr, length))
  3078. return -EFAULT;
  3079. /* we may also need to update the presumed offsets */
  3080. if (!access_ok(VERIFY_WRITE, ptr, length))
  3081. return -EFAULT;
  3082. if (fault_in_pages_readable(ptr, length))
  3083. return -EFAULT;
  3084. }
  3085. return 0;
  3086. }
  3087. static int
  3088. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3089. struct drm_file *file,
  3090. struct drm_i915_gem_execbuffer2 *args,
  3091. struct drm_i915_gem_exec_object2 *exec_list)
  3092. {
  3093. drm_i915_private_t *dev_priv = dev->dev_private;
  3094. struct drm_gem_object **object_list = NULL;
  3095. struct drm_gem_object *batch_obj;
  3096. struct drm_i915_gem_object *obj_priv;
  3097. struct drm_clip_rect *cliprects = NULL;
  3098. struct drm_i915_gem_request *request = NULL;
  3099. int ret, i, flips;
  3100. uint64_t exec_offset;
  3101. struct intel_ring_buffer *ring = NULL;
  3102. ret = i915_gem_check_is_wedged(dev);
  3103. if (ret)
  3104. return ret;
  3105. ret = validate_exec_list(exec_list, args->buffer_count);
  3106. if (ret)
  3107. return ret;
  3108. #if WATCH_EXEC
  3109. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3110. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3111. #endif
  3112. switch (args->flags & I915_EXEC_RING_MASK) {
  3113. case I915_EXEC_DEFAULT:
  3114. case I915_EXEC_RENDER:
  3115. ring = &dev_priv->render_ring;
  3116. break;
  3117. case I915_EXEC_BSD:
  3118. if (!HAS_BSD(dev)) {
  3119. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3120. return -EINVAL;
  3121. }
  3122. ring = &dev_priv->bsd_ring;
  3123. break;
  3124. case I915_EXEC_BLT:
  3125. if (!HAS_BLT(dev)) {
  3126. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3127. return -EINVAL;
  3128. }
  3129. ring = &dev_priv->blt_ring;
  3130. break;
  3131. default:
  3132. DRM_ERROR("execbuf with unknown ring: %d\n",
  3133. (int)(args->flags & I915_EXEC_RING_MASK));
  3134. return -EINVAL;
  3135. }
  3136. if (args->buffer_count < 1) {
  3137. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3138. return -EINVAL;
  3139. }
  3140. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3141. if (object_list == NULL) {
  3142. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3143. args->buffer_count);
  3144. ret = -ENOMEM;
  3145. goto pre_mutex_err;
  3146. }
  3147. if (args->num_cliprects != 0) {
  3148. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3149. GFP_KERNEL);
  3150. if (cliprects == NULL) {
  3151. ret = -ENOMEM;
  3152. goto pre_mutex_err;
  3153. }
  3154. ret = copy_from_user(cliprects,
  3155. (struct drm_clip_rect __user *)
  3156. (uintptr_t) args->cliprects_ptr,
  3157. sizeof(*cliprects) * args->num_cliprects);
  3158. if (ret != 0) {
  3159. DRM_ERROR("copy %d cliprects failed: %d\n",
  3160. args->num_cliprects, ret);
  3161. ret = -EFAULT;
  3162. goto pre_mutex_err;
  3163. }
  3164. }
  3165. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3166. if (request == NULL) {
  3167. ret = -ENOMEM;
  3168. goto pre_mutex_err;
  3169. }
  3170. ret = i915_mutex_lock_interruptible(dev);
  3171. if (ret)
  3172. goto pre_mutex_err;
  3173. if (dev_priv->mm.suspended) {
  3174. mutex_unlock(&dev->struct_mutex);
  3175. ret = -EBUSY;
  3176. goto pre_mutex_err;
  3177. }
  3178. /* Look up object handles */
  3179. for (i = 0; i < args->buffer_count; i++) {
  3180. object_list[i] = drm_gem_object_lookup(dev, file,
  3181. exec_list[i].handle);
  3182. if (object_list[i] == NULL) {
  3183. DRM_ERROR("Invalid object handle %d at index %d\n",
  3184. exec_list[i].handle, i);
  3185. /* prevent error path from reading uninitialized data */
  3186. args->buffer_count = i + 1;
  3187. ret = -ENOENT;
  3188. goto err;
  3189. }
  3190. obj_priv = to_intel_bo(object_list[i]);
  3191. if (obj_priv->in_execbuffer) {
  3192. DRM_ERROR("Object %p appears more than once in object list\n",
  3193. object_list[i]);
  3194. /* prevent error path from reading uninitialized data */
  3195. args->buffer_count = i + 1;
  3196. ret = -EINVAL;
  3197. goto err;
  3198. }
  3199. obj_priv->in_execbuffer = true;
  3200. }
  3201. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3202. ret = i915_gem_execbuffer_pin(dev, file,
  3203. object_list, exec_list,
  3204. args->buffer_count);
  3205. if (ret)
  3206. goto err;
  3207. /* The objects are in their final locations, apply the relocations. */
  3208. for (i = 0; i < args->buffer_count; i++) {
  3209. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3210. obj->base.pending_read_domains = 0;
  3211. obj->base.pending_write_domain = 0;
  3212. ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
  3213. if (ret)
  3214. goto err;
  3215. }
  3216. /* Set the pending read domains for the batch buffer to COMMAND */
  3217. batch_obj = object_list[args->buffer_count-1];
  3218. if (batch_obj->pending_write_domain) {
  3219. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3220. ret = -EINVAL;
  3221. goto err;
  3222. }
  3223. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3224. /* Sanity check the batch buffer */
  3225. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3226. ret = i915_gem_check_execbuffer(args, exec_offset);
  3227. if (ret != 0) {
  3228. DRM_ERROR("execbuf with invalid offset/length\n");
  3229. goto err;
  3230. }
  3231. ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
  3232. object_list, args->buffer_count);
  3233. if (ret)
  3234. goto err;
  3235. for (i = 0; i < args->buffer_count; i++) {
  3236. struct drm_gem_object *obj = object_list[i];
  3237. uint32_t old_write_domain = obj->write_domain;
  3238. obj->write_domain = obj->pending_write_domain;
  3239. trace_i915_gem_object_change_domain(obj,
  3240. obj->read_domains,
  3241. old_write_domain);
  3242. }
  3243. #if WATCH_COHERENCY
  3244. for (i = 0; i < args->buffer_count; i++) {
  3245. i915_gem_object_check_coherency(object_list[i],
  3246. exec_list[i].handle);
  3247. }
  3248. #endif
  3249. #if WATCH_EXEC
  3250. i915_gem_dump_object(batch_obj,
  3251. args->batch_len,
  3252. __func__,
  3253. ~0);
  3254. #endif
  3255. /* Check for any pending flips. As we only maintain a flip queue depth
  3256. * of 1, we can simply insert a WAIT for the next display flip prior
  3257. * to executing the batch and avoid stalling the CPU.
  3258. */
  3259. flips = 0;
  3260. for (i = 0; i < args->buffer_count; i++) {
  3261. if (object_list[i]->write_domain)
  3262. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3263. }
  3264. if (flips) {
  3265. int plane, flip_mask;
  3266. for (plane = 0; flips >> plane; plane++) {
  3267. if (((flips >> plane) & 1) == 0)
  3268. continue;
  3269. if (plane)
  3270. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3271. else
  3272. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3273. intel_ring_begin(dev, ring, 2);
  3274. intel_ring_emit(dev, ring,
  3275. MI_WAIT_FOR_EVENT | flip_mask);
  3276. intel_ring_emit(dev, ring, MI_NOOP);
  3277. intel_ring_advance(dev, ring);
  3278. }
  3279. }
  3280. /* Exec the batchbuffer */
  3281. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3282. cliprects, exec_offset);
  3283. if (ret) {
  3284. DRM_ERROR("dispatch failed %d\n", ret);
  3285. goto err;
  3286. }
  3287. /*
  3288. * Ensure that the commands in the batch buffer are
  3289. * finished before the interrupt fires
  3290. */
  3291. i915_retire_commands(dev, ring);
  3292. for (i = 0; i < args->buffer_count; i++) {
  3293. struct drm_gem_object *obj = object_list[i];
  3294. i915_gem_object_move_to_active(obj, ring);
  3295. if (obj->write_domain)
  3296. list_move_tail(&to_intel_bo(obj)->gpu_write_list,
  3297. &ring->gpu_write_list);
  3298. }
  3299. i915_add_request(dev, file, request, ring);
  3300. request = NULL;
  3301. err:
  3302. for (i = 0; i < args->buffer_count; i++) {
  3303. if (object_list[i]) {
  3304. obj_priv = to_intel_bo(object_list[i]);
  3305. obj_priv->in_execbuffer = false;
  3306. }
  3307. drm_gem_object_unreference(object_list[i]);
  3308. }
  3309. mutex_unlock(&dev->struct_mutex);
  3310. pre_mutex_err:
  3311. drm_free_large(object_list);
  3312. kfree(cliprects);
  3313. kfree(request);
  3314. return ret;
  3315. }
  3316. /*
  3317. * Legacy execbuffer just creates an exec2 list from the original exec object
  3318. * list array and passes it to the real function.
  3319. */
  3320. int
  3321. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3322. struct drm_file *file_priv)
  3323. {
  3324. struct drm_i915_gem_execbuffer *args = data;
  3325. struct drm_i915_gem_execbuffer2 exec2;
  3326. struct drm_i915_gem_exec_object *exec_list = NULL;
  3327. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3328. int ret, i;
  3329. #if WATCH_EXEC
  3330. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3331. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3332. #endif
  3333. if (args->buffer_count < 1) {
  3334. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3335. return -EINVAL;
  3336. }
  3337. /* Copy in the exec list from userland */
  3338. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3339. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3340. if (exec_list == NULL || exec2_list == NULL) {
  3341. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3342. args->buffer_count);
  3343. drm_free_large(exec_list);
  3344. drm_free_large(exec2_list);
  3345. return -ENOMEM;
  3346. }
  3347. ret = copy_from_user(exec_list,
  3348. (struct drm_i915_relocation_entry __user *)
  3349. (uintptr_t) args->buffers_ptr,
  3350. sizeof(*exec_list) * args->buffer_count);
  3351. if (ret != 0) {
  3352. DRM_ERROR("copy %d exec entries failed %d\n",
  3353. args->buffer_count, ret);
  3354. drm_free_large(exec_list);
  3355. drm_free_large(exec2_list);
  3356. return -EFAULT;
  3357. }
  3358. for (i = 0; i < args->buffer_count; i++) {
  3359. exec2_list[i].handle = exec_list[i].handle;
  3360. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3361. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3362. exec2_list[i].alignment = exec_list[i].alignment;
  3363. exec2_list[i].offset = exec_list[i].offset;
  3364. if (INTEL_INFO(dev)->gen < 4)
  3365. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3366. else
  3367. exec2_list[i].flags = 0;
  3368. }
  3369. exec2.buffers_ptr = args->buffers_ptr;
  3370. exec2.buffer_count = args->buffer_count;
  3371. exec2.batch_start_offset = args->batch_start_offset;
  3372. exec2.batch_len = args->batch_len;
  3373. exec2.DR1 = args->DR1;
  3374. exec2.DR4 = args->DR4;
  3375. exec2.num_cliprects = args->num_cliprects;
  3376. exec2.cliprects_ptr = args->cliprects_ptr;
  3377. exec2.flags = I915_EXEC_RENDER;
  3378. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3379. if (!ret) {
  3380. /* Copy the new buffer offsets back to the user's exec list. */
  3381. for (i = 0; i < args->buffer_count; i++)
  3382. exec_list[i].offset = exec2_list[i].offset;
  3383. /* ... and back out to userspace */
  3384. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3385. (uintptr_t) args->buffers_ptr,
  3386. exec_list,
  3387. sizeof(*exec_list) * args->buffer_count);
  3388. if (ret) {
  3389. ret = -EFAULT;
  3390. DRM_ERROR("failed to copy %d exec entries "
  3391. "back to user (%d)\n",
  3392. args->buffer_count, ret);
  3393. }
  3394. }
  3395. drm_free_large(exec_list);
  3396. drm_free_large(exec2_list);
  3397. return ret;
  3398. }
  3399. int
  3400. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3401. struct drm_file *file_priv)
  3402. {
  3403. struct drm_i915_gem_execbuffer2 *args = data;
  3404. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3405. int ret;
  3406. #if WATCH_EXEC
  3407. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3408. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3409. #endif
  3410. if (args->buffer_count < 1) {
  3411. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3412. return -EINVAL;
  3413. }
  3414. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3415. if (exec2_list == NULL) {
  3416. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3417. args->buffer_count);
  3418. return -ENOMEM;
  3419. }
  3420. ret = copy_from_user(exec2_list,
  3421. (struct drm_i915_relocation_entry __user *)
  3422. (uintptr_t) args->buffers_ptr,
  3423. sizeof(*exec2_list) * args->buffer_count);
  3424. if (ret != 0) {
  3425. DRM_ERROR("copy %d exec entries failed %d\n",
  3426. args->buffer_count, ret);
  3427. drm_free_large(exec2_list);
  3428. return -EFAULT;
  3429. }
  3430. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3431. if (!ret) {
  3432. /* Copy the new buffer offsets back to the user's exec list. */
  3433. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3434. (uintptr_t) args->buffers_ptr,
  3435. exec2_list,
  3436. sizeof(*exec2_list) * args->buffer_count);
  3437. if (ret) {
  3438. ret = -EFAULT;
  3439. DRM_ERROR("failed to copy %d exec entries "
  3440. "back to user (%d)\n",
  3441. args->buffer_count, ret);
  3442. }
  3443. }
  3444. drm_free_large(exec2_list);
  3445. return ret;
  3446. }
  3447. int
  3448. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3449. {
  3450. struct drm_device *dev = obj->dev;
  3451. struct drm_i915_private *dev_priv = dev->dev_private;
  3452. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3453. int ret;
  3454. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3455. WARN_ON(i915_verify_lists(dev));
  3456. if (obj_priv->gtt_space != NULL) {
  3457. if (alignment == 0)
  3458. alignment = i915_gem_get_gtt_alignment(obj);
  3459. if (obj_priv->gtt_offset & (alignment - 1)) {
  3460. WARN(obj_priv->pin_count,
  3461. "bo is already pinned with incorrect alignment: offset=%x, req.alignment=%x\n",
  3462. obj_priv->gtt_offset, alignment);
  3463. ret = i915_gem_object_unbind(obj);
  3464. if (ret)
  3465. return ret;
  3466. }
  3467. }
  3468. if (obj_priv->gtt_space == NULL) {
  3469. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3470. if (ret)
  3471. return ret;
  3472. }
  3473. obj_priv->pin_count++;
  3474. /* If the object is not active and not pending a flush,
  3475. * remove it from the inactive list
  3476. */
  3477. if (obj_priv->pin_count == 1) {
  3478. i915_gem_info_add_pin(dev_priv, obj->size);
  3479. if (!obj_priv->active)
  3480. list_move_tail(&obj_priv->mm_list,
  3481. &dev_priv->mm.pinned_list);
  3482. }
  3483. WARN_ON(i915_verify_lists(dev));
  3484. return 0;
  3485. }
  3486. void
  3487. i915_gem_object_unpin(struct drm_gem_object *obj)
  3488. {
  3489. struct drm_device *dev = obj->dev;
  3490. drm_i915_private_t *dev_priv = dev->dev_private;
  3491. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3492. WARN_ON(i915_verify_lists(dev));
  3493. obj_priv->pin_count--;
  3494. BUG_ON(obj_priv->pin_count < 0);
  3495. BUG_ON(obj_priv->gtt_space == NULL);
  3496. /* If the object is no longer pinned, and is
  3497. * neither active nor being flushed, then stick it on
  3498. * the inactive list
  3499. */
  3500. if (obj_priv->pin_count == 0) {
  3501. if (!obj_priv->active)
  3502. list_move_tail(&obj_priv->mm_list,
  3503. &dev_priv->mm.inactive_list);
  3504. i915_gem_info_remove_pin(dev_priv, obj->size);
  3505. }
  3506. WARN_ON(i915_verify_lists(dev));
  3507. }
  3508. int
  3509. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3510. struct drm_file *file_priv)
  3511. {
  3512. struct drm_i915_gem_pin *args = data;
  3513. struct drm_gem_object *obj;
  3514. struct drm_i915_gem_object *obj_priv;
  3515. int ret;
  3516. ret = i915_mutex_lock_interruptible(dev);
  3517. if (ret)
  3518. return ret;
  3519. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3520. if (obj == NULL) {
  3521. ret = -ENOENT;
  3522. goto unlock;
  3523. }
  3524. obj_priv = to_intel_bo(obj);
  3525. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3526. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3527. ret = -EINVAL;
  3528. goto out;
  3529. }
  3530. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3531. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3532. args->handle);
  3533. ret = -EINVAL;
  3534. goto out;
  3535. }
  3536. obj_priv->user_pin_count++;
  3537. obj_priv->pin_filp = file_priv;
  3538. if (obj_priv->user_pin_count == 1) {
  3539. ret = i915_gem_object_pin(obj, args->alignment);
  3540. if (ret)
  3541. goto out;
  3542. }
  3543. /* XXX - flush the CPU caches for pinned objects
  3544. * as the X server doesn't manage domains yet
  3545. */
  3546. i915_gem_object_flush_cpu_write_domain(obj);
  3547. args->offset = obj_priv->gtt_offset;
  3548. out:
  3549. drm_gem_object_unreference(obj);
  3550. unlock:
  3551. mutex_unlock(&dev->struct_mutex);
  3552. return ret;
  3553. }
  3554. int
  3555. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3556. struct drm_file *file_priv)
  3557. {
  3558. struct drm_i915_gem_pin *args = data;
  3559. struct drm_gem_object *obj;
  3560. struct drm_i915_gem_object *obj_priv;
  3561. int ret;
  3562. ret = i915_mutex_lock_interruptible(dev);
  3563. if (ret)
  3564. return ret;
  3565. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3566. if (obj == NULL) {
  3567. ret = -ENOENT;
  3568. goto unlock;
  3569. }
  3570. obj_priv = to_intel_bo(obj);
  3571. if (obj_priv->pin_filp != file_priv) {
  3572. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3573. args->handle);
  3574. ret = -EINVAL;
  3575. goto out;
  3576. }
  3577. obj_priv->user_pin_count--;
  3578. if (obj_priv->user_pin_count == 0) {
  3579. obj_priv->pin_filp = NULL;
  3580. i915_gem_object_unpin(obj);
  3581. }
  3582. out:
  3583. drm_gem_object_unreference(obj);
  3584. unlock:
  3585. mutex_unlock(&dev->struct_mutex);
  3586. return ret;
  3587. }
  3588. int
  3589. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3590. struct drm_file *file_priv)
  3591. {
  3592. struct drm_i915_gem_busy *args = data;
  3593. struct drm_gem_object *obj;
  3594. struct drm_i915_gem_object *obj_priv;
  3595. int ret;
  3596. ret = i915_mutex_lock_interruptible(dev);
  3597. if (ret)
  3598. return ret;
  3599. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3600. if (obj == NULL) {
  3601. ret = -ENOENT;
  3602. goto unlock;
  3603. }
  3604. obj_priv = to_intel_bo(obj);
  3605. /* Count all active objects as busy, even if they are currently not used
  3606. * by the gpu. Users of this interface expect objects to eventually
  3607. * become non-busy without any further actions, therefore emit any
  3608. * necessary flushes here.
  3609. */
  3610. args->busy = obj_priv->active;
  3611. if (args->busy) {
  3612. /* Unconditionally flush objects, even when the gpu still uses this
  3613. * object. Userspace calling this function indicates that it wants to
  3614. * use this buffer rather sooner than later, so issuing the required
  3615. * flush earlier is beneficial.
  3616. */
  3617. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3618. i915_gem_flush_ring(dev, file_priv,
  3619. obj_priv->ring,
  3620. 0, obj->write_domain);
  3621. /* Update the active list for the hardware's current position.
  3622. * Otherwise this only updates on a delayed timer or when irqs
  3623. * are actually unmasked, and our working set ends up being
  3624. * larger than required.
  3625. */
  3626. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3627. args->busy = obj_priv->active;
  3628. }
  3629. drm_gem_object_unreference(obj);
  3630. unlock:
  3631. mutex_unlock(&dev->struct_mutex);
  3632. return ret;
  3633. }
  3634. int
  3635. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3636. struct drm_file *file_priv)
  3637. {
  3638. return i915_gem_ring_throttle(dev, file_priv);
  3639. }
  3640. int
  3641. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3642. struct drm_file *file_priv)
  3643. {
  3644. struct drm_i915_gem_madvise *args = data;
  3645. struct drm_gem_object *obj;
  3646. struct drm_i915_gem_object *obj_priv;
  3647. int ret;
  3648. switch (args->madv) {
  3649. case I915_MADV_DONTNEED:
  3650. case I915_MADV_WILLNEED:
  3651. break;
  3652. default:
  3653. return -EINVAL;
  3654. }
  3655. ret = i915_mutex_lock_interruptible(dev);
  3656. if (ret)
  3657. return ret;
  3658. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3659. if (obj == NULL) {
  3660. ret = -ENOENT;
  3661. goto unlock;
  3662. }
  3663. obj_priv = to_intel_bo(obj);
  3664. if (obj_priv->pin_count) {
  3665. ret = -EINVAL;
  3666. goto out;
  3667. }
  3668. if (obj_priv->madv != __I915_MADV_PURGED)
  3669. obj_priv->madv = args->madv;
  3670. /* if the object is no longer bound, discard its backing storage */
  3671. if (i915_gem_object_is_purgeable(obj_priv) &&
  3672. obj_priv->gtt_space == NULL)
  3673. i915_gem_object_truncate(obj);
  3674. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3675. out:
  3676. drm_gem_object_unreference(obj);
  3677. unlock:
  3678. mutex_unlock(&dev->struct_mutex);
  3679. return ret;
  3680. }
  3681. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3682. size_t size)
  3683. {
  3684. struct drm_i915_private *dev_priv = dev->dev_private;
  3685. struct drm_i915_gem_object *obj;
  3686. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3687. if (obj == NULL)
  3688. return NULL;
  3689. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3690. kfree(obj);
  3691. return NULL;
  3692. }
  3693. i915_gem_info_add_obj(dev_priv, size);
  3694. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3695. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3696. obj->agp_type = AGP_USER_MEMORY;
  3697. obj->base.driver_private = NULL;
  3698. obj->fence_reg = I915_FENCE_REG_NONE;
  3699. INIT_LIST_HEAD(&obj->mm_list);
  3700. INIT_LIST_HEAD(&obj->ring_list);
  3701. INIT_LIST_HEAD(&obj->gpu_write_list);
  3702. obj->madv = I915_MADV_WILLNEED;
  3703. return &obj->base;
  3704. }
  3705. int i915_gem_init_object(struct drm_gem_object *obj)
  3706. {
  3707. BUG();
  3708. return 0;
  3709. }
  3710. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3711. {
  3712. struct drm_device *dev = obj->dev;
  3713. drm_i915_private_t *dev_priv = dev->dev_private;
  3714. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3715. int ret;
  3716. ret = i915_gem_object_unbind(obj);
  3717. if (ret == -ERESTARTSYS) {
  3718. list_move(&obj_priv->mm_list,
  3719. &dev_priv->mm.deferred_free_list);
  3720. return;
  3721. }
  3722. if (obj_priv->mmap_offset)
  3723. i915_gem_free_mmap_offset(obj);
  3724. drm_gem_object_release(obj);
  3725. i915_gem_info_remove_obj(dev_priv, obj->size);
  3726. kfree(obj_priv->page_cpu_valid);
  3727. kfree(obj_priv->bit_17);
  3728. kfree(obj_priv);
  3729. }
  3730. void i915_gem_free_object(struct drm_gem_object *obj)
  3731. {
  3732. struct drm_device *dev = obj->dev;
  3733. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3734. trace_i915_gem_object_destroy(obj);
  3735. while (obj_priv->pin_count > 0)
  3736. i915_gem_object_unpin(obj);
  3737. if (obj_priv->phys_obj)
  3738. i915_gem_detach_phys_object(dev, obj);
  3739. i915_gem_free_object_tail(obj);
  3740. }
  3741. int
  3742. i915_gem_idle(struct drm_device *dev)
  3743. {
  3744. drm_i915_private_t *dev_priv = dev->dev_private;
  3745. int ret;
  3746. mutex_lock(&dev->struct_mutex);
  3747. if (dev_priv->mm.suspended) {
  3748. mutex_unlock(&dev->struct_mutex);
  3749. return 0;
  3750. }
  3751. ret = i915_gpu_idle(dev);
  3752. if (ret) {
  3753. mutex_unlock(&dev->struct_mutex);
  3754. return ret;
  3755. }
  3756. /* Under UMS, be paranoid and evict. */
  3757. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3758. ret = i915_gem_evict_inactive(dev);
  3759. if (ret) {
  3760. mutex_unlock(&dev->struct_mutex);
  3761. return ret;
  3762. }
  3763. }
  3764. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3765. * We need to replace this with a semaphore, or something.
  3766. * And not confound mm.suspended!
  3767. */
  3768. dev_priv->mm.suspended = 1;
  3769. del_timer_sync(&dev_priv->hangcheck_timer);
  3770. i915_kernel_lost_context(dev);
  3771. i915_gem_cleanup_ringbuffer(dev);
  3772. mutex_unlock(&dev->struct_mutex);
  3773. /* Cancel the retire work handler, which should be idle now. */
  3774. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3775. return 0;
  3776. }
  3777. /*
  3778. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3779. * over cache flushing.
  3780. */
  3781. static int
  3782. i915_gem_init_pipe_control(struct drm_device *dev)
  3783. {
  3784. drm_i915_private_t *dev_priv = dev->dev_private;
  3785. struct drm_gem_object *obj;
  3786. struct drm_i915_gem_object *obj_priv;
  3787. int ret;
  3788. obj = i915_gem_alloc_object(dev, 4096);
  3789. if (obj == NULL) {
  3790. DRM_ERROR("Failed to allocate seqno page\n");
  3791. ret = -ENOMEM;
  3792. goto err;
  3793. }
  3794. obj_priv = to_intel_bo(obj);
  3795. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3796. ret = i915_gem_object_pin(obj, 4096);
  3797. if (ret)
  3798. goto err_unref;
  3799. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3800. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3801. if (dev_priv->seqno_page == NULL)
  3802. goto err_unpin;
  3803. dev_priv->seqno_obj = obj;
  3804. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3805. return 0;
  3806. err_unpin:
  3807. i915_gem_object_unpin(obj);
  3808. err_unref:
  3809. drm_gem_object_unreference(obj);
  3810. err:
  3811. return ret;
  3812. }
  3813. static void
  3814. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3815. {
  3816. drm_i915_private_t *dev_priv = dev->dev_private;
  3817. struct drm_gem_object *obj;
  3818. struct drm_i915_gem_object *obj_priv;
  3819. obj = dev_priv->seqno_obj;
  3820. obj_priv = to_intel_bo(obj);
  3821. kunmap(obj_priv->pages[0]);
  3822. i915_gem_object_unpin(obj);
  3823. drm_gem_object_unreference(obj);
  3824. dev_priv->seqno_obj = NULL;
  3825. dev_priv->seqno_page = NULL;
  3826. }
  3827. int
  3828. i915_gem_init_ringbuffer(struct drm_device *dev)
  3829. {
  3830. drm_i915_private_t *dev_priv = dev->dev_private;
  3831. int ret;
  3832. if (HAS_PIPE_CONTROL(dev)) {
  3833. ret = i915_gem_init_pipe_control(dev);
  3834. if (ret)
  3835. return ret;
  3836. }
  3837. ret = intel_init_render_ring_buffer(dev);
  3838. if (ret)
  3839. goto cleanup_pipe_control;
  3840. if (HAS_BSD(dev)) {
  3841. ret = intel_init_bsd_ring_buffer(dev);
  3842. if (ret)
  3843. goto cleanup_render_ring;
  3844. }
  3845. if (HAS_BLT(dev)) {
  3846. ret = intel_init_blt_ring_buffer(dev);
  3847. if (ret)
  3848. goto cleanup_bsd_ring;
  3849. }
  3850. dev_priv->next_seqno = 1;
  3851. return 0;
  3852. cleanup_bsd_ring:
  3853. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3854. cleanup_render_ring:
  3855. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3856. cleanup_pipe_control:
  3857. if (HAS_PIPE_CONTROL(dev))
  3858. i915_gem_cleanup_pipe_control(dev);
  3859. return ret;
  3860. }
  3861. void
  3862. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3863. {
  3864. drm_i915_private_t *dev_priv = dev->dev_private;
  3865. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3866. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3867. intel_cleanup_ring_buffer(dev, &dev_priv->blt_ring);
  3868. if (HAS_PIPE_CONTROL(dev))
  3869. i915_gem_cleanup_pipe_control(dev);
  3870. }
  3871. int
  3872. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3873. struct drm_file *file_priv)
  3874. {
  3875. drm_i915_private_t *dev_priv = dev->dev_private;
  3876. int ret;
  3877. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3878. return 0;
  3879. if (atomic_read(&dev_priv->mm.wedged)) {
  3880. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3881. atomic_set(&dev_priv->mm.wedged, 0);
  3882. }
  3883. mutex_lock(&dev->struct_mutex);
  3884. dev_priv->mm.suspended = 0;
  3885. ret = i915_gem_init_ringbuffer(dev);
  3886. if (ret != 0) {
  3887. mutex_unlock(&dev->struct_mutex);
  3888. return ret;
  3889. }
  3890. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3891. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3892. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  3893. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  3894. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3895. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3896. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3897. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  3898. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  3899. mutex_unlock(&dev->struct_mutex);
  3900. ret = drm_irq_install(dev);
  3901. if (ret)
  3902. goto cleanup_ringbuffer;
  3903. return 0;
  3904. cleanup_ringbuffer:
  3905. mutex_lock(&dev->struct_mutex);
  3906. i915_gem_cleanup_ringbuffer(dev);
  3907. dev_priv->mm.suspended = 1;
  3908. mutex_unlock(&dev->struct_mutex);
  3909. return ret;
  3910. }
  3911. int
  3912. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3913. struct drm_file *file_priv)
  3914. {
  3915. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3916. return 0;
  3917. drm_irq_uninstall(dev);
  3918. return i915_gem_idle(dev);
  3919. }
  3920. void
  3921. i915_gem_lastclose(struct drm_device *dev)
  3922. {
  3923. int ret;
  3924. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3925. return;
  3926. ret = i915_gem_idle(dev);
  3927. if (ret)
  3928. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3929. }
  3930. static void
  3931. init_ring_lists(struct intel_ring_buffer *ring)
  3932. {
  3933. INIT_LIST_HEAD(&ring->active_list);
  3934. INIT_LIST_HEAD(&ring->request_list);
  3935. INIT_LIST_HEAD(&ring->gpu_write_list);
  3936. }
  3937. void
  3938. i915_gem_load(struct drm_device *dev)
  3939. {
  3940. int i;
  3941. drm_i915_private_t *dev_priv = dev->dev_private;
  3942. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3943. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3944. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3945. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3946. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3947. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3948. init_ring_lists(&dev_priv->render_ring);
  3949. init_ring_lists(&dev_priv->bsd_ring);
  3950. init_ring_lists(&dev_priv->blt_ring);
  3951. for (i = 0; i < 16; i++)
  3952. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3953. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3954. i915_gem_retire_work_handler);
  3955. init_completion(&dev_priv->error_completion);
  3956. spin_lock(&shrink_list_lock);
  3957. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3958. spin_unlock(&shrink_list_lock);
  3959. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3960. if (IS_GEN3(dev)) {
  3961. u32 tmp = I915_READ(MI_ARB_STATE);
  3962. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3963. /* arb state is a masked write, so set bit + bit in mask */
  3964. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3965. I915_WRITE(MI_ARB_STATE, tmp);
  3966. }
  3967. }
  3968. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3969. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3970. dev_priv->fence_reg_start = 3;
  3971. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3972. dev_priv->num_fence_regs = 16;
  3973. else
  3974. dev_priv->num_fence_regs = 8;
  3975. /* Initialize fence registers to zero */
  3976. switch (INTEL_INFO(dev)->gen) {
  3977. case 6:
  3978. for (i = 0; i < 16; i++)
  3979. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3980. break;
  3981. case 5:
  3982. case 4:
  3983. for (i = 0; i < 16; i++)
  3984. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3985. break;
  3986. case 3:
  3987. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3988. for (i = 0; i < 8; i++)
  3989. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3990. case 2:
  3991. for (i = 0; i < 8; i++)
  3992. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3993. break;
  3994. }
  3995. i915_gem_detect_bit_6_swizzle(dev);
  3996. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3997. }
  3998. /*
  3999. * Create a physically contiguous memory object for this object
  4000. * e.g. for cursor + overlay regs
  4001. */
  4002. static int i915_gem_init_phys_object(struct drm_device *dev,
  4003. int id, int size, int align)
  4004. {
  4005. drm_i915_private_t *dev_priv = dev->dev_private;
  4006. struct drm_i915_gem_phys_object *phys_obj;
  4007. int ret;
  4008. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4009. return 0;
  4010. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4011. if (!phys_obj)
  4012. return -ENOMEM;
  4013. phys_obj->id = id;
  4014. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4015. if (!phys_obj->handle) {
  4016. ret = -ENOMEM;
  4017. goto kfree_obj;
  4018. }
  4019. #ifdef CONFIG_X86
  4020. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4021. #endif
  4022. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4023. return 0;
  4024. kfree_obj:
  4025. kfree(phys_obj);
  4026. return ret;
  4027. }
  4028. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4029. {
  4030. drm_i915_private_t *dev_priv = dev->dev_private;
  4031. struct drm_i915_gem_phys_object *phys_obj;
  4032. if (!dev_priv->mm.phys_objs[id - 1])
  4033. return;
  4034. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4035. if (phys_obj->cur_obj) {
  4036. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4037. }
  4038. #ifdef CONFIG_X86
  4039. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4040. #endif
  4041. drm_pci_free(dev, phys_obj->handle);
  4042. kfree(phys_obj);
  4043. dev_priv->mm.phys_objs[id - 1] = NULL;
  4044. }
  4045. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4046. {
  4047. int i;
  4048. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4049. i915_gem_free_phys_object(dev, i);
  4050. }
  4051. void i915_gem_detach_phys_object(struct drm_device *dev,
  4052. struct drm_gem_object *obj)
  4053. {
  4054. struct drm_i915_gem_object *obj_priv;
  4055. int i;
  4056. int ret;
  4057. int page_count;
  4058. obj_priv = to_intel_bo(obj);
  4059. if (!obj_priv->phys_obj)
  4060. return;
  4061. ret = i915_gem_object_get_pages(obj, 0);
  4062. if (ret)
  4063. goto out;
  4064. page_count = obj->size / PAGE_SIZE;
  4065. for (i = 0; i < page_count; i++) {
  4066. char *dst = kmap_atomic(obj_priv->pages[i]);
  4067. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4068. memcpy(dst, src, PAGE_SIZE);
  4069. kunmap_atomic(dst);
  4070. }
  4071. drm_clflush_pages(obj_priv->pages, page_count);
  4072. drm_agp_chipset_flush(dev);
  4073. i915_gem_object_put_pages(obj);
  4074. out:
  4075. obj_priv->phys_obj->cur_obj = NULL;
  4076. obj_priv->phys_obj = NULL;
  4077. }
  4078. int
  4079. i915_gem_attach_phys_object(struct drm_device *dev,
  4080. struct drm_gem_object *obj,
  4081. int id,
  4082. int align)
  4083. {
  4084. drm_i915_private_t *dev_priv = dev->dev_private;
  4085. struct drm_i915_gem_object *obj_priv;
  4086. int ret = 0;
  4087. int page_count;
  4088. int i;
  4089. if (id > I915_MAX_PHYS_OBJECT)
  4090. return -EINVAL;
  4091. obj_priv = to_intel_bo(obj);
  4092. if (obj_priv->phys_obj) {
  4093. if (obj_priv->phys_obj->id == id)
  4094. return 0;
  4095. i915_gem_detach_phys_object(dev, obj);
  4096. }
  4097. /* create a new object */
  4098. if (!dev_priv->mm.phys_objs[id - 1]) {
  4099. ret = i915_gem_init_phys_object(dev, id,
  4100. obj->size, align);
  4101. if (ret) {
  4102. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4103. goto out;
  4104. }
  4105. }
  4106. /* bind to the object */
  4107. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4108. obj_priv->phys_obj->cur_obj = obj;
  4109. ret = i915_gem_object_get_pages(obj, 0);
  4110. if (ret) {
  4111. DRM_ERROR("failed to get page list\n");
  4112. goto out;
  4113. }
  4114. page_count = obj->size / PAGE_SIZE;
  4115. for (i = 0; i < page_count; i++) {
  4116. char *src = kmap_atomic(obj_priv->pages[i]);
  4117. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4118. memcpy(dst, src, PAGE_SIZE);
  4119. kunmap_atomic(src);
  4120. }
  4121. i915_gem_object_put_pages(obj);
  4122. return 0;
  4123. out:
  4124. return ret;
  4125. }
  4126. static int
  4127. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4128. struct drm_i915_gem_pwrite *args,
  4129. struct drm_file *file_priv)
  4130. {
  4131. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4132. void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4133. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  4134. DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
  4135. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  4136. unsigned long unwritten;
  4137. /* The physical object once assigned is fixed for the lifetime
  4138. * of the obj, so we can safely drop the lock and continue
  4139. * to access vaddr.
  4140. */
  4141. mutex_unlock(&dev->struct_mutex);
  4142. unwritten = copy_from_user(vaddr, user_data, args->size);
  4143. mutex_lock(&dev->struct_mutex);
  4144. if (unwritten)
  4145. return -EFAULT;
  4146. }
  4147. drm_agp_chipset_flush(dev);
  4148. return 0;
  4149. }
  4150. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4151. {
  4152. struct drm_i915_file_private *file_priv = file->driver_priv;
  4153. /* Clean up our request list when the client is going away, so that
  4154. * later retire_requests won't dereference our soon-to-be-gone
  4155. * file_priv.
  4156. */
  4157. spin_lock(&file_priv->mm.lock);
  4158. while (!list_empty(&file_priv->mm.request_list)) {
  4159. struct drm_i915_gem_request *request;
  4160. request = list_first_entry(&file_priv->mm.request_list,
  4161. struct drm_i915_gem_request,
  4162. client_list);
  4163. list_del(&request->client_list);
  4164. request->file_priv = NULL;
  4165. }
  4166. spin_unlock(&file_priv->mm.lock);
  4167. }
  4168. static int
  4169. i915_gpu_is_active(struct drm_device *dev)
  4170. {
  4171. drm_i915_private_t *dev_priv = dev->dev_private;
  4172. int lists_empty;
  4173. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4174. list_empty(&dev_priv->mm.active_list);
  4175. return !lists_empty;
  4176. }
  4177. static int
  4178. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4179. {
  4180. drm_i915_private_t *dev_priv, *next_dev;
  4181. struct drm_i915_gem_object *obj_priv, *next_obj;
  4182. int cnt = 0;
  4183. int would_deadlock = 1;
  4184. /* "fast-path" to count number of available objects */
  4185. if (nr_to_scan == 0) {
  4186. spin_lock(&shrink_list_lock);
  4187. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4188. struct drm_device *dev = dev_priv->dev;
  4189. if (mutex_trylock(&dev->struct_mutex)) {
  4190. list_for_each_entry(obj_priv,
  4191. &dev_priv->mm.inactive_list,
  4192. mm_list)
  4193. cnt++;
  4194. mutex_unlock(&dev->struct_mutex);
  4195. }
  4196. }
  4197. spin_unlock(&shrink_list_lock);
  4198. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4199. }
  4200. spin_lock(&shrink_list_lock);
  4201. rescan:
  4202. /* first scan for clean buffers */
  4203. list_for_each_entry_safe(dev_priv, next_dev,
  4204. &shrink_list, mm.shrink_list) {
  4205. struct drm_device *dev = dev_priv->dev;
  4206. if (! mutex_trylock(&dev->struct_mutex))
  4207. continue;
  4208. spin_unlock(&shrink_list_lock);
  4209. i915_gem_retire_requests(dev);
  4210. list_for_each_entry_safe(obj_priv, next_obj,
  4211. &dev_priv->mm.inactive_list,
  4212. mm_list) {
  4213. if (i915_gem_object_is_purgeable(obj_priv)) {
  4214. i915_gem_object_unbind(&obj_priv->base);
  4215. if (--nr_to_scan <= 0)
  4216. break;
  4217. }
  4218. }
  4219. spin_lock(&shrink_list_lock);
  4220. mutex_unlock(&dev->struct_mutex);
  4221. would_deadlock = 0;
  4222. if (nr_to_scan <= 0)
  4223. break;
  4224. }
  4225. /* second pass, evict/count anything still on the inactive list */
  4226. list_for_each_entry_safe(dev_priv, next_dev,
  4227. &shrink_list, mm.shrink_list) {
  4228. struct drm_device *dev = dev_priv->dev;
  4229. if (! mutex_trylock(&dev->struct_mutex))
  4230. continue;
  4231. spin_unlock(&shrink_list_lock);
  4232. list_for_each_entry_safe(obj_priv, next_obj,
  4233. &dev_priv->mm.inactive_list,
  4234. mm_list) {
  4235. if (nr_to_scan > 0) {
  4236. i915_gem_object_unbind(&obj_priv->base);
  4237. nr_to_scan--;
  4238. } else
  4239. cnt++;
  4240. }
  4241. spin_lock(&shrink_list_lock);
  4242. mutex_unlock(&dev->struct_mutex);
  4243. would_deadlock = 0;
  4244. }
  4245. if (nr_to_scan) {
  4246. int active = 0;
  4247. /*
  4248. * We are desperate for pages, so as a last resort, wait
  4249. * for the GPU to finish and discard whatever we can.
  4250. * This has a dramatic impact to reduce the number of
  4251. * OOM-killer events whilst running the GPU aggressively.
  4252. */
  4253. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4254. struct drm_device *dev = dev_priv->dev;
  4255. if (!mutex_trylock(&dev->struct_mutex))
  4256. continue;
  4257. spin_unlock(&shrink_list_lock);
  4258. if (i915_gpu_is_active(dev)) {
  4259. i915_gpu_idle(dev);
  4260. active++;
  4261. }
  4262. spin_lock(&shrink_list_lock);
  4263. mutex_unlock(&dev->struct_mutex);
  4264. }
  4265. if (active)
  4266. goto rescan;
  4267. }
  4268. spin_unlock(&shrink_list_lock);
  4269. if (would_deadlock)
  4270. return -1;
  4271. else if (cnt > 0)
  4272. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4273. else
  4274. return 0;
  4275. }
  4276. static struct shrinker shrinker = {
  4277. .shrink = i915_gem_shrink,
  4278. .seeks = DEFAULT_SEEKS,
  4279. };
  4280. __init void
  4281. i915_gem_shrinker_init(void)
  4282. {
  4283. register_shrinker(&shrinker);
  4284. }
  4285. __exit void
  4286. i915_gem_shrinker_exit(void)
  4287. {
  4288. unregister_shrinker(&shrinker);
  4289. }